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Inference of the low-energy constants in �-full chiral effective field theory
including a correlated truncation error
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We sample the posterior probability distributions of the low-energy constants (LECs) in �-full chiral effective
field theory (χEFT) up to third order. We use eigenvector continuation for fast and accurate emulation of the
likelihood and Hamiltonian Monte Carlo to draw effectively independent samples from the posteriors. Our
Bayesian inference is conditioned on the Granada database of neutron-proton (np) cross sections and polariza-
tions. We use priors grounded in χEFT assumptions and a Roy-Steiner analysis of pion-nucleon scattering data.
We model correlated EFT truncation errors using a two-feature Gaussian process, and find correlation lengths for
np scattering energies and angles in the ranges 45–83 MeV and 24–39 degrees, respectively. These correlations
yield a nondiagonal covariance matrix and reduce the number of independent scattering data with factors of 8
and 4 at the second and third chiral orders, respectively. The relatively small difference between the second- and
third-order predictions in �-full χEFT suppresses the marginal variance of the truncation error and the effects
of its correlation structure. Our results are particularly important for analyzing the predictive capabilities in ab
initio nuclear theory.

DOI: 10.1103/PhysRevC.109.064003

I. INTRODUCTION

A chiral effective field theory (χEFT) description of the
nuclear interaction [1–5] is endowed with a power count-
ing (PC) to organize the order-by-order contributions of the
strong-interaction dynamics to nuclear observables. This kind
of organization, regardless of the particulars of the adopted
PC [6], is a hallmark of EFT [7] and ab initio [8] approaches
to nuclear theory since it promises a handle on the theoretical
uncertainty coming from truncating the EFT expansion [9].
Accounting for the truncation error is key to mitigating over-
fitting of the low-energy constants (LECs) as well as assessing
the importance of discrepancies. Indeed, the modeling of EFT
truncation errors can play a significant role in the robustness
of LEC inferences and ensuing nuclear predictions [10–16].
Melendez et al. [17] have proposed a Bayesian model for
the truncation error that accounts for finite correlations across
independent variables, e.g., the scattering energy and angle for
nucleon-nucleon (NN) scattering cross sections and polariza-
tions. To date, LEC inference in χEFT typically accounts for
truncation errors in the fully correlated or uncorrelated limits
[18–22], and the robustness with respect to the correlation
structure is not well known.

In this paper, we quantify a correlated truncation error
and analyze its effects on a Bayesian estimation of the LEC
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posteriors for a �-full χEFT description of the neutron-proton
(np) interaction up to next-to-next-to-leading order (NNLO)
[23,24]. This extends our previous work on Bayesian LEC
estimation in �-less χEFT where we employed an uncor-
related truncation error [14,21,22]. We also use eigenvector
continuation (EC) [25], i.e., a reduced basis method [26], to
efficiently and accurately emulate the scattering amplitudes
entering the np scattering-data likelihood. Following our pre-
vious publications [21,22], we employ Hamiltonian Monte
Carlo (HMC) [27] to draw effectively independent samples
from the LEC posteriors.

The �(1232) resonance plays an important role in nuclear
physics since it represents a rather low excitation energy
and couples strongly to the pion-nucleon (πN) system. This
was recognized already in early χEFT descriptions of the
NN interaction [28–30], and several modern χEFT interac-
tions incorporate the � as well [31–34]. In �-full χEFT
there are four subleading πN LECs up to NNLO, usually
denoted c1, c2, c3, c4. They govern the strength of sublead-
ing 2π-exchange diagrams of the NN interaction and the
leading three-nucleon (NNN) 2π exchange with an inter-
mediate � excitation, the so-called Fujita-Miyazawa force
[35,36]. A Roy-Steiner analysis of πN scattering amplitudes
by Hoferichter et al. [37] has enabled a determination of
the πN LECs. Unfortunately, the relatively unknown value
of the axial πN� coupling hA propagates to approximately
five times greater uncertainties for c2, c3, c4 (compared to a
determination in �-less χEFT) when matching �-full χEFT
to the subthreshold amplitudes in the Roy-Steiner formalism
[38]. A well-founded truncation error would therefore pave
the way for learning more about the strength of subleading 2π

exchange, and leading NNN forces, from NN scattering data.
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This paper is organized as follows: In Sec. II we present
our statistical model for linking experiment and χEFT. In
Sec. III we discuss our priors and likelihood, and in Sec. IV
we introduce the two-feature Gaussian-process model of the
correlated EFT truncation error. In Sec. V we discuss the
training of EC np scattering emulators. In Sec. VI we present
the results from HMC sampling of the LEC posteriors. A
summary and an outlook are given in Sec. VII.

II. LINKING EXPERIMENT AND THEORY

Following our previous papers [14,21,22], we relate an
experimental measurement yexp of some scattering observable
with a theoretical prediction y(k)

th , up to chiral order k, using
an additive model to account for the respective uncertainties,
δyexp and δy(k)

th :

yexp(�x) = y(k)
th (�α; �x) + δyexp(�x) + δy(k)

th (�x). (1)

The theory prediction yth depends deterministically on the
vector of LECs �α and the independent variable �x = (Tlab, θ ),
where Tlab denotes the kinetic energy of the incoming nucleon
in the laboratory frame and θ denotes the scattering angle
in the center-of-mass frame. For the total scattering cross
section we have �x = (Tlab) as this observable is integrated over
all θ . We have suppressed the explicit �α dependence of δy(k)

th
as we will assume a fixed parameter value in the model of the
theory error.

