
Unfolded SiBM BCH Decoders for High-Throughput Low-Latency
Applications

Downloaded from: https://research.chalmers.se, 2024-09-27 08:20 UTC

Citation for the original published paper (version of record):
Wang, X., Fougstedt, C., Svensson, L. et al (2024). Unfolded SiBM BCH Decoders for
High-Throughput Low-Latency Applications. 2024 IEEE Computer Society Annual Symposium on
VLSI (ISVLSI)

N.B. When citing this work, cite the original published paper.

© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, or reuse of any copyrighted component of this work in other
works.

(article starts on next page)



Unfolded SiBM BCH Decoders for
High-Throughput Low-Latency Applications

Xu Wang∗, Christoffer Fougstedt†, Lars Svensson‡, Per Larsson-Edefors‡
∗Dept. of Computer Science and Engineering, Chalmers University of Technology, Gothenburg, Sweden

†Ericsson Research, Gothenburg, Sweden
‡Dept. of Microtechnology and Nanoscience, Chalmers University of Technology, Gothenburg, Sweden

xuwang@chalmers.se

Abstract—Low-latency and area-efficient forward error cor-
rection is crucial in high-throughput communication scenarios,
such as die-to-die connections. Using t to denote error correction
capability, we propose a low-latency t-unfolded simplified inverse-
free Berlekamp-Massey (SiBM) decoder, which for t > 3 offers
a shorter critical path compared with area-efficient Peterson-
based decoders. Synthesized in a 22-nm CMOS process, our
unfolded SiBM decoders with t = 4 and 5 provide up to 1.39×
higher throughput than their Peterson-based counterparts, at
comparable area efficiencies.

Index Terms—Application specific integrated circuits, forward
error correction, Berlekamp-Massey, unfolded decoding.

I. INTRODUCTION

Forward error correction (FEC) is commonly utilized in
communication systems [1] to push the data rate higher and
enhance transmission reliability, and in memory systems [2] to
improve storage integrity. Nowadays, there is also a growing
interest in integrating FEC into die-to-die (D2D) connections,
aiming at mitigating insertion losses and distortions caused
by crosstalk [3], [4]. In order to integrate FEC functionality
in a D2D connection, the FEC circuit must 1) be resource
efficient due to the limited area and power budget, 2) provide
high data throughput, and 3) offer low transmission latency. To
address these issues, hard-decision (HD) codes may provide
a possible solution because they are less complex than soft-
decision codes [5]. Among HD codes, the Bose-Chaudhuri-
Hocquenghem (BCH) codes can provide multiple error correc-
tion capabilities while maintaining lower hardware complexity
compared to Reed-Solomon codes [6]. Additionally, binary
BCH codes permit tradeoffs involving iteration time and
calculation complexity [2].

In binary BCH decoders, the Berlekamp-Massey (BM) [7],
[8] and Peterson [9] algorithms are commonly employed.
When prioritizing latency, the Peterson algorithm is preferred
[1], [10], [11], especially for lower error correction capabilities
t, because it directly solves the Newton identities without the
recurrent calculation associated with BM algorithms. While
it has been shown in [11] that Peterson-based decoders can
provide efficient implementations for t ≤ 2, it is however
unclear whether this is still the best approach for higher error
correction capabilities, such as t ≥ 3.

In this paper, we propose a t-unfolded decoder structure
based on the simplified inverse-free BM (SiBM) algorithm and

show that it is possible to reduce the computational delay of
the key equation solver to only one clock cycle by unfolding
the iterations. Therefore, the proposed circuit can provide high
throughputs; up to 3.71 Tb/s with t = 4 in a 22-nm CMOS
process. Unfolding exposes additional avenues of optimization
to reduce the hardware complexity, such as reducing the num-
ber of required adders and multipliers. To investigate efficient
FEC decoder implementations for application scenarios with
t ≥ 3, we contrast our implementation with decoders based on
the Peterson algorithm: Our proposed t-unfolded architecture
scales better with t than the Peterson algorithm does and it
can provide up to 1.39× higher throughput, while maintaining
competitive area efficiency.

