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Abstract Low-energy theorems (LETs) for effective-range parameters in nucleon-nucleon scattering encode
properties of the long-range part of the nuclear force. We compute LETs for S-wave neutron–proton scattering
using chiral effective field theory with a modified version of Weinberg power counting. Corrections to the
leading order amplitude are included in distorted-wave perturbation theory and we incorporate contributions
up to the third order in the power counting. We find that LETs in the 1S0 and 3S1 partial waves agree well
with empirical effective-range parameters. At the same time, phase shifts up to laboratory scattering energies
of about 100 MeV can be reproduced. We show that it is important to consider the pion mass splitting in the
one-pion exchange potential in the 1S0 partial wave while the effect is negligible in the 3S1 partial wave. We
conclude that pion exchanges, as treated in this power counting, accurately describe the long-range part of the
S-wave nuclear interaction.

1 Introduction

The importance of the low-energy limit in quantum mechanical scattering dates back to the work of H.
Bethe [1], who realized that two-particle scattering at sufficiently low energies possesses a universal behavior
characterized by only two parameters: the scattering length and effective range. This universal theory was
extended to what is known as effective range theory by utilizing analytical properties of the scattering amplitude.
Besides successfully parameterizing low-energy scattering amplitudes, effective range theory can serve as a
tool to analyze the low-energy properties of nuclear interaction models derived from effective field theories
(EFTs) [2].

In seminal works [3,4], Weinberg proposed to apply an EFT description to model the nuclear force based
on the spontaneously broken chiral symmetry of low-energy Quantum Chromodynamics (QCD). In this EFT,
pion-nucleon interactions are governed by a Lagrangian consistent with the low-energy symmetries of QCD.
Nuclear interaction potentials can be constructed by assessing the relative importance of the emerging effective
interactions in what is known as power counting (PC) [5–7]. The PC is performed in terms of (Q/�b)

ν , where
Q denotes the relevant low-energy scales and �b the breakdown scale of the EFT. In nucleon-nucleon (NN )
scattering Q ∼ {p,mπ }, where p is the modulus of the NN relative momentum andmπ the average pion mass.
We refer to ν as the chiral order, and specifically ν = 0 as leading order (LO), ν = 1 as next-to-leading order
(NLO), and so on. The resulting EFT, known as chiral effective field theory (χEFT), has been employed in the
last decades to develop two- and three-nucleon potentials to high chiral orders [8–13]. Low-energy constants
(LECs) parametrize the unknown coupling strengths in the Lagrangian, and thus appear in the potentials,
and need to be inferred from data. The χEFT potentials in combination with computational advancements in
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solving the many-body Schrödinger equation have enabled quantitative EFT predictions of nuclear properties
across the nuclear chart, see e.g. Refs. [14–16].

To date, Weinberg PC (WPC) is the main PC being used to construct quantitative chiral potentials. However,
an ongoing effort to construct alternative PCs has been pursued to construct renormalization-group (RG)
invariant interactions. The amplitudes in WPC are not RG-invariant in the sense that the momentum space cutoff
used to regulate the divergences cannot be taken arbitrarily large. This can be traced to the non-perturbative
treatment of singular potentials, which leads to uncontrolled divergences if sufficient counterterms are not
included [17–20] (see, e.g., Ref. [21] for another approach to deal with the singular interactions in χEFT). In
the late 1990 s, Kaplan et al. [22,23] proposed an RG-invariant PC where pions are treated perturbatively in all
NN partial waves. Despite some success in describing scattering phase shifts, further studies showed that the
convergence radius in terms of scattering energy was not improved compared to a theory without pions [24].

Cohen and Hansen [2,25] further investigated this PC (often referred to as KSW counting) by studying the
S-wave effective range expansion (ERE) for the neutron-proton (np) scattering amplitude. They showed that
the higher-order ERE parameters beyond the scattering length and effective range are predicted functions of
the scattering length, nucleon mass, and the parameters defining the long-range pion-exchange potential. By
calibrating the unknown LECs to reproduce the empirical scattering length and effective range, the higher-order
ERE parameters are thus predictions solely governed by the long-range part of the interaction. We will refer
to such predictions of ERE parameters as low-energy theorems (LETs) [2,25]. Cohen and Hansen compared
the LETs with empirical ERE parameters extracted from the Nijmegen partial wave analysis [26], where the
latter provides a robust parametrization of the low-energy behavior of the nuclear force [27]. The comparison
showed a poor agreement between the LETs and the empirical ERE parameters while the PC produces realistic
phase shifts [22,23]. The main conclusion of Refs. [2,25] was that LETs serve as a non-trivial test to identify
if the long-range part of the potential induces a correct near-threshold energy dependence of the scattering
amplitude.

Following Ref. [2], LETs have been used as a tool to study the low-energy properties of EFT potentials [28–
30] and Ref. [31] showed that LETs computed in WPC has a good agreement with empirical ERE parameters
extracted in Ref. [26]. Furthermore, in [32] LETs are used as a tool to study renormalization problems; and
Refs. [33,34] derive low-energy theorems for a varying pion mass and apply them to analyze lattice-QCD
calculations.