The composition of the LEC vector �α depends on the chiral
order. For the np potentials in this paper, the LEC vector up to
each order is given by

�αLO = (C̃1S0, C̃3S1), (2)

�αNLO = (
C̃np

1S0, C̃3S1,C1S0,C3P0,

×C1P1,C3P1,C3S1,C3S1−3D1,C3P2
)
, (3)

�αNNLO = (
C̃np

1S0, C̃3S1,C1S0,C3P0,C1P1,C3P1,

×C3S1,C3S1−3D1,C3P2, c1, c2, c3, c4
)
, (4)

where LO is leading order (k = 0), NLO is next-to-leading
order (k = 2), and NNLO is next-to-next-to-leading order
(k = 3).1 We employ units and a notation linked to the mo-
mentum partial-wave basis; see Refs. [4,23] for details. The
potential is nonlocally regulated with a regulator cutoff � =
450 MeV as in Ref. [24]. In the following we will only refer
to the generic vector �α, while the specific chiral order, if
important, should be obvious from the context.

The power counting of �-full χEFT allows us to express a
prediction y(k)

th (�α; �x) up to chiral order k as a sum of order-by-
order contributions,

y(k)
th (�α; �x) = yref(�x)

k∑
i=0

c(i)(�α; �x)Qi, (5)

where yref is some characteristic scale to be decided, and c(i)

are dimensionless expansion coefficients. The dimensionless

1Due to symmetries [3–5] the order k = 1 vanishes.

expansion parameter Q = f (mπ , δ, p)/�χ is a ratio com-
posed of a soft scale given by some function of the pion
mass (mπ ), the �N mass splitting δ, the (external) relative
NN momentum p, and a hard scale �χ for which we assume
a point-estimate value of 600 MeV [18,39]. We treat δ ∼ mπ

as a small scale [40], although it does not vanish in the chiral
limit. We resum the potential to all orders which obfuscates
the form of f , and in line with [17] we therefore assume the
following functional form:

f (mπ , p) = p8 + m8
π

p7 + m7
π

, (6)

which facilitates a smooth transition across the soft scale mπ .
We find that the exact form of this function does not impact
our inference significantly, and reverting to a canonical esti-
mate f = max(mπ , p) does not change any of our results. The
upshot of having an order-by-order description of yth, as in
Eq. (5), is a handle on the theoretical uncertainty via

δy(k)
th (�x) = yref

∞∑
i=k+1

c(i)(�x)Qi. (7)

Clearly, we have not explicitly extracted EFT coefficients
c(i>k) for any �x and as a consequence we are uncertain about
their values. However, if we assume naturalness to hold, it
is reasonable to have c(i) ∼ O(1) for all expansion coeffi-
cients, including the unseen ones. Furthermore, contributions
can be either positive or negative. We will therefore consider
the coefficients as drawn from some underlying probability
distribution bounded by a finite variance c̄2 expected to be of
order 1. In addition, there is most likely information about
yth(�x) at nearby values of the independent variable. As such,
there is likely nonzero covariance between expansion coeffi-
cients c(i)(�xm) and c(i)(�xn) at different values �xm and �xn. That
correlation structure is of primary interest in this paper.

III. SETTING UP THE LEC PARAMETER INFERENCE

We seek a posterior probability density function (PDF)
pr(�α|D, I ) for the LECs �α in �-full χEFT up to NNLO con-
ditioned on selected np scattering data D from the Granada
database [41,42] and other information I as specified below. In
the following, we use bold symbols to denote quantities that
depend on a range of values for the independent variable �x,
e.g., x = (�x1, �x2, . . .) and D = (yexp(�x1), yexp(�x2), . . . ), where
we let y denote observable type (differential cross section,
vector polarization, etc.).

Using Bayes’s rule we can express the posterior in terms of
a likelihood pr(D|�α, I ), prior pr(�α|I ), and evidence pr(D|I )
as

pr(�α|D, I ) = pr(D|�α, I )pr(�α|I )

pr(D|I )
. (8)

We ignore the evidence term in this paper as it provides overall
normalization and does not impact the shape of the posterior.

064003-2



INFERENCE OF THE LOW-ENERGY CONSTANTS IN … PHYSICAL REVIEW C 109, 064003 (2024)

A. Prior

We assume independent priors for the LECs of the NN
contact and πN potentials, i.e.,

pr(�α|I ) = pr(�αNN |I ) × pr(�απN |I ), (9)

where �απN = (c1, c2, c3, c4) denotes2 the subleading πN
LECs. For these, we place a normal and correlated prior based
on the (nondiagonal) covariance matrix 	πN obtained in the
Roy-Steiner analysis of πN scattering data by Siemens et al.
[38],

pr(�απN |I ) = N (�μπN , 	πN ), (10)

with

	πN =

⎡⎢⎢⎣
+6.11 −0.63 +6.26 +0.25
−0.63 +277.43 −359.84 +174.20
+6.26 −359.84 +474.01 −224.92
+0.25 +174.20 −224.92 +119.16

⎤⎥⎥⎦
× 10−4

GeV2 (11)

and

�μπN = [−0.74,−0.49,−0.65,+0.96] GeV−1. (12)

Along the lines of naturalness, we place a normal and uncor-
related prior on the LECs �αNN of the contact potential,

pr(�αNN |I ) = N (�0, 	NN ), (13)

where 	NN is a diagonal covariance matrix with standard
deviations 5 × 104 GeV−(k+2) for the contact LECs first ap-
pearing at orders k = 0, 2. This is the same prior as in our
previous papers [21,22].

B. Likelihood

We consider only strong interaction effects in elastic re-
action channels, and neglect all electromagnetic interactions
in our calculations. Thus, we condition our LEC inferences
on low-energy np scattering data below the pion-production
threshold Tlab = 290 MeV, and omit np scattering data with
Tlab < 30 MeV as the nonzero magnetic moments of neu-
trons and protons can distort the low-energy np scattering
amplitude [43,44]. We partition the experimental data set as
D = {Dy}Ny

y=1, where Ny = 18 is the number of unique types
of scattering cross sections and polarizations in the considered
energy range. In Fig. 1 we summarize in tabular form the data
of measured np scattering observables that we include, as well
as some of the results that will be discussed below.

We assume that experimental and theoretical errors are
independent of each other such that the total covariance matrix
can be written as

� = �exp + �th. (14)

The (diagonal) covariance matrix �exp is provided by the
experimenters and we employ normalization factors from the

2Not to be confused with the EFT expansion coefficients
c(0), c(2), . . . in Eq. (5).