II. BERLEKAMP-MASSEY ALGORITHMS

Thanks to different techniques to optimize the primary BM
algorithm [2], [6], [12]–[14], BM-based decoders implementa-
tions can approach the resource efficiency of implementations
based on the Peterson algorithm. These enhancing techniques
focus on reducing timing and hardware complexity. Inversion-
less BM (iBM) replaces the hardware-consuming inversions by
multiplications [12], decreasing the critical path to two Galois
field (GF) multipliers and 1 + ⌈log2(t + 1)⌉ adders. Based
on this technique, a reformulated look-ahead inversionless
BM (riBM) was proposed [12], [13] to further reduce the
critical path. This improvement is achieved by simultaneously
calculating the discrepancy and error location polynomial,
resulting in a critical path with only Tmult + Tadd (see Table
I), where Tmult and Tadd denote the delays associated with a
GF multiplier and a GF adder, respectively.

TABLE I. TIMING COMPLEXITY OF BM ALGORITHMS

KES Logic depth Delay
iBM [12] 2 · Tmult + (1 + ⌈log2(t+ 1)⌉) · Tadd 2t
riBM [12] Tmult + Tadd 2t
SiBM [2] Tmult + Tadd t

However, the improved timing performance comes at the
cost of integrating more computational units, among them
t−1 GF multipliers, which in turn increases the area overhead
(see Table II). It should be noted that the BM algorithms
discussed above are primarily proposed for general BCH
codes. For binary BCH codes, however, the computational
delay can be reduced to t [6]. In addition, the calculations



of error evaluation polynomials are redundant for binary BCH
code since the error value is constant one. By utilizing these
properties, the simplified inverse-free BM (SiBM) [2], [14]
has lower hardware overhead and shorter computational time
compared to its predecessors.

TABLE II. HARDWARE COMPLEXITY OF BM ALGORITHMS

KES Adders Mults Regs Muxes
iBM [12] 3t+ 1 5t+ 3 6t+ 2 2t+ 1
riBM [12] 3t+ 1 6t+ 2 6t+ 2 3t+ 1
SiBM [2] 2t 4t 4t 4t

III. IMPLEMENTATION OF BINARY BCH DECODER

Binary BCH codes are cyclic error-correcting codes con-
structed over a Galois field GF(2m) [6], where m is the
primitive power. Binary BCH codes can be denoted by
BCH(n, k, t), where n is block length, k is useful message
length, and t is the maximal number of bits that can be
corrected, with n− k = m · t and n = 2m− 1. A binary BCH
FEC system comprises an encoder and a decoder. The encoder
computes and appends the parity check bits on the original
message. This is achieved either through a linear feedback shift
register (LFSR) or simple exclusive OR (XOR) trees derived
from the generator matrix.

Figure 1. A typical structure of the algebraic-based decoder.

Compared to the encoder, the decoder is more complex.
Figure 1 shows a typical structure of the algebraic decoder
that contains three main components: syndrome calculation
(SC), key equation solving (KES), and Chien search (CS). The
syndrome vector S is calculated by multiplying the received
codeword with a transposed parity check matrix H [6]. If
all the elements of vector S are zero, no errors are detected
in the received code; otherwise, errors are detected. The
error location polynomial Λ(x) can then be determined by
solving the Newton identities [6]. Once the Λ(x) is calculated,
the error location can be identified using the Chien search
algorithm [15]. Leveraging the cyclic property of binary BCH
codes, the Chien search evaluates the roots individually to
determine whether they are the roots of Λ(x). To speed up
the circuit, a parallel Chien search is implemented in the
below architectures by unfolding the iterations and examining
all the roots concurrently. Consequently, the error can be
corrected by XOR operations between the received message
and error patterns [6]. Registers are inserted between the
blocks, effectively pipelining the circuit and reducing the logic
depth. To synchronize the input signals of CS, a First-In-First-
Out (FIFO) buffer is integrated. The buffer should mirror the
latency inherent to KES since there is no register inserted in
SC. Clock gating logic is implemented to disable the KES

and CS components when an error-free message is received,
improving hardware efficiency.

