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Abstract

Accurately predicting the remaining driving range of
vehicles is essential for optimizing vehicle performance
and reducing range anxiety among drivers, especially
for electric vehicles (Evs). This study examines and
measures the accuracy of distance calculations using
various coordinate systems and estimation methods to
develop a reliable methodology for estimating residual
range.
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Abstract

Determining the path length of road segments is crucial for various applications, especially
with the advent of electric vehicles (EVs) and smart vehicles developed by companies like
Volvo, Tesla, and other OEMs. Accurate path length estimation is essential for opti-
mizing vehicle performance, reducing range anxiety among drivers, and ensuring reliable
navigation. This study examines and measures the accuracy of distance calculations using
various coordinate systems and estimation methods to develop a reliable methodology for
estimating residual range.

The research begins with an evaluation of different methods for distance estimation, in-
cluding Haversine, Geodesic, and elevation-embedded algorithms. These methods were
applied to real-world road data to determine their accuracy and applicability in predicting
residual range. Accurate road data, incorporating critical elements such as road slope,
curvature, and speed limits, is essential for making reliable predictions.

The core objectives of this study included creating a backend system to process and sort
road data, deploying multiple path length estimation methods, and quantifying their ac-
curacy using standard measures. The performance of each method was showcased through
a case study, highlighting their effectiveness in different scenarios. Additionally, the study
developed a deterministic Operating Cycle (dOC) model to encapsulate road data and
facilitate residual range prediction in simulations.

The findings of this study demonstrate the effectiveness of different distance calculation
methods and the utility of the dOC model in improving residual range estimation accuracy.
By integrating detailed road attributes into distance estimation methodologies, this study
enhances the precision and reliability of residual range predictions for smart vehicles, filling
a significant research gap and supporting the advancement of sustainable transportation
systems.
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Chapter 1

Introduction

The introduction section outlines the clear background and motivation for the research,
leading to the formulation of the research questions. By exploring the challenges and
limitations of traditional distance estimation methods, this study aims to enhance accuracy
through advanced geospatial data techniques. This foundational understanding sets the
stage for addressing critical questions that drive the research forward.

1.1 Background and Motivation

Global Challenges and Transportation’s Role

Climate change is today considered one of the most pressing challenges to humankind and
nature around the globe. Outcomes have varied from rising temperatures and changed
weather patterns to extreme poverty and displacement of people. The major push be-
hind climate change is the accumulation of greenhouse gases in Earth’s atmosphere. The
primary greenhouse gases (GHGs) include carbon dioxide, COy, CHy, and NoO, which en-
traps the heating force and causes global warming. The worldwide movement against the
causes of climate change has concentrated on cutting GHG emissions, and international
cooperation has constituted a significant framework settled in the Paris Agreement[32].

As was mentioned in the United Nations Climate Change, fossil fuels such as coal, oil, and
gas are major contributors to GHGs, amounting to over 75% of global emissions of GHGs
and almost 90% of all CO4 released into the atmosphere. Global warming is accelerating,
and every decade since 1980 has been warmer than the last, with the last one being the
warmest on record.

Out of these sources, transportation is one primary source of GHG emissions. The trans-
portation sector relies significantly on vehicles based on burning fossil fuels, including, but
not limited to, cars, trucks, ships, and planes; this creates a highly abundant emission
of CO3. For an extended period, ICEVs have been among the major contributive factors
to emissions arising from transportation. In addition, developments in the global level of
transportation networks, the rapid pace of urbanization, and a fast-tracked increase in the
demand for mobility have enhanced the sector’s environmental impact[24].

Moving to sustainable transport is one of the most important agenda items about both
climate change and environmental degradation. The shift should significantly reduce CO2
emissions, improve air quality in cities, and decrease dependence on fossil fuels, hence
improving resistance to climate change impacts through a low-carbon and energy-efficient



transportation system. It’s this transition toward sustainability that secures our future
and helps avoid any of the backlash effects of having a climate-changed Earth.

Transportation’s Contribution to CO, Emissions

The transport includes different modes of transport varying from road, rail, and air to
maritime transport where each mode uniquely demands energy and has greater environ-
mental impacts. According to the International Energy Agency (IEA), the transport
sector accounts for one-fifth of global carbon dioxide emission which is 24% if the Carbon
dioxide emission is considered from energy. The rapid increase of private automobiles and
commercial vehicles has opened the gate widely for the emission of COs from road trans-
port particularly in urban areas where the traffic congestion and the emission collectively
worsen the quality of air and the public health[25].

Similarly where aviation and maritime play a vital role in connectivity and global trading,
have emerged as a great player in the charts of contribution to COy emissions and other
pollutants. The combustion of jet fuel in aeroplanes and marine diesel in ships emit CO»
and other GHGs into the atmosphere, marking the sector’s environmental footprint.

The contribution of the transport sector does not stop here, despite the direct emission
from fossil fuel combustion they also generate direct emissions from the supply chain
which includes vehicle manufacturing, fuel production and infrastructure development.
The holistic approach can also extend to urban planning, consumer behaviour, and public
policy.
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Figure 1.1: Emission of COg in the transport sector by differ-
ent modes in the Sustainable Development Scenario,
2000-2030 [25].



Sustainable Transportation Solutions

The question that prevailed in talks for a long time is how to reduce the CO5 emissions from
transportation reflecting the urgent need for sustainable mobility approaches that balance
economic growth, social equity, and environmental control. The goal can be achieved by
collaborative efforts across multiple fronts including:

Advancement in vehicle technology holds much importance in reducing CO2 emissions from
the transportation sector. Electric and hybrid vehicles will effectively contribute toward
reducing the carbon footprint. Advances in fuel-efficient vehicles integrated with renewable
sources of energy will further help lower the consumption of fuel and less emissions. These
technologies should be incredibly effective in reducing the transportation sector’s impact
on the environment and ultimately moving toward a more sustainable future. Vehicle
operation through renewable energies would thus support broader efforts toward a low-
carbon economy and reduce dependency on fossil fuels.

An immense role is also played by public transit and the development of a strong culture
of active transportation. Strong development in public transit infrastructure, a culture of
biking and walking, and improvement in shared transport services decrease the dependency
on private autos, which helps reduce traffic congestion, hence reducing CO2 emissions, and
contributing to better air quality and public health.

The other important issue is the dependence on renewable energy sources. This reliance
is to include solar, wind, and hydropower in place of fossil fuels to help reduce carbon
emissions. Through this shift, clean energy will be applied in charging electric vehi-
cles and making alternative fuels, thus further reducing the environmental impacts of
transportation[1].

The other involves integrating land use and transportation planning in compact, mixed-
use, and transit-oriented development. Such an approach reduces the tendency to travel
over longer distances. It makes cities more liveable and walkable as well, with reduced
reliance on private cars, less traffic congestion, and lower air pollution levels, which in turn
will enhance economic growth by fostering more sustainable urban environments.

This essentially means that the transport sector is responsible for improving the global
carbon footprint, and the shift to greener solutions in transportation holds large hopes for
climate change mitigation. Challenges to estimating the residual range of road vehicles are
discussed in the following section, where also the development of a deterministic Operating
Cycle (dOC) model is described to achieve better range prediction accuracy.

To conclude the transport sector constitutes a large proportion in terms of carbon foot-
print and the transition to sustainable transport solutions is needed to ensure the usual
behaviour of climate change. In the subsequent section, we will delve in deep in discussing
specific challenges in estimating the residual range for road vehicles and explore the de-
velopment of a deterministic Operating Cycle(dOC) model as a convincing solution to
intensify the range prediction accuracy.

Transition to Electric Vehicles

The Automotive Industry across the globe has become very keen on addressing the climate
change problems and seeking to reduce carbon emissions by promoting the transition to
electric vehicles and hybrid vehicles and producing the same, this is where the transition
emerges as a pivotal strategy. EVs will replace traditional ICEVs and promise greater
environmental benefits which are powered by rechargeable batteries or fuel cells. This gives



a significant solution being an alternative to fossil fuel powered vehicles thus eliminating
the tailpipe emissions and making it independent of the finite resources. According to a
study by the Union of Concerned Scientists [21], EVs produce lesser GHG during the whole
life period when compared to ICEVs. As said before this leads to lower pollution leading
to cleaner air quality and public health, particularly in the urban areas where pollution-
related illness exists. The transition to EVs contributes to global support to mitigate
climate change and constitutes a low-carbon economy, which will make a remarkable
change in the transportation sector.

The trend towards electrification in the automotive industry has seen exponential growth
in recent years, which has been driven by the combination of technological improve-
ments, Government policies, and shifting consumer preferences. According to a report
by BloombergNEF[2], global sales of EVs have been over 2 million units in 2019, making
a major milestone in the adoption worldwide. The government has played an important
role in supporting the adoption by implementing policies, incentives, and mandates to
promote EV adoption. For example, Countries like Norway and Netherlands have imple-
mented subsidies, tax benefits, and infrastructure investments like setting EV chargers
available easily within the radar to encourage people to switch to EVs[22].

Figure 1.2: Image representing that BEV has grown equal to
ICEV [11].

Range Estimation and the simulation problem

Residual range estimation is critical for optimizing the efficiency and performance of both
battery-electric vehicles (BEVs) and conventional vehicles. It involves predicting the re-
maining distance a vehicle can travel with its current energy or fuel reserves, considering
factors such as driving conditions, speed, load, and environmental conditions. For BEVs,
accurate range estimation is essential in alleviating range anxiety—a common concern
among consumers about running out of battery charge before reaching a destination. Re-
liable residual range predictions help drivers plan trips more effectively and make informed
refuelling or recharging decisions, enhancing the overall user experience and confidence in
electric mobility.

Accurate residual range estimation remains challenging due to the dynamic nature of
driving conditions and the multiple variables influencing vehicle performance. Factors



such as road gradients, weather conditions, and terrain types significantly impact energy
consumption. For instance, uphill travel requires more energy to counter gravitational
forces, while downhill movements can leverage regenerative braking systems to recover
energy. Vehicle characteristics, including aerodynamics, weight, and tire friction, also play
a role in energy consumption. Advanced simulation and real-time prediction methods are
essential for improving range estimation accuracy.

Figure 1.3: Imaginery Representation of Driving Anxiety[6].

To bridge the discussion from the challenges of accurate residual range estimation to the
introduction of distance calculation methods, it is essential to highlight the importance
of precise distance measurements in enhancing range predictions. The Haversine 2.3 and
Vincenty 2.4 formulas are popular distance calculation methods as they provide an effec-
tive and simple way to find the shortest distance between any two points on the surface
of a sphere. An implementation of the Haversine formula for determining the great-circle
distance between two points with the latitude and longitude. This is a well-suited approx-
imation for most applications. The Vincenty formula, based on more accurate ellipsoidal
models of the Earth, provides better accuracy than the Haversine formula by, among other
tricks, flattening the Earth where spherical one misses.

However, these traditional methods have significant limitations when applied to residual
range estimation in automotive contexts. Both the Haversine and Vincenty formulas fail
to account for elevation changes and the complex dynamics of real-world driving condi-
tions. This omission can lead to inaccuracies in distance estimation, especially in varied
terrains such as hilly or mountainous regions where elevation plays a critical role in energy
consumption. For instance, the energy required to drive uphill is significantly higher than
on flat terrain, while downhill driving can regenerate energy through braking systems in
EVs.