In this paper, we study LETs for np scattering in S-waves up to next-to-next-to-next-to-leading order
(N3LO)1 applying the perturbative and RG-invariant modified WPC (MWPC) proposed by Long and Yang
[35–37]. It has been demonstrated that phase shifts, np scattering observables and binding energies in A = 3, 4
nuclei can be described in the Long and Yang PC [35–40], but LETs have not been investigated. We want
to study LETs to quantify the accuracy to which pion exchanges describe the low-energy part of the two-
nucleon interaction in this PC. We specifically study if the MWPC LETs and phase shifts can describe their
empirical counterparts simultaneously—since both are essential for a theoretically sound PC with an ambition
to quantitatively describe the nuclear force. Furthermore, we study the leading isospin-breaking effect in the
one-pion exchange potential which is due to the pion mass splitting.

The Long and Yang PC differs from WPC in the 1S0 partial wave by having promoted contact interactions
and by treating sub-leading (ν > 0) interactions perturbatively. Ref. [33] emphasizes that two-pion exchange
contributions are expected to be important for describing LETs in the 1S0 partial wave and it is unknown
if this can be achieved with a perturbative inclusion. In the 3S1−3D1 channel the only difference compared
to WPC is that sub-leading interactions are treated perturbatively, meaning that our study in this channel
specifically targets the feasibility of including two-pion exchange contributions perturbatively. Importantly,
the EFT truncation error stemming from the truncated chiral expansion [41–43] is not taken into account in
this study. The uncertainty in the predictions is instead estimated using the residual cutoff dependence [44]. It
should be noted that Ref. [45] studied the cutoff dependence of the Long and Yang PC in the 3P0 partial wave
and found the appearance of so-called exceptional points in the cutoff domain for which the amplitude diverges.
This is not a major concern in this study since the problematic regions in the vicinity of the exceptional points
are extremely narrow.

The article is organized as follows. Section 2 contains a brief overview of how np scattering amplitudes are
computed in the Long and Yang PC. In Sect. 3, LETs are computed in the 1S0 and 3S1 partial waves at orders
LO to N3LO and compared to similar studies [2,25,28,31,46,47]. Finally, in Sect. 4 we conclude and discuss
prospects for future analyses carefully accounting for the EFT error and its effect on the predicted LETs.

1 Note that the ν = 1 contribution does not vanish in this PC as opposed to WPC. Hence, NLO and N2LO in WPC corresponds
to N2LO and N3LO in the Long and Yang PC.
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2 Computing Scattering Amplitudes and Phase Shifts

This section contains a brief summary of how np scattering amplitudes are computed in χEFT using the
Long and Yang PC developed in Refs. [35–37]. We consider a scattering process of an incoming neutron with
kinetic energy Tlab impinging on a proton. Specifically, we only investigate the two S-wave channels: 1S0
and 3S1−3D1. In χEFT, the np potential gets contributions from both contact interactions of zero range and
finite range interactions generated by pion exchanges. The potential contributions in the Long and Yang PC
are organized in chiral orders as [35–37]

LO : V (0) = V (0)
1π + V (0)

ct

NLO :V (1) = V (1)
ct

N2LO :V (2) = V (2)
2π + V (2)

ct

N3LO :V (3) = V (3)
2π + V (3)

ct

(1)

where V (ν)
1π , V (ν)

2π and V (ν)
ct denote one-pion exchange, two-pion exchange, and contact potentials respectively.

The contact potentials are parameterized by LECs which need to be fixed using experimental data. For further
details about the PC, we refer to Refs. [35–37,39].

The one-pion exchange potential enters at LO in the considered channels and reads [6]

V (0)
1π = − g2

A

4 f 2
π

(σ 1 · q) (σ 2 · q)

q2 + m2
π

[
2I (I + 1) − 3

]
(2)

where σ i , for i = 1, 2, denotes the spin operator for the respective nucleon, I the total isospin, p ( p′) the
ingoing (outgoing) relative np-momentum and q = p′ − p the momentum transfer. The numerical values
employed for the constants are: pion-nucleon axial coupling gA = 1.29 (including the Goldberger-Treiman
discrepancy [48]), average pion mass mπ = 138.039 MeV, and pion decay constant fπ = 92.1 MeV. The
leading charge-independence breaking (CIB) effect in the one-pion exchange potential comes from the pion
mass splitting. This effect can be incorporated non-perturbatively at LO by modifying the np one-pion exchange
potential to

V (0)
1π = − g2

A

4 f 2
π

(σ 1 · q) (σ 2 · q)

[
− 1

q2 + m2
π0

+ (−1)I+1 2

q2 + m2
π±

]
, (3)

where mπ0 = 134.977 MeV and mπ± = 139.570 MeV denote the pion masses [49].
The LO contact potential has contributions in the 1S0 and 3S1−3D1 channels which are given by

V (0)
ct = C (0)

1S0
P̂1S0

+ C (0)
3S1

P̂3S1
, (4)

where P̂X denotes the projector onto the given partial wave and the constants C (0)
X denote the corresponding

LO LECs. The superscript indicates that these are the first contributions to the LECs: C1S0
and C3S1

which also
receive contributions at sub-leading orders since the higher order potentials are added perturbatively [35,50].
For the two-pion exchange, we use expressions computed using dimensional regularization [6] and for the

sub-leading two-pion exchange
(
V (3)

2π

)
we employ ci LECs: c1 = −0.74 GeV−1, c3 = −3.61 GeV−1 and

c4 = 2.44 GeV−1 from the Roy-Steiner analysis of pion-nucleon scattering amplitudes at order Q2 presented
in Ref. [51]. Explicit expressions for all potentials are documented in the Appendix of Ref. [39].