Due to the high degree of parallelism in the SC and CS
components, the main latency contributor of the decoder is the
KES unit. The Peterson algorithm provides a possible solution
to reduce the calculation overhead involved in KES because
of its direct solving property, reducing the latency to only
one cycle. Although the SiBM implementations in [2], [14]
decrease computational delay to half that of the riBM, the KES
unit still requires t cycles to complete the iterative calculation
of Λ(x). This recurrent calculation reduces the throughput of
the whole system. It is possible to incorporate more KES
units to concurrently calculate Λ(x) to reduce the latency.
Clearly, selecting suitable KES algorithms and architectures
becomes imperative to realizing a high-throughput and low-
latency decoder system.

IV. TRADEOFF BETWEEN AREA USAGE AND THROUGHPUT

This section discusses two basic decoder architectures,
demonstrating a tradeoff between area usage and throughput.
The conventional way to build the KES unit involves utilizing
a single core to iteratively calculate the coefficients of Λ(x).

A. One-core SiBM decoder

The one-core SiBM architecture utilizes a single SiBM-
based KES core to iteratively compute the error location
polynomial Λ(x). One multiplexer (MUX) is added before the
input registers to select between the input syndrome and the
previous output of the SiBM core (see Figure 2). Therefore, the
KES critical path becomes Tmux+Tmult+Tadd, which is one
MUX delay1 longer than the original SiBM [2]. A controller is
also integrated to control the input MUX. Since only one core
is used, the resulting design should be highly area efficient (see
Table III). One computation of Λ(x), however, takes t clock
cycles, resulting in high latency and thus low throughput. To
be more specific, the SC unit has to hold for t clock cycles
to prepare the next syndrome vectors, and the CS unit has
to wait for t clock cycles to update the error locations. To
synchronize the received signals, a t-stage FIFO should be
used which increases area usage.

Figure 2. Structure of the one-core SiBM KES.

B. t-parallel SiBM decoder

The throughput of the overall decoder can be increased
by parallelizing t SiBM cores, where each core handles one
Λ(x) computation. A three-core example is shown in Figure
3. Similar to the one-core structure, each core recursively
computes one Λ(x). While each core is still engaged for t

1Tmux, Tmult, and Tadd represent the delays of a 2-input MUX, a GF
multiplier, and a GF adder, respectively.



TABLE III. TIMING AND HARDWARE COMPLEXITY OF DIFFERENT KES IMPLEMENTATIONS

KES Timing complexity Hardware complexity
Logic depth Delay Adders Mults Regs Muxes

One-core SiBM Tmult + Tadd + Tmux t 2t 4t 4t 8t
t-parallel SiBM Tmult + Tadd + ⌈log2 t⌉ · Tmux t+ 1 2t2 4t2 4t2 8t2

t-unfolded SiBM
t = 3 5 · Tmult + 3 · Tadd

1 2t2 − 4t+ 1
7

4t2 − 5t+ 1
22

t 2t2 − 4t+ 2
8

t = 4 6 · Tmult + 4 · Tadd 17 45 18
t = 5 8 · Tmult + 5 · Tadd 31 76 32

Peterson
t = 3 3 · Tmult + 2 · Tadd

1
3 6

t
2

t = 4 7 · Tmult + 4 · Tadd 15 20 3
t = 5 11 · Tmult + 6 · Tadd 27 40 6

clock cycles, overhead can be concealed as there is always at
least one SiBM core available to update Λ(x) based on the new
syndrome. Input demultiplexer (DEMUX) and output MUX
are incorporated to facilitate the delivery of the syndrome
and Λ(x). Because of the output MUX, the critical path turns
into Tmult + Tadd + ⌈log2 t⌉ · Tmux. The controller contains
information about the current status, such as which core is
available, and regulates the DEMUX and MUXes. Therefore,
the SC and CS units do not need to stall, leading to a t-
times higher throughput than the one-core topology. The FIFO,
however, needs t+ 1 stages for synchronization.