Bridging the gap

Addressing the need for accurate distance estimation is essential for precise simulations
and the advancement of sustainable transportation. My research aims to bridge the gaps
in traditional distance calculation methods by integrating additional geospatial elements
such as elevation and road curvature. By enhancing the Haversine and Vincenty formulas
with these elements, my approach offers a more accurate estimation of the path length for



road vehicles. Additionally, my work improves the estimation of the total path length by
providing intermediate distances between each point along the path, accounting for the
dynamic nature of conditions operating between these points. This allows the distance to
serve as an independent variable at each point, enabling the extraction of key information
regarding road characteristics, such as variations in elevation, speed limits, slopes, and
curvatures. The dOC model is based on this comprehensive information, reflecting the
actual operating conditions of travel. The accurate depiction of these conditions directly
impacts the range and performance of electric vehicles (EVs). Furthermore, this improved
accuracy is critical for developing a dOC model, which is essential for simulating and pre-
dicting the residual range of EVs. By refining these estimations, my research contributes to
more reliable simulation models, enhancing the practical deployment and user acceptance
of EVs, and supporting the broader goal of reducing transportation-related emissions.

Moreover, combining accurate distance estimation with vehicle odometry can provide valu-
able insights into the wheel radius along the path. This integration allows for an even more
detailed understanding of vehicle dynamics and road interactions, further enhancing the
precision of simulations and predictions. The innovative methods developed in my study
address immediate challenges in current distance estimation techniques, making them more
applicable and valuable in the context of modern, sustainable transportation solutions.

1.2 Objectives and Goals

Objectives:

The primary objective of this research is to develop and evaluate a comprehensive model
for accurately calculating the path length of vehicles using various distance measurement
methods. This research aims to enhance sustainable transportation by providing precise
distance estimations for both internal combustion engine vehicles (ICEVs) and battery
electric vehicles (BEVs).

Goals:
1. Investigate Distance Measurement Methods
This study investigates both traditional and modern distance measuring techniques, in-

cluding the Haversine and Vincenty formulas, by comparing their performance in terms
of accuracy and computational efficiency to reveal the most effective methods.

2. Develop the DOC Model

A highly reliable operational model will be developed, and it is referred to as the determin-
istic Operational Cycle (dOC) model. This model will have many distance computation
settings and will be flexible to any kind of vehicle so that it remains upgradeable to any
of the future needs.

3. Evaluate Applicability:

To check the applicability of the model in real-life situations, the geospatial data obtained
from the HERE Maps API will be used. This should be done by computing the total sum



of intermediate distances of all points received to check the total length of the path of
vehicles and, hence, the model’s efficiency.

4. Facilitate Sustainable Transportation:

The study will enable the sustainability of transportation in that the study results will
offer the tools for accurate route planning, residual range estimation, and, as such, the
design of transport networks that are efficient and environmentally friendly.

Additional Considerations:

The particular distance points of the links are added to the model to provide a more
accurate prediction under different scenarios. These are the variations in vehicle load
concerning energy and speed, safety for roundabouts or when a traffic light turns red,
early or late starts from uphill/downhill affecting the management of energy, and gearshift
strategies not depending on some positions for avoiding mismanagement.

Manual Implementation and Flexibility:

The different methods to calculate distance will be implemented using pure Python so
that it’s easily interpreted and flexible for further changes. In this way, it does not rely
on the libraries of specific providers so it can be generally usable and easily adaptable to
many systems.

This research will serve as a foundational step towards creating a cleaner, greener, and
more sustainable transportation infrastructure. By addressing the pressing need for ac-
curate distance measurement in route planning and vehicle range estimation, it aims to
contribute significantly to the advancement of sustainable transportation solutions.

1.3 Reasearch Questions

In the context of ongoing efforts to address environmental issues and climate change, this
thesis aims to contribute to the field of sustainable transportation by achieving several
key objectives. First, it explores various distance measurement methods and implements
conversions among different units of length measurements. Second, it develops and
validates a deterministic Operating Cycle (dOC) model to enhance the accuracy of
distance estimations. Third, it analyzes the suitability of the dOC model for both
Internal Combustion Engine Vehicles (ICEVs) and Battery Electric Vehicles (BEVs).
Through these efforts, the study seeks to provide practical solutions to improve the
accuracy of distance estimation methods and support the development of more efficient
and environmentally friendly transportation systems.

In this new emerging era for transport, this research is a roadmap to lead us down a
greener and more sustainable path for future generations. This thesis has been undertaken
to provide insights into the evolution of safe, sustainable, and greener transport systems
that will help mitigate the negative impacts of climate change.



Towards These objectives, Three Research questions provide the main guidance for this
study:

1. How is the path length of a road accurately estimated?

2. How do different methods for path length estimation perform for short and long
paths?

3. What are the common factors that lead to large errors in the various estimation
methods?

The first base question is the main that guiding the remaining questions in this study. It
focuses on investigating the various methods for distance measures and the routes these
methods can be used for path length estimation.

Based on the above questions, the research investigates the various methods for the esti-
mation of large path lengths by providing the correct perception and the best adaption of
these methods for the estimation of long paths. Besides, the study proposes the leading
factors that lead to large errors in the various estimation methods to provide the most
accurate assessment for these methods by identifying the boundaries of each method.



Chapter 2

Literature Study

2.1 Distance Measuring Methods in Different Domains

Different methods of distance measurement have been invented and used for transportation
by water, air, and road. Every method has some challenges that need to be overcome to
ensure smooth and efficient transportation.

When it comes to calculating distances in water transportation, unique challenges arise
due to the absence of fixed markers and the dynamic nature of the maritime environment.
As we sail over water, we face different problems for distance measurement. Firstly, there
are no fixed markers on which we can rely to measure distance and secondly, while the land
moves along its own axis, in the maritime environment, things move. To address these
challenges, maritime navigation systems rely on a diverse strategy of technological mea-
surement, encompassing three specific technologies: Global Navigation Satellite Systems
(GNSS), radar and sonar.GNSS which is now widely used assigns the position of vessels
through satellites. Their most common implementation, the Global Positioning System or
GPS, navigates using distance and direction calculations. Receivers on the vessel calculate
the latitude, longitude, and altitude triangulating from several satellites in orbit[16]. The
Haversine formula, accounting for Earth’s curvature, calculates distance for an interval of
two points on its surface.

In air transportation, measurement of distance is needed for navigation, air traffic man-
agement and flight planning. Distance measurement is mainly conducted by radar and
Global Positioning System(GPS).In Aviation Radar Systems, aviation radar emits radio
waves that return to the radar after bouncing off the aircraft. Air traffic controllers use
these signals to determine how far away aircraft are, even when the aircraft are invisible
to the eye. This facilitates the separation of aircraft in controlled airspace. The aircraft
Global Positioning System (GPS) system is based on the principle of receiving signals from
satellites and provides the aircraft’s exact coordinates (latitude, longitude, altitude, and
groundspeed), which is an accurate way of navigation for a distance measurement purpose
in the sector of air transport[15]. The distance of two points in terms of air transport is
normally calculated based on the spherical law of cosines or Vincenty’s formulae due to
the curve of the Earth.

Accurate distance measurement plays an important role in operation in application in
transportation by road. An accurate distance measurement is largely needed in the relia-
bility of road transportation like route planning, navigation, and other vehicle operations
on roads. A commonly used method to measure distance in road transportation is the
Global Positioning System known as GPS. The vehicle’s position, speed and direction of



travel along the journey are calculated from signals received by an onboard GPS (global
positioning system) receiver from GPS satellites in orbit[20]. The distance travelled is
calculated by integrating the average vehicle speed over time. The vehicle’s location is up-
dated at frequent and short intervals by the GPS receiver. Distance calculations between
two GPS-determined locations on the surface of the Earth are usually calculated using the
Haversine formula or Vincenty’s formulae.

2.2 Existing Distance Calculation Methods

There are different kinds of distance calculations that have historically been used in de-
velopment. This includes methods that use simple, two-dimensional formulae like the
Haversine formula, as well as more advanced methods that leverage multi-dimensional
and 3D calculations using matrices, Euler angles and elevation data. The goal is to com-
pare the strengths, weaknesses, and decimal accuracy of these approaches so that we can
determine the most correct and most efficient methods for use in geospatial applications.

These can be further categorized in to methods based on a spherical model of the Earth
and those based on the viewing of the Earth as an ellipsoid. We’ll look at the purpose,
pros and cons of each of these models, and also look at the existing methods within each
category. We can see the formulae used in this research further in this section[19].

Figure 2.1: Imaginery Representation of Spherical vs Ellipsoidal
Earth [8].

Spherical Model - Formulae and Purpose

The spherical model assumes a perfect sphere to represent the Earth. All the distance
calculations are simple and very easy to implement, and they use formulae like the Haver-
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sine formula or the Spherical Law of Cosines. The key benefit of the spherical model
is that it is straightforward. The formulae involved are elementary, so they require less
computation; calculations are done relatively quickly and are, therefore, acceptable for
applications in need of fast estimations of distances. It is precisely for these reasons that
the spherical model finds wide use and acceptance for small-area applications, with re-
quirements for precision not of an extremely high order, such as simple navigation and a
few other analyses involving applications in geospatial technology but not requiring exact
results.

However, the spherical model also has its limitations. The main restriction occurs at large
distances or near the poles. This happens by the inaccurate representation that the Earth
is an oblate spheroid and not a sphere since an oblate spheroid is slightly flattened at the
poles and bulging at the equator. Thus, using the spherical model to represent this will
no doubt lead to errors when calculating the distances. The model is also rudimentary
in that it does not factor in the various elevations on the surface of the Earth. These
limitations make the spherical model inappropriate for demanding applications requiring
high accuracy and precision, like advanced geospatial analysis or aviation and maritime
navigation[15]. Nonetheless, the spherical model is still a good tool for more accessible,
less demanding applications because it is pretty intuitive and computationally effective.

Ellipsoidal Model - Formula and Purpose

The ellipsoidal model considers the flattening at the poles and bulging at the equator,
which gives more exact distance measurements than the spherical model. Vincenty’s for-
mula and the Geodesic formula are the main formulae of this model. The significant
advantage of the ellipsoidal model is accuracy. It has been proven to have increased preci-
sion over long distances and over different latitudes, hence its use in tasks that need very
high precision[35]. This model finds its particular importance in geospatial applications,
aviation, and maritime navigation, where the distance between two points is highly af-
fected by the actual shape of the Earth. The ellipsoidal model is significantly superior in
terms of precision because it considers the shape and flattening of the Earth. This would
be core to the precision capabilities in high-precision geospatial applications because the
ellipsoidal model captures the variations in the curvature of the Earth, which the spherical
model ignores. Such considerations make sure that when calculating the distance over vast
distances and within differing geographical locations, the results for distance calculation
are as accurate as can be.

However, there are some disadvantages to using the ellipsoidal model. The formulae ap-
plied are, in this case, Vincenty’s and the Geodesic formulae, more complicated than those
under the spherical model; hence, more computation-intensive. This generally becomes
time-consuming and may sometimes be a disadvantage in some applications where speed
is of the essence[29]. However, some of these limitations are usually outweighed by the
added advantages attached to the increased accuracy and precision of the ellipsoidal model
in scenarios where these measurements are critical.

2.3 Haversine Formula

The Haversine formula is a mathematical function that uses square roots, cosines, and
inverse cosines to find the shortest distance between two points on the surface of a sphere
— the great circle distance — based on the spherical law of cosines. It is numerically stable,
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and computationally efficient, especially for small distances, while preserving the correct
angle involved. ‘Haversine’ stems from the usual name of the function’s value, ‘haversin’
which is short for half of the versed sine (1_%05(9))

Explanation of Great-Circle Distance

The great circle distance between any two points on the surface of a sphere is the shortest
distance between them. This sort of path around the sphere, which lies on a circle of
points that bisects the sphere into two equal halves, is called a ‘great circle’. This concept
is important for navigation, including geospatial analysis, because it gives the most efficient
path from one place to another on the Earth, which can be approximated as a sphere.
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Figure 2.2: Illustration of Great-Circle Distance.