The np scattering amplitude at order ν is denoted T (ν), analogous to the notation for the potentials. The LO
amplitude is computed non-perturbatively by solving the Lippmann-Schwinger equation with the LO potential

T (0) = V (0) + V (0)G+
0 T

(0), (5)

where G+
0 = (E − H0 + iε)−1 is the free resolvent, H0 = p2/mN the free Hamiltonian,mN the nucleon mass

and E = k2/mN the center-of-mass energy corresponding to relative momentum k. Sub-leading corrections
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to the scattering amplitude are computed using distorted wave perturbation theory [19,52] using the equations
[39]

T (1) = �
†
−V (1)�+ (6)

T (2) = �
†
−

(
V (2) + V (1)G+

1 V
(1)

)
�+ (7)

T (3) = �
†
−
(
V (3) + V (2)G+

1 V
(1) + V (1)G+

1 V
(2)

+ V (1)G+
1 V

(1)G+
1 V

(1)
)
�+, (8)

where we have introduced the operators �+ = 1 + G+
0 T

(0), �
†
− = 1 + T (0)G+

0 and G+
1 = �+G+

0 . The
partial wave scattering amplitudes are computed numerically using matrix discretization [53] by expressing
Eqs. (5) to (8) in a partial wave basis |p, �s j〉. Here, p = | p|, and �, s, j are the quantum numbers associated
with the np orbital angular momentum, spin, and total angular momentum, respectively. The partial-wave
Lippmann-Schwinger equation reads

T (0)s j
�′� (p′, p) = V (0)s j

�′� (p′, p) +
∑
�′′

∞∫

0

dq q2V (0)s j
�′�′′ (p′, q)

mN

k2 − q2 + iε
T (0)s j

�′′� (q, p), (9)

where k = √
mN E denote the on-shell relative momentum corresponding to Tlab [54]. The notation

T (ν)s j
�′� (p′, p) ≡ 〈p′, �′s j | T (ν) |p, �s j〉 is used for amplitudes and potentials. The partial wave projected

potentials are regulated using the transformation

V (ν)s j
�′� (p′, p) → exp

(
− p′6

�6

)
V (ν)s j

�′� (p′, p) exp

(
− p6

�6

)
(10)

where � is referred to as the momentum cutoff.
The contributions to the scattering amplitude at each order, T (ν)s j

�′� , can now be computed for ν ≤ 3 in each
scattering channel. The total on-shell amplitude (p′ = p = k) is obtained by summing the contributions to the
desired order according to

T sj
�′�(k, k) = T (0)s j

�′� (k, k) + T (1)s j
�′� (k, k) + T (2)s j

�′� (k, k) + . . . (11)

Using the relation between the scattering amplitude and S-matrix,

Ss j
�′� = δ�′� − iπkmNT

sj
�′�, (12)

phase shift contributions can be computed at each chiral order by expanding Eq. (12) and matching chiral
orders. This is described in Appendix B and yields expansions for the corresponding shifts in chiral orders
analogous to Eq. (11)

δ(k) = δ(0)(k) + δ(1)(k) + δ(2)(k) + . . . (13)

In the next section, the scattering amplitudes are utilized to compute both phase shifts and LETs.

3 Low-Energy Theorems for Effective Range Parameters

The S-wave effective range function, F(k), can be expressed in terms of the S-wave phase shift, δ(k), and
possesses the property of being analytic in k2 near the origin giving the ERE

F(k) ≡ k cot δ (k) = −1

a
+ 1

2
rk2 + v2k

4 + v3k
6 + v4k

8 + O (
k10) . (14)

The ERE parameters a and r are called the scattering length and effective range, while v2, v3 and v4 are
referred to as shape parameters. The presence of pions in χEFT restricts the radius of convergence for the ERE
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to k < mπ/2 ≈ 69 MeV corresponding to the first left-hand cut in the scattering amplitude caused by one-pion
exchange [33]. Hence, the ERE converges for Tlab � 10 MeV, in what is referred to as the low-energy regime.

To compute LETs, the unknown LECs must first be inferred from either phase shifts [26], the first few
empirical effective range parameters, or a mix of both. The effective range function in Eq. (14) can then be
computed, and the remaining ERE parameters not used to calibrate the LECs are predictions governed by the
long-range part of the interaction (LETs) [2]. In the coming sections, we will compute LETs in the 1S0 and
3S1 partial waves where the scattering amplitudes and the effective range function are computed perturbatively
beyond LO.