Granada database. We model the covariance of the EFT errors
independently for each type of np scattering observable y, and
make specific assumptions and choices Iy per observable type.
The (block-diagonal) covariance matrix �th is given by

�th =

⎡⎢⎢⎣
�th,1 0 · · · 0

0 �th,2 · · · 0
...

...
. . .

...

0 0 · · · �th,Ny

⎤⎥⎥⎦, (15)

where the (nondiagonal) covariance matrix �th,y at chiral or-
der k contains elements

(�th,y)mn = cov
[
δy(k)

th (�xm), δy(k)
th (�xn)

]
(16)

that we model using a Gaussian process; see Sec. IV.
In accordance with the principle of maximum entropy we

employ a normally distributed data likelihood, which factor-
izes as

pr(D|�α, I ) =
Ny∏

y=1

pr(Dy|�α, Iy), (17)

where

pr(Dy|�α, Iy) ∝ exp

[
− rT

y (�α)(�exp,y + �th,y)−1ry(�α)

2

]
. (18)

Here, ry(�α) = [ry,1(�α), ry,2(�α), . . . , ry,Nd,y (�α)] is a (column)
vector of Nd,y residuals, each one given by the difference be-
tween experimental and order-k theoretical prediction values
for the independent variable �x, i.e.,

ry, j (�α) = [
yexp(�x j ) − y(k)

th (�α; �x j )
]
. (19)

All cross sections are computed from amplitudes obtained nu-
merically via the nonrelativistic Lippmann-Schwinger equa-
tion [12,21]. This approach is virtually exact and we do not
account for any method uncertainties of numerical origin in
this paper. Note that in Eq. (19) we assume that all errors taken
into account have mean zero, which will be the case in this
paper.

IV. CORRELATING THE EFT TRUNCATION
ERROR IN NN SCATTERING

Following the suggestion by Melendez et al. [17], we
model the EFT truncation error using Gaussian processes
(GPs) [46,47]. This results in a covariance matrix �th from
Eq. (15) with off-diagonal elements. In this section, we limit
our discussion to the GP modeling of a single covariance
submatrix �th,y for a specific observable type y, e.g., the dif-
ferential cross section σ (θ ), and therefore omit the observable
index y in the following.

We develop a GP model to handle two features, i.e., GP :
R2 → R1, for correlating the distribution of expansion coeffi-
cients at different values of the scattering energy and angle.
For total cross sections we only operate with the scattering
energy, as all angles are integrated over. We expect unseen
coefficients c(i)(x) ≡ {c(i)(�x j )} j to be distributed as

c(i)(x) | m, �, c̄2 ∼ GP[m, c̄2κ (x′, x; �)], (20)

064003-3
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Notation Definition Acronym Nd,y NTlab,y neff Tlab (MeV) c̄2

σtot 0948.03311911TGSnoitcesssorclatot .562

σT σtot(↑↓) − σtot(↑↑ ———33TTGS)

σL σtot( ) − σtot(⇒ 1748.344LTGS) .952

Notation Tensor Illustration Acronym Nd,y NTlab,y neff Tlab (MeV) θ (deg) c̄2

σ(θ) I0000 DSG 1207 68 352.9 73 39 0.612

A(θ) Ds0k0 A 5 1 5.0 68 37 0.652

At(θ) K0ks0 AT 30 2 25.5 74 33 0.492

Ayy(θ) A00nn AYY 58 4 13.7 66 36 1.272

Azz(θ) A00kk AZZ 45 2 16.7 70 28 0.982

D(θ) Dn0n0 D 13 1 4.5 70 27 0.652

Dt(θ) K0nn0 DT 36 5 31.8 57 29 0.672

Dz
x(θ) D0s0k D0SK 8 1 3.1 60 29 0.532

Ay(θ) Pn000 P 503 28 298.7 59 28 0.312

Ny
zz(θ) N0nkk NNKK 8 1 8.0 45 24 0.222

Nx
zy(θ) N0skn NSKN 12 1 10.9 81 35 0.872

Nx
xy(θ) N0ssn NSSN 4 1 4.0 76 31 0.622

R(θ) Ds0s0 R 5 1 5.0 74 32 0.672

Rt(θ) K0ss0 RT 29 3 25.2 83 26 0.552

Rt(θ) K0sk0 RPT 1 1 1.0 61 35 0.532

FIG. 1. The database D of np scattering observables with 30 � Tlab � 290 MeV with notation, definition, and acronym in the Granada
database [41,42], number of data Nd,y and measurement energies NTlab,y per observable type y, effective dimension neff given theory error
correlations, maximum a posteriori (MAP) values for GP correlation lengths across scattering energy �̂Tlab and angle �̂θ , and marginal variancê̄c2. The spin-dependent integrated cross sections σT and σL have polarizations parallel and antiparallel to each other and transverse (T ) or
longitudinal (L) to the beam direction. The σT observable was omitted in our analysis; see the text for details. For spin polarizations we list
the polarization tensors, Xsrbt , using the notation of [45] where subscripts denote the polarization of the (s)catter, (r)ecoil, (b)eam, and (t)arget
particles in the direction of the incoming projectile (k̂), normal to the scattering plane (n̂), ŝ = n̂ × k̂, and 0 is an unpolarized state. The
illustrations show initial and final spin-polarizations in the laboratory frame using gray arrows for reactants, blue arrows for the polarization
direction in the scattering plane, and circled dots for the outward-pointing polarization vector. The projectile impinges from the left, the target
(not indicated) is located in the center, and the projectile (recoil) scatters upwards (downwards) at an angle indicated by the arc (gray). In this
table, and in the text, we leave the energy dependence of all observables implicit.
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where m is assumed to be a constant mean function and �, c̄2

denote the hyperparameters for the GP correlation length(s)
and marginal variance, respectively. The calibration of these
parameters will be discussed in Sec. IV A. The marginal stan-
dard deviation c̄ is a scale factor that quantifies the average
distance of the GP away from its mean, and the correlation
length quantifies the typical extent of the GP fluctuations.
Elastic np scattering observables typically exhibit a smooth
behavior as a function of energy and angle. Therefore, we
expect smooth variations of the expansion coefficients. As-
suming stationarity, we employ a squared-exponential kernel
to parametrize the correlation structure,