To understand how the Haversine formula calculates this distance, let’s start with the
concept of spherical trigonometry. The great-circle distance can be computed using the
central angle between the two points. Given two points on a sphere, the central angle
between them can be found using the spherical law of cosines 2.15. However, spherical
trigonometry can be complex and prone to errors, especially over small distances. To sim-
plify the calculations and minimize errors, the Haversine formula is used. The Haversine
formula leverages trigonometric identities to compute the distance between two points
on the surface of a sphere. It is particularly effective because it avoids the inaccuracies
that can arise from using spherical trigonometric formulas over small distances.[33]. The
Haversine formula is derived from the spherical law of cosines. By applying the Haversine
function to the spherical law of cosines, we can simplify the calculation and reduce errors,
especially for small distances.

The spherical law of cosines is given by 2.15:
cos(c) = cos(a) cos(b) + sin(a) sin(b) cos(C),

for two points on a sphere with latitude and longitude coordinates (¢1, A1) and (¢2, A2),
the formula can be adapted as:

cos(d) = sin(¢1) sin(p2) + cos(¢1) cos(p2) cos(AN),

However, this formula can be problematic for small distances due to floating-point precision
errors[33]. By applying the Haversine function, we transform it into a more stable form:
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a = sin? <A2¢> + cos(¢1) cos(¢z) sin? (A2)\> ,

The Haversine formula then becomes:
d = 2r - arcsin (vVa) ,

The whole formula is expressed as,

d = 2rarcsin <\/sin2 (A;O) + cos (1) cos (p2) sin? (A;\)), (2.1)

where:

e d is the distance between two points
e 1 is the Earth’s radius (mean radius = 6371 km)

Ay is the difference in latitude between the two points (lat2 - lat1)

o A is the difference in longitude between the two points (lon2 - lonl)

e 1 and 9 are the latitudes of the two points in radians

This formula 2.1 calculates the distance by first converting the latitude and longitude of
the two points from degrees to radians. It then computes the haversine of the central angle
between the points and finally applies the arcsine function to find the central angle itself,
which is then multiplied by the Earth’s radius to get the distance[27].

Applications and Limitations of Haversine’s Formula

Haversine’s formula is highly applied across many transportation sectors because it can
result in correct measurements of the distances between two points on the Earth’s surface.
In the case of aviation, this formula is applied to enable the planning of the path of a flight
such that routes are the shortest and most efficient; hence, it is essential for fuel efficiency
and time management on board an airplane. The Haversine formula is applied to the
description of the track over the open sea when making a route chart for ships to be able
to follow the shortest course between ports. This is quite important for optimum time and
fuel considerations while traveling. Road transportation is used by navigation systems for
approximate road distance estimation and route planning; it provides a fast and practical
way of computing distances between locations for logistical planning or personal travel.

Despite the extensive use of the Haversine formula, there are some practical limitations to
it in specific applications. First and foremost is the assumption of sphericity. The formula
assumes that the Earth is a perfect sphere, while it is an oblate spheroid. This means that
minor errors in distance calculation are also added for great distances and distances very
close to the poles. Neglecting elevation is another significant drawback. Since elevation
may take a significantly different value, especially in hilly areas, without considering such
changes, this inaccuracy is bound to take place with the measurement of distance. Lastly,
the curves and junctions of a simplified road network are not taken care of in this formula.
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In practice, the roads do not go straight, and their bends are numerous, so the use of
this formula does not obtain such distances. These limitations imply that even though
the Haversine formula is useful for introductory approximations and general calculations,
more accurate methods might have to be sought after for applications demanding high
precision[17].

2.4 Vincenty Calculation

Vincenty’s formulae are more recent than the Haversine and much more accurate. They
were devised by Thaddeus Vincenty of the US Naval Oceanographic Office in 1975, consid-
erably after the advent of geographical information systems (GIS) that could represent the
Earth with any reasonable approximation. Where the Haversine’s calculations assume a
perfectly round sphere, Vincenty’s formulae assume that the Earth more closely resembles
an ellipsoid — accurate and research-tested to 10cm of accuracy within 20 degrees of the
magnetic poles. Given a longer distance, Vincenty’s formulae might be required. For this
part of the world, Google Maps interprets Ella’s route in terms of its precise meridian and
parallels — running along a gradient of latitude and longitude.

Vincenty’s formulae include the direct and inverse methods for geodesic calculations on
the ellipsoid. The direct method determines the endpoint given a starting point (latitude
1, longitude \; ), initial bearing («) and distance (s). It involves converting coordinates
to radians, computing auxiliary values like the reduced latitude (U), iteratively solving for
the endpoint’s latitude and longitude, and finally calculating the endpoint’s bearing («3).
This method is particularly useful in navigation and surveying.

The inverse method, used in our application, finds the distance and bearings between
two known points (latitudes o1, 2 and longitudes A1, A2). It begins by calculating the
reduced latitudes (U1, U2) and initializing the longitude difference (A).Through iterative
calculations, it determines the spherical distance(o) and azimuthal angles(aq, «2), finally
providing the ellipsoidal distance(s). This method is ideal for precise distance and
direction calculations, crucial for geospatial analysis in vehicle path length computation.
The steps for the calculation in the thesis context can be well understood with the figure 2.3

The Vincenty Formula is given by,
Notation

e 1, p2: Latitude of point 1 and point 2(in radians)

o L: Difference in longitude between point 1 and point 2(in radians)
o a: Length of semi-major axis of the ellipsoid(radius at the equator)
o f: Flattening of the ellipsoid

e b: (1 — f) x a length of semi-minor axis of the ellipsoid (radius at the poles)
The latitudes ¢; and 9 are reduced to:

Uy = arctan((1 — f) x tan(¢1)), Uz = arctan((1 — f) X tan(p2)), (2.2)

which are the transformed latitude values that accounts for Earth’s flattening. Calculate
Uy, Us, and L, and set the initial value of A = L. Then evaluate the equation iteratively
until the A converges. The iterative evaluation begins,
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sino = \/(cos Uz sin A)? + (cos Uy sin U — sin Uy cos U cos A)?, (2.3)
cos o = sin Uy sin Us 4+ cos Uy cos Us cos A, (2.4)

o = arcsin(sin o), (2.5)

o is not evaluated directly from sin(o) or cos(o) to preserve the numerical accuracy near
the poles and the equator,

cos Uy cos Uy sin A

inoa = 2.6
sin « o , (2.6)
cos’a =1 —sin?a, (2.7)
2sin Uy sin U 2sinUj sin U
cos(20,,) = coso — w =coso — Ls;nz’ (2.8)
cos“ 1—-sin“«
C= % cos® a4 + f(4 — 3cos’ a)], (2.9)

A=L+(1-C)fsina{s+ Csinolcos(20,,) + Ccoso(—1 4 2cos*(20,,))]},  (2.10)

when in 2.10 the A converged to the desired degree of accuracy(10~!'? corresponds approx-
imately 0.6mm), now calculate the geodeic distance with the following,

(IQ o b2
u? = 0082(04)7, (2.11)
2
_ U 2( 2 B 2
A=1+ o (4096 + u? (~768 + u? (320 — 175u2) ) ), (2.12)
2
_u 2(_ 2 _ 2
B= o (256 + u? (—128 + w? (74 - 47u?) ) ), (2.13)
Ao = Bsin(o) (cos(QUm)
+ 1B cos(o) (—1 + 2cos?(20 ))
4 m
— B cos(20,,) (=3 + 4sin?(0) ) (=3 + 4 cos® (20, ,
6
s=bA(c — Ao). (2.14)
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The value of 2.14 represents the ellipsoidal distance between two points on the earth’s
surface, accounting for the earth’s flattening. This method is particularly advantageous
for applications requiring high precision over long distances.

l

Calculate Reduced C
Latitudes Initiglize 2 =L Iterate Until Convergence sin(;
u1u2) cos™
Output Distance Calculate Geodesic
- Distance

Figure 2.3: Flowchart explaining Vincenty Formula.
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Applications and Limitations of Vincenty’s Formula

The Vincenty formula can be used in a wide range of applications because of its precision
in calculating distances on an ellipsoidal model of the Earth. In navigation and survey-
ing, it is essential to ascertain the exact distance and bearing between two points on the
Earth’s surface, which forms a basic need for correct navigation and land survey projects.
The Vincenty formula is generally used in geographic information systems for spatial data
analysis within geospatial analysis, given that it can be applied to get accurate measure-
ments within the computation of vehicle path length and other geospatial applications.
Further, this formula is used in mapping and charting to provide the required accuracy
for detailed mapping and charting, especially for large-scale and long-distance uses that
require precision.

Despite its advantages, the Vincenty formula suffers a few limitations and limits its prac-
ticality for certain applications. Some of the serious ones are that the formula is com-
putationally expensive since Vincenty’s is an iterative formula that requires much more
computational power than simpler formulas like the Haversine formula in less-than-global
applications. Additionally, Vincenty’s formula fails to converge or give accurate results
near the poles, as well as when the points are nearly antipodal. It poses those challenges
in those exceptional cases. In addition, the formula assumes that local deviations from
a smooth ellipsoid may be neglected, which could introduce approximations that would
cause errors for highly localized geospatial analyses[34].

2.5 Spherical Law of Cosines

This mathematical formula allows you to calculate the distance between two points on the
surface of a sphere. With the Spherical Law of Cosines, one has to remember both your
trigonometry and your spherical geometry to understand how to use the angular distances
between points: the Spherical Law of Cosines uses properties of spherical geometry and
is defined when the sides of the triangle are arcs of great circles.

Spherical Law of Cosines Formula in Detail

Consider a unit sphere 2.4 with points (u, v, and w), angles (A, B, and C), and distances
(a, b, and c).
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Figure 2.4: Spherical triangle solved by the law of cosines. [5].

The Spherical Law of Cosines then states that the great-circle distance c,
cos ¢ = cos acosb + sinasinbcos C, (2.15)

is a function of the latitude coordinates (¢1 and ¢3) in the points u and w, the longitude
coordinate difference A\ between the points u and w, and the central angle Ac. The
distance on a non-unit sphere can easily be shown to be proportional to the distance of
the unit sphere and is thus on the earth:

d = RAo, (2.16)

where R is the earth’s radius and d is the distance between two points.

Applications and Limitations of Spherical Law of Cosines

The Spherical Law of Cosines is a fundamental formula; it has been used in many branches
for computing distances and angles on the sphere. In geodesy, it is employed to carry out
accurate distance computations between points on the surface of the Earth—a significant
part of mapping, land surveying, and geographic information systems (GIS). This formula
is also extensively applied in astronomy to calculate angular distances between celestial
bodies that help determine the positions and movements of stars, planets, and other
astronomical objects. Its versatility and simplicity make it a valuable tool in terrestrial
and astronomical applications.

The Spherical Law of Cosines has good features for distance calculation, but a few draw-
backs also. A significant con is associated with accuracy for minimal distances; numerical
precision problems may arise because of using the arccosine function, resulting in errors
in the computed distances. Besides, the formula assumes that Earth is a perfect sphere,
which is incorrect because Earth is an oblate spheroid. The assumption slightly introduces
inaccuracies of calculated distances, especially over long distances, where the curvature
of the Earth and deviations in shape become pronounced. However, in any way, with
these limitations considered, the Spherical Law of Cosines is widely used in applications
where the preliminary approximations of distances need to be taken into account, and
high precision is not so critically required|[10].
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2.6 3D Distance Formula (Euclidean Distance)

The 3D distance formula, also called Euclidean distance in three dimensions, measures the
straight-line distance between two points in latitude, longitude and elevation (altitude). It
includes the vertical dimension of the Earth’s surface as part of the distance calculation,
which yields a more accurate measure of the actual distance between two points on the
Earth’s surface.