3.1 The 1S0 Partial Wave

We first consider the 1S0 partial wave and thus suppress its associated quantum numbers from the notation.
For uncoupled np scattering channels, it is convenient to express the effective range function directly in terms
of the on-shell scattering amplitude, T (k, k), using the relation [55]

T (k, k) = − 2

πmN

1

F(k) − ik
. (15)

By treating sub-leading amplitudes as perturbations to T (0), Taylor expanding Eq. (15) and keeping terms to
order ν = 3 one obtains

F(k) − ik = − 2

πmNT (0)

[
1 − T (1)

T (0)
+

([
T (1)

T (0)

]2

− T (2)

T (0)

)

+
(

2
T (1)T (2)

(
T (0)

)2 − T (3)

T (0)
−

[
T (1)

T (0)

]3)
+ O

(
Q4

�4
b

)]
. (16)

The effective range function can be written in terms of contributions at each chiral order, analogous to the
scattering amplitude

F(k) = F (0)(k) + F (1)(k) + F (2)(k) + . . . (17)

These contributions are identified in Eq. (16) and read

F (0)(k) = − 2

πmNT (0)
+ ik (18)

F (1)(k) = 2

πmNT (0)

T (1)

T (0)
(19)

F (2)(k) = − 2

πmNT (0)

⎛
⎝

[
T (1)

T (0)

]2

− T (2)

T (0)

⎞
⎠ (20)

F (3)(k) = − 2

πmNT (0)

⎛
⎝2

T (1)T (2)

(
T (0)

)2 − T (3)

T (0)
−

[
T (1)

T (0)

]3
⎞
⎠ . (21)

Note that in a theory without pions, the renormalized LO amplitude possesses the property that Re
{ (

T (0)
)−1 }

is
a momentum independent constant and all coefficients but a in the ERE will be zero by Eq. (18). This illustrates
the fact that non-zero ERE parameters beyond a at LO can be attributed to the presence of a long-range force,
in our case the one-pion exchange.

To compute phase shifts and LETs, the unknown LECs first need to be inferred. In this study, we neglect both
the truncation error associated with the χEFT expansion and the uncertainties associated with the calibration
data during the inference, similar to earlier studies [2,25,46,47]. Instead, we utilize that adding higher chiral
orders improves the high-energy description. Consequently, we successively include higher-energy data in the
calibration as the chiral order is increased. A measure of the theoretical uncertainty is provided by doing the
calculations using different momentum cutoffs � = 500 MeV and � = 2500 MeV, where the residual cutoff
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Fig. 1 Phase shifts in the 1S0 partial wave as a function of laboratory scattering energy for the LEC calibration with corresponding
LETs in Table 1. The left (right) panel shows results without (with) CIB, corresponding to the expression in Eq. (2) (Eq. (3)) for
the one-pion exchange potential. The bands indicate the envelope of the variation due to the two different cutoff values; 500 MeV
(dashed line) and 2500 MeV (solid line). The black dashed line shows phase shifts from the Nijmegen analysis [26]

Table 1 LETs for the 1S0 partial wave, both without and with the leading CIB, corresponding to the phase shifts in Fig. 1. The
ERE parameters marked with a star (∗) are used in the inference and are not predictions. The quoted errors only stem from the
numerical extraction of the ERE parameters from the perturbatively computed effective range function. Empirical ERE parameters
are also shown

dependence is expected to indicate the effect of excluded terms in the chiral expansion [44]. To gauge the
leading effect of CIB in the np interaction we will consider two versions of the one-pion exchange potential
at LO: the isospin symmetric (Eq. (2)) and the isospin breaking (Eq. (3)).

We wish to obtain LETs that describe empirical ERE parameters while the predicted phase shifts show a
good description of their empirical counterparts. To achieve this, we employ both empirical phase shifts and
ERE parameters as data to calibrate the LECs, where the latter are shown in the first row of Table 1 [27]. Note
that mainly phase shifts are used at the higher orders, to ensure a satisfactory description of the empirical phase
shifts over the wide energy interval. The LEC at LO, C (0)

1S0
, is calibrated to reproduce the scattering length. The

two LECs at NLO are calibrated to reproduce both a and r . At N2LO the three LECs are calibrated using a,
as well as the Nijmegen phase shifts [26] at Tlab = 25 MeV and 50 MeV. At N3LO the four LECs are inferred
from a as well as the Nijmegen phase shifts at Tlab = 5 MeV, 50 MeV, and 75 MeV. LETs are computed by
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performing a least squares fit of the ERE polynomial (Eq. (14)) to the effective range function computed to
the desired order: F (0)(k) at LO, F (0)(k) + F (1)(k) at NLO, and so on. To estimate the error in the LETs, a
series of least squares fits are performed in momentum intervals (pl , ph), where 0.6 MeV < pl < 1.7 MeV
and 30 MeV < ph < 68 MeV for varying polynomial orders.

