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INTRODUCTION

Optical frequency combs based on mode-locked systems have
emerged as a powerful and enabling technology in the context
of optical and electronic synthesis and in precision timing. Fre-
quency combs, which combine ultrafast laser technology and sin-
gle frequency laser stabilization techniques, permit the generation
of highly stable optical and microwave optical signals for high-
resolution time and frequency applications.1 Originally realized to
help in the characterization and development of optical atomic
clocks, the diversification of optical frequency comb sources and
optical references, as well as novel techniques in wavelength con-
version, has significantly expanded their versatility and application
space.2

In this special topical collection, we delve into the latest
advancements and applications of frequency combs, showcasing
their diverse utility and highlighting the cutting-edge research driv-
ing innovation in this field. From “dual-comb” laser ranging,3 to
terahertz photonics4 and molecular referencing,5 optical commu-
nications and to space-based time/frequency dissemination,6 each
article offers technical insights into the impact and innovation that
frequency comb technology brings to each field.

SUMMARY OF AREAS COVERED

Highlighted within this special collection are innovative stud-
ies using bulk mode-locked lasers, including the investigation of
Caldwell et al. into space-based high-precision time and frequency
dissemination utilizing optical frequency combs,6 the development
of Schmid et al. of a low-noise, high-power, solid-state mode-locked
laser for application in extreme ultraviolet (XUV) generation and

low-noise optical synthesis,7 and the report of a record optical
synthesis at the 10−22 level by Shi et al.8

The move toward compact, commercial, and fieldable
systems has seen concerted research efforts in microresonator-
based frequency combs (microcombs),9–11 quantum cascade
lasers (QCLs),12–14 electro-optic combs,15–17 and compact optical
references.18,19 Notably, advancements in compact comb sources
by Jeon et al. using all-fiber references have enabled applications
with exceptional stability and fractional instability as low as 10−14.19

Greenberg et al. describe the development of a THz molecular ref-
erence using a microcomb source.5 Tran et al. describe impressive
results in a highly tunable, high sensitivity QCL comb operating as
a molecular spectrometer in the near- to mid-IR range.20

Furthermore, the exploration of scan-free dual-comb sys-
tems has facilitated rapid progress in a multitude of applications
explored here.14,21–24 For instance, Westberg et al. have explored
the application of dual-comb quantum cascade lasers for open-
air trace gas sensing,14 while Giorgetta et al. utilize programmable
frequency combs for adaptable spectroscopy and hyperspectral
imaging.24

In parallel, the demand for higher repetition rate combs for
applications such as radio-frequency photonics and astronomical
spectrograph calibration has led to the development of electro-
optic (eo) modulation combs and microresonator-based combs.
Cai et al. investigate the nonlinear broadening of an electro-optic
frequency comb optimized for low optical phase noise opera-
tion,15 while Sekhar et al. demonstrate high peak power at high
repetition rates using an integrated waveguide-based Fabry–Pérot
resonator.16

In addition, Bunel et al. showcase significant broadening
in a fiber Fabry–Pérot resonator, akin to what is achieved with
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integrated microresonator sources.25 Wildi and colleagues present
an all-optical method to injection lock a microcomb line to an
external reference laser, demonstrating optical frequency division
and repetition rate phase noise reduction.11 Similarly, Liu et al.
achieve optical frequency division using two-point locking and a
microfabricated air-gap cavity, resulting in ultralow-phase noise
microwaves.18 Finally, Adhi et al. introduce a fiber-cavity laser con-
figuration for mode-locking, offering control over pulse trains across
different time scales.26 Through selectively filtering cavity modes,
they demonstrate a transition from nanosecond pulse bursts to
coexisting nanosecond and picosecond pulses.

CONCLUSIONS

This collection mirrors the breadth and depth in frequency
comb technology, highlighting its role in precision frequency syn-
thesis and metrology across a vast spectrum—from the microwave
to the XUV ranges. From space-based time and frequency dis-
semination to RF photonics, from dual-comb laser ranging to
adaptable spectroscopy, each article showcased within this collec-
tion illuminates the transformative impact and boundless potential
of optical frequency combs. As research continues to push the
boundaries of compactness, stability, and versatility, the horizon
for frequency comb applications expands ever further, promis-
ing continued innovation and scientific discoveries in the years to
come.
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