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Abstract

We model the interstellar dust content of the reionization era with a suite of cosmological, fluid-dynamical
simulations of galaxies with stellar masses ranging from ∼105 to 109Me in the first 1.2 Gyr of the Universe. We
use a post-processing method that accounts for dust creation and destruction processes, allowing us to
systematically vary the parameters of these processes to test whether dust-dependent observable quantities of
galaxies at these epochs could be useful for placing constraints on dust physics. We then forward model observable
properties of these galaxies to compare to existing data. We find that we are unable to simultaneously match
existing observational constraints with any one set of model parameters. Specifically, the models that predict the
largest dust masses D/Z 0.1 at z= 5—because of high assumed production yields and/or efficient growth via
accretion in the interstellar medium—are preferred by constraints on total dust mass and infrared (IR) luminosities,
but these models produce far too much attenuation in the ultraviolet (UV), preventing them from matching
observations of βUV. To investigate this discrepancy, we analyze the relative spatial distribution of stars and dust as
probed by IR and UV emission, which appear to exhibit overly symmetric morphologies compared to existing data,
likely due to the limitations of the stellar feedback model used in the simulations. Our results indicate that the
observable properties of the dust distribution in high redshift galaxies are a particularly strong test of stellar
feedback.

Unified Astronomy Thesaurus concepts: Hydrodynamical simulations (767); Galaxy formation (595); Cosmology
(343); Astronomical simulations (1857)

1. Introduction

The successful launch and commissioning of JWST has
begun a new era in astrophysics. Its unprecedented sensitivity
to the emission of high-redshift (z 5) galaxies has already
enabled the rapid accumulation of data on the earliest galaxies.
The amount and properties of interstellar dust in these galaxies
has a fundamental impact on observations across the entire
electromagnetic spectrum, and consequently plays a central
role in the understanding of this groundbreaking new data.

Motivated by this, we have developed a model for the
evolution of dust in simulated high-redshift galaxies. Described
in Esmerian & Gnedin (2022), we post-process simulations
from the Cosmic Reionization on Computers project (CROC;
Gnedin 2014, 2016; Gnedin & Kaurov 2014) with a model that
determines the fraction of heavy elements in the interstellar
medium (ISM) locked in solid dust grains accounting for their
nucleation in the ejecta of asymptotic giant branch (AGB) stars
and supernovae (SNe), their growth via accretion of gas-phase
metals in the cold molecular ISM, and their destruction via
thermal sputtering due to hot gas from supernova remnants
(SNRs). Since the rates of each of these processes are very
uncertain due to uncertainties in the material properties of dust
grains, the mathematical terms describing them are parameter-
ized with uncertainty factors that enable the exploration of the
wide range of theoretical possibilities.

This model is calculated along Lagrangian tracers that
sample gas dynamical quantities along pathlines for a
representative fraction of the gas in Lagrangian regions of
galaxies. This post-processing technique enables the explora-
tion of dust models with a wide range of parameter choices, of
course at the expense of some realism because dust effects are
not calculated during simulation run time. In Esmerian &
Gnedin (2022), we explored the full parameter space of the
model by focusing on a single massive galaxy (Mvir∼ 1011Me,
M*∼ 109Me at z= 5) and the interplay of different dust
physical processes in a fully dynamic ISM. We found that
reasonable parameter choices for the dust model predicted dust
contents and dust-sensitive observables broadly consistent with
the extant observational constraints.
For purposes of computational feasibility, this method

development was done using the single most massive galaxy
in a 10h−1 cMpc cosmological volume. However, because the
initial conditions of large-scale structure are Gaussian random
fields, galaxies form in dark matter halos with a wide range of
masses and formation histories, which we know to fundamen-
tally impact galaxy properties (see Behroozi et al. 2009, for
contemporary constraints). Theoretical efforts must therefore
strive to make predictions for halos that sample the
distributions of masses and formation histories as completely
as possible, in order to make predictions for the galaxy
population in the real Universe.
This modeling is especially urgent given the recent onslaught

of data from JWST, coupled with ambitious programs using
radio telescope arrays such as the Atacama Large Millimeter/
submillimeter Array (ALMA), that are rapidly fleshing out the
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properties of the high-redshift galaxy population. Some of the
most exciting and puzzling results from this recent revolution
have implicated cosmic dust in a central role. There are
exciting claims of anomalously bright galaxies and a
surprisingly high star formation rate density at z> 10 abound
(see Bouwens et al. 2023, and references therein), although
these are dependent on photometric candidate detections
without spectroscopic confirmation and therefore subject to
possible revision. If confirmed, reconciling these with the
mainstream galaxy formation models may present a challenge,
and the many uncertainties of dust enrichment in the first
galaxies have been invoked as possible explanations (Ferrara
et al. 2023; Mason et al. 2023; Mirocha & Furlanetto 2023).
Galaxies with spectroscopic confirmation rest on surer
footing, and thus far all show evidence for little dust
attenuation (z 10; Arrabal Haro et al. 2023a, 2023b; Bunker
et al. 2023; Curtis-Lake et al. 2023; Roberts-Borsani et al.
2023; Tacchella et al. 2023).

Nonetheless, the reionization epoch is anything but dust-free.
ALMA programs REBELS (Bouwens et al. 2022; Inami et al.
2022) and ALPINE (Le Fèvre et al. 2020) and others (Bowler
et al. 2022) have detected thermal dust continuum emission that
firmly establishes significant amounts of dust in at least some
galaxies by z= 5–7 (Fudamoto et al. 2020; Pozzi et al. 2021;
Algera et al. 2023; Barrufet et al. 2023). These observations
also hint at complicated dust morphologies with significant
spatial displacement from the stellar component (Bowler et al.
2022; Inami et al. 2022). Additionally, Rodighiero et al. (2023)
presented an analysis of JWST candidate detections that
suggest significant dust obscuration at 8< z< 13. Overall,
there is convincing evidence for the very rapid buildup of dust
during the reionization epoch, especially in the most massive
galaxies. Models of galaxy formation will therefore need to
account for the physics of dust if they are to satisfactorily
explain key observable constraints on cosmic dawn.

With this goal, in this paper we now extend our previous
analysis by applying our dust modeling framework to a suite of
10 additional simulated galaxies from the same simulation
volume, selected with approximately uniform logarithmic
spacing in final halo mass 1.1× 109Me�Mvir� 5.0×
1011Me, corresponding to stellar masses 3.7× 105Me�M*�
1.9× 109Me, allowing us to assess the dependence of our
predicted dust properties on galaxy mass at a given cosmo-
logical time. The paucity of dust at cosmic dawn suggested by
some observations motivates us to also explore a wider range
of dust modeling choices, namely those that either produce less
dust or destroy it more efficiently. Section 2 explains our
simulated galaxy sample selection, notes small updates to the
methodology presented in the first paper, and presents the dust
model variations explored in this analysis. Section 3 presents
the galaxy mass–metallicity relation predicted by the simula-
tions compared to existing high-redshift constraints, and results
of the dust model applied to our simulated galaxy sample.
Specifically, we present the predicted dust content and dust-
sensitive observable quantities, both galaxy-averaged and
spatially resolved, to which we compare to existing data.
Section 4 discusses the agreements and discrepancies between
our model predictions and observational constraints, and
compares our work to other recent similar investigations in
the literature. We conclude in Section 5.

2. Methods

2.1. CROC Simulation

The galaxy formation simulation model, halo identification,
and galaxy definitions are identical to those described in
Esmerian & Gnedin (2022), to which we refer the reader. For
this paper’s analysis, we select a total of 11 galaxies from a
10h−1 comoving Megaparsec (cmMpc) cosmological volume
with final z= 5 halo masses 1.1× 109Me�Mvir� 5.0×
1011Me, corresponding to final stellar masses 3.7× 105Me�
M*� 1.9× 109Me. These limits span the range of halo masses
resolved in the simulation. The 11 halos are selected with
approximately logarithmically uniform spacing in final halo
mass. Since the galaxy scaling relations predicted by CROC
have small scatter (see Zhu et al. 2020 and Noel et al. 2022)
and do not dramatically change slope on scales 0.5 dex in
halo mass, it is sufficient for the purposes of this analysis to
sample one halo of a given mass with the average spacing of
0.24 dex provided by a total sample of 11. This simulation has
the same initial conditions as the one used in the previous
paper, so the most massive halo is the same.