κ (�xi, �x j ; �) = exp

[
− (�xi − �x j )T �−1(�xi − �x j )

2

]
, (21)

where the length scale(s) are given by

� =
[
�2

Tlab
0

0 �2
θ

]
, (22)

in an obvious notation.
We are mainly interested in the quantified hyperparame-

ters � and c̄2 that characterize the finite correlation length
and variance of the EFT error. A GP is a linear-Gaussian
model for which there are closed-form expressions [46,47] for
the distribution of predicted data conditioned on calibration
data. Once the posterior distribution, or point estimates, of
the hyperparameters are determined it is straightforward to
quantitatively use the GP to predict EFT expansion coeffi-
cients exhibiting a variance and correlation consistent with
the calibration data. Furthermore, one can show [17] that the
GP for the EFT truncation error pertaining to a scattering
observable yth is given by

δy(k)
th (x)|m, �, c̄2, yref, Q ∼ GP[M (k)(x), c̄2K (k)(x′, x; �)],

(23)
where the respective mean (M) and kernel (K) functions are
given by

M (k)(x) = yref(x)
[Q(x)]k+1

1 − Q(x)
m, (24)

and

K (k)(x′, x; �) = yref(x′)yref(x)

× [Q(x′)Q(x)]k+1

1 − Q(x′)Q(x)
κ (x′, x; �).

(25)

This lays the foundation for how we model the covariance
matrix in Eq. (15) and sample the LEC posterior pr(�α|D, I )
via the likelihood and prior defined in Secs. III A and III B.
As will be discussed shortly, we set m = 0 in this paper.

A. Optimizing the GP hyperparameters

We set up individual GPs for the block-diagonal covari-
ance matrices �th,y in Eq. (15). The hyperparameters for each
observable type y are optimized separately and we find max-
imum a posteriori (MAP) values for them using GSUM [17].
For each GP we use a set of training data c consisting of Ntrain

expansion coefficients obtained as

c(k)(�x j ) = y(k)
th (�α; �x j ) − y(k−1)

th (�α; �x j )

yref[Q(�x j )]k
, (26)

for a training range x of values for the independent variable.
We pick Ntrain ≈ 25–50 points uniformly distributed across
approximately 4–6 energies Tlab ∈ [30, 290] MeV and 5–10
angles θ ∈ [0, 180] degrees. The training grid varies some-
what depending on the observable type. The order-by-order
differences in Eq. (26) are computed from theoretical pre-
dictions based on a MAP estimate for the LECs, �α = �α,
obtained in line with Ref. [21] in the uncorrelated limit using
c̄ = 1.

The LO predictions y(0)
th in �-full χEFT are identical to

the �-less predictions and as such they are rather poor, as
expected in Weinberg PC [12,48]. Thus, the c(2) expansion
coefficients incur rather unnatural values. One could argue
that a Bayesian approach, with a prior for the expansion
parameters, should be able to properly handle such outliers.
However, a (likely) deficient LO will conflict with our ini-
tial assumptions in Eq. (7). Instead of using the truncation
error to absorb deficiencies rooted in the PC, we decided
to neglect LO predictions in this paper. Thus, all training
data consist of c(3) expansion coefficients only. Despite this
limited amount of data, we expect the available coefficients
to carry valuable information about the correlated truncation
error and we proceed with a Bayesian GP model. For total
and differential cross sections we set yref to the predictions
of the Idaho-N3LO(500) potential [49], which is almost the
same as using yref = yexp. We encounter a zero crossing in yref

for σT . This leads to a discontinuity in the c(3) coefficients as
a function of Tlab; see Fig. 2. Such small-scale structures are
virtually impossible to faithfully represent using an infinitely
smooth squared-exponential kernel. As there are only three
experimental data points for this observable type, we decided
to exclude them from D rather than choosing an exceptional
yref for this one case. For polarization data we encounter an
excess of small-scale structures when setting yref to the pre-
dictions of Idaho-N3LO(500). Using yref = 0.5 removes them
entirely and we are spared further kernel design. We choose
0.5 as a representative value for these observables. Other
choices could be yref = 1.0 [18] or an average of experimental
values [21].

All training data are pruned for outliers using a three-
interquartiles threshold [21]. In the end, all c(3)(x) coefficients
are of natural order, and a vast majority of them pass the
outlier filter. Operating with a GP allows us to incorporate
known symmetry constraints on the polarization observables.
Indeed, some polarizations are identically equal to zero at
θ = 0 and/or θ = 180 degrees. We impose such boundary
constraints by adding zero-valued expansion coefficients for
the endpoint(s) of the angular direction to the training data. In
a future application we will formally incorporate continuous
boundary constraints in the GP [50].

We employ a bounded and uniform prior for the length
scales � of the form

pr(�θ |I ) = U (ε, 180) degrees (27)
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FIG. 2. (a) Calculated expansion coefficients for σT . (b) The
NLO, NNLO, and reference values from which the coefficients are
calculated. Note the zero crossing for the reference value at Tlab ≈
205 MeV.

and

pr(�Tlab |I ) = U (ε, 290) MeV, (28)

where ε = 10−5 is introduced to avoid numerical issues in the
optimization of the kernel (the exact value of ε is unimportant
in this case since the posterior values are never close to the
edge of the prior). We place a conjugate inverse-χ2 prior on
the variance c̄2 according to

pr(c̄2|I ) = χ−2
(
ν0 = 1, τ 2

0 = 1
)

(29)

and a Dirac delta prior pr(m) = δ(m) on the mean m. This
encodes our expectation of natural c̄2 values, although the
heavy tail in our prior allows for some unnaturalness, and
expansion coefficients symmetrically distributed with mean
m ≡ 0. Our chosen prior for c̄2 is shown in orange in Fig. 3.
We do not allow the mean to vary owing to the limited amount
of information—one chiral order—we have available to learn
from. This strict prior on m could be substituted for, e.g., a
Gaussian prior if more information is available. If so, Eq. (19)
must be updated to include the systematic contribution of a
truncation error with nonzero mean.