3D Distance Formula in Detail

The 3D distance d between two points in three-dimensional space can be determined
using the Euclidean distance formula. If we denote the two points as (lati,lony, hy) and
(latg,long, ha), the formula is given by:

d = /(w2 —21)? + (y2 — y1)? + (ha + h)?, 18] (2.17)

where x and y are the cartesian coordinates corresponding to the latitude and longitude,
and h represents the elevation. The latitude and longitude of both points from degrees
are converted to radians, and then we can convert the spherical coordinates to Cartesian
coordinates using,

xl = R x cos (¢1).cos (A1),yl = R X cos ¢1.sin Aq,

22 = R X cos (p2).cos (A2),y2 = R X cos p2.sin Ay,

the elevation hl and h2 are already in the correct form and do not require conversion.
Now, we can apply the 3D distance formula 2.17.

Applications and Limitations of 3D Distance Formula

The 3D Distance Formula, or Euclidean Distance, has a wide range of applications across
various fields due to its ability to measure straight-line distances in three-dimensional
space. In geospatial analysis, it is particularly valuable for accurate distance measure-
ments in terrains with significant elevation changes, providing crucial data for mapping
and geographic information systems (GIS). In aviation and aerospace, the formula is used
to determine the direct path between two points, including altitude variations, which is
essential for flight path planning and navigation. Engineering and construction projects
also benefit from this formula, especially when planning and building structures in hilly
or mountainous areas where elevation changes must be accurately accounted for. Addi-
tionally, in telecommunications, the 3D Distance Formula helps in assessing line-of-sight
distances and optimizing signal paths that involve elevation differences, which is critical
for ensuring effective communication links[3].

Despite its usefulness, the 3D Distance Formula has several limitations that can affect its
accuracy and applicability in certain scenarios. One major limitation is its simplicity and
the assumption that the Earth is a perfect sphere. This can introduce minor inaccuracies
since the Earth is actually an oblate spheroid. More accurate models that account for the
Earth’s ellipsoidal shape can provide better precision for certain applications. Another
significant limitation is the accuracy of the elevation data used in the calculations. The
precision of the distance measurement heavily depends on the quality of this data; inaccu-
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rate or low-resolution elevation data can lead to significant errors, particularly in regions
with complex terrain. Furthermore, the 3D Distance Formula calculates the straight-line
(Euclidean) distance between two points, which may not represent the actual path taken,
especially in areas with physical obstacles like buildings, trees, or mountains. This can
limit its practical application in environments where a clear line of sight is not available.

Despite its usefulness, the 3D Distance Formula has several limitations that can affect its
accuracy and applicability in certain scenarios. A significant limitation is the accuracy of
the elevation data used in the calculations. The precision of the distance measurement
heavily depends on the quality of this data; inaccurate or low-resolution elevation data
can lead to significant errors, particularly in regions with complex terrain. Furthermore,
the 3D Distance Formula calculates the straight-line (Euclidean) distance between two
points, which may not represent the actual path taken, especially in areas with physical
obstacles like buildings, trees, or mountains. This can limit its practical application in
environments where a clear line of sight is not available.

2.7 Determinstic Operating Cycle

Before going into detail, it is needed to grasp the basics of the deterministic operating cycle
(dOC) representation. Often with current techniques to depict a driving cycle, strong
limitations on potential applications exist when comparing different vehicles, resolving
decelerations to match a reference trajectory, and modelling external factors’ interference
in driving behaviour.

Another problem with ‘classical’ descriptions of driving cycles is that they are directed
towards the reference vehicle, causing them to be ‘pathological’. In other words, the
speed profile and the reference vehicle are ‘causally’ dependent on each other and, more
significantly, this makes the speed profile itself lose any real meaning. If we want to
record the driving cycle, we are recording not only the speed profile of the vehicle but also
the traffic and the wind conditions. Thus, all those factors are implicitly integrated but
difficult to disentangle and examine.

The OC representation is a promising way to respond to these challenges, based on the
format invented and used by Pettersson. Unlike driving cycles, the OC format doesn’t
require a hypothetical speed profile but completely avoids the assumption of a prede-
fined speed profile. Instead of hard-coding this information into the transport scenario
beforehand, the OC model separates the characteristics of the transport mission and the
external world. There are three distinct levels of representation in the OC format, each
with a slightly different purpose and level of abstraction. Before looking at these levels
of representation, we will define the transport application, transport operation and trans-
port mission. The transport application is the high-level purpose of the vehicle from a
life-cycle perspective, defining the context for the specifications. The transport operation
is a sequence of quantifiable tasks over a travelled path, and the transport mission brings
operational requirements together with context. These definitions highlight the sequential
nature of transport operations and the corresponding need for a contextual, integrated
representation.

To handle the already unresolved classification problem of transport missions as well as
the inherent variations in the OC format, the category of representations is supplemented
by three levels: the level of bird’s-eye view that summarises changes in an OC at the
phase level, and two operational levels — stochastic operating cycle (sOC) and determin-
istic operating cycle (dOC) — that sum up an OC in terms of well-defined metrics for
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Figure 2.5: Schematic representation of the pyramidal structure
of an OC. [26].

classification of transportation missions into respective categories. This way, most im-
portantly, the complexity of a transportation mission that is too complex for a human
eye to grasp or analyse becomes treatable and comparable. The OC paves the way for
making complex problems more manageable and comparable, especially those involving
extensive service and demand resources. However, even though the OC format represents
significant potential, it can still be improved — in particular, by incorporating models of
weather, traffic, and mission parameters in probabilistic terms. Moreover, testing syner-
gies among the three levels of representation is important for demonstrating that the OC
can be effectively adapted to the optimal vehicle selection processes and vehicle design
procedures. This state of the art can be taken as ample motivation for the thrust of the
present thesis, namely bridging the gaps identified above[26].

The figure 2.5 schematically represents the pyramidal structure of an OC, using the to-
pography parameter as an example. All the missions of the same type, which is a GTA
class, are part of the same transport, application (the bird’s-eye view), The individual
statistical properties may however differ within the transport application (sOC). Finally,
transport missions can be statistically equivalent but significantly different in practice.
This is captured by the dOC representation.

dOC - an Overview

Specifically in connection with this research, the dOC model represents the most granu-
lar, detailed and deterministic level of abstraction within the OC framework. The dOC
model is made to represent transport missions in the most accurate, deterministic manner
possible, as deterministic as one can go without actually simulating every single product
feature associated with a given transport mission that is of interest.

The dOC model can be used to provide fine-grained analysis and simulations of transport
missions. Unlike stochastic models, the dOC model is built upon deterministic principles
and, as such, every aspect of the transport mission is represented in detail. This permits
the modelling of the behaviour of the vehicle in a particular set of circumstances with

20



complete precision, enabling the perception of the interdependencies among the variables
that influence a transport mission.

Moreover, this theory seeks to leverage the specificity of the dOC model with respect to
the other levels of representation (the bird’s-eye view and the sOC) of OC: the bird’s-eye
view can classify and articulate transport applications at their most general level, while
the sOC captures variability through elementary statistical tools. Integrating the three
levels thus allows us to transform the weaknesses of one representation into the strengths
of another.

Crucially, the dOC model has also proved to be useful for designing and making more
efficient and environmentally friendly vehicles. The ability of the dOC model to provide
quantitative and deterministic information about any ground transport mission can help
inform decisions about vehicle type and specification, the amount of energy it should
require and the emissions it is likely to produce.

The dOC modelling is a central point of this thesis, which is developed to optimise and
formalise this Operating Cycle (OC) framework however needed to improve the under-
standing and optimisation of transport operations. This modelling and analysis has the
potential to make the OC representation much more useful in transport applications, e.g.
to develop novel concepts in transport engineering and vehicle design and to help in the
optimisation of the transport system[26].

Terrain Classification According to Volvo GTA System

In the context of this thesis study, the classification of terrain into categories such as flat or
hilly follows the criteria set by the Volvo GTA system. This system provides a standardized
approach for categorizing the terrain based on the grade of slopes encountered during
driving. Understanding and using these classifications is crucial for accurately modelling
the dOC (deterministic Operating Cycle) and for making reliable predictions about vehicle
performance and residual range.

The Volvo GTA system classifies terrain into four distinct categories based on the slope
grades encountered over the driving distance:

1. FLAT (Level I): This category is defined when slopes with a grade of less than
3% occur during more than 98% of the driving distance. This classification indicates
very mild terrain variations, suitable for simulations and analyses where minimal
elevation change is assumed.

2. P-FLAT (Level II): This category applies when slopes with a grade of less than
6% are present during more than 98% of the driving distance. P-FLAT represents
moderately flat terrain with some gentle slopes, making it relevant for scenarios
where slight elevation changes may impact vehicle performance.

3. HILLY (Level III): In this classification, slopes with a grade of less than 9%
occur during more than 98% of the driving distance. HILLY terrain involves more
significant elevation changes, which are critical for understanding vehicle dynamics
in varied landscapes, such as those found in suburban or rural areas.

4. V-HILLY (Level IV): This category is used when none of the above criteria are
fulfilled. V-HILLY terrain includes the most varied and challenging landscapes with
slopes exceeding 9% over significant portions of the driving distance. This classifica-
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tion is essential for modelling vehicle behaviour in highly undulating or mountainous
regions.

The Volvo GTA system’s detailed classification allows for a nuanced understanding of how
different terrains impact vehicle performance and energy consumption. By applying these
categories in the dOC model, the study ensures that simulations are more representative
of real-world driving conditions, leading to more accurate predictions of residual range
and overall vehicle efficiency[26].

Incorporating these classifications into the dOC model helps to refine the analysis and
provides a clearer framework for interpreting the results of the distance calculation meth-
ods. It underscores the importance of considering terrain variability in simulations and
highlights the adaptability of the dOC model to different driving environments.
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Chapter 3

Methodology

This section provides a comprehensive overview of the methodology employed in this thesis.
The methodology encompasses various steps and techniques used to gather, analyze, and
interpret geospatial data. By outlining each stage of the process, we aim to provide
a clear understanding of how the research was conducted and the rationale behind the
chosen methods.

3.1 Data Collection

Accessing data through APIs has become one of the most essential supports for mod-
ern research and development across multiple fields. It is the researchers, developers,
and businesses of today who need to plug in and derive relevant information from many
sources that will serve to enrich their projects and applications accordingly. In analyzing
geospatial information and the computation of distances for road vehicles, an application
programming interface is essential in deriving several reasons.

Value and Importance of Use: APIs in Geospatial Analysis

APIs play a key role in geospatial analysis, making the work significantly easier. By
providing access to geospatial data, APIs eliminate the need for manual data collection,
thereby saving a considerable amount of effort and time. This is especially beneficial
when obtaining geospatial data is just one part of a larger project, allowing professionals
to focus on other critical aspects of their work. Having access to wide coverage and
constantly updated information on maps that includes road networks, points of interest
and even real-time updates on traffic. Continuously updating data helps to ensure that
users are working with the most current information, which is crucial for accurate distance
measurements and optimal route planning. API guarantees that new changes, inclusions
of road layouts, closures, and new constructions can be factored in because maintaining
accuracy and relevance is crucial for geospatial analysis.

Besides primary map data, APIs also have other functionalities like geocoding, reverse
geocoding, and elevation data. Geocoding translates addresses to geographic coordi-
nates—that is, it is a process for translating place names into a latitudinal/longitudinal
view that can be plotted on a map. Reverse geocoding, on the other hand, translates
degrees of latitude and longitude back into human-readable locations or places, giving de-
tails about locations. Elevation data enhances understanding of the topography of an area
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Figure 3.1: Geospatial API cartoon representation|7].

crucial for applications where such changes might affect travel time and fuel consumption,
such as logistics and transportation. These extra capabilities further increase the analytic
power that can aid the researcher or decision-maker in navigating through and interpret-
ing complex spatial data landscapes with accuracy. APIs from well-respected providers
assure that the data used are with integrity, consistency, and compliance with industry
standards. This assurance reduces the chances of errors and inaccuracies in distance cal-
culations, increasing the accuracy and general reliability of geospatial analyses.