2.2. Lagrangian Tracer Sampling and Dust Model

As in the previous paper, we take as input to our dust model
the ISM conditions in our simulated galaxies sampled along
pathlines obtained with Lagrangian tracer particles—i.e.,
particles that follow the fluid flow predicted by the gas
dynamics solver used in the simulation. These particles are
initialized in random positions (weighted by the local gas
density) in the Lagrangian region of the halo and follow the
fluid flow using the Monte-Carlo method introduced in Genel
et al. (2013) and implemented in the ART code in Semenov
et al. (2018). The number of tracers per halo scales with halo
mass such that the minimum number of tracers for a given halo
is above 100. For galaxies hosted in halos with final masses
Mvir> 1011Me, we downsample to 104 particles for computa-
tional feasibility.
Along each pathline, we sample the quantities predicted by

the simulation as a function of time: gas number density n, gas
temperature T, gas-phase metallicity Z, neutral hydrogen
fraction fH I (calculated with the on-the-fly radiative transfer
based on stellar sources as described in Gnedin 2014), and
molecular hydrogen fraction fH2 (calculated based on the fitting
function from Gnedin & Draine 2014). Along these pathlines,
tracers also record the local rates of metal enrichment due to
SN and AGB winds ZSN and ZAGB and number density of SN
explosions nSN based on the metallicity and age of the star
particles in the same computational cell. These quantities are
sufficient to calculate the rates of change in the dust-to-gas ratio
D based on our dust physics model. The physical processes
included in the model are as follows:

1. Production: a constant fraction of metals returned to the
ISM by SNe and AGB stars are assumed to nucleate in
these ejecta and enter the ISM as dust grains. These yields
are separate for the two processes ySN and yAGB, so they
can be varied independently. Default values of 0.1 are
adopted based on Dwek (1998).

2. Growth: dust grains are allowed to grow in the dense ISM
by the accretion of gas-phase metals, with a characteristic
growth timescale τaccr. The expression from this rate is
derived from the two-body collision rate between atoms
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in the gas phase and dust grains (Draine 1990; Dwek
1998; Weingartner & Draine 1999; Feldmann 2015).

3. Destruction: dust grains are destroyed in the shocks and
hot gas produced by SNRs, assuming each SN sweeps
out a given mass of ISM with a destruction efficiency
taken from McKee (1989).

These processes define a pair of coupled ordinary differential
equations for the evolution of the dust-to-gas ratio D and
metallicity Ztrace that can be integrated in post-processing to
predict the dust content along each sampled trajectory in the
simulation. Note that the metallicity accumulated by the tracer
is not necessarily identical to the metallicity of the gas it
samples due to the stochasticity of stellar enrichment events
and our inability to account for advection near pathlines,
which is why we use a separate symbol for it. With this
information, for every computational cell in the simulation
sampled by a tracer, we can calculate its dust mass as (D/Ztrace)
ZsimulationMgas,cell.

Computational resource limitations prevent us from using
enough tracers that all cells in each galaxy are sampled.
Consequently, we must find a way to assign dust masses to
cells in the galaxy that were not sampled by any tracer. To do
this, we interpolate the D/Z versus Z relation for the tracers in
each galaxy at every snapshot output. As shown in Figure 1,
the dust-to-metal ratio scales regularly with metallicity, making
this interpolation the best option for assigning dust masses to
unsampled cells in a way that preserves the predictions of the
dust model. We note that with some model choices even this
relation exhibits significant scatter at a given tracer metallicity.

Our correction therefore possibly underestimates the scatter in
observable quantities impacted by the dust distribution.
We note that in Esmerian & Gnedin (2022) we had not yet

realized this correction was necessary, and therefore the results
in that paper underestimate the total dust mass and effect of
dust on observable quantities. These effects are 10%( ) in the
dust mass but can be order-unity for some observable quantities
that depend sensitively on the dust distribution—particularly
dust attenuation of ultraviolet (UV) starlight—but do not
change the qualitative conclusions of that paper.
As acknowledged in Esmerian & Gnedin (2022), this post-

processing method is, in principle, inferior to a fully coupled
treatment of dust on-the-fly in the simulations. Post-processing
fundamentally cannot account for the dynamical effects of dust
on the gas dynamics or radiative transfer in the simulation. It is
necessitated by computational constraints that would totally
prohibit the parameter exploration, which is a central goal of
our investigation. However, we believe it to be adequate for the
following reasons: (1) The galaxy formation model in CROC is
tuned to match the observed high-redshift UV luminosity
function and reionization history of the intergalactic medium
(Gnedin 2014, 2016), and it is quite likely that any change to
the simulation resulting from dust dynamical effects could be
eliminated by a similar change in the parameters of the
simulation’s star formation prescription. (2) Arguably the most
important dynamical effect of dust would be its change to the
radiative cooling rates of gas in the simulation (dust removes
heavy elements from the gas phase, which cause metal line
cooling, and itself is a source of both photoelectric heating and

Figure 1. Spatially resolved D/Z vs. Z relations. Each panel shows the 2D PDF of mass for D/Z vs. Z in the ISM of the most massive galaxy at the last snapshot.
Different panels correspond to different dust models.
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cooling due to IR emission), but these rates are not known to
better than a factor of a few even in principle (see, e.g., Gnat &
Sternberg 2007; Wiersma et al. 2009), so the more
sophisticated modeling of dust that would change cooling
rates by similar or smaller values would not necessarily have
higher physical fidelity. (3) The dynamical effects of dust
would likely depend on the structure and dynamics of gas flows
on scales unresolved (i.e., 100 pc) in the ISM of our
simulations.

2.3. Forward-modeling Unresolved Galaxy Observable
Quantities

The methods used to calculate dust-dependent observables
(the effective optical depth to dust at 1500Å: τ1500, the
logarithmic spectral slope in the UV: βUV, the infrared (IR)
luminosity: LIR and the infrared excess IRX≡ LIR/LUV) are
identical to the description in Esmerian & Gnedin (2022),
which we summarize here for completeness. With the spatial
distribution of dust for an entire simulated galaxy obtained as
described above, we calculate the dust column densities to
every star particle along six lines of sight (the three coordinate
axes in both directions), which uniformly sample all possible
observation orientations and are random with respect to the
galaxy geometry. We can therefore assign a wavelength-
dependent optical depth to each star particle using the mass
absorption coefficient from the SMC bar model of Weingartner
& Draine (2001). To calculate rest-frame UV observables, to
each star particle we assign a stellar spectrum from the Flexible
Stellar Population Synthesis code (Conroy & Gunn 2010)
based on the star particle age and metallicity—quantities that
are predicted by the simulation. These are then extincted based
on the dust optical depth calculated from the column density
assuming the dust opacity law from Weingartner & Draine
(2001, SMC model5). The extincted spectra from all star
particles in a galaxy combined define the galaxy’s UV and
optical spectrum. The galaxy’s UV luminosity LUV is defined at
λ = 1500Å and βUV is calculated as the logarithmic slope of
the best-fitting power law to the galaxy spectrum (i.e.,
f UVlµl

b using the UV wavelength bands defined in Calzetti
et al. 1994 to avoid contamination by absorption features).

We note that this calculation only accounts for line-of-sight
extinction and does not account for the geometric effects of
scattering. While this simplification may impact our predicted
UV observables quantitatively because the dust albedo is
potentially nonnegligible at these wavelengths (it is approxi-
mately 0.4 at 1500Å in the dust opacity model we employ), we
do not anticipate it would qualitatively change our results. As
we demonstrate in our analysis of the spatially resolved
properties of our dust model predictions in Section 3.4, the UV
properties of these galaxies are primarily determined by lines of
sight that have either negligible dust extinction—in which case
the contribution from scattering is also negligible—or such
high optical depths that the ISM is effectively opaque in the
UV—in which all of the UV light would be absorbed before
escaping to be scattered into our mock observations. Moreover,
this spatial analysis also demonstrates that the low resolution of
our simulated galaxies likely fails to capture a realistically
dynamic and porous ISM, and thus the effects of dust scattering

(which depend strongly on dust geometry) are unlikely to be
reproduced either.
The rest-frame IR luminosity from each cell is calculated as a

modified blackbody (i.e., in the optically thin limit)
Lλ= 4πMDκDBλ(TD) where MD is the dust mass, κD is the
same SMC (Weingartner & Draine 2001) opacity law assumed
for the UV quantities, and Bλ(TD) is a blackbody of dust
temperature TD. Since the calculation of the dust temperature is
extremely complicated and relies on many other uncertain
parameters such as the material properties of the dust grains
(see, e.g., Lower et al. 2024), we simply assume TD= 40 K
throughout. See Esmerian & Gnedin (2022) for the effects of
varying this parameter.