The predicted phase shifts without (with) CIB are presented in the left (right) panel of Fig. 1. The phase
shifts show a clear order-by-order convergence, and at N3LO they agree excellently with the Nijmegen phase
shift up to Tlab ≈ 100 MeV. We also observe a minimal difference in the phase shifts with and without CIB and a
decreasing cutoff dependence as the chiral order is increased. The LETs corresponding to Fig. 1 are presented
in Table 1. Contrary to the almost non-visible difference in the phase shifts, a substantial improvement is
observed for the LETs when accounting for CIB. The presented uncertainties in the LETs only stem from the
numerical extraction of the ERE parameters from the perturbatively computed effective range function. These
errors are negligible for all ERE parameters except v4.

Without considering CIB, the obtained LETs for LO and NLO are consistent with similar studies [46,47],
whose results are summarized in Table 4 in Appendix A. The LETs improve considerably from LO to NLO, i.e.
when including the contact interaction D(0)

1S0

(
p2 + p′2) [35,39], while no further improvements are observed

at N2LO and N3LO. Thus, convergence to the empirical values of the ERE parameters is not observed as the
chiral order is increased. Still, we note that the LETs are significantly improved compared to KSW counting
[2,22,23], see Table 4.

When considering CIB, the LETs at all orders improve drastically. The largest improvement is again
observed when going from LO to NLO. However, there are now further improvements beyond NLO, especially
for v2 and v3. At N3LO, the LETs for � = 500 MeV are consistent with the empirical ERE parameters within
the quoted errors. For � = 2500 MeV there is still a small tension for v2 and v3, but this is without considering
any EFT error. We note that the LETs obtained at N3LO are comparable to the ones obtained in WPC [31],
see Table 4.

We now want to explore the effect of employing an alternate scheme to infer the LECs, gauging how the
choice of calibration data impacts the results. Instead of phase shifts, we will mainly use the empirical ERE
parameters to calibrate the LECs. We calibrate the LECs to reproduce {a}, {a, r} and {a, r, v2} for LO to N2LO
respectively. At N3LO there is one additional LEC compared to N2LO, and v3 can be included in the calibration
data. However, we find no set of LECs that can reproduce {a, r, v2, v3} simultaneously. We find, however, that
it is possible to achieve a fit by slightly adjusting the values of some empirical ERE parameters, which hints at
the fact that accounting for uncertainties can resolve this apparent issue. At N3LO in this calibration scheme,
the LECs are instead tuned to reproduce a and the phase shifts at Tlab = 5, 50 and 75 MeV.

When considering CIB, this calibration works well for � = 500 MeV and � = 2500 MeV and the resulting
phase shifts are shown in the right panel of Fig. 2. Without considering CIB, reproducing {a, r, v2} exactly
at N2LO is not possible for � = 2500 MeV. One potential explanation can be that the LO phase shift for
� = 2500 MeV exhibits a greater overestimation of the Nijmegen phase shift compared to the � = 500 MeV
phase shift (see Fig. 1), thus necessitating a larger correction from the sub-leading orders. Consequently, only
phase shifts for � = 500 MeV are shown in the left panel of Fig. 2. We see that the phase shifts in Fig. 2
only exhibit minor differences compared to the phase shifts in Fig. 1, with the distinction that N2LO perform
notably worse.

The LETs corresponding to Fig. 2 are presented in Table 2. When considering CIB, the LETs are similar to
those obtained in Table 1. We again note that the LETs show no tension with the empirical ERE parameters for
� = 500 MeV, while a slight tension for v3 persists at N3LO for � = 2500 MeV. When not considering CIB,
the LETs at N2LO perform worse than the ones at NLO as well as the N2LO LETs from Table 1. It is clear
that including v2 in the calibration data is problematic when not considering CIB. This is likely a contributing
factor to the failure of calibrating the LECs for � = 2500 MeV.

The analysis in the 1S0 partial wave can be concluded as follows. In all cases considered, the cutoff
� = 500 MeV shows a better convergence for both phase shifts and LETs compared to � = 2500 MeV.
This can likely be explained by the lower cutoff producing a larger effective range at LO, requiring smaller
corrections from the sub-leading orders. When not considering CIB in the one-pion exchange potential, a
clear discrepancy between LETs and empirical ERE parameters is observed while phase shifts show a good
convergence to their empirical counterparts up to Tlab ≈ 100 MeV (Fig. 1 and Table 1). When considering
CIB, a substantial improvement for the LETs is observed while the phase shifts again show a good convergence
up to Tlab ≈ 100 MeV. We can conclude that CIB is an important effect to include in the 1S0 partial wave to
be able to describe both phase shifts and LETs. The alternate calibration of the LECs (see Fig. 2 and Table 2)
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Fig. 2 Phase shifts in the 1S0 partial wave as a function of laboratory scattering energy for the LEC calibration with corresponding
LETs in Table 2. The left (right) panel shows results without (with) CIB, corresponding to the expression in Eq. (2) (Eq. (3)) for
the one-pion exchange potential. The left panel shows the predicted phase shifts for � = 500 MeV. The bands in the right panel
indicate the envelope of the variation due to the two different cutoff values; 500 MeV (dashed line) and 2500 MeV (solid line).
The black dashed line shows phase shifts from the Nijmegen analysis [26]

Table 2 LETs for the 1S0 partial wave, both without and with the leading CIB, corresponding to the phase shifts in Fig. 2. The
parameters marked with a star (∗) are used in the inference and are not predictions. The quoted errors only stem from the numerical
extraction of the ERE parameters from the perturbatively computed effective range function. Empirical ERE parameters are also
shown

strengthens this conclusion since the results when considering CIB only show small differences in both LETs
and phase shifts compared to the first calibration.