The data from reliable APIs is already standardized, and as such, it becomes easy to have
similar or comparable results for different users and applications. This forms a critical
input when conducting studies over a wide scale and when running collaborative projects.
Different people applying the same data could churn out standard and comparable results.

Nowadays, APIs have become versatile and more straightforward to approach relevant
tools in geospatial research and mapping applications. APIs cater to a wide range of
needs, from simple distance calculations to complex route optimization and spatial analy-
sis. User-friendly interfaces further simplify the process of integrating geospatial data into
applications, potentially enabling people with limited technical background knowledge to
unleash valuable, sophisticated mapping tools. Making advanced geospatial tools widely
accessible encourages innovation and expands the range of possible applications.

3.1.1 Leading Mapping APIs

There are several leading mapping APIs with robust features, vast coverage, and ease of
use, among which are:

The Google Maps API is known as the most adequately covered and strategized detailed
map data. It includes a wide range of services that include everything from geocoding
to distance matrix calculation and also real-time traffic information. Developers and
researchers worldwide prefer this API because it has a lot of documentation and community
support.

The HERE Maps API offers top-quality mapping data and services primarily serving the
automotive and transport industries. It comes packed with advanced features, for instance,
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turn-by-turn navigation, current traffic information, and road network data that is rich in
detail. HERE Maps is also appreciated for its professionalism and accuracy.

Bing Maps API features a rich set of mapping tools with aerial imagery, road views,
and traffic data. It is known for its highly interactive user interface and capability to
be integrated with other Microsoft services, so any business working inside the Microsoft
ecosystem will definitely have it.

People prefer the customization capabilities and high-performance mapping services of
the Mapbox API. This allows interactive mapping, providing even the most detailed geo-
graphic information, such as terrain and satellite imagery. In general, the applications for
which Mapbox is utilized chiefly require very custom maps made visually attractive.

These APIs are famous for their powerful functionalities, comprehensive coverage, and
accessible user interfaces. These functionalities appeal to professions engaging in geospatial
research and mapping applications.

3.2 HERE Maps API

One of the most critical aspects that contributed to HERE Maps API’s choice for this
study is that it focuses totally on road data. Although other mapping APIs from Google
and Bing and even from Mapbox are usually accompanied by a whole variety of elements
of infrastructure, such as buildings, landmarks, or points of interest, in most cases, their
road data can be less accurate. With the diversity in these APIs, there could be objects
about highways, bicycle paths, pathways for pedestrians, railway tracks, or a side emphasis
on the network of roads. Conversely, the HERE Maps API is specialized in a focused area
of road data to have more prosperous, more detailed sets of road-related information
compared to its counterparts.

The HERE Maps API emphasizes the provision, maintenance, and enrichment of detailed
road data, ensuring that a comprehensive and up-to-date dataset is received regarding
roads, connectivity, and routes. This is most helpful for geospatial analytic applications in
need of accurate measurements of distance and routes, which correlate with my research on
modeling the traveled distances of road vehicles. The road data from the HERE Maps API
comes with access to extensive information that details features such as road geometries,
traffic conditions, speed limits, road hierarchy, and turn restrictions[12].

Reason for choosing HERE Maps API

Among all the available APIs, HERE Maps was chosen for this study. The following
section elaborates on the reasons for the Quality and coverage of road data and the much-
improved Accuracy and detail behind this choice.

The HERE Maps API does not pass road data as a mere derivative feature but, instead, its
core feature. Such a focus on the road ensures that high-quality, fine-granular, up-to-date
road information is available from the API. The detailed road network data includes high-
ways, bridges, local streets, rural roads, and many other categories of roads. This pertains
to covering intricate details of the road network for distance and routing calculation; even
small roads play an important role.

The HERE Maps API is an essential system for increasing the quality, detail, and accuracy
of road data. The dedicated attention to road data allows HERE to produce maps with
the highest level of detail and accuracy. In this thesis study, detailed information is
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crucial due to the importance of precise distance calculations and measurement accuracy
for the research. The capability of HERE Maps to offer real-time traffic information, road
closures, and construction updates further enhances its utility by enabling dynamic and
precise distance modelling.

Also, it provides with advanced functionalities and here are some advanced functionalities
with the HERE Maps API that cannot be done without geospatial analysis. These include
turn-by-turn directions, real-time traffic information, and advanced routing algorithms
that consider factors such as traffic conditions, types of roads, and prohibition restrictions
on certain roads. With these features, robust and precise models of geospatial studies
can be done, which further help in estimating the exact path lengths of road vehicles.
Industrially, HERE Technologies has a well-known delivery of top-notch data integrity
and data consistency while adhering to industry norms. This reputation assures that the
data supplied through the HERE Maps API is reliable and high-quality. One would like
to use it in a research project where precision and dependability are of concern. That
guarantees assurance over data accuracy and consistency. Moreover, HERE Maps API is
chosen because it is a trusted supplier and adds confidence not only in its data but also
in the results derived from that data.The user-friendly UI of the HERE Maps API and
its elaborate documentation should make it easy to integrate with various applications.
So, ease of use is essential in developing custom tools and models for geospatial analysis.
Flexible to work in integration with other software and systems of the same research. This
helps smoothly run information processing and analysis of data.

All the above reasons convinced me to use HERE maps API for my thesis research. This
is because it is unbeatable to concentrate on-road data, thus providing adequate, accurate,
and updated information vital in precise distance estimation and route modelling. An-
other critical consideration that supported the purpose of the research in integrating the
API is that it contains advanced functionalities, high data quality, and can be integrated
easily. Using HERE Maps API, this research can bring more accuracy and reliability
while modelling distance travelled by road vehicles, which adds value within the field of
geospatial analysis.

3.2.1 HERE Maps API: Road Model and Topology

Let’s delve into the road topology method that HERE Maps follows to gain a better
understanding of its intricacies and benefits.

Logical Topology of Roads

The domain of a digital road map is effectively a topology—a description of the network
of roads and intersections. HERE’s Road Model uses a logical topology in which roads
(referred to as ’links’) are represented as linear segments between intersections (called
'nodes’), with nodes in 2D space. Links take off and land and intersect at nodes and are
treated as if they are straight. This idealization reduces the actual curvature roads take
in the real world to a concept representation; it scribes the network but does not capture
the exact geometry of roads.

Representing Curved Roads with Shape Points

To capture the alignment of roads, the Road Model uses ’shape points’ placed along links
to create connected line segments forming polylines. These shape points are an essential
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Figure 3.2: Road in reality vs. Logical topology and geometry[12].

element, for they interconnect the geometry of the lines to define the road’s curved shape.
Topologically, the road is still a single link because the 'road type’ has not been altered
even when shape points are added. This way, it becomes possible to digitize logically the
representation of roads and, at the same time, their natural dimension of curved paths
expressed as 3.2 clearly shows the ideology.

Enriching Road Data with More Attributes

The Road Model can adapt to the addition of multiple attributes, such as speed limits
and travel directions, to enrich the content of the map. For instance, adding geolocated
content, such as road signs, further makes the granularity of the map more useful. If the
attributes need to be varied along a link, say a difference in speed limit, then ’bivalent
nodes’ are placed. These segments lie within the interior of the links under consideration
and directly connect two, so attributes can vary without creating another junction point.

Figure 3.3: Advanced Topology using NURBS[12].

Enhanced Models: Topology Segments and Lane Modeling

Enhanced models for the road model are so advanced to introduce * topology segments’
and add detail to the individual lanes. There exist segments that require no bivalent nodes,
as parameters can change along a subsection of any road. The Lane Model then enhances
the geometric representation using NURBS (non-uniform rational B-splines), which are
mathematical splines in 3D space. NURBS represent 3D curvature and elevation changes
within the road topology precisely.
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Rich Model Set

1. Road Model: The Road Model is topologically foundational and defines the basic
topology and road attributes by which the detailed and accurate representation of
roads is ensured, thereby laying down the ability to calculate distances precisely and
to plan routes.

2. Lane Model: The Lane Model is more granular in that it models individual lanes
and 3D curves and elevations using NURBS. This fine-tuning is necessary for appli-
cations requiring exacting data at the lane level as seen in 3.3

3. Localization Model: The Localization Model augments the map with objects nec-
essary to realize the level of localization required, including signs and other roadside
features, and is very important for advanced navigation and autonomous driving
applications[12].

3.2.2 HERE Maps Attributes

As HERE Maps offers a comprehensive set of attributes, this section will delve into the
main attributes used for distance calculation as well as the additional attributes that
enhance the overall functionality of the platform.

Advanced Driver Assistance System(ADAS) Attributes

Several ADAS attributes are embodied in the HERE Maps API that enables more accurate
distance calculations and drives geospatial analyses down to higher degrees of precision.
Reporting complete and real-time information on road features and conditions is made
possible through ADAS attributes, thus advancing the sensory capability of road vehicles
to make the surroundings and environment observable for driving and navigation. Using
the HERE Maps API to call out for ADAS attributes can undoubtedly help in distance
estimation, as complete transportation information can be availed. Being each of the
values returned by the HERE Maps API relative to previous values, only the first value
will be absolute. This approach is highly effective because it stores less data to represent
road geometry, thus saving memory and improving performance in return. It stores only
the differences between consecutive points instead of full coordinates, so the amount of
data stays at a minimum while no details are lost. This relative positioning especially
helps in large data sets related to geospatial, where memory efficiency and processing
speed are the two most critical factors. Below explains the various ADAS attributes and
below is why these attributes are essential .

The ADAS attributes provide a detailed description of road geometry, which is highly
important for the accuracy of distance estimations. The ADAS attributes offer high-
precision coordinates, road slopes, headings, and curvatures, among others, that, when
collected, will give the effect of much better road modeling[14].

Coordinate Attributes

The Link ID attribute is a permanent and unique identifier for each road segment, en-
suring consistent identification across different releases.

The attributes HPX, HPY, HPZ refer to High Precision Longitude (HPX), Latitude
(HPY), and Height Coordinates (HPZ) along the link. These coordinates are offsets from
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the previous point, providing very high precision in the spatial positioning of the road
segment, which is essential for accurate distance measurements.

Slope and Heading

The Slopes provide the vertical road direction at coordinate points, measured relative
to the reference node. This slope information is crucial for calculating the actual travel
distance, especially through undulating terrain.

The Headings provide the horizontal road heading at coordinate points, measured from
the reference node. This heading information is useful in determining the travel direction
and the overall geometric course of the road.

Curvature and Road Geometry

The Curvature at coordinate points relative to the reference node. Curvatures help esti-
mate reasonably how much the road is bending, which is essential in correctly estimating
path length, mainly for winding or curved roads.

The Vertical Flags at coordinate point positions along the link, indicating straight road
sections based on changes in height. This helps to know the straight length and which
sections are slightly curved or inclined.

Other Road Attributes

The Reference and Non-reference Curveheads refers to the Curvature at reference
and nonreference nodes at the link. These attributes describe the curvature in the link’s
start and end location. So that the actual road geometry is well-accommodated using this
information.

The Topology ID is a Unique ID for topology segments presenting the intersection-to-
intersection connectivity of the network. This helps in understanding the overall connec-
tivity of the road network, which is important for route planning.

The Start and End Offset indicate the relative start and end positions of the link in
the topology, which helps in mapping the exact segments of the road used in the distance
computation.