2.4. Spatially Resolved Images

For the analysis of spatially resolved dust properties, we
focus exclusively on the most massive galaxy in the simulation,
which attains a stellar mass of M* = 1.3× 108Me by z= 8,
M* = 7.1× 108Me by z = 6.4 and M* = 1.9× 109Me by
z= 5. Our simulated galaxy is therefore well within the range
of stellar masses probed by observations to which we compare
(Inami et al. 2022), justifying comparison because galaxy
morphology is expected to depend on stellar mass (Pillepich
et al. 2019). However, we note that for these snapshots it has a
much lower SFR of �5.2Me yr−1 than any galaxy in this
sample. This may be due to the bias toward high SFR systems
of these observations noted in Section 1, or the inability of the
CROC model to produce such rapidly star-forming systems.
Figure 6 of Zhu et al. (2020) shows that the CROC galaxies
exhibit small scatter in the SFR–stellar mass relationship,
suggesting that the discrepancy between our simulation’s SFR
and those inferred from data results from a deficiency of the
model and would not be alleviated by considering a larger
number of simulated galaxies. This discrepancy provides
further motivation to compare our simulations to data in a
spatially resolved analysis, as this may provide information
about the cause of these discrepancies.
We present results for this simulation at 12 snapshots from

z = 8.5 to z= 5. The upper bound in redshift is motivated by
the upper bound on the observations, but we include snapshots
lower than the observational lower bound of z = 6.5 to
maximize the galaxy mass range probed by our analysis. We
note that we have redone the analysis restricted to only
snapshots within 6.4< z< 8.5, identical to the observations,
and all of our conclusions are unchanged. We also note that
based on visual inspection, the galaxy undergoes merging
events at z≈ 7.3 and z≈ 6, which significantly disrupt its
morphology. There are enough snapshots of the simulation that
the galaxy morphology before, during, and after the merger
event can be clearly distinguished. We therefore expect that our
simulation data samples a sufficiently violent merger history
with sufficiently high time resolution that our analysis accounts
for the morphological effects of accretion history on high-
redshift galaxies of the relevant masses.
This spatial analysis uses quantities calculated as described

previously except with small modifications. UV colors are
determined based on the finite difference between luminosities
at 1500 and 2500Å as follows:

f flog

log 2500 1500
1UV

10 2500 1500

10

( )
( Å Å)

( )Å Åb =5 Obtained from https://www.astro.princeton.edu/~draine/dust/extcurvs/
kext_albedo_WD_SMCbar_0.
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again on an individual star particle basis. We note that this is
not identical to the calculation of βUV in the rest of the analysis,
in which a least-squares fit was performed on this portion of the
UV spectrum to determine a power-law slope. This finite
difference method is adopted for computational ease, and we
have checked that it reproduces the least-squares fitting results
very accurately.

We use dust column density ΣD, computed from the galaxy
dust mass distribution calculation as a proxy for IR continuum
emission. The two are directly proportional because the dust
distribution is optically thin in the IR.

To account for the effect of finite observational resolution,
we smooth with a Gaussian kernel with variance x2

8 ln 2
FWHM
2

s = D

where ΔxFWHM is the physical distance at the simulation
snapshot redshift corresponding to the angular FWHM of the
observation. We explore ΔxFWHM values of 0 2 and 0 8,
which for the redshift range of our simulations 11.4� z� 5.0
corresponds to a physical size of 0.33–0.55 kpc and
1.32–2.19 kpc, respectively.

2.5. Dust Model Parameter Exploration

As in the previous paper, we run a suite of dust models with
different parameter choices to explore their impact on the
predicted dust content of high-redshift galaxies and dependent
observables, now on a sample of multiple simulated galaxies.
However, motivated by observations that increasingly point to
minimal dust in the earliest galaxies (e.g., Roberts-Borsani
et al. 2023; Tacchella et al. 2023), we extended the set of
parameter variations explored by introducing three new models
that either increase the grain destruction rate in SNRs (very
enhanced destruction) or decrease grain production in SNe
and/or AGBs (no SN production, and very low SN production,
no AGB production). The list of models explored in this
analysis is summarized in Figure 2 and described below. Note
that each model is assigned a unique color for Figures 5–10 and
12, which are shown in the rightmost column of the table.

1. Default: This is identical to the “Default” model explored
in Esmerian & Gnedin (2022), for which parameters were
chosen to be the same as successful similar physical
models of dust evolution for local-Universe galaxies
(Dwek 1998; Feldmann 2015; Li et al. 2019).

2. No Accretion: This is identical to the “No Accretion”
model in Esmerian & Gnedin (2022). The parameters of
this model are identical to Default, except that grain

growth due to accretion of gas-phase metals in the cold
molecular ISM is not allowed. This parameter choice is
motivated by arguments based on microphysical con-
siderations of dust grain geometry that grain growth in
the cold phase of the ISM may not be possible (Ferrara
et al. 2016).

3. Enhanced Accretion: This is identical to the “Enhanced
Accretion” model in Esmerian & Gnedin (2022). The
parameters of this model are identical to Default, except
that grain growth due to accretion of gas-phase metals in
the cold molecular ISM is enhanced by an order of
magnitude. This parameter choice is motivated both by
uncertainties in the unresolved density distribution of the
cold ISM in our simulations, where grain growth is
expected to be most efficient, and to enable comparison
to other works that adopt faster grain growth rates
(Graziani et al. 2020; Lewis et al. 2023).

4. No Destruction: This is identical to the “No Destruction”
model in Esmerian & Gnedin (2022). The parameters of
this model are identical to Default, except that grain
destruction in the hot gas of SNRs is not allowed. This
parameter choice is motivated by indirect observational
indications of inefficient dust destruction in high-
temperature gas (Gall & Hjorth 2018; Gjergo et al.
2018; Michałowski et al. 2019; Vogelsberger et al. 2019),
as well as uncertainties in the unresolved ISM phase
structure in our simulations.

5. Enhanced Destruction: This is identical to the “Enhanced
Destruction” model in Esmerian & Gnedin (2022). The
parameters of this model are identical to Default, except
that grain destruction in the hot gas of SNRs is enhanced
by an order of magnitude. This parameter choice is
motivated by uncertainties in the destruction efficiency of
individual SNRs both due to the microphysics of dust and
unresolved ISM phase structure (McKee 1989; Hu et al.
2019; Kirchschlager et al. 2022).

6. Very Enhanced Destruction: The parameters of this
model are identical to Default, except that grain
destruction in the hot gas of SNRs is enhanced by two
orders of magnitude. The motivation for this parameter
choice is the same as for Enhanced Destruction, since the
associated uncertainties are large, and also the increasing
evidence for dust-free early galaxies as mentioned
previously.

7. Low SN Production: Identical to Default, except that the
dust yield from SNe is suppressed by an order of

Figure 2. Explored parameter combinations. Note that for each model, any parameter not listed under Key Parameters is the same as the Default model.
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magnitude (i.e., y 0.01D,SN = ). Note that we do not
change the AGB yield yD,AGB, and since the AGB metal
production is about 10 times smaller than that of SN (see
Esmerian & Gnedin 2022, Figure 7), SN and AGB
production are comparable with these parameters. This
parameter choice is also motivated by the evidence for
minimally dusty high-redshift galaxies, and uncertainties
about the fraction of SN-produced dust that survives the
reverse shock (see, e.g., Bianchi & Schneider 2007;
Micelotta et al. 2016; Slavin et al. 2020).

8. No SN Production: Identical to Default but SN
production is turned off—y 0D,SN = . This choice is
motivated by the extreme scenario in which no dust
survives the reverse shock of any SNe.

9. Very Low SN Production, No AGB Production: Identical
to Default, except that the dust yield from SNe is
suppressed by two orders of magnitude (i.e., yD,SN =
10 3- ) and AGB production is turned off (yD,AGB= 0).
This is motivated by the same considerations as for the
previous two models, and the deep uncertainties around
AGB dust production, especially in the early Universe
(e.g., Valiante et al. 2009; Schneider et al. 2014;
Dell’Agli et al. 2019; Tosi et al. 2023).