3.2 The 3S1 Partial Wave

We move on to the 3S1 partial wave, which is part of the coupled scattering channel denoted 3S1−3D1. The
mixing of states with different � means that the relation between the scattering amplitude and the effective
range function in Eq. (15) cannot be used directly. A general method to numerically extract ERE parameters
in coupled channels utilizing the scattering amplitudes was developed in Ref. [56]. However, for perturbative
calculations, this method is not directly applicable. Instead, we express the effective range function in terms of
the Blatt and Biedenharn (BB) [57] eigen phase shift in the 3S1 partial wave, denoted δ3S1(k) [56]. The phase
shift contributions at each chiral order, δ

(ν)
3S1(k), are computed from the scattering amplitudes as described in

Appendix B. The contributions to the effective range function at each chiral order are computed by expanding
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Fig. 3 Phase shifts in the 3S1−3D1 channel in the BB convention [57] as a function of scattering energy for the LEC calibration
with corresponding LETs in Table 3. CIB is not considered, and the one-pion exchange expression in Eq. (2) is employed. The
bands indicate the envelope of the cutoff variation; � = 500 MeV (dashed line) and � = 2500 MeV (solid line). The black
dashed line shows phase shifts from the Nijmegen analysis [26] in the BB convention

Eq. (14), yielding

F (0)(k) = k cot
(
δ
(0)
3S1

)
,

F (1)(k) = k
d cot

(
δ
(0)
3S1

)

dδ
× δ

(1)
3S1,

F (2)(k) = k

[
d cot

(
δ
(0)
3S1

)

dδ
× δ

(2)
3S1 + 1

2

d2 cot
(
δ
(0)
3S1

)

dδ2 × (
δ
(1)
3S1

)2

]
,

F (3)(k) = k

[
d cot

(
δ
(0)
3S1

)

dδ
× δ

(3)
3S1 + d2 cot

(
δ
(0)
3S1

)

dδ2 × δ
(1)
3S1δ

(2)
3S1

+ 1

6

d3 cot
(
δ
(0)
3S1

)

dδ3 × (
δ
(1)
3S1

)3
]
. (22)

The Long and Yang PC dictates that the potential contribution at NLO is zero in the 3S1−3D1 channel [37]
which leads to simplifications in the above equations since δ

(1)
3S1 = 0. Computing the effective range function

in terms of the phase shifts can also be done in the 1S0 partial wave and we confirmed that it gives the same
result as using Eqs. (18) to (21).

The LECs in the 3S1−3D1 channel are calibrated using data that ensures a good description of both phase
shifts and ERE parameters—the same principle as used in the 1S0 partial wave. The empirical values for the
ERE parameters [27] used in the inference are displayed in Table 3. At LO the only LEC, C (0)

3S1
, is inferred by

reproducing the 3S1 scattering length. The NLO contribution is zero and contains no LECs, but at N2LO there
are three LECs: C (1)

3S1
, D(0)

3S1
and D(0)

SD . These are inferred by reproducing the scattering length (a), effective
range (r ), and the mixing angle (ε1) from the Nijmegen analysis at Tlab = 50 MeV [26]. The three LECs at
N3LO: C (2)

3S1
, D(1)

3S1
and D(1)

SD are perturbative corrections to the LECs at N2LO and are fixed using the same

data as at N2LO. The LECs are inferred using momentum cutoffs � = 500, 750, 1000 and 2500 MeV, where
the intermediate cutoffs are used to get a better understanding of the residual cutoff dependence.

The effect of CIB was also considered, but numerical computations showed that it is negligible in this
partial wave. Thus, we only present results without CIB, i.e. employing the one-pion exchange expression in
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Table 3 LETs in the 3S1 partial wave without considering CIB. The parameters marked with a star (∗) are used in the inference
and are not predictions. The quoted errors only stem from the numerical extraction of the ERE parameters from the effective
range function. Empirical ERE parameters are also shown

Fig. 4 Predicted phase shifts in the 3S1−3D1 channel in the BB convention [57] as a function of scattering energy at N3LO for
the LEC calibration with corresponding LETs in Table 3. CIB is not considered, and the one-pion exchange expression in Eq. (2)
is employed. The purple dashed, dot-dashed, and solid lines correspond to momentum cutoffs � = 500 MeV, � = 750 MeV, and
� = 1000 MeV respectively. The black dashed line shows phase shifts from the Nijmegen analysis [26] in the BB convention

Eq. (2). The resulting phase shifts for the extreme values of the cutoffs � = 500 MeV and � = 2500 MeV
are shown in Fig. 3. The residual cutoff dependence should decrease as the chiral order increases. This is not
observed at N3LO, since the phase shifts for � = 500 MeV deviate significantly from both the Nijmegen and
� = 2500 MeV phase shifts. However, the results for � = 2500 MeV show an excellent agreement with both
empirical phase shifts, empirical ERE parameters, and similar studies [31,46].