Figure 3. Structure of the t-parallel SiBM KES.

Although the parallel architecture can increase the through-
put by t times, the resulting area of the KES unit is t times
larger than the one-core KES architecture (see Table III),
only considering the SiBM cores and their input registers and
MUXes. One-core and t-parallel architectures present a trade-
off between area usage and throughput, which is illustrated in
the synthesis results in Figure 4. Neither of the architectures
can provide a solution that balances area efficiency with high
throughput. Hence, a more efficient architecture is desired.

V. HIGH-THROUGHPUT LOW-LATENCY DECODERS

To maintain high throughput and reduce the hardware
complexity of t-parallel SiBM architectures, we propose a t-
unfolded architecture that utilizes t optimized SiBM cores. In
order to compare with the direct Peterson solution, we also
present a Peterson-based decoder for t = 5.

A. t-unfolded SiBM decoder

Replicating parallel SiBM cores leads to excessive hardware
usage. Here, we instead unfold the SiBM algorithm, which
allows us to simplify the control logic while also reducing
hardware overhead as no muxing is required. This is possible

m

8 9 10 11
0

5

10

a
re

a
 u

s
a
g
e
 (

u
m

2
)

10
4

One-core SiBM

t-parallel SiBM

8 9 10 11
0

0.5

1

1.5

2

th
ro

u
g
h
p
u
t 
(T

b
/s

)

Figure 4. Comparison of the t = 3 one-core and t-parallel SiBM-based
decoders, synthesized at 1-GHz frequency using a 22-nm design kit. It should
be noted that the area usage here is the full decoder, not only the KES.

as the main iteration adheres to a predictable pattern without
complex interdependencies. In contrast to the parallel struc-
ture, t SiBM-cores are directly cascaded; see Figure 5 for a
t = 3 example. The unfolded SiBM decoder offers low latency
because the computation of Λ(x) can be finished in only one
clock cycle. The critical path increases to t · (Tmult + Tadd),
but the input MUX can be removed. Based on the principles of
GF arithmetic, the even syndromes can be calculated from the
odd syndromes. Therefore, to improve the hardware efficiency,
the even-syndrome calculations are moved from the SC unit to
the first SiBM core. This relocation means that the calculation
of even syndromes is activated only when errors are detected.
Consequently, the final critical path grows by two or three
GF multipliers depending on the error correction capability,
as shown in Table III.

Figure 5. Structure of the 3-unfolded SiBM KES.

The unfolded architecture has a lower hardware complexity
than the parallel counterpart since some input operands and
output results of each core are deterministic. The number of
input registers is reduced to t and the required MUXes for
each core decreases to 2t. For the first core, as γ(0) = 1, the
main computation [14]

∆i(r + 1) = γ(r)∆(i+2)(r) + ∆0(r)Θ(i+1)(r), (1)



where r ∈ {0, 1, . . . , t− 1}, can be simplified to

∆i(r + 1) = ∆(i+2)(r) + ∆0(r)Θ(i+1)(r). (2)

Therefore, 2t GF multipliers can be replaced by direct map-
pings of the input syndrome. In addition, three adders, two
multipliers, and two MUXes can be eliminated because of the
constant zero and one inputs; see Table IV, for each r, the
above row is ∆1

i (r + 1) = γ(r)∆(i+2)(r) and the below is
∆2

i (r + 1) = ∆0(r)Θ(i+1)(r). However, t− 1 multipliers are
added for even syndrome calculations. The last core can also
be optimized as the computation of Θ(t) is redundant. Hence,
the last iteration only contains the calculation of ∆(t):

∆i(t) = γ(t−1)∆(i+2)(t−1)+∆0(t−1)Θ(i+1)(t−1). (3)

Besides the elimination of 2t assignment MUXes, the last core
can still be improved due to two constant zero coefficients of
Θ(i+1)(t−1) and ∆(i+2)(t−1) (see Table IV). Similar to the
last core and first core, the inner cores can be optimized for
constant zero operations. Therefore, 4 · (t− 2) multipliers and
adders, and 2 · (t− 2) MUXes can be omitted in inner cores.