Attribute Description
0 LINK_ID Permanent link ID, uniquely identifying roads across map releases.
1 HPX High precision longitude coordinates, relative to previous points.
2 HPY High precision latitude coordinates, relative to previous points.
3 HPZ High precision height coordinates, with special handling for unknown values.
4 SLOPES Vertical road direction at coordinate points, relative to the reference node.
5 HEADINGS Horizontal road heading at coordinate points, relative to the reference node.
6 CURVATURES Road curvature at coordinate points, relative to the reference node.
7 VERTICAL_FLAGS Indicates presence on straight road sections based on height changes.
8 REFNODE_LINKCURVHEADS Curvatures at the reference node of the link.
9 NREFNODE_LINKCURVHEADS Curvatures at the non-reference node of the link.
10 BUA_ROAD Identifies links inside built-up areas.
11, BUA_ROAD_VERIFIED Verification status of built-up area roads.
12 LINK_ACCURACY Indicates ADAS compliance of the link's geometry.
13, TOPOLOGY_ID Unique ID for topology segments.
14 START_OFFSET Relative start position of the link in the topology.
15 END_OFFSET Relative end position of the link in the topology.

Figure 3.4: ADAS Attributes Table.
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Integration of Additional Attributes

While the Advanced Driver Assistance System (ADAS) layer attributes supplied by the
HERE Maps API are crucial for correct distance computations, we must add some other
relevant attributes to complete the geospatial analysis. Attributes such as speed limits,
weather conditions, and traffic conditions are all sourced from different layers in the HERE
Maps API and add a lot to the estimates of the distance in terms of accuracy and reliability.
In any case, the attribute layer for ADAS is very vital for distance calculation in that it
provides information at a detailed coordinate level.

Speed Limits

Speed limits aid us in determining the allowable driving speeds in the various road seg-
ments. This data is retrieved from the suitable API layers to assist in the modeling of
actual travel times, and route planning is optimized. Equally, the addition of speed limits
integrated into the distance estimated process will go a long way in helping the model re-
flect average speed variations on road types and regions, arriving at practical and accurate
simulation.

Traffic Conditions

Real-time traffic data is another crucial element for accurate distance estimation and sim-
ulation. Traffic conditions, including Traffic signals, stop signs, and pedestrian crossings,
can cause significant deviations from expected travel times. By integrating real-time traf-
fic information from the HERE Maps API, geospatial analyses can dynamically adjust
routes and distance calculations based on current traffic conditions, ensuring that the
most efficient and realistic paths are considered.

Weather Conditions

Weather conditions may influence the driving conditions and travel time, given precipi-
tation, wind velocity, and direction. Access to live weather information from the HERE
weather API layer facilitates appropriate distance estimation model changes to represent
adverse weather’s influence on travel times. It will be helpful considering, for example, the
presence of heavy rain or snow, road traffic may go down speed, resulting in an increased
travel time that necessitates re-calculation of estimated distances and travel time to retain
such estimates correct with different weather scenarios.

Importance of ADAS Attributes in Distance Calculation

Although the other extra properties also apply, the ADAS attribute layer forms the most
critical data layer while calculating distances mainly because it contains the primary coor-
dinate data. ADAS attributes constitute high-precision data of longitudes, latitudes, and
heights used to define road geometry districts. These attributes are relative to previous val-
ues, of which the first value is absolute and, hence, allows for efficient data representation
and memory use—essential for extensive geospatial data. To facilitate any distance calcu-
lation model, such as those based on ADAS attributes that have captured detailed road
geometries—including slopes, headings, and curvatures—backbones are formed. Combin-
ing speed limits, weather conditions, and traffic data with such precision could not be
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Figure 3.5: Imaginery Representation of a car containing ADAS
Layer datal[9].

enough to calculate accurate distances without accurate coordinate information. Other
layers, therefore, enrich the analysis and provide a majorly rich context within which
distance can be calculated, with the ADAS attributes acting as a skeletal structure for
attaining the correct spatial context, whose geospatial process maintains top high fidelity.

3.3 Implementation

Here, we describe how we have implemented the HERE Maps API to accurately estimate
path length. It contains, in more or less detail, the detailed procedures of making the
API call, the nature of information retrieved, and how this information is translated and
used in the application to get the length of the path. The implementation phase of this
thesis involves several critical steps, from accessing the HERE Maps API to transforming
the retrieved data into a usable format for distance estimation. This section provides an
overview of these steps, laying the groundwork for more detailed explanations to follow.

3.3.1 Data Preprocessing
Data preprocessing is a critical step before performing any operations, as unprocessed
data can lead to inaccurate results. This section elaborates on the methods used for data

collection and the preprocessing techniques applied in this research to ensure the data is
clean, accurate, and ready for analysis.

API Call

For the purpose of this thesis, we utilize the HERE Maps API to gather essential data for
accurate distance estimation and the creation of a dOC model. The specific API endpoint
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we employ is designed to match routes and retrieve a comprehensive set of attributes
necessary for our calculations. The API call used is as follows:

https://routematching.hereapi.com/v8/match/routelinks?apikey=API_KEY
&mode=fastest;truck;traffic:disabled&routeMatch=1
&attributes=ADAS_ATTRIB_FCn(*)&attributes=APPLICABLE_SPEED_LIMIT(*)
&attributes=TRAFFIC_SIGN_FCn(*)&attributes=TRAFFIC_PATTERN_FCn (*)
&attributes=ARCHIVED WEATHER (*)

Listing 3.1: An example API call with placeholder API key

You need an API key to use the HERE Maps API. This key is tied to your account,
and it’s what provides you with access to HERE’s full range of mapping and geospatial
services. You can obtain an API key by signing up for a HERE developer account[13].
The POST method of making the APT call allows you to submit a GPS trace and return
route data that matches. The endpoint will receive a response, and process that by
structuring the data and returning the data according to the structure.

Parameters

« apikey: This is your API key that you got from HERE.

« mode: If you request the fastest truck-optimal route, this should be "fastest; truck;
traffic, and you would like to switch off the traffic-related information. According to
the application, the traffic function can be on or off.

e routeMatch: Set to 1 to ensure that the API matches the GPS trace given as input
in the body of the API call. This parameter helps in filtering out unreliable GPS
coordinates, such as those outside the road or mistakenly placed in buildings.

o attributes: This parameter specifies the various attribute layers to be included in
the response. For our thesis, we include the attributes which we already mentioned
3.2.2,3.2.2.

The API call 3.1 is structured to ensure that all necessary data is retrieved efficiently.

https://routematching.hereapi.com/v8/match/routelinks

Listing 3.2: URL Endpoint for matching GPS

The 3.2 is responsible for matching the provided GPS trace to the road network and returns
the related data. The output of the API call is often in JSON format which is structured
and easy to parse. This request will introduce the following features: ADAS data, speed
limit, traffic signs, traffic patterns, and weather information. The JSON response has been
saved for post-processing. This could be using any number of tools and approaches, from
direct calls to Python code to API-testing tools such as Postman. In this thesis, we used
Python’s ’ requests ’ library to make the API call and handle the response.

Handling Missing and Inconsistent data

Although we all want to work with perfect data, the case is not so in practice. While HERE
Maps supplies good quality data, there might be some missing values in the road links;
most of the time, coordinates are available consistently, but elevation, slopes, and curvature
values may be missing occasionally. When such gaps exist, data-cleaning processes are
initiated to rectify the inconsistencies.
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For missing elevation, slope, or curvature values, we have proximity-based imputation,
referring to the data from the links nearby. After this process, there shall be logical and
spatial consistency in filling the missing data points. For instance, if a location does not
have an actual speed value, we can refer to the nearest link and use this value. Missing
fields are then accurately filled up based on such neighbour values; this guarantees the
completeness of the dataset. Second, it is also necessary, therefore, that all fields in the
dataset be uniformly fulfilled in length, such that now that we have created a CSV for
it, we want to analyze them. This allows these further data to be incorporated and
subsequently processed in the latter stages of the analytical pipeline; doing so avoids a
lack of uniformity that might make further data integration and processing impossible.

Data Integration from Different layers

To obtain a complete dataset, derived datasets from all the required layers have to be
combined. In the context of HERE Maps, for example, this can be several attributes
related to the same road link but from different layers or the inclusion of ADAS attributes,
speed limits, traffic patterns, and weather data. We will merge these layers based on
linkID. Such a task may involve creating a dictionary where all keys are associated with
a link whose values are lists corresponding to attributes and defining that particular link
as explained in 3.2.1.

For other cases, we would envisage additional or changed attributes with values that may
be constant along the length of a link. Others will be variable; this can be illustrated using
examples like a speed limit and a collection of coordinates. We will duplicate constant
values to the count of varying lists to standardize the length across all the attribute lists for
each link. For example, where the speed limit is constant along a link, we would repeat
that value to match the number of coordinate points within any given link. Similarly,
attributes such as the presence of traffic signals, which might be the case only once within
a link, would have all instances marked with True at that position and False otherwise. All
the attributes would thus have the same length, which significantly simplifies subsequent
processing and analysis of the data.

This outcome of the data integration approach ensures that the dataset will be well struc-
tured in advance for easier reference and utilization of link values during the creation of
the dOC file. It also means that with such, it will be much easier to check that all the
attributes are equal in length—which is an integral part of data integrity.

3.3.2 Data Transformation from Raw to Usable Format

Data in its raw format from the HERE Maps API generally comes in JSON. A transfor-
mation series will be needed to have this in a format that is viable actually to conduct the
distance analysis and computation. These should thus involve various steps to ensure the
data is adequately prepared for an exact geospatial computation.

Relative to Absolute Data Values

Most of the data values, such as latitude, longitude, elevation, slopes, and curvatures,
are expressed in the changes between a value and the previous point, unlike absolute
values. Every first value in each link is absolute; the subsequent ones are relative to the
last point. The given relative value figure has to be brought to an absolute-type figure
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through automated calculation. For this, this step will include the relative changes because
it will add and return actual measurements of each point along the link.

The coordinate measurements of latitude, longitude, and other relative parameters, if any,
such as elevation, slopes, and curvature, require calculating their cumulative sum to add
each relative value to the sum of all previous values. This somewhat converts the series of
incremental changes into a complete set of absolute values and retains total accuracy at
the same time when representing paths geographically.

Scaling for Calculation

The retrieved data are expressed in units that may not be directly useful to the calcu-
lations. For example, latitudes and longitudes are in 107 degrees WGS84, height in
centimetres above WGS84, slope in 10~3 degrees, heading in 10~3 degrees, and curvatures
in 107%m 1. These values must be scaled appropriately to make calculations more efficient
and the results easier to read. For example, scaling these measurements into more easily
handled units, latitude and longitude into degrees, elevation in meters, and perhaps the
slopes and curvatures into intuitive units.

Data Normalization

To ensure consistency and to allow reasonable calculations, all data from the HERE Maps
APT is either converted or normalized to units in the International System of Units. Lati-
tudes and longitudes are converted to degrees. Elevations that are provided in centimetres
above WGS84 are converted to meters. Additionally, the speed limits provided in the data
are converted from kilometres per hour to meters per second and other attributes to their
respective SI units. These values are normalized to SI units so that they are in universally
acceptable formats, and geospatial analysis, along with distance calculations, can be as
accurate and reliable as possible in this research.

3.4 Methods for Precise Distance Calculation

This section will explain the various methods for precise distance calculation, detailing
how each method operates and the scenarios in which they are most effective.

3.4.1 Calculating Intermediate distance

With most conventional mapping systems, the input coordinates are likely to return the
total length of the path. While this is useful, inherently, the process lacks a degree of
precision for more complex or fine-level detail geospatial analysis. Most advanced systems
such as HERE Maps, does one step better, giving the total length and link lengths, but
there is still some inaccuracy within links. However, it differs from this study because it
further extends its accuracy by estimating the intermediate link point-to-point distances.
By so doing, it ensures that the distance measurements have a much higher resolution
and, therefore, significantly increases the accuracy of the entire path length measurement.