3. Results

3.1. The Mass–Metallicity Relation

The dust content of galaxies is normalized by their overall
metal content, so we first examine the galaxy metallicities in
the simulations. Figure 3 shows the mass–metallicity relation
for our simulations, including existing data at relevant
redshifts. While the data mainly overlap with only the
highest-mass galaxies in our sample, where there is overlap
we see fair agreement, albeit with some indications of
systematically low metallicities in CROC. The galaxy scaling
relations of other quantities predicted by CROC have
been thoroughly discussed and compared to existing data in

Zhu et al. (2020). We note that Noel et al. (2022) presented a
more detailed analysis of the CROC mass–metallicity relation,
but at the time these high-redshift data were not available for
comparison, making this a new result.

3.2. The Dust Content of High-redshift Galaxies

The dust content of our simulated galaxies predicted by the
models described in Section 2.5 and Figure 2 are summarized
in Figure 4, where we show the galaxy-averaged dust-to-metal
ratio D/Z as a function of galaxy metallicity Z in mass-fraction
units (i.e., in which the average metallicity in the solar
neighborhood is Ze= 0.02). The top row shows the Default
model and variations in the ISM grain growth accretion
timescale. The middle row shows variations in the grain
destruction efficiency of SNRs. And the bottom row shows
variations in the assumed yields of dust production sources.
Broadly, we notice several trends. A well-established

property of dust models similar to ours is the transition of
dominant physical processes between low- and high-metallicity
regimes: the D/Z ratio at low metallicity (Z 4× 10−4=
2× 10−2Ze) is primarily set by the choice of source
yields yD,SN AGB, while the ratio at high metallicity is
determined by a competition between the timescale for grain
growth due to accretion in the ISM, and the efficiency of grain
destruction in the hot ionized medium. If grain growth
dominates (as in Default, Enhanced Accretion, No Destruction,
Low SN Production, No SN Production, and Very Low SN, No
AGB), the D/Z ratio rises with increasing metallicity, while
when destruction dominates (No Accretion, Enhanced Destruc-
tion, Very Enhanced Destruction), the opposite scaling is
observed.
However, we note that in some models there is substantial

scatter between galaxies even at fixed metallicity, particularly
for those models where accretion dominates at late times. The
efficiency of grain growth via accretion must therefore depend
on galaxy properties beyond average metallicity, an effect not
captured in simpler one-zone models (e.g., Feldmann 2015).
For the Default and Enhanced Accretion models, we notice
substantial scatter in the metallicity at which each galaxy enters
the growth-dominated regime of rising D/Z.
Indeed, we note that the most massive galaxy in our sample

exhibits rising D/Z at high metallicities in all models except No
Accretion (where D/Z> yD is physically impossible) and Very
Enhanced Destruction. Even in the Enhanced Destruction
scenario, the D/Z ratio rises at late times (i.e., high
metallicities) for this single galaxy but no others. This clearly
indicates the importance of some combination of star formation
history and ISM phase structure in setting the dominant dust
regulating mechanisms. Precise determination of this cause
would require more analysis beyond the scope of this work but
would be interesting for future investigation.
Finally, we note the significant scatter in D/Z at very low

metallicities (Z 10−4). As indicated by their redshift
(indicated in color) and the stellar mass–metallicity relation
in Figure 3, these low-metallicity galaxies are the highest-
redshift and lowest-mass in our sample. Consequently, there
are the most poorly resolved and subject to the greatest
stochasticity effects from the discreteness of enrichment from
star particles and sampling by Lagrangian tracers. The latter
would be amended by coupling the dust model explicitly to the
simulation, and is therefore another motivation for more
sophisticated modeling in future analyses. Nonetheless, this

Figure 3.Mass–metallicity relation. The galaxy-averaged gas-phase metallicity
is shown as a function of stellar mass. Each point represents an individual
galaxy at an individual snapshot, colored by redshift. Observational data from
galaxies at similar redshifts are from Faisst et al. (2016), Jones et al. (2020),
Langeroodi et al. (2023), Nakajima et al. (2023), Heintz et al. (2023), and
Williams et al. (2023) converted to mass fraction using 12 + [O/H]e =
8.71 and Ze = 0.02 (Lodders 2019).
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noise occurs at such low metallicities that its effect on the total
dust mass, which is normalized by the metallicity, is minor and
should not strongly impact our conclusions. Additionally, the
existence of clear trends at late times/high metallicities
indicates that the predictions are well resolved for the most
massive galaxies, which are the most relevant for comparison
to observational data.

In Figures 5 and 6 we examine the predicted dust masses of
our simulated galaxies as a function of stellar mass at different
redshifts for the different dust models. Figure 5 shows Default
and models with variations in accretion and destruction rates
(the first and second rows of Figure 4), while Figure 6 shows
models with varied production yields (third row of Figure 4). In

all cases, the dust mass exhibits an approximately linear scaling
with stellar mass, with varied normalization depending on
assumed production yields and destruction efficiencies. This
normalization spans 2 dex at a given stellar mass for the entire
suite of models herein considered. There is also a general
steepening of the relationship at higher masses (M*∼ 108–
109Me) in models where accretion becomes efficient. These
relationships are sufficiently tight to be well distinguished
between different models in principle, although there is
significant degeneracy between yield and destruction rates—
Very Enhanced Destruction and No SN Production predict very
similar values, which the first achieves by destroying dust with
high efficiency while the second produces little dust to begin

Figure 4. Galaxy-averaged D/Z vs. Z relations. Each panel shows the evolution of the dust content in our simulated galaxies with a different set of assumed dust
model parameters, as indicated by the titles. Each point corresponds to the average D/Z and Z values for an individual galaxy at an individual snapshot. Z is in physical
(i.e., mass fraction) units. Points from the same galaxy are connected with gray lines, and colors indicate redshift. The dashed horizontal gray line indicates D/Z = 0.1,
which is the default production yield in our model, and the solid horizontal gray line indicates D/Z = 0.4, the value for the Milky Way and a common choice in post-
processing analyses (see Section 4.2).
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with. Additionally, models with the same yield but different
growth timescales (Default, No Accretion, Enhanced Accre-
tion) are only distinguishable at high masses and late times,
consistent with the results of Figure 4. In summary, different
plausible parameter choices for the dust model can change dust
masses by up to two orders of magnitude at a given stellar
mass. This flexibility highlights the need for a significant
improvement in our understanding of dust production and
destruction processes.

We therefore compare these predictions with existing
observational estimates of dust masses in high-redshift galaxies
from Sommovigo et al. (2022), Dayal et al. (2022), Hashimoto
et al. (2019), Knudsen et al. (2017), Schaerer et al. (2015),
Watson et al. (2015), Laporte et al. (2017), Tamura et al.
(2019), da Cunha et al. (2015), Marrone et al. (2018),
Burgarella et al. (2020; with a redshift for ID27 from Aravena
et al. 2016), Pozzi et al. (2021; with stellar masses from Faisst
et al. 2020), Witstok et al. (2023), and Leśniewska &
Michałowski (2019). Because of the limited volume of our
simulation, we do not capture unusually massive and therefore
rare halos, limiting us to predictions at lower masses than
almost all of the existing data. Nonetheless, the data appear to

favor those models with the highest dust masses—the data is
always at the upper envelope of our simulation predictions
wherever they overlap. Indeed, in both the 6.5< z< 7.5 and
7.5< z< 8.5 bins, most of the data appear to lie on or above
the scaling relation of the most dust-rich model Enhanced
Accretion if it were extrapolated. This suggests that the data
prefer models in which production yields are high and ISM
grain growth is efficient at high masses. We also note that the
data appear to exhibit greater scatter at a given stellar mass than
any one set of dust model parameters predicts.
However, we emphasize that these conclusions are extremely

tentative because of the minimal amount of data available for
comparison, the mostly disjoint stellar mass ranges probed by
our simulations versus the observations, and especially the
large systematic uncertainties in the observational constraints,
which are not necessarily captured in the statistical
uncertainties on quoted errors. Dust masses are derived from
IR luminosities, which depend on dust mass, the dust extinction
coefficient, and strongly on the dust temperature. The latter two
are highly uncertain in high-redshift galaxies and difficult to
independently constrain. In addition, our simulations may also
miss some real sources of scatter, as we discuss further below.