TABLE IV. 3-UNFOLDED ∆i(r + 1) CALCULATIONS

r = 0
S3 S4 S5 0 1 0

∆2
0(1) ∆2

1(1) ∆2
2(1) ∆2

3(1) 0 S1

r = 1
∆1

0(2) ∆1
1(2) ∆1

2(2) ∆1
3(2) 0 0

∆2
0(2) ∆2

1(2) 0 0 ∆2
4(2) ∆2

5(2)

r = 2
∆1

0(3) ∆1
1(3) ∆1

2(3) ∆1
3(3) 0 0

0 0 ∆2
2(3) ∆2

3(3) ∆2
4(3) ∆2

5(3)

As all cores are directly cascaded without any pipeline
registers, the overhead introduced by KES is only one clock
cycle and a one-stage FIFO is sufficient, reducing the hardware
complexity further. Consequently, the t-unfolded implementa-
tion can provide efficient hardware compared to the t-parallel
SiBM and achieve high throughput with low latency.

Figure 6. Structure of Peterson-based KES.

B. Peterson-based decoder
The Peterson-based [9] decoders provide a low-latency

solution as the coefficients of Λ(x) can be directly calculated
by reformulating the Newton identities. A structure of the
Peterson-based KES is shown in Figure 6. Inversionless Peter-
son equations with t = 1−4 which eliminate hardware-costly
GF inversions are described in [1], [11]. Based on these, we
develop Peterson equations for t = 5 to explore the scenario
of higher error correction capabilities.

To remove the inversions, the scaling part (SP) should be
first calculated

SP1 = (S3
1 + S3)[(S1S

2
3 + S7) + S4

1(S
3
1 + S3)]

+ (S5 + S5
1)(S

2
1S3 + S5)

SP2 = (S4
1S

2
3 + S2

5) + (S3
1 + S3)[S

2
1(S5 + S5

1)

+ (S1S
2
3 + S7)],

where Si is the syndrome. Then, the coefficients of the error
location polynomial Λi can be derived by

Λ0 = SP1SP2

Λ1 = S1Λ0

Λ2 = SP2{(S3
1 + S3)[S

2
3(S

3
1 + S3) + S4

1(S5 + S2
1S3)

+ (S9
1 + S9)] + (S5 + S5

1)[(S
2
1S5 + S2

3S1)

+ (S7 + S7
1)]}

Λ3 = (S3
1 + S3)Λ0 + S1Λ2

Λ4 = SP1{(S2
1S3 + S5)[(S

2
1S7 + S9) + S3(S

6
1 + S2

3)]

+ [S2
1(S5 + S5

1) + (S1S
2
3 + S7)]

· [(S7
1 + S7) + S1(S1S5 + S2

3)]}
Λ5 = (S5 + S2

1S3)Λ0 + (S3
1 + S3)Λ2 + S1Λ4.

If three errors have occurred in the codeword, SP1 = SP2 = 0.
In this case, all coefficients will become zero and the above
equations are insufficient. To address this case, the set of
equations should be substituted with [1]

Λ0 = S3
1 + S3 Λ2 = S2

1S3 + S5

Λ1 = S1Λ0 Λ3 = Λ2
0 + S1Λ2.

and Λ0 = 1, Λ1 = S1 to tackle a single-error case.
Table III shows that the critical path of the Peterson-based

decoder is longer than that of the t-unfolded SiBM for t = 4
and 5. This means that the t-unfolded SiBM may provide
higher speed and higher throughput than the Peterson ap-
proach. Regarding area usage, however, the Peterson algorithm
may still perform competitively.

VI. RESULTS

All configurations, including both SiBM and Peterson, were
synthesized on a 22-nm fully-depleted silicon-on-insulator
(FD-SOI) CMOS technology, at Vdd = 0.9 V, typical corner.
To limit the code overhead to below 20%, decoders with
t = 3− 5 and m = 8− 11 were designed and evaluated. We
focus on the area usage as the power dissipation is expected
to be similar at the low input bit-error rates that the decoders
will operate at. The overall power will be dominated by the
SC unit and the FIFO buffer since the KES and CS units are
rarely activated.