LETs are computed from the effective range function using the same method as in the 1S0 partial wave
and the results are shown in Table 3. The LETs show an expected convergence order-by-order, where v2 is
the exception, and especially for � = 500 MeV. This can likely be attributed to the small numerical value
of v2, which makes it harder to extract reliably—a fact that is also reflected in a larger relative error between
extractions from different high-precision potentials compared to v3 and v4 [27].
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Both the LETs and phase shifts show a large residual cutoff dependence at N3LO reflecting the fact that the
� = 500 MeV result is deviating significantly from the results with higher cutoffs. The cutoff dependence is
further illustrated in Fig. 4 which shows predicted phase shifts at N3LO for the lowest cutoffs � = 500, 750,
and 1000 MeV. It is observed that the deviation of the predicted phase shifts compared to the Nijmegen analysis
increases as the cutoff decreases, which is consistent with the observed cutoff variation of LETs in Table 3.
The residual cutoff dependence at N3LO seems to be under control if the cutoff is chosen sufficiently large,
� � 750 MeV. This large cutoff dependence for low cutoffs can have several explanations. It can be an
indication that the convergence radius for the perturbative computations in the 3S1−3D1 channel is lower than
expected, and the residual cutoff dependence signals that the perturbative series starts to diverge. It can also
be an effect of a sub-optimal calibration procedure employed to fix the LECs. Another culprit can be the ci
LECs parameterizing the strength of the sub-leading two-pion exchange. In Ref. [35] it was observed that some
phase shifts at N3LO can be very sensitive to the employed values of the ci LECs, in line with the findings of
[58]. The explanation can also be that the lower cutoffs neglect relevant loop contributions from the iterated
one-pion exchange at LO, reflected in the large error observed in the ε1 phase shift for � = 500 MeV in
Fig. 3—an effect that can be challenging to correct perturbatively. Detailed studies of the convergence of the
perturbative expansion and possible connections to the ci LECs are left for future studies. It could also be
interesting to address how the convergence is affected by using different regularization schemes, e.g., spectral
function regularization [31,59], and by including the 
(1232) isobar as an explicit degree of freedom.

4 Conclusions

In this study, we have computed LETs for np scattering in χEFT to investigate the low-energy (long-range)
behavior of the Long and Yang PC. The following conclusions can be made:

(i) LETs can be accurately computed in perturbation theory; both by directly using the scattering amplitudes
(Eqs. (18) to (21) and by using phase shifts (Eq. (22)).

(ii) It is important to consider CIB in the one-pion exchange potential due to the pion mass splitting in the 1S0
partial wave to simultaneously describe empirical phase shifts and ERE parameters. Without considering
CIB, we show that the phase shifts converge well at N3LO up to Tlab = 100 MeV, while LETs do not
improve beyond NLO and a significant tension with empirical ERE parameters remains at N3LO. When
considering CIB, however, the tension in the LETs at N3LO essentially disappears while the phase shifts
still show a good convergence up to Tlab = 100 MeV.

(iii) In the 3S1 partial wave we show that CIB does not need to be considered since it has a negligible effect
on both phase shifts and LETs. The LETs reproduce the empirical ERE parameters while an accurate
description of phase shifts up to (at least) Tlab = 100 MeV is kept—as long as the cutoff is taken large
enough (� � 750 MeV). For smaller cutoffs, a large residual cutoff dependence in both phase shifts and
LETs is observed at N3LO. Further studies are needed to assess the origin of this larger-than-expected
residual dependence.

(iv) The observed simultaneous accuracy of LETs and low-energy phase shifts shows that the low-energy
description of the nuclear force is captured in the Long and Yang PC for the considered S-waves. The
convergence pattern of the phase shifts in both S-waves shows that sub-leading interactions, in particular
the two-pion exchanges, are amendable to a perturbative treatment at least up to Tlab = 100 MeV.

In this study, we did not consider adding the CIB due to the pion mass splitting perturbatively, something
that can be investigated further. The construction of an improved description at LO in the 1S0 partial wave
should also be explored. This can be achieved, e.g., by promoting potential contributions that better capture
the effective range, see for example Refs. [47,60].