The measurement of intermediate distances within each of the links involves dividing each
of the links and measuring the distance between every pair of consecutive points. This
method takes the actual path travelled into much more detail for road geometric features,
elevation differences, and curvature changes than the general calculation can account for.
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Benefits of Calculating Intermediate Distances

Calculating intermediate distances between points within links offers several key benefits,
especially in the context of residual range estimation and vehicle simulation. One of the
primary advantages is the enhancement of accuracy in residual range predictions. By
calculating distances between intermediate points within links, the representation of the
actual path taken by a vehicle is captured with greater precision. This ensures that small
geometrical features, such as minor bends, curves, and elevation changes, are considered.
As a result, the sum-path length estimate is much more accurate than the standard link-
based or overall path length, leading to more reliable residual range predictions.

Accurate intermediate distances are crucial for simulation models used to predict a vehi-
cle’s residual range. By incorporating detailed distance measurements, these models can
better account for the varying road conditions and driving patterns that affect energy con-
sumption. This level of detail allows for more precise monitoring of vehicle components
and more accurate predictions of when maintenance is needed based on the actual distance
traveled under various conditions. Consequently, vehicle performance simulations become
more reliable, enhancing the practical deployment and user acceptance of electric vehicles
(EVs).

Furthermore, calculating accurate intermediate distances enables the determination of the
wheel radius along the path. This is particularly beneficial for electric vehicles, where pre-
cise knowledge of wheel radius variations can improve the accuracy of energy consumption
models. By accounting for changes in wheel radius, simulations can more accurately reflect
the real-world performance of the vehicle, leading to better predictions of residual range.

In simulations, using accurate intermediate distances as the basis for the dOC model en-
sures that the behavior of the vehicle is modeled with greater fidelity. This is crucial for
testing new vehicle technologies, safety systems, and performance enhancements in a con-
trolled environment. Accurate distance measurements enable more realistic simulations,
which are essential for evaluating the impact of different driving conditions on the vehicle’s
residual range.

Calculation of Methods

The strategy has been implemented using the HERE Maps API, which is called to return
all the points or data along the vehicle’s path. This calculates the distances between these
intermediate points that give a better measurement of the actual path length. The steps
are as follows,

1. Fetch data: Detailed coordinates and attributes were fetched from the HERE Maps
API.

2. Compute Distance: We compute the distances of each link between subsequent
points as explained in 3.4.2

3. Sum up the distances: Sum these intermediate distances to get the total path
length.

This is a much more accurate intermediate distance calculation than the old way. In some

cases, the very hilly routes winding routes straight lines or link-based approach will return
results in the wrong.
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The intermediate distance calculation is indeed a considerable enhancement for analysis
in geography and distance measurement purposes. Focusing on the details across links
and turning points between links further improves the quality of path length assessment
and, thus, reliability. It increases the precision and quality of the route for both planning
and real-time navigation, as well as the quality of the routes being analyzed. Hence, this
is one of the essential contributions of this thesis that emanates a final robust solution
toward attaining higher levels of accuracy in distance estimation with geospatial data.

3.4.2 Introducing Inclined Distance

When we check how such distances are calculated, most methods use the straight-line
distance between points. For example, HERE Maps states in the documentation that the
length of a link is calculated as straight lines between consecutive shape points, regardless
of whether it goes over several tiles[12]. The method does not include splines, other
smoothing techniques, or geodesic computations. Errors in the estimated path length,
therefore, could potentially be because, in practice, the distance covered by the vehicle is
very much more complex than that defined by the measurement between two points in a
map, especially if significant changes in altitude take place along the path. For this, we
introduce the concept of ’inclined distance’, which includes elevation data to give a more
realistic measure of the vehicle’s drive. Further, if the curvature data is available, we will
use this to find the arc length of the path for extra accuracy.

The methodology for calculating inclined distances involves a combination of traditional
surface distance calculations and the incorporation of elevation and curvature data. By us-
ing established methods such as the Haversine, Vincenty, spherical law of cosines, and 3D
distance formulas, we ensure robust and accurate surface distance measurements. These
measurements are then enhanced by embedding elevation and curvature data, providing
a true representation of the actual path length travelled by a vehicle. The detailed pro-
cedures and calculations for determining inclined distances are discussed in the sections
that follow.

Inclined Distance Concept

This section outlines the methodology for calculating inclined distances, as detailed in
Section 3.4.2.

Inclined Distance with Elevation Data:

Theorem 1 (Pythagoras theorem). In a right-angled triangle, the square of the length
of the hypotenuse (c) is equal to the sum of the squares of the lengths of the other two
sides (a and b0)[30]. Mathematically, this is expressed as:

& =a*+ b
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Figure 3.6: Visual Representation of Pythagoras Theorem
data[4].

From the figure 3.6 we can see that:

o b is the triangle’s base (straight line distance between two points on the Earth’s
surface)

e a is the triangle’s height (i.e., the difference in elevation of the two points)

o c is the triangle’s hypotenuse (i.e., the inclined distance)

Inclined distance is a measure of the actual distance traveled by a vehicle considering
the varying elevations in the journey. This involves inbuilt elevation and the application
of the rule of trigonometry to get the actual path length rather than just the straight
line distance. Simply put, the straight-line distance, according to a standard, on a map
between two points is the base of a triangle, and the difference in elevation between those
two points is the height of that triangle. Therefore, the actual route through which the
vehicle has been driven stands for the hypotenuse of that right-angled triangle.

By calculating the hypotenuse of the triangle: Applying simple trigonometry, we can
accurately calculate the base (straight line distance) and the height (elevation difference)
to create a right-angle triangle.

Inclined Distance with Slope Data:

In addition to using elevation data, inclined distance can also be calculated using slope
data. The slope of a road provides another way to determine the inclined distance by
applying trigonometric functions. When slope data is available, we can use the cosine
function from trigonometry to find the actual path length.

The relationship can be expressed using the trigonometric identity:

) adjacent
cos(f) = ———
hypotenuse’

and rearranging to solve for the hypotenuse, we get:

adjacent

hypotenuse = ——.
yp cos(6)
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In this context, the adjacent side represents the straight-line distance or the surface dis-
tance (dsurface) between two points on the Earth’s surface and 6 is the angle of the slope

Using the slope information, the inclined distance (dinclined) can be calculated as:

ds
cos(6)’

di =

where d; represents the inclined distance and dg represents the surface distance.

This method is particularly useful in scenarios where precise slope data is available, allow-
ing for an accurate determination of the actual distance travelled considering the road’s
gradient.

Curvature Information Considerations

If we have curvature information, we could compute the arc length along the path for a
more precise estimate of the distance the vehicle has travelled. We can take that curvature
information and estimate the central angle and the arc length. Here is the process:

Find the Central Angle (0):

f = curvature x arc length

radlius. The central angle 6 should be in radian measure.

Find the Arc Length:

Curvature is given as

Arc Length = Radius x 6

. . . . 1
Radius r is the reciprocal of the curvature (7“ = Curvature).

Thus, when we have curvature data, we can calculate the actual arc length along the path,
which provides a more accurate measure of the distance travelled than the straight-line
distance.

Mathematical Steps to Calculate Inclined Distance

Given two points with coordinates (x1,y1,21) and (z2,y2, 22), where x and y represent
the latitude and longitude (or horizontal coordinates) and z represents the elevation,
the following are the steps of the calculation: First, the straight-line distance (Base) is
calculated,

Base = \/(xz —21)? + (y2 —1)%
then follows the calculation of the elevation difference (Height),

Height = 29 — 21,

Now, the inclined distance (Hypotenuse) from the Pythagorean theorem is calculated:

Inclined Distance = \/ (Base)? + (Height)?,

After the calculation, we check if curvature data is available. If yes, then the central angle
is calculated, and the arc length is determined accordingly.
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f = curvature x Base,

1
Arc Length = —— x 6.
curvature

So, for arcs when curvature data are available, the additional arc length would sum to the
inclined distance, making it closer to reality.

3.5 Overview of Methods

In this section, we will explain the various methods for precise distance calculation, de-
tailing how each method operates and the scenarios in which they are most effective.

3.5.1 List of New Methods

In this section, we explore the methodology for calculating inclined distances as discussed
in 3.4.2, which is an essential aspect of achieving accurate path length estimations in
geospatial analysis. Inclined distance incorporates elevation data to provide a more re-
alistic measure of the actual distance travelled by a vehicle. This method goes beyond
the simple 2D straight-line distance by considering the three-dimensional aspects of the
terrain.

To compute the inclined distance, the first step is to determine the surface distance, which
serves as the base of the right-angled triangle in our distance calculations 3.4.2. The surface
distance can be calculated using several traditional methods, each offering different levels
of precision and computational complexity.

In this section, we present a detailed overview of the new methods that have been employed
and tested in the experiments. These methods incorporate elevation data into traditional
distance calculation techniques to enhance accuracy as detailed in 2. Each method has
been adapted to account for elevation changes, either using elevation data directly or
through slope data.

Haversine Method

It is one of the most common procedures in calculating the surface distance between two
points on the surface of the Earth. It takes into consideration the fact that the Earth is
approximately spherical in shape. The conventional procedure determines the great-circle
distance between two points from longitudes and latitudes as detailed in Section 2.3. In
this work, we have extended the Haversine method to calculate the inclined distance in two
ways. First, with elevation data, we use the Pythagorean theorem to calculate the inclined
distance given the elevation difference between two points, as explained clearly in Section
3.4.2. This approach accounts for the vertical component of the distance, providing a
more realistic representation of the actual distance travelled. Second, with slope data, we
calculate the distance on slopes by using the angle of slope, 6, between the two points.
The distance along the surface is corrected using trigonometric functions, as referred to
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in Section 3.4.2. This method ensures that the inclined distance reflects the true path
length, including the effects of elevation changes and slopes.

Geodesic Method

It is also known as Vincenty’s formula, which finds the shortest distance between two
points on an ellipsoid, as explained in Section 2.4. This method has the best accuracy
in measuring distances. In this research, we have extended Vincenty’s formula to include
elevation and slope data. With elevation data, the inclined distance is calculated similarly
to the Haversine method, incorporating height differences using the Pythagorean theorem
1. With slope data, the horizontal distance is adjusted using the cosine function to account
for the sloping angle, as referred to in 3.4.2. These adjustments ensure that the calculated
distance reflects the true path length, including the effects of elevation changes and slopes,
thereby enhancing the accuracy of the distance measurements.

Spherical Law of Cosines

The Spherical Law of Cosines is another way of calculating horizontal distance on a sphere
[2.15]. This method, using trig functions, determines the central angle to provide. We
increased the method’s scope by incorporating elevation data to improve the study’s accu-
racy. The inclined distance is calculated by combining the surface distance obtained from
the Spherical Law of Cosines with the elevation difference using the Pythagorean theorem.

Vincenty Variant Method

This method is a combination of both Vincenty 2.4 and the Spherical law of Cosines 2.15
and is a precise algorithm used to calculate the distance between two points on the Earth’s
surface, taking into account the Earth’s ellipsoidal shape. This method incorporates three
key steps to ensure both accuracy and computational efficiency.