Figure 5. Dust mass–stellar mass relation. Colors indicate different dust models, which include Default and those with varied growth or destruction parameters (i.e.,
the first two rows of those shown in Figure 4). Each point is a single galaxy at a single redshift, and separate panels are redshift bins. Estimates based on observational
data from Sommovigo et al. (2022, with stellar masses from Faisst et al. 2020), Dayal et al. (2022), Hashimoto et al. (2019), Knudsen et al. (2017), Schaerer et al.
(2015), Watson et al. (2015), Laporte et al. (2017), Tamura et al. (2019), da Cunha et al. (2015), Marrone et al. (2018), Burgarella et al. (2020, with a redshift for ID27
from Aravena et al. 2016), Pozzi et al. (2021; also with stellar masses from Faisst et al. 2020), Witstok et al. (2023), and Leśniewska & Michałowski (2019; with a
stellar mass from Ouchi et al. 2009) are shown with the same redshift binning. The predictions of a simpler dust post-processing model on higher-resolution
simulations presented in Ma et al. (2019) are shown by the dashed gray line.
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Consequently, the most robust constraints will come from
forward modeling of directly observable quantities.

3.3. Forward-modeled Observable Quantities: Comparison
to Data

For the remainder of our analysis, we focus on a
representative subset of the models discussed previously, each
with a consistent color throughout the figures: Default (blue),
Enhanced Accretion (purple), Enhanced Destruction (yellow),
Very Enhanced Destruction (light brown), and Very Low SN,
No AGB Production (dark brown).

3.3.1. Rest-frame UV Observables: MAB, βUV, τ1500

Figure 7 compares the predicted UV spectral slopes of our
simulated galaxies with these dust models to observational
data. We also show the predictions of the simulations absent
dust attenuation in black points. In contrast to the suggestions
of Figures 5 and 6, the models with the lowest dust content—
Very Enhanced Destruction, and Very Low SN, No AGB
Production—agree best with the data, at all redshifts. It is not
clear, however, if either model alone predicts as much scatter at
a given luminosity as shown in the data.

In contrast, the more dust-rich models all predict similar βUV
values, which fail to overlap with the observations at any
redshift, and exhibit large scatter. This is because they predict

very high ISM optical depths, as shown in Figure 8. For dust
masses greater than or equal to those predicted by the
Enhanced Destruction model, the dusty ISM is effectively
opaque, so changes in dust content do not impact UV
properties significantly. The spread in βUV for these models
is therefore likely due to the Poisson scatter in number of
visible star particles along a given line of sight. Finally, we
note that while the data prefer the dust-poor models, they are
inconsistent with entirely dust-free predictions (black points),
especially at later times.

3.3.2. Far-infrared Observables: IRX–β Relation, LIR

In Figure 9 we examine the IRX–β relationships predicted
by our modeling, compared to observational constraints.
Because IR luminosity depends linearly on dust mass, models
with distinctly different dust content are better separated in this
parameter space. However, the predictions fail to match the
data in two key ways: (1) No one model exhibits as much
scatter as the observations, especially in the 5.5< z< 6.5
range, and (2) our simulations lack galaxies at low (1) IRX
and high (−1.5) βUV, which are apparent in the data.
Some of the reason for these disagreements is illuminated by

examining the predictions in LIR versus LUV space, since these
are the numerator and denominator of the IRX, respectively.
This is shown in Figure 10, along with the same data as in
Figure 9. While we predict reasonable LIR especially at late

Figure 6. Dust mass–stellar mass relation (cont.). Same as Figure 5 but with Default and the dust models with varied yields (i.e., those in the third row shown in
Figure 4).
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times, all of the galaxies in this observational sample exhibit
higher UV luminosities than ours. This helps to explain the lack
of low IRX galaxies in our predictions. This suggests that our
models are predicting dust masses consistent with observations,
but opacities that are too high, in agreement with the
interpretations of Figures 5–7. Indeed, in Figure 10 we show
the predictions of our simulations without dust attenuation as
transparent points, and they are in better agreement with the
data. This experiment is nonphysical in that the two
luminosities are inconsistently calculated. However, it suggests
that real galaxies have similar dust content to our more dust-
rich models, but that it is distributed so as to have a much lower
effective optical depth.

The inability of any one dust model to reproduce the scatter
in observed IR luminosities could be due to our lack of self-
consistently calculated dust temperatures—for simplicity and
given the large modeling uncertainties involved, we assume a
constant dust temperature of T= 40 K for these calculations
(see Sommovigo et al. 2022). Since L TDIR

4µ at fixed MD,
galaxy–galaxy scatter in TD could significantly enhance the
predicted range of IRX. This limitation of our modeling is
potentially the primary reason for the low scatter—dust
temperatures depend on the radiation field, which, in turn, is

sensitive to short timescale variations in star formation rate.
One therefore expects the ISM radiation fields, and conse-
quently dust temperatures, to vary widely from galaxy to
galaxy. Additionally, the lack of very massive galaxies in the
limited cosmological volume of our simulation might also
mean that we simply are not sampling galaxies as massive as
those in existing observational samples, and this may also be
the cause of one or both of these discrepancies to some degree.
It is of course also possible that the dust dynamical quantities

assumed as inputs into each model, such as the characteristic
time for dust grain growth in the ISM or the SN destruction
efficiency—vary from galaxy to galaxy due to differences in
ISM phase structure and dust content that our model is not
sophisticated enough to capture. IR observables will therefore
require significantly further theoretical efforts to be used as
constraints on dust physics at high redshift.

3.4. Spatial Analysis

Figure 11 shows the predicted UV (1500Å) emission, UV
color βUV, and dust column density (which is proportional to
the IR emission) for different dust models. Consistent with the
results of Section 3.3.1, all of our dust models predict
significant extinction and reddening, but the amount and

Figure 7. βUV as a function of UV AB absolute magnitude. Different panels show data for different bins in redshift, different colors are different dust models, the
black points indicate values predicted in the absence of dust, and the gray points are a compilation of observational measurements from the literature. Finkelstein et al.
(2012, plus-signs), Bouwens et al. (2014, hexagons), Dunlop et al. (2013, diamonds), Bhatawdekar & Conselice (2021, stars), Wilkins et al. (2011, filled x), Dunlop
et al. (2012, pentagons), and Wilkins et al. (2016, squares) show sample averages of multiple galaxies, while circles show measurements of individual galaxies with
JWST from Roberts-Borsani et al. (2022), Naidu et al. (2022), Robertson et al. (2023), and Whitler et al. (2023), with both JWST and ground-based imaging results
from Cullen et al. (2023), and with ground-based measurements from Bowler et al. (2022).
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spatial distribution vary markedly between the different
models. The most dust-rich models show large amounts of
reddening and extinction throughout the galactic disk, while
those with less dust have effects that are more centrally
concentrated. However, even those models with the least
dust exhibit substantial attenuation and reddening in the
center. This is because even the Very Enhanced Destruction
model predicts dust column densities in excess of ΣD=
105Me kpc−2≈ 10−5 g cm−2, which, for our assumed dust
opacity of ≈105 cm2 g−1 at 1500Å, results in unity optical
depth, and β 0 colors. The increasing severity of extinction at
smaller projected galactocentric radii gives the UV emission a
ring-like morphology in all but the least dusty model. Color is
strongly correlated with IR emission though not perfectly; for
example, both Default and Enhanced Accretion models exhibit
the reddest colors in the disk outskirts/tidal tails, while the IR
emission is highest in the center.