The conjugacy of the χ−2(c̄2) prior implies that the pos-
terior pr(c̄2|m = 0, �, c, x, I ) is also an inverse-χ2 PDF with
updated parameters [17]. The prior for the length scale � is not
conjugate, and to find the posterior MAP values (̂�, ̂̄c2) of

pr(�, c̄2|m = 0, c, x, I ) ∝ pr(c|m = 0, �, c̄2, x, I )

× pr(c̄2|m = 0, I )pr(�|I ) (30)

we use the numerical optimization routine L-BFGS-B [51]
with multiple restarts. We include a so-called nugget, set
to 10−10, to avoid numerical issues. The resulting MAP
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FIG. 3. The inverse-χ 2 prior pr(c̄2|I ) (orange) for the GP hyper-
parameter c̄2. Shown in black are alternative priors that we use to
show the robustness of the inference.

estimates of the hyperparameters are listed in the table in
Fig. 1. The delta prior on m obviously yields a corresponding
MAP value m̂ = 0. The GP predictions for expansion coeffi-
cients c(3) for three of the most abundant observable types are
shown in Fig. 4.

The amount of training data is sufficient to make the poste-
rior likelihood-dominated in most cases. We explore a number
of priors, shown in Fig. 3, and find that the inference is rather
robust as long as we allow for very small values c̄2 � 0.22.
Indeed, a prior that is too restrictive in this regard can bias the
result for total cross sections, where the training data are one
dimensional.

B. Validating the GP hyperparameters

We validate the GP hyperparameters for each observable
type y using a set of Nval complementary validation data
c̃. The validation data are generated by the same method as
the training data, but with energies and angles shifted so that
the validation values x̃ for the independent variable do not
overlap with ones used during training. In addition to visual
inspections, which are certainly useful, we also employ a set
of diagnostics inspired by Refs. [17,52]. These diagnostics
are the Mahalanobis distance, pivoted Cholesky errors, and
the credible interval diagnostic. These, and a few more, are
thoroughly discussed in Ref. [17].

The (squared) Mahalanobis distance, D2
MD, is a multivariate

analog to the sum of squared residuals. Here, it is computed
as

D2
MD(̃c; m̂, �̃GP ) = [̃c − m̂]T �̃

−1
GP [̃c − m̂], (31)

where m̂ is the GP mean at x̃—equivalent to zero with our
choice of prior—and

�̃GP = ̂̄c2κ (̃x′, x̃; �̂). (32)

This distance is commonly used to quantify the deviation of
a prediction compared to data in a correlated setting. Here,
we use it to diagnose whether a set of validation data could
reasonably have been drawn from a GP with covariance ac-
cording to Eq. (32) and mean m = m̂ = 0. Either too large or
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FIG. 4. Mean GP predictions η for (dimensionless) expansion coefficients for (a) σtot, (b) σ (θ ), and (c) Ay(θ ). The light colored band in
(a) indicates a 95% credible interval.

small values of D2
MD, compared to the reference χ2 distribu-

tion with Nval degrees of freedom, point to a possible conflict
between the GP and the validation data. The Mahalanobis dis-
tance is a scalar measure and does not provide detailed insight
about the possible tension with respect to the validation data.

Furthermore, it is instructive to study the GP and the
validation data point by point as a function of the indepen-
dent variable. Such comparisons are not straightforward to
interpret given the mutual correlation of the validation data.
Therefore, we decorrelate and rescale the covariance matrix
to independent unit variances using a Cholesky decomposi-
tion: �̃GP = GGT where G is a triangular standard deviation
matrix. From this we define the Cholesky errors

DG = G−1[̃c − m̂]. (33)

To order the vector DG in a meaningful way we pivot the de-
composition in decreasing conditional variances. One should
not detect any pattern when plotting the pivoted DG versus the
index of the validation data. To reveal further information one
can introduce a ratio scale also on the abscissa by plotting the
pivoted Cholesky errors versus the conditional variances used
for pivoting [53].

All but one of the GPs readily pass our diagnostics, with
D2

MD landing within 95% credible intervals of the respective
reference distributions. We see little to no structure in the
pivoted Cholesky decompositions, and empirical coverages
that roughly match the corresponding credible intervals. In
addition, visual inspections indicate that the inferred hyper-
parameters are plausible. Naturally, incorporating expansion
coefficients from other orders would provide a stronger test of
our GP model. We only reject σT , and therefore also the three
experimental data points. Neither D2

MD nor the DG exhibit
significantly poor performance for this observable given our
validation data. However, upon visual inspection of the c(3)

curve for this observable, shown in Fig. 2, we find that it
is discontinuous for Tlab ≈ 205 MeV because the reference
value crosses zero at this point, leading to extremely large

coefficients near the crossing point and an abrupt change in
sign. Clearly, our GP model, based on a squared-exponential
kernel, is ill suited to handling this discontinuity, and the
inferred length scale is strongly dependent on the chosen
training data and will approach zero as we increase the num-
ber of training data. If it were not for the existence of an
experimental data point in the vicinity of the problematic
scattering energy, we would have considered excluding only
the problematic region. This example clearly shows that one
should not blindly trust the diagnostics as they are conditioned
on the chosen training and validation data.