Figure 7 shows the area usage of different architectures
synthesized at 1 GHz. The resulting area usage considers the
whole decoder system, including SC, KES, and CS computa-
tion components, FIFO, and pipeline registers in between. In
general, the area usage rises when m and t increase, because
more logic components, such as GF multipliers and adders, are
integrated. Our proposed t-unfolded structure performs better
than the parallel structure due to the optimization described
in Section V: (1) unfolding the iteration helps expose the
logic to more optimizations, and (2) a less complex FIFO
buffer is needed to synchronize the signals; in fact one stage
is sufficient. Even compared with the efficient Peterson-based
decoder, the t-unfolded SiBM can offer competitive or better
area complexity; see e.g. t = 5 in Figure 7.



8 9 10 11
0

0.5

1

1.5

2
a

re
a

 u
s
a

g
e

 (
u

m
2
)

105 t=3

t-parallel SiBM t-unfolded SiBM Peterson

8 9 10 11

m

0

0.5

1

1.5

2
105 t=4

8 9 10 11
0

0.5

1

1.5

2
105 t=5

Figure 7. Area usage of t-parallel vs t-unfolded SiBM-based vs Peterson-based decoders.

8 9 10 11
0

0.2

0.4

0.6

0.8

1

c
ri
ti
c
a

l 
p

a
th

 (
n

s
)

t=3

t-unfolded SiBM Peterson

8 9 10 11

m

0

0.2

0.4

0.6

0.8

1
t=4

8 9 10 11
0

0.2

0.4

0.6

0.8

1
t=5

Figure 8. Critical path of the t-unfolded SiBM-based and Peterson-based decoders.

8 9 10 11
0

2

4

6

8

th
ro

u
g

h
p

u
t 

(T
b

/s
)

0.4

0.6

0.8

1
t=3

t-unfolded SiBM Peterson

8 9 10 11

m

0

2

4

6

8

1

1.2

1.4

1.6
t=4

8 9 10 11
0

2

4

6

8

1

1.2

1.4

1.6

ra
ti
o

t=5

Figure 9. Throughput of the implemented decoder configurations. The left-hand y-axis shows the absolute throughput of the t-unfolded SiBM-based and
Peterson-based decoders. The right-hand y-axis shows the speedup ratio of the t-unfolded SiBM-based decoders over Peterson-based decoders.

In terms of timing, t-unfolded SiBMs with t = 4 and
5 decoders exhibit a short critical path compared to their
Peterson-based counterparts (see Figure 8). This is because
the coefficient calculation of the Peterson algorithm heavily
relies on S1, especially for higher ts. For a Peterson-based
KES with t = 5, the highest power of S1 is nine, resulting
in a long critical path, 11 · Tmult + 6 · Tadd, and high fanout.
The t-unfolded KES, however, only has a 8 · Tmult + 5 · Tadd

logic depth (see Table III), 3 · Tmult + Tadd less than the
Peterson counterpart. Nevertheless, for t = 3, the Peterson-
based decoder provides a better timing performance due to
the shorter critical path, 3 · Tmult + 2 · Tadd, in contrast to
5 · Tmult + 3 · Tadd of the t-unfolded SiBM.

Better timing performance also means that higher through-
put is possible. The throughput is calculated by multiplying
the useful message length, k, with the maximal clock rate
from synthesis. Therefore, for a specific message length, the
highest throughput of the decoder is determined by its maximal
synthesized clock rate. Figure 9 shows that the unfolded SiBM
architectures can offer higher throughput compared to the
Peterson-based ones for t = 4 and 5. For an m = 11 and

t = 5 configuration, the unfolded SiBM can provide 3.02-Tb/s
throughput, which is 1.39× times higher than the Peterson-
based (2.17 Tb/s) design. In contrast, the t = 3 unfolded
SiBM decoders have lower throughput than their Peterson
counterparts because the longer critical path leads to a lower
maximal clock rate.