All but the Very Enhanced Destruction dust model show
offsets in the location of maximum UV and IR emission on the
order of 1 kpc for the same reason: the regions of highest IR
emission are totally opaque to UV light. Note that this is
despite the fact that the unattenuated UV light and dust are
largely cospatial. Figure 12 shows the measured offsets in
projected distance between locations of maximum UV and IR
brightness for the same models, at all simulated redshifts,

sampling six lines of sight (positive and negative coordinate
axes, which should be random with respect to the galaxy
orientation) per snapshot. The top panels show these offsets as
a function of absolute UV magnitude, on the bottom panels as a
function of stellar mass. The leftmost panel of this figure is
consistent with the trends noticed in Figure 11. Larger dust
masses result in larger projected regions in which the dust is
totally opaque to UV light. The maximum UV emission
thereby happens at the larger projected radii where dust
becomes optically thin, while the peak IR emission is always in
the galactic center.
The middle and right panels show the results for the same

images smoothed by a Gaussian beam of FWHM 0 2 and 0 8,
respectively. The physical scale of the smoothing therefore
depends on the snapshot redshift, and corresponds to 0.33
(1.32) kpc at z = 11.4 and 0.55 (2.19) kpc at z= 5 for an
FWHM of 0.02 (0.08), respectively. The numbers were chosen
to approximately match the resolutions of Hubble Space
Telescope observations and ground-based (e.g., ALMA and
UltraVISTA) observations, respectively. On the rightmost
panel we show data from Inami et al. (2022) of UV-bright
z∼ 6–7 galaxies for which dust continua was observed with
ALMA and rest-frame UV (observation-frame near-IR) was
observed as part of the UltraVISTA survey, both of which have
approximately 0 8 FWHM resolution (McCracken et al. 2012).

Figure 8. Dust optical depth in the UV vs. absolute UV magnitude. Observational upper constraints from Schaerer et al. (2015), Burgarella et al. (2020), Naidu et al.
(2022), and Ferrara et al. (2022, with absolute UV magnitudes taken from Bouwens et al. 2022) are shown. In the lowest-redshift bin we also show the predictions
from Ma et al. (2018) where high-resolution galaxy simulations were post-processed with a simpler dust model (see Section 4.2 for discussion).
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While these galaxies are clearly much brighter in the UV than
ours, some exhibit very large UV-IR offsets that our simulated
galaxy fails to exhibit when smoothed appropriately for
comparison.

Indeed, we see that increased smoothing monotonically
reduces the peak emission offset. Figure 13 demonstrates
why: the angular symmetry of both the stellar and dust
distributions results in a ring-like morphology of the UV
emission at projected galactocentric distances where the dust
becomes optically thin. While the offset of UV and IR
maxima at infinite observational resolution is approximately
the radius of this ring, at smoothing scales comparable to this
radius, the UV light is maximized in the center, cospatial with
the peak IR emission. The fact that this holds true for all sight
lines in all snapshots for every dust model indicates that the
UV-IR morphologies are similar in all cases. Peak UV and IR
emission are never asymmetrically offset in a way that is
preserved with degrading resolution. We have confirmed
with a visual inspection of all snapshots that these conclusions
are generic to our simulation at all relevant cosmological
times. This generality leads us to strongly suspect that it
would hold for higher-mass galaxies simulated with CROC
physics and our dust model. This is especially the case since
more massive galaxies would be expected to have greater dust
masses.

4. Discussion

4.1. Status of Dust Constraints

We begin the discussion by assessing the success of our dust
modeling efforts compared to current empirical constraints.
There is no one model that appears to agree with all of the
existing data. While the IR luminosities (and therefore
estimated dust masses) appear to be best reproduced by models
with comparatively higher dust content from high production
yields and efficient growth, the models with the lowest dust
content are in best agreement with βUV constraints. We also
note that none of our dust models individually reproduce the
scatter in LIR seen in observations. This could be do to the
limited halo mass range of our simulation sample, the
assumption of a fixed dust temperature for all galaxies (which,
in reality, must depend on the ISM radiation field and the latter
is expected to vary on short timescales and from galaxy to
galaxy), the simplicity of our dust model, or some combination
thereof. Together, these results suggest that while our model is
capable of producing dust masses similar to those of real early-
Universe galaxies, doing so results in UV opacities that are too
high. We speculate that this could be due to the spatial
distribution of dust relative to stars—that our galaxies are too
uniform compared to the very turbulent ISM of real
reionization-era galaxies, which we discuss in the context of
our spatially resolved analysis below.

Figure 9. IRX–βUV relation. Infrared-Excess (IRX) vs. ultraviolet spectral slope βUV for our simulated galaxies in each dust model. Note that a constant dust
temperature of TD = 40 K was assumed in calculating all infrared luminosities. The colors and redshift bins are identical to Figure 7. Data shown are from Barisic et al.
(2017; which includes data from Capak et al. 2015 and Pavesi et al. 2016), the compilation from Hashimoto et al. (2019), and Bowler et al. (2022).
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We note that the observationally measured or derived
quantities to which we compare are subject to significant
systematic uncertainties, although we argue that these are
likely not large enough to change our qualitative results. Even
the calculation of βUV values, which are in principle directly
measurable from data, often requires assumptions because of
the availability of only a few broadband wavelengths with low
signal-to-noise detections. For example, Finkelstein et al.
(2012), Bhatawdekar & Conselice (2021), Naidu et al. (2022),
and Robertson et al. (2023) all reported βUV values calculated
from synthetic spectra corresponding to best-fitting model
galaxy spectral energy distributions (SEDs). These require the
assumption of a stellar population synthesis code (e.g.,
Bruzual & Charlot 2003), which can in principle impact the
derived values (Reddy et al. 2018). The stellar masses quoted
in Figures 3–5 are also constrained using galaxy SED
modeling, which is subject to uncertainties in the properties
of the assumed stellar population and dust attenuation (see
Conroy 2013) and are likely on the order of ∼0.5 dex (e.g.,
Faisst et al. 2020; Dayal et al. 2022). Metallicities in Figure 3
rely on various emission and absorption line measures, for one
of which Jones et al. (2020) estimated a 0.4 dex systematic
uncertainty. Dust masses calculated from a rest-frame IR
continuum emission measurement at a single wavelength
require the assumption of a dust temperature, which can be a

significant systematic uncertainty (see Figure 7 in Bakx et al.
2020). Nonetheless, the variety of observational methods
and number of independent analyzes included in the com-
piled data to which we compare gives us hope that these
systematic uncertainties are reflected in the spread of reported
quantities and their associated error bars. Moreover, we
believe they are unlikely to compensate for the very large
discrepancies between observational constraints and our
predictions, which constitute the central conclusion of our
analysis.
We note also that the opacity law assumed for our

calculation of observable quantities is another central
uncertainty. As we do not evolve the full size distribution for
the dust grains in our model nor their detailed chemical
composition, we do not make predictions for how the dust
optical properties in high-redshift galaxies may differ from
those observed locally, and therefore simply assume a model
for the lowest-metallicity system in the local Universe, where
such properties have been well constrained (the “SMC bar”
model of Weingartner & Draine 2001). Indeed, observations
from JWST have indicated that the attenuation law in z∼ 7–8
galaxies is both different from those measured at lower redshift
and variable between galaxies (Markov et al. 2023). To test the
effect of this uncertainty, we recalculated the observables used
to make Figures 7–10 assuming instead the “Milky Way,

Figure 10. Infrared luminosity vs. UV luminosity. Colors and observational data are the same as Figure 9, with the addition of data from Burgarella et al. (2020).
Additionally, we show predictions without UV dust attenuation in transparent points. These are inconsistent with the simulation, but show the effect of reduced UV
opacity with unchanged dust mass.
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RV= 3.1” model from Weingartner & Draine (2001),6 and find
that our predictions generally differ even more from
observations, indicating that the SMC model optical properties
we use by default are a best-case-scenario for our predictions
(among existing well-characterized dust opacity laws), there-
fore strengthening our conclusion of irreconcilable disagree-
ment between our forward-modeled predictions and
observational constraints from real galaxies.

4.2. Comparison to Similar Theoretical Work

Lewis et al. (2023) recently presented results of an
investigation with similar aims: they coupled an explicit model
for dust very similar to ours to a galaxy formation simulation of
cosmological reionization, and used this to predict the dust
content and rest-frame UV observables of high-redshift
galaxies. They presented predictions for a single choice of
dust model parameters, in which they assume very low dust
production yield yD= 10−3 and a much higher ISM growth
accretion rate—they adopt a modestly shorter characteristic
timescale (100 versus 300Myr), and their expression has an
additional factor of 1/Z∼ 103–104. Consequently their
galaxies transition from production-dominated to accretion-
dominated dust content at a lower galaxy stellar mass of
roughly 106Me in contrast to 107Me in all of our models.