C. The structure of the correlated truncation error

Introducing a correlated truncation error reduces the num-
ber of independent directions in the data space. Indeed, two
data residing within one correlation length of the scattering
energy or angle carry joint information. To quantify the impact
of this we compute the effective dimension neff, per observable
type y, using a measure [54,55] defined as neff = ∏Nd,y

i=1 γ
−γi
i ,

where γi denotes a normalized eigenvalue γi = λi/tr(Cy) of
the respective correlation matrix. Here, Cy = S−1

y �yS−1
y and

Sy = √
diag(�y) with �y = �exp,y + �th,y. We could equally

well compute neff for �y directly. However, operating with the
correlation matrix leads to the values neff = 1 and neff = Nd,y

in the limits of having a full off-diagonal correlation and
zero off-diagonal correlation, respectively. Consequently, we
interpret neff as the effective number of data, and note that the
logarithm of neff corresponds to the discrete Shannon entropy
of the spectrum of the normalized eigenvalues γi.

The resulting neff values at NNLO are summarized in the
table in Fig. 1. They show that the correlations reduce the
number of effective data from 2087 to 841, which is still
plentiful. The main reason for the relatively weak impact of
the correlated truncation error is the dominance of the experi-
mental variances along the diagonal of the covariance matrix
�. Indeed, for the correlation matrices of the GP kernel for
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FIG. 5. Correlation matrices based on the NNLO covariance ma-
trix �σtot of the 119 σtot data. In panels (a) and (b) we exclude and
include, respectively, the experimental variances �exp,σtot . The data
are sorted by energy in increasing order.

EFT truncation errors alone we find neff ≈ 5–10. In Fig. 5 we
show correlation matrices for the total cross section Cσtot , with
and without the experimental covariance matrix accounted for.
The diagonal dominance of the experimental errors is clearly
visible. This dominance weakens for higher energies (higher
indices in the figure) as the truncation error increases with the
scattering energy Tlab. At NLO, where the truncation error is
greater by one chiral order Q, the corresponding neff values are
typically a factor 2 smaller as the correlations of the truncation
error become relatively more important. The total number of
effective data is 498. In Fig. 6(a) we compare the 68% credible
interval �y(k)

th of the EFT truncation error at NLO and NNLO
with the experimental errors �yexp for all data.

The EFT truncation error, and its correlations, is expected
to be more important for inferences conditioned on very pre-
cise pp data. To estimate this effect, we inspected the pp
Ay(θ ) data set more closely. With Tlab ∈ [30, 290] MeV there
are 496 data points, which is almost the same as in the np
sector. Reducing the experimental variances of the np Ay(θ )
data, to mimic the average level of pp variances, we observe
neff = 154 and 91 at NNLO and NLO, respectively. For other
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FIG. 6. The EFT truncation and EC emulator errors compared
to experimental errors for all considered np scattering data. (a) The
standard deviations of the EFT truncation errors at NLO and NNLO.
(b) The NNLO EC emulator errors (�yemu). Colors as in Fig. 2. In
both panels we divide by the the experimental 1σ errors (�yexp) and
the horizontal dashed lines indicate a ratio of 1.

observable types, like σ (θ ), the average pp variance is greater
than the average np variance, and the opposite effect is likely
observed. Note that the distribution of np and pp measurement
energies and angles differ and we do not account for this in our
estimate.

V. EMULATING np SCATTERING CROSS SECTIONS

We use an EC-based method [25] to construct accurate and
efficient emulators for np scattering observables. Operating
with emulators, instead of the exact simulators, helps reduce
the computational cost of evaluating the likelihood. As an
added bonus, once the emulators are trained they are straight-
forward to distribute in the scientific community.

We use Newton’s functional formulation of on-shell np
T -matrix elements for setting up the emulators [56]. Tech-
nically, this leads to one emulator per np partial-wave and
unique scattering energy in the database D (table in Fig. 1).
Truncating the partial-wave expansion at a maximum np
angular-momentum quantum number J = 30 leads to 182
partial waves. With NTlab = 177 energies in D we end up
with 32 214 T -matrix emulators per chiral order. The training
values for the LECs are drawn according to a latin hypercube
design in a sufficiently wide interval [−4,+4] (see Sec. III A
for units). To simplify the setup, we employ the same training
protocol for all emulators and find it sufficient to use 7 (8)
training points at NLO (NNLO). As there are at most 3 (7)
relevant LECs acting per partial wave, this approach leads to
very accurate emulation of all relevant scattering observables.
We estimate that emulator errors �yemu are at least 10, and
typically 1000, times smaller than experimental errors. This
is quantified using the difference between emulated and exact
results for all np observables in D at ten different sets of LEC
values following randomized latin hypercube designs within
the training intervals specified above. In Fig. 6(b) we show the
ratio �yemu/�yexp at NNLO for a random set of LEC values.
This is virtually identical to the NLO result. We conclude that
the emulator errors are sufficiently small to neglect them in
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our inferences. In the following we refer to the collection of
all amplitude-emulators, per chiral order, as the emulator for
scattering observables y.

VI. SAMPLING POSTERIOR DISTRIBUTIONS

We sample the LEC posteriors pr(�α|D, I ) at NLO and
NNLO using HMC, an advanced Markov chain Monte Carlo
(MCMC) algorithm suitable for high-dimensional sampling
problems. We have detailed the use and performance of HMC
in a previous paper [21] and further improved its performance
in Ref. [22]. Here, we employ the same sampling strategy as
in the latter paper. HMC needs tuning in order to perform
well, and in particular a good so-called mass matrix is needed.
The mass matrix should be a decent approximation to the
inverse of the parameter covariance matrix. We extract such
an approximation by maximizing the posterior through the
standard BFGS algorithm [57–60].

HMC requires gradients of the (logarithm of the) poste-
rior with respect to the sampled parameters. The underlying
linearity of the emulators furnishes easy access to derivatives
of T -matrix amplitudes with respect to the LECs. However,
we employ the automatic differentiation (AD) and just-in-
time (JIT) compilation tools for Python in the Google JAX
[61] library to compute the required gradients and boost the
execution speed of our Python code; it takes on the order of
one second to evaluate the entire data likelihood, including
derivatives. We opted for this approach due to its simplicity
and speed. It also enables straightforward computation of
derivatives of the posterior with respect to parameters other
than the LECs, such as GP hyperparameters. A threaded C-
code implementation would likely be more efficient, but not
pivotal for the present applications.