VII. CONCLUSION

To resolve the dilemma posed by conventional simpli-
fied inverse-free Berlekamp-Massey (SiBM) decoders, which
struggle to reconcile low latency with efficient area usage de-
manded by e.g. multiple-lane high-throughput communication
links for chiplet interfaces, we propose the t-unfolded SiBM
decoder. This decoder offers higher throughput for t = 4 and 5
and competitive area usage compared with the corresponding
Peterson-based decoders. Synthesized in a 22-nm CMOS
process, an unfolded SiBM decoder for BCH(2047,1992,5)
achieves a data rate of 3.02-Tb/s, which is 1.39× higher than
its Peterson counterpart.



ACKNOWLEDGEMENT

The authors would like to thank GlobalFoundries for design
kit access.

REFERENCES

[1] C. Fougstedt and P. Larsson-Edefors, “Energy-Efficient High-
Throughput VLSI Architectures for Product-Like Codes,” Journal of
Lightwave Technology, vol. 37, pp. 477–485, 2019.

[2] W. Liu, J. Rho, and W. Sung, “Low-Power High-Throughput BCH Error
Correction VLSI Design for Multi-Level Cell NAND Flash Memories,”
IEEE Workshop on Signal Processing Systems Design and Implementa-
tion, pp. 303–308, 2006.

[3] “Universal Chiplet Interconnect Express (UCIe) Specification Rev 1.0.”
https://www.uciexpress.org. Online.

[4] D. Das Sharma, G. Pasdast, Z. Qian, and K. Aygun, “Universal
Chiplet Interconnect Express (UCIe): An Open Industry Standard for
Innovations With Chiplets at Package Level,” IEEE Transactions on
Components, Packaging and Manufacturing Technology, vol. 12, no. 9,
pp. 1423–1431, 2022.

[5] P. Larsson-Edefors, C. Fougstedt, and K. Cushon, “Implementation
Challenges for Energy-Efficient Error Correction in Optical Communi-
cation Systems,” in Advanced Photonics, Signal Processing in Photonic
Communications (SPPCom), p. SpTh4F.2, 2018.

[6] W. Ryan and S. Lin, Channel Codes: Classical and Modern. Cambridge
University Press, 2009.

[7] E. Berlekamp, “Nonbinary BCH Decoding,” IEEE Transactions on
Information Theory, vol. 14, no. 2, pp. 242–242, 1968.

[8] J. Massey, “Shift-Register Synthesis and BCH Decoding,” IEEE Trans-
actions on Information Theory, vol. 15, no. 1, pp. 122–127, 1969.

[9] W. Peterson, “Encoding and Error-Correction Procedures for the Bose-
Chaudhuri Codes,” IRE Transactions on Information Theory, vol. 6,
no. 4, pp. 459–470, 1960.

[10] S. An, H. Tang, and J. Park, “A Inversion-Less Peterson Algorithm
Based Shared KES Architecture for Concatenated BCH Decoder,”
International SoC Design Conference (ISOCC), pp. 281–282, 2015.

[11] C. Fougstedt, K. Szczerba, and P. Larsson-Edefors, “Low-Power Low-
Latency BCH Decoders for Energy-Efficient Optical Interconnects,”
Journal of Lightwave Technology, vol. 35, no. 23, pp. 5201–5207, 2017.

[12] D. Sarwate and N. Shanbhag, “High-Speed Architectures for Reed-
Solomon Decoders,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 9, no. 5, pp. 641–655, 2001.

[13] X. Zhang, VLSI Architectures for Modern Error-Correcting Codes. CRC
Press, 2015.

[14] M. Yin, M. Xie, and B. Yi, “Optimized Algorithms for Binary BCH
Codes,” in IEEE International Symposium on Circuits and Systems
(ISCAS), pp. 1552–1555, 2013.

[15] R. Chien, “Cyclic Decoding Procedures for Bose-Chaudhuri-
Hocquenghem Codes,” IEEE Transactions on Information Theory,
vol. 10, no. 4, pp. 357–363, 1964.