Their dust masses are therefore most similar to our highest-
dust-content models. However, their model predicts much
milder UV dust extinction than ours with similar dust masses
(see their Figure 7). We speculate that this is due to differences
in resolution: their maximum physical resolution is an order-of-

magnitude poorer than ours, at ∼1 kpc. Given the observed
sizes of high-redshift galaxies are 1 kpc (Bouwens et al.
2020), their galaxies cannot possibly be spatially resolved and
are therefore likely artificially large. This spreads the same
amount of dust over a larger surface area and consequently
reduces their predicted optical depths.
Graziani et al. (2020) and Di Cesare et al. (2023) also recently

conducted simulations of high-redshift galaxies with a coupled
dust physics model. Again, they only present predictions for a
single set of dust model parameters, which appear to make
qualitatively similar predictions between our Default and
Enhanced Accretion models: Figure 4 of Graziani et al.
(2020) indicates a production yield of yD∼ 0.1, and a transi-
tion to accretion-dominated dust at Z∼ 3× 10−2Ze∼ 6×
10−4. We note however that they adopt both a much shorter
characteristic timescale for ISM accretion of 2Myr to our
300Myr, and a somewhat different accretion rate scaling of dD/
dt∝DZ as opposed to our dD/dt∝D( f depZ−D). The two
expressions tend to the same value at low D (modulo f dep factor
that is order-unity), but will differ significantly at higher D—
while ours will tend to zero as D→ Z, corresponding physically
to all of the available metals being locked in dust grains, and
theirs increases unbounded. This suggests that the plateau in D/
Z at ≈0.4 with increasing Z exhibited by their model is due to
enhanced destruction rates, which regulate the dust content,
whereas in our model the transition is set by the f depZ−D term
in the growth rate going to zero.
Moreover, the fact that their model transitions to accretion-

dominated at similar Z to ours despite a much higher growth-
rate normalization suggests significant differences in the cold
gas fractions or thermodynamics of the ISM in our simulations.
We also note that their simulation accounts for dust dynamical
effects at run time, which our post-processing model cannot.

Figure 11. Images of the most massive galaxy in our box along a random line of sight at z = 5 with different dust models. The top row shows the 1500 Å UV surface
brightness, the middle row shows the spatially resolved UV beta slope (estimated using the 1500 and 2500 Å color), and the bottom row shows the column density of
dust mass (which is proportional to the IR surface brightness in the optically thin regime). Each column shows the predictions of a different set of dust model
parameters, as well as the intrinsic UV emission on the leftmost column. Note that no smoothing has been applied to these images, and the pixelation is the result of
the simulation grid.

6 Data obtained from https://www.astro.princeton.edu/~draine/dust/extcurvs/
kext_albedo_WD_MW_3.1_60_D03.all.
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All of this suggests that (1) the predictions of these dust models
are sensitive to the implementation details of cooling, star
formation, and feedback in the ISM of high-redshift galaxies,
and/or (2) that the back-reaction of dust dynamics on the ISM
might be significant.

Lower et al. (2023b) simulated a suite of massive galaxies at
high redshift with explicit dust physics based on the SIMBA
galaxy formation model (Davé et al. 2019). Their dust model is
also fully coupled to their galaxy formation physics during
simulation run time, unlike ours, which is done in post-
processing, but is otherwise very similar in physical processes
accounted for and default parameters used. They simulate much
more massive halos than we have in our limited simulation
volume, and are therefore better able to directly compare to
observational constraints on high-redshift dust masses. Their
predictions broadly reproduce these observations, suggesting
similar values to our most dust-rich models (as would be
expected given the similarities of our models, particularly with
our default parameters). However, they do not directly compare
to measured rest-frame UV observables as we do, so it is
unclear whether their models suffer from the same inability to
simultaneously match stellar and dust emission constraints.

We also consider recent analyses that predict the dust content
of high-redshift galaxies with simpler post-processing physical
dust models, but with much higher-resolution (∼10 pc)
simulations that can more realistically resolve ISM dynamics

and phase structure. Ma et al. (2018, 2019) predicted dust-
sensitive quantities from high-resolution simulations from the
FIRE project (Hopkins & Squire 2018) of galaxies at z� 5 by
assuming a constant D/Z= 0.4. While their analysis predict
similar dust masses to our more dust-rich models (see the
dashed gray line in Figure 5), their predicted effective optical
depths are most consistent with our least dusty models (see
Figure 8). Interestingly, this is also the case with the results
from a similar study (Mushtaq et al. 2023) using the FirstLight
simulation suite (Ceverino et al. 2017) and an identical dust
post-processing model—see Figures 1 and 5 in Mushtaq
et al. (2023).
FIRE and FirstLight are different galaxy formation

simulations of similarly high resolution, both significantly
higher than ours. Consequently, they better capture the effects
of feedback on the high-redshift ISM, resulting in a more
turbulent, porous gas distribution, which we speculate has a
broader column density distribution than ours (see Figure 4 of
Ma et al. 2019 and Figure 1 of Ceverino et al. 2021, both of
which exhibit large gas column density fluctuations on scales
smaller than our 100 pc resolution). This results in lower
effective optical depths at a given dust mass because there exist
low-density column channels through which UV radiation can
escape that are lacking in our simulation.
Vijayan et al. (2022) adopted a post-processing method of

intermediate sophistication to predict observables from

Figure 12. UV and IR peak emission offsets. The projected physical distance between the maximum UV emission (accounting for dust attenuation) and the maximum
IR emission (as determined by the dust surface density), as a function of UV absolute magnitude (top row) and stellar mass (bottom row). Each point is one of six lines
of sight for a each snapshot. Data for the most massive galaxy in our box at 5 < z < 8.5 is shown. Different colors correspond to different dust models. Each panel
shows different levels of smoothing to capture the effect of observational resolution. Data on the rightmost plot are from Table 4 of Inami et al. (2022; with stellar
masses from Bouwens et al. 2022 and Schouws et al. 2022), whose observations have approximately 0 8 resolution in both the IR and UV (McCracken et al. 2012).
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simulations of high-redshift galaxies, specifically assuming an
evolving dust-to-metal scaling relation from a dust physics
prescription coupled to a different, semianalytical model of
galaxy formation (Vijayan et al. 2019). Their assumed dust
distributions are therefore not tied to the evolutionary histories
of their individual simulated galaxies, but nonetheless trace the
metals in a more realistic way than simply assuming a constant
ratio. With D/Z values that appear to be similar to, but perhaps
slightly lower than, our most dust-rich models (see their Figure
2), they appear to match the observed high-redshift IRX–βUV
relation better than we do, despite similar simulation resolution.
This may be because of differences in their galaxy model—
they use the well-tested and successful EAGLE simulation
physics (Schaye et al. 2015)—or because they calculated their
IR luminosities by predicting the dust temperatures with
radiative transfer post-processing, thereby accounting for the
effect of different and evolving dust temperatures. This
suggests that more careful calculation of dust temperatures
may be important for matching observations with simulation
predictions.

We have conducted an analysis of the predicted UV, IR, and
UV color morphology of the most massive galaxy in our
simulation under the assumption of different dust model
parameters. We find that all models predict significant dust
extinction in the central region of the galaxy, resulting in red
β− 1 colors and in all but the model with the least dust ring-
like morphology for the UV emission. This is because the dust
contents predicted by our models are generally optically thick
in a region that is approximately symmetrical about the galactic
center, so the UV emission is dominated by the smallest radii at
which dust becomes optically thin. Color is also strongly
correlated with dust column, which we use as a proxy for IR
emission.

Since IR emission peaks in the center of the galaxy, there are
approximately kiloparsec-scale offsets between the points of
maximal UV and IR surface brightness when “observed” with
infinite resolution, but degrading image resolution on scales
similar to existing observational capabilities causes the UV
emission to peak in the center due to its symmetric distribution,
resulting in no offset between peak brightness in UV and IR.