The method begins by computing the reduced latitude for each point. This reduced
latitude is an adjusted value that accounts for the Earth’s flattening due to its ellipsoidal
shape. By transforming the geographical latitude into this auxiliary value, the calculations
can more accurately reflect the Earth’s shape, enhancing the precision of the subsequent
distance computations. The use of the reduced latitude is crucial as it corrects for the
slight bulge at the equator and the flattening at the poles, which are not addressed in
simpler spherical models. Then, The central angle between two points is calculated using
the Spherical Law of Cosines. This step simplifies the computational process by initially
determining the angle on a sphere, providing a straightforward and efficient way to measure
the separation between points. The Spherical Law of Cosines uses trigonometric functions
to find the central angle based on the reduced latitudes and the difference in longitudes.
This simplification to a spherical model allows for a faster initial calculation, which is
then refined to consider the Earth’s ellipsoidal shape. Finally, the central angle obtained
from the Spherical Law of Cosines is used in the Vincenty formula to refine the distance
calculation. The Vincenty formula adjusts the initial spherical calculation to account for
the ellipsoidal shape of the Earth, incorporating factors such as the Earth’s semi-major axis
and flattening. This approach leverages the simplified spherical calculation for speed while
using the Vincenty adjustments to enhance accuracy. Additionally, the Vincenty formula
includes corrections for the Earth’s curvature, providing a more precise measurement than
methods that assume a perfect sphere. By combining these steps, the Vincenty Variant
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method ensures that the calculated distance is both accurate and computationally efficient,
making it suitable for the thesis in estimating accurate path length.

Even though the Spherical Law of Cosines assumes a perfect sphere, the calculated central
angle (o) can still be useful as an initial approximation in more complex models. Once
o is obtained, it can be refined using adjustments that account for the Earth’s ellipsoidal
shape, as shown in the Vincenty formula 2.4.

Here’s the detailed process:

The initial central angle is being calculated by the spherical law of cosines 2.15:

cos(o) = sin(B) sin(f2) + cos(B1) cos(B2) cos(AN).

This step quickly provides an approximate central angle and it gets refinement Using
Vincenty:
o = arccos(cos(0))

P:ﬁ1+ﬁ2
2

B2 — B
@= 2

By integrating the spherical approximation within the ellipsoidal refinement, this hybrid
method ensures computational efficiency without compromising on accuracy. This combi-
nation allows the initial spherical model to guide the more precise ellipsoidal calculations,
making the overall process faster and more efficient than iterating from scratch.

These methods have been experimented and the results are formulated in the experiment
chapter of this thesis. By using these established techniques, we ensure that the surface
distance calculations are grounded in robust mathematical principles. Once the surface
distance is determined using one of the methods mentioned above, the next step is to
calculate the inclined distance by incorporating elevation data.

Practical Relevance

The addition of inclined distance and curvature data gives this system high accuracy.
This also represents the driving path of the vehicle and is critical for applications such as
navigation and routing. Better calculation of distance results in improved route planning,
especially in hilly or mountainous regions with frequent elevation and curvature changes.
Geospatial analysis benefits by providing valuable insights into travel patterns and road
usage, considering actual driven distances rather than approximate straight-line distances.
Addressing height variations and curvature possibilities corrects deficiencies in traditional
distance measurements. Using the Pythagorean theorem and arc length calculations pro-
vides a closer, more realistic estimate of the distance travelled, reflecting the true terrain.
This approach enhances geospatial analysis accuracy and is practically relevant for accu-
rate simulation and navigation.
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3.6 dOC Model Framework

The Deterministic Operating Cycle (dOC) model is a robust framework designed to en-
hance the precision and reliability of vehicle distance estimations and simulations. By
making distance the independent variable, the dOC model facilitates a more accurate and
functional representation of various vehicle parameters and attributes over the course of
a journey. This approach not only improves the accuracy of distance calculations but
also provides a comprehensive basis for various applications in vehicle simulation, energy
estimation, and safety systems.

3.6.1 Distance as the Independent Variable

In the dOC model, distance is treated as the independent variable. This means that after
calculating the accurate distance between each subsequent point, we use this distance
as the foundation for the model. The attributes or parameters of the model are then
expressed as functions of this independent variable. This setup allows for a structured
and precise mapping of vehicle data along the travelled path.

The attributes of the model, which reflect the operating condition data, are expressed
as functions of this independent variable. Specifically, the distance is a function of these
attributes, allowing for a structured and precise mapping of vehicle data along the travelled
path as expressed in the figure 3.7. Mathematically, this relationship can be depicted as:

f(d) = {Slopes, Curvature, Road signs...}.

This setup ensures that distance is accurately mapped as a function of various operating
conditions, providing a comprehensive and detailed framework for analyzing and simulat-
ing vehicle performance over a journey.

The process begins with the precise calculation of the distance between each subsequent
point using the methods discussed previously, such as Haversine, Vincenty, spherical law
of cosines, and the 3D distance formula 3.4.2. Once the accurate distance is determined, it
serves as the independent variable, and at each point along the path, a set of information
is recorded where distance is the key reference point.

Impact on Vehicle Simulation and Safety Systems

Accurate distance data enhances vehicle simulation models, making them more reliable
and realistic. This is essential for testing and developing new vehicle technologies and
systems in a controlled environment before real-world implementation. Reliable distance
measurements are vital for accurate energy estimation, particularly in electric and hybrid
vehicles. Understanding how energy consumption varies with distance under different
conditions helps in optimizing energy use and improving the efficiency of these vehicles.
Safety systems rely on precise distance calculations to function correctly. For example,
adaptive cruise control, collision avoidance systems, and autonomous driving technologies
all depend on accurate distance data to make real-time decisions that ensure the safety of
the vehicle and its occupants.
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Figure 3.7: Imaginary Representation of dOC file Concept.

Benefits of Using Distance as the Independent Variable

Using distance as the independent variable, attributes can be identified and analyzed more
precisely. This is particularly useful in simulations where the exact geographic location
may be less relevant than the distance travelled. This approach simplifies the analysis and
visualization of how various factors change over the course of a journey.

Distance-based data allows for precise monitoring of vehicle components. Predictive main-
tenance schedules can be developed based on the actual distance travelled under various
conditions. This ensures that maintenance is performed only when necessary, optimizing
the lifespan and performance of vehicle components.

In vehicle simulations, using distance as the independent variable allows for more accu-
rate and realistic modelling of vehicle behaviour. This is crucial for testing new vehicle
technologies, safety systems, and performance enhancements in a controlled environment.

3.6.2 Attributes of the dOC Model and Usage

In the dOC model, all attributes are treated as functions of distance, ensuring that precise
data is available at each and every coordinate point along the vehicle’s path. This ap-
proach allows for a detailed and accurate representation of various operating conditions,
enhancing the model’s reliability and usability. Each attribute is recorded in SI units, as
previously discussed 3.3.2, to maintain consistency and facilitate straightforward analysis
and calculations. The table 3.1 contains the key attributes included in the dOC model
file.
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Attribute

Description

Distance (m)

Accurate Distance by Calculation, Independent

Latitudes (degree)

High precision latitude coordinates [107"degree WCS84]

Longitudes (degree)

High precision longitude coordinates [107" degree WGS84]

Elevation (m)

High precision coordinate heights [m above WGS84 ellipsoid]

Gradient (degree)

Vertical road direction [10~% degree] at coordinate points along the link.
No gradient or missing values will be represented as 0.

Headings (degree)

Horizontal road heading [10™% degree] at coordinate points along the
link. Missing values will be represented as 0.

Curvatures (m)

Curvature (= 1 / radius) [107° 1/meter] at coordinate points along the
link. Missing values or no curvature will be represented as 0.

Speed Limits (m/s)

Speed Limits when driving on that link. Missing speed limit values are
adjusted by comparing the adjacent speed limit values from links and

the free-flow speed of that link.

Free Flow Speeds (m/s) A static average travel speed value for the link in m/s.

Sign (give way), Pedestrian Cross- | link.
ing Sign (Binary)

Traffic Signal, Stop Sign, Yield | Binary values represent whether the sign is present in the corresponding

Wind Direction (degree) Direction in degrees.

Wind Velocity (m/s) Wind velocity in m/s. Nullable.

Table 3.1: dOC Model Attributes

Usage of dOC Model File

The dOC model is encapsulated in a CSV file format, which includes the various attributes
recorded as functions of distance 3.1. Each row in the CSV file corresponds to a specific
coordinate point along the vehicle’s path, with columns representing different attributes
such as speed, elevation, slope, curvature, weather conditions, traffic data, and vehicle
data. By organizing the data in this structured format, the dOC model file provides a
comprehensive and easily accessible dataset for various analyses and applications.

The structured and detailed data within the dOC model CSV file is invaluable for a wide
range of applications. In particular, it significantly enhances the accuracy and reliability
of residual range prediction. By analyzing the detailed distance-based data, the model
can accurately predict the remaining range of the vehicle, considering various factors such
as speed, elevation, and operating conditions data. This enables more reliable planning
and decision-making for vehicle operations, particularly for electric and hybrid vehicles
where precise range estimation is crucial. Additionally, the comprehensive dataset can
be utilized for predictive maintenance, route optimization, safety analysis, and improving
energy efficiency, making the dOC model file a useful tool in advanced vehicle management
and analysis.

Organizing the data in a structured format allows for easier integration and analysis across
various platforms and tools. This standardization is essential for ensuring that different
stakeholders, such as fleet managers, engineers, and researchers, can access and utilize
the data efficiently. The CSV format, being widely supported, ensures compatibility with
numerous data processing and analysis software, further enhancing its utility and making
it easier to visualise the data.
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The diverse range of applications includes optimizing gearshift strategy and adjusting it
based on distance to enhance fuel efficiency and vehicle performance.

Overall, the dOC model CSV file serves as a powerful tool for advanced vehicle manage-
ment and analysis, providing a wealth of detailed and structured data that can be utilized
for a variety of critical applications. Its role in enhancing the accuracy of residual range
prediction, facilitating predictive maintenance, optimizing routes, improving safety, and
boosting energy efficiency highlights its significance in modern vehicle management and
research.
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Chapter 4

Results and Discussion

In this section, we will take the test scenarios and experiments conducted during this
research and discuss the findings. By analyzing the performance of various distance cal-
culation methods in different geographical conditions, we aim to evaluate their accuracy,
efficiency, and suitability for practical applications. The discussion will highlight key ob-
servations, compare results, and provide insights into the strengths and limitations of each
method. Additionally, we will present the experiments involving the creation of dOC files
for both short and long distances.

4.1 Test Scenarios

In this section, we aim to evaluate the accuracy of various distance calculation methods
in both flat and hilly regions as classified here 2.7. For the flat surface, we choose the
Stockholm Marathon Course, known for its relatively even terrain. For the hilly region,
we select the track of the Tour de France from Nice to Col de la Couillole, character-
ized by significant elevation changes. By comparing the accuracy of different methods in
these distinct environments, we can assess their performance and suitability for diverse
geographical conditions.

The setup of the environment and the implementation have been explained in detail in the
Implementation section 3.3. In brief, we pass the input coordinates to the HERE Maps
API, retrieve the relevant data, perform the distance calculations using various methods
with the Python code, and then analyze the results.

Before proceeding with the analysis of the results, it is important to note that even though
the truth value is measured correctly, there is a chance that the measurements were ob-
tained using methods such as running the tangents, which is a common practice. In
running, “running the tangents” refers to running the shortest distance possible in a race,
certified by the USATF as the Shortest Possible Route (SPR). This method involves cut-
ting corners and taking the most direct path along a course[23]. However, on a curvy
course with many turns, it is unlikely for a vehicle to perfectly follow the SPR. While the
race course might be USATF certified and your GPS accurate, failing to trace the Shortest
Possible Route will likely result in running a greater distance than expected. Despite this
potential discrepancy, for the purpose of this test, we rely on the measurements provided
as the ground truth value.
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4.1.1 Selection of Track and Ground Truth Data Presentation

To compare the results of the experiments, we need a distance that is estimated with high
precision and we need different geographical terrains to check the robustness and compare
against them to come up with a solution.

e Flat Surface: The Stockholm Marathon Course, which is 42,195 meters long and
control-measured according to the rules established by the Swedish Athletics Federa-
tion and the International Association of Athletics Federations (IAAF). This course
provides a reliable ground truth value for comparison.

e Hilly Region: The Tour de France