We diagnose the convergence of the MCMC chains us-
ing a criterion based on the integrated autocorrelation time
τint [62]. This is a measure of the autocorrelation between
MCMC samples, and it tends to be underestimated for short
MCMC chains. In line with Ref. [21] we therefore declare
convergence when (a) the estimation of τint has stabilized, and
(b) when N � 50τint, where N is the length of the MCMC
chain. All our chains readily pass this test. Like other MCMC
convergence tests, the τint criterion may falsely declare con-
vergence, e.g., if the posterior is multimodal; we therefore
search for local optima using BFGS optimization initialized at
random positions. We have not detected signs of multimodal-
ity and are confident that our chains are converged.

A. LEC posteriors

In a first step we compare the LEC posteriors obtained
with correlated and uncorrelated EFT truncation errors. In
the uncorrelated limit we determined c̄2 from the root-mean-
square value of the NLO-NNLO expansion coefficients for
the σtot, σ (θ ), Ay(θ ) observables, i.e., omitting the LO contri-
bution and discarding outliers. We employed the same grids
of scattering energies and angles as in the training of the
correlated GP model for these observables; see Sec. IV A.
This leads to a fixed c̄2 = 0.422.

We find that the introduction of a finite correlation length
in the EFT truncation error does not affect the marginal LEC
posteriors much; see Figs. 9–12 in Appendix A. However,
there are some differences and similarities worth commenting
on. Most noticeably, the marginal posteriors for all LECs
are approximately twice as wide when including a correlated
truncation error. This is consistent with the observed reduction
in the effective number of data. Other than that, the posterior
correlation structure remains the same and the respective loca-
tions of the modes are largely the same, except for a significant
shift in the value of the C3S1-3D1 contact and the C1P1 contact
LEC becoming (almost) consistent with zero in the correlated
(uncorrelated) limit at NLO (NNLO). At NNLO the MAP
values for the subleading πN LECs are substantially shifted
with respect to the mean of their prior values in Eq. (10). This
result does not change when neglecting a correlated truncation
error. In the case of a correlated truncation error we obtain a
MAP value for the πN LECs,

�̂απN = [−0.72(2),−0.96(5),−0.01(6), 0.69(5)] GeV−1,

(34)
with 68% credible intervals indicated by error bars in paren-
theses. The squared Mahalanobis distance of this point
with respect to the mean and covariance of the prior is
D2

MD(̂�απN , �μπN ; 	πN ) = 9.65, which is just far enough for the
posterior MAP value to be outside 95% of the prior probability
mass. This can be cast in terms of a p value (0.047) and
traditional significance testing, which would lead us to reject
the correctness of the Roy-Steiner prior (null hypothesis) on
the 5% significance level. However, we are inclined to place
doubt on our model for the truncation error and in particular
its variance. As a side remark, the D2

MD values for the MAP
values of the πN LEC posteriors for �-less NNLO [21] and
for the next order N3LO [22], inferred using an uncorrelated
truncation error, are even greater and again point to significant
tension between the respective LECs inferred using NN data
and πN data.

We suspect that the truncation error is underestimated since
the NLO-NNLO shift in the �-full theory is on the smaller
side, which is not too surprising as the inclusion of the �-
isobar pulls down higher-order contributions in the �-less
theory. Also, we cannot rule out that the contributions at
�-full N3LO are substantial owing to the introduction of a
rich fourth-order contact potential. To shed some light on the
possible underestimation of c̄2 we sampled the joint posterior
pr(�α, c̄2|D, I ) in the uncorrelated limit of the truncation error.
For this, we employed the same LEC prior as defined in
Sec. III A, and assumed the same c̄2 for all observable types.
For the latter parameter we employed an inverse-χ2 prior with
ν = 23.75 and τ 2 = 0.19, as obtained via conjugacy of an
inverse-χ2 (hyper)prior with ν0 = τ 2

0 = 1 updated using train-
ing data from expansion coefficients c(3) for σ (θ ), Ay(θ ), σtot

on the same grid of θ and Tlab values as used when inferring
the GP model parameters for the correlated truncation error.
This prior is sharply peaked at c̄2 ≈ 0.452. The marginal LEC
values from the pr(�α, c̄2|D, I ) posterior are not noticeably
different from before. However, the posterior modes for c̄2

are 0.96(5) and 3.5(2) at NLO, and NNLO, respectively, with
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FIG. 7. 500 draws from the NLO PPDs for Ay(θ ) at Tlab =
40 MeV and Tlab = 140 MeV using a correlated truncation error. The
experimental data at 40 and 140 MeV are from Refs. [64,65] and
[66], respectively.

68% credible intervals indicated in parentheses. Clearly, con-
ditioning on D has a significant impact and increases the EFT
truncation error.

B. Posterior predictive distributions

In this section we quantify the posterior predictive dis-
tributions (PPDs) for selected np scattering observables at
NLO (k = 2) and NNLO (k = 3). A PPD is a distribution
of values for a, possibly unseen, observable y conditioned
on experimental data [63]. Specifically, we will sample from
pr(y|D, �x, I ) with y = yth(�x) + δyth(�x) at some value(s)
�x for the independent variable. Note that we include our
estimate of the truncation error in all PPDs. To achieve this,
we sample y(k)

th (�α; �x) for �α ∼ pr(�α|D, I ), i.e., we draw LEC
values from the MCMC chains distributed according to the
posteriors quantified in Sec. VI. To each sample we add a

normally distributed truncation error δy(k)
th (�x) ∼ N (0, 	

(k)
th,y)

where the covariance matrix is informed by a GP with MAP
values �̂θ , �̂Tlab ,

̂̄c2 according to the values listed in the table in
Fig. 1.

As a model check we first inspect the PPD for some of the
seen data, i.e., the data already in D. In Fig. 7 we show 500
draws from the PPDs for the vector polarization Ay(θ ) at NLO
with Tlab = 40 MeV and Tlab = 140 MeV.