While existing observations only probe galaxies brighter in the
UV than the most massive in our sample, they do exhibit much
larger offsets that are suggestive of more complicated
morphologies than the ones predicted by our modeling efforts
(see Figure 2 of Bowler et al. 2022 and Figure 7 of Inami et al.
2022). Indeed, Figure 3 of Bowler et al. (2022) displays UV
color gradients much less symmetric than any of those
predicted by our dust modeling.
We note that the analysis of galaxy-averaged observable

properties would lead us to expect that the distributions of UV
and IR emission predicted by our models would be overly
smooth and symmetrical, given our inability to simultaneously
match observed dust masses and optical depths. We interpreted
this as evidence that our simulations fail to reproduce a
sufficiently dynamic ISM and consequently the full distribution
of dust column densities, the lower tail of which could allow
for significantly enhanced UV emission without decreased dust
mass. The results of this spatially resolved analysis provide
evidence in favor of this interpretation, given the inability of
our modeling to reproduce the asymmetric morphologies seen
in data of galaxies with similar stellar masses.
Simulation resolution and feedback prescription are the two

most important numerical components of a fluid-dynamical
galaxy formation model for determining the structure and
dynamics of the ISM, and therefore one or both of these is
likely implicated in our modeling failures. At a spatial
resolution of 100 pc, our simulations do not resolve the disk
scale-height and therefore cannot capture fully 3D phenomena
that characterize the ISM phase structure like molecular clouds
and SN feedback “super-bubbles.” As a consequence, the
delayed cooling feedback prescription utilized in CROC
appears to be incapable of driving large-scale galactic winds
—we have watched movies of the tracer particles used in this
analysis, and they are never removed from the galaxy ISM,
indicating a negligible mass flux from the ISM into the
circumgalactic medium. This is in stark contrast to most other
modern galaxy formation models in which galaxies of the
relevant mass range drive strongly mass-loaded winds,
especially at early cosmological times (e.g., Muratov et al.
2015; Pandya et al. 2021). A feedback prescription that

Figure 13. Effect of observation resolution on UV and IR morphologies.
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successfully launches winds would reduce the gas mass and
therefore dust mass in our galaxies, possibly reducing the high
opacities of our most dust-rich models. These winds might also
carve out low column density sight lines with minimal dust
extinction.

Ma et al. (2018, 2019) and Liang et al. (2021) thoroughly
explored the UV-to-IR observable properties of reionization-
era galaxies predicted by the FIRE-2 simulations, which are
significantly higher resolution than ours (∼10 pc) and have
been demonstrated to drive galactic winds. While they do not
explicitly quantify any offsets between predicted UV and IR
emission in their simulations, we see suggestions from their
analysis of the dynamic, asymmetric ISM seen in observations
and lacking in our simulations. Figure 4 of Ma et al. (2019)
shows images of UV light and dust column density for two of
their simulated galaxies, which both display a much more
disturbed morphology than anything we find in our analysis.
Close inspection reveals that the regions of brightest UV
surface brightness correspond to holes in the dust surface
density that appear to be blown out by strong feedback.
However, we note that the spatial offsets between peak UV and
IR emission do not visually appear to be much larger than
1 kpc, but firm conclusions cannot be drawn from images of
just two galaxies each at a single snapshot. Figure 12 of Liang
et al. (2021) did explicitly show a galaxy with >1 kpc offset
between maximum UV and IR surface brightness, due to a
highly perturbed and asymmetric distribution of gas with
respect to stars (though we note that this galaxy is significantly
more massive than those in our analysis). They also found that
the effective UV optical depth does not correlate with dust
mass at all at high redshift z= 6 because of large variations in
the star-dust geometry predicted by their simulations. All of
this suggests that higher-resolution simulations with a feedback
model that drives galactic winds may be better able to match
the asymmetric UV/IR morphologies seen in observations.

The SERRA project is another suite of high-resolution
cosmological simulations of galaxies at z> 6. These simula-
tions are higher resolution than ours by about a factor of 3 with
minimum cell sizes of ∼30 pc, and consequently have different
star formation and feedback prescriptions, more similar to those
in FIRE-2 (Behrens et al. 2018; Pallottini et al. 2022). In
contrast to our work and similar to FIRE, they found a clumpy
morphology for both stars and dust, which, in some cases, leads
to spatial offsets (Pallottini et al. 2022). They also found that
this clumpiness results in low effective optical depths due to
dust, although star-forming regions can locally exhibit very
high optical depths (Behrens et al. 2018). It is interesting to
note that Figure 4 of Behrens et al. (2018) does appear to
exhibit a ring-like morphology in the galaxy’s central UV
emission, suggesting this effect might persist to higher-
resolution simulations. Nonetheless, the relative UV and IR
properties of these galaxies are strongly influenced by the
presence of dusty, star-forming clumps, which our simulations
could not resolve, suggesting resolution is a main issue for our
theoretical predictions.

Our results therefore provide strong motivation for the
development of dust models, such as the ones presented here in
higher-resolution simulations of galaxy formation with more
realistic feedback. This results in a manifestly multiphase ISM,
and appears to be essential to capturing the effects to which
observations are most sensitive.

5. Conclusion

We apply the dust post-processing model described in
Esmerian & Gnedin (2022) to a suite of 11 simulated galaxies
from the CROC project. We explore nine different sets of dust
parameters and quantify the effect of their variation on the dust
content of high-redshift galaxies. We then forward model
observable properties of high-redshift galaxies and compare to
existing data. Our conclusions are as follows:

1. Comparing our simulated galaxies to a compilation of
recent constraints on the metallicities of reionization-era
systems, we find general agreement, although CROC
might slightly underpredict metallicity at a given
stellar mass.

2. We vary dust model parameters governing the rate of
grain growth due to accretion in the ISM, the efficiency of
grain destruction in SNRs, and the dust yields of
production sources (SN and AGB star winds), to
determine their impact on the predicted dust contents of
high-redshift galaxies. We qualitatively validate the
results of Esmerian & Gnedin (2022), in which we
reproduced a well-established behavior of these dust
models (see Hirashita 2013, for a review): the dust
content of galaxies is set at early times/low metallicities
primarily by the assumed production yields, while at
higher metallicities/late times it is set by the competition
between accretion and destruction, normalized by the
initial condition set by production yields. The transition
occurs around Z∼ 2–4× 10−4= 1–2× 10−2Ze, with
some dependence on assumed model parameters.

3. However, we observe significant scatter between galaxies
at a constant metallicity, especially at late times/higher
metallicities for models in which growth via accretion
becomes efficient. This indicates the existence of
important secondary dependencies beyond metallicity
that determine the dust content of galaxies, which is not
captured by typical one-zone models (e.g., Feldmann
2015). We speculate that this is driven by some
combination of star formation history and ISM phase
structure dependence, as is evidenced by the particularly
aggressive growth via accretion in the most massive
galaxy compared to the other galaxies in our sample.

4. We compare our total predicted dust masses as a function
of stellar mass to observational constraints in the
literature, and while our limited simulation size fails to
sample galaxies as massive as most of those with
observational constraints, where there is overlap we find
our most dust-rich models—Default and Enhanced
Accretion—appear to predict scaling relations consistent
with current data. This suggests that the data prefer
models in which production yields are high and ISM
grain growth is efficient at high masses. The data also
appear to exhibit larger scatter at a given stellar mass than
predicted by any one of our models, but due to both large
systematic uncertainties in the dust mass observational
constraints and the disjoint range of stellar masses probed
by our simulations versus the observations, these
conclusions are tentative. Nevertheless, it is easy to
imagine several additional sources of scatter that are
missed in our simulations and post-processing, such as
dependence of the dust temperature on the local radiation
field or deficiency of the stellar feedback model.
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5. We forward model directly observable galaxy properties
from our simulations to make more direct comparison to
data, and find that we are unable to simultaneously match
existing observational constraints with any one model.
Specifically, the models that best match the observed
spectral slope in the UV, βUV, are the models with the
least amount of dust content due to either low production
yields or very high destruction rates. However, these
models fail to predict sufficiently high IR luminosities.
Those that do predict IR luminosities consistent with
observations have far too much dust attenuation and
thereby fail to agree with βUV constraints. Finally, we
note that no one of our models appear to predict as much
scatter in these observable quantities as the data exhibit.

6. We speculate that these deficiencies are due to issues with
the spatial distribution of dust relative to stars in our
simulations, which may be overly smooth. To assess this
hypothesis, we compare our simulations to spatially
resolved observations of rest-frame UV emission and dust
continuum (Inami et al. 2022), between which some
galaxies show large spatial offsets, indicative of a highly
dynamic ISM. We compare data from galaxies of similar
estimated stellar mass to our most massive system, and
find that all of our models fail to predict offsets as large as
observed, lending support to the idea that our galaxies fail
to capture the dynamic complexity of the high-redshift
ISM, which is necessary to reproduce observations.
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