It would also be valuable to quantify the extent to which neglected sources of uncertainty in both data and
models, along with choices made during the LEC calibration, influence the results. This can be effectively
achieved within a Bayesian framework [43], wherein LECs are treated as stochastic variables. However,
conducting a Bayesian inference of LECs may encounter challenges, including the risk of overfitting, and the
emergence of spurious correlations among LECs at different orders. The latter is particularly prominent in a
perturbative PC where the perturbative corrections to LECs naturally exhibit strong correlations. The results
of this study confirm the effectiveness of LETs also in this perturbative PC which can be used as a tool to
counteract overfitting LECs to high-energy data and ensuring that the fidelity of the low-energy description is
maintained.
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Appendix A Additional Tables

This appendix contains some additional tables that summarize some LET results from the literature for the 1S0 partial wave (Table 4)
and the 3S1 partial wave (Table 5).

Appendix B Computing Phase Shifts Perturbatively

The 1S0 phase shift, δ(k), and on-shell scattering amplitude, T (k, k), are related through Eq. (12) which simplifies to

e2iδ = 1 − iπkmN T (k, k), (B1)

Table 4 Collection of LET results in the 1S0 partial wave from several studies. The parameters marked with a star (∗) were used
in the inference in the respective studies

1S0 partial wave a [fm] r [fm] v2 [fm3] v3 [fm5] v4 [fm7]

Mean Ref. [27] − 23.735(16) 2.68(3) − 0.48(2) 3.9(1) − 19.6(5)
N2LO1 WPC (DR) Ref. [31] − 23.936 2.73 − 0.46 3.8 − 19.1
NLO KSW from Ref. [2] ∗ ∗ − 3.3 18 − 108
LO from Ref. [46] ∗ 1.5 − 1.9 9.6(8) − 37(10)
NLO (pert.) from Ref. [47] ∗ ∗ − 0.54(3) 4.6(1) − 29.3(5)
1Note that the chiral orders are referred to differently in Ref. [31]. The orders NLO and N2LO in Ref. [31] correspond to N2LO
and N3LO in this work.

Table 5 Collection of LET results in the 3S1 partial wave. The parameters marked with a star (∗) were used in the inference in
the respective studies.

3S1 partial wave a [fm] r [fm] v2 [fm3] v3 [fm5] v4 [fm7]

NijmII (Ref. [56]) 5.419 1.753 0.0453 0.658 − 4.191
Reid93 (Ref. [56]) 5.423 1.756 0.0327 0.658 − 4.193
NijmII (Ref. [27]) 5.4197(3) 1.75343(3) 0.04545(1) 0.6735(1) − 3.9414(8)
LO WPC (Ref. [46]) ∗ 1.60 − 0.05 0.8(1) − 4(1)
N2LO1 WPC
(DR) (Ref. [31]) 5.416 1.756 0.04 0.67 − 4.1
NLO KSW (Ref. [2]) ∗ ∗ − 0.95 4.6 − 25.0
1Note that the chiral orders are referred to differently in Ref. [31]. The order N2LO in Ref. [31] corresponds to N3LO in this
work.

http://creativecommons.org/licenses/by/4.0/
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where the quantum numbers are suppressed from the notation. By expressing both the phase shift and the amplitude in contributions
at each chiral order according to Eqs. (11) and (13) and expanding both sides of Eq. (B1) the following relations are obtained

exp
(

2iδ(0)
)

= 1 − iπkmN T
(0)(k, k) (B2)

2iδ(1) = −iπkmN T
(1)(k, k) exp

(
−2iδ(0)

)
(B3)

2iδ(2) − 2
(
δ(1)

)2 = −iπkmN T
(2)(k, k) exp

(
−2iδ(0)

)
(B4)

2iδ(3) − 4δ(1)δ(2) − 4i

3

(
δ(1)

)3 = −iπkmN T
(3)(k, k) exp

(
−2iδ(0)

)
. (B5)

From these equations, the phase shift corrections, δ(ν), can be obtained.
The computation in the coupled 3S1−3D1 channel is slightly more involved. The BB parametrization [57] of the unitary 2 × 2
S-matrix reads

S =
(

cos ε − sin ε

sin ε cos ε

) (
e2iδ− 0

0 e2iδ+

) (
cos ε sin ε

− sin ε cos ε

)
(B6)

where δ− and δ+ are the eigen phase shifts corresponding to the 3S1 and 3D1 partial waves, respectively and ε is the mixing angle.
Using Eq. (12) the phase shifts can be expressed as

ε = 1

2
arctan

(
2T sj

−+
T sj

−− − T sj
++

)
(B7)

δ− (k) = − i

2
log

[
1 − π imN k

(
T sj

−− + T js
++

2
+ T sj

−+
sin 2ε

)]
(B8)

δ+ (k) = − i

2
log

[
1 − π imN k

(
T sj

−− + T sj
++

2
− T sj

−+
sin 2ε

)]
, (B9)

where the ± notation represent �′, � = j ± 1. From the computed on-shell amplitudes T (ν)s j
�′� for orders ν = 0, 1, 2, 3 the

corresponding phase shifts
(
δ
(ν)
− , δ

(ν)
+ , ε(ν)

)
, ν = 0, 1, 2, 3 are obtained by Taylor expanding Eqs. (B7) to (B9) and matching chiral

orders. This is completely analogous to the treatment of the 1S0 partial wave and the treatment of the Stapp parametrization [61] in
Refs. [37,39].
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