The model calculations were performed using EC emula-
tors trained as above. The observed correlation length, �̂θ =
28 degrees, is reasonable, and we hit most of the data within
the theory uncertainty. Due to the symmetries of the strong
interaction we must have Ay(θ = 0) = Ay(θ = 180) = 0. As
we incorporated this type of constraint during the training the
GP , the predictive variance indeed goes to zero for θ = 0, 180
degrees. Given the rather long correlation lengths, the vari-
ance constraints at the angular endpoints appears to propagate
to the interior to further suppress the truncation error. We have
not studied the empirical coverage of the truncation error as
we expect it to extrapolate rather poorly to unseen data at
higher energies.

In Fig. 8 we quantify PPDs for unseen data and compare
predictions based on correlated and uncorrelated truncation
errors. We have drawn 500 samples from the PPDs for the
differential cross section σ (θ ) at Tlab = 319 MeV, the vector
polarization Ay(θ ) at Tlab = 350 MeV, and the total cross
section σtot for Tlab = 30–350 MeV, where the latter is at
NLO and the former two at NNLO using correlated as well
as uncorrelated truncation errors.

The smoothing effect of the correlated truncation error is
clearly visible in panels (a) and (c). For σ (θ ), in panels (a) and
(b), the predictions in the low-θ region fare significantly worse
when including correlations. We speculate that this is con-
nected to the reduced weight of high-energy np data residing
within one correlation length of the truncation error. In panels
(c) and (d) we compare Ay(θ ) predictions at NNLO. Besides
overall similarities, the predictive variance of Ay(θ ) is finite
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FIG. 8. 500 draws from the PPDs for unseen data for (a) σ (θ ) at NNLO and Tlab = 319 MeV with a correlated error, and experimental data
from Ref. [67]. (b) Same as (a) but with an uncorrelated error. (c) Ay(θ ) at NNLO and Tlab = 350 MeV with a correlated error, and experimental
data from Ref. [68]. (d) Same as (c) but with a correlated error. (e) σtot at NLO and Tlab = 30–350 MeV (see Ref. [42] for references to the
experimental data).
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at the edges even when we include a correlated truncation
error for which we have imposed the relevant symmetry con-
straints. However, at Tlab = 350 MeV we are approximately
one correlation length away from the training point where
the constraint was imposed, and its effect has deteriorated.
Finally, the PPD for the total cross section in panel (e) under-
estimates the experimental data for Tlab > 100 MeV, and the
correlated truncation error appears to be somewhat too small
as well.

VII. SUMMARY AND OUTLOOK

We quantified a correlated truncation error for �-full
χEFT predictions of np scattering observables at NLO and
NNLO. The correlation structure was modeled using a GP
with a squared-exponential kernel, and the resulting MAP
values for the correlation lengths in the scattering energy and
angle directions are in the ranges of 45–83 MeV and 24–39
degrees, respectively, for the 17 different observable types
in the set of np scattering data that we consider. These are
significant correlation lengths that, in principle, could reduce
the effective number of independent np data in the likelihood
by two orders of magnitude and therefore strongly impact
the LEC inference. However, other than doubled widths
of the univariate marginal posteriors for all LECs we find that
the introduction of a correlated EFT truncation error does not
change the structure of the LEC posteriors by much. This is
explained well by the relatively small marginal variances of
the truncation errors that we quantify in this paper. Indeed, we
found effective dimensions of the data likelihood that were
approximately 1/8 and 1/4 of the length of the experimental
np database, at NLO and NNLO respectively.

The marginal variance of the uncorrelated truncation er-
ror increases up to four times when jointly sampling it with
the LEC values. Thus, future inferences should attempt to
marginalize predictions over the hyperparameters of the GP
model and if possible also the breakdown scale, or the ex-
pansion parameter Q. For this, the HMC algorithm with AD
should provide the necessary leverage to enable sampling of a
posterior with, at least, doubled dimensionality. There is most
likely useful information to learn about the truncation error
from theoretical predictions at N3LO in �-full χEFT. Adding
more chiral orders in the analysis of the truncation error might
reveal challenging structures in the order-by-order data that
call for more sophisticated GP-kernel design than we employ
in this paper.

It will be interesting in future studies to explore the
performance of the inferred interactions in predictions of
many-nucleon observables. The general ab initio modeling

capabilities of �-full chiral interactions at NNLO were stud-
ied recently in Refs. [15,16,69]. These papers targeted, in
particular, predictions for heavy nuclei up to 208Pb and in-
finite nuclear matter. A common strategy was to first use
history matching to identify interaction parametrizations that
give acceptable model predictions for a suite of low-energy
nuclear observables. Energies and radii of light nuclei, as well
as selected np phase shifts, were included sequentially in an
implausibility measure that led to the removal of large regions
of the LEC parameter space. Although a lower regulator cutoff
� = 394 MeV was used in the history-matching analyses, it
is still interesting to compare the identified regions with the
parameter posterior PDF inferred in this paper. First, we find
that the posterior mode from this paper projected on c2,3,4 is
situated just outside the non-implausible range. That is not
surprising since the Roy-Steiner prior was employed without
updates throughout history matching. Furthermore, the mode
is located at the upper end of the non-implausible range in
the C1S0 direction and at the lower edges of the C1P1 and C3P2

ranges. The significance and origin of this tension should be
explored in a joint analysis of NN , few-, and many-nucleon
observables.

The scattering emulators and HMC sampling presented
here can be combined with history matching and reduced-
basis methods for many-body observables to enable a joint
analysis of chiral interactions. Such studies, however, will rely
on an improved understanding of correlated EFT truncation
errors and soft momentum scales in finite nuclei.
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APPENDIX: LEC POSTERIORS PDFS

In this Appendix we show (Figs. 9–12) the LEC posterior
PDFs for the values of the LECs in �-full χEFT up to NNLO,
conditioned on np scattering data with 30 � Tlab � 290 MeV
and a truncation error in the correlated and uncorrelated limits.
The corresponding MCMC chains are available upon request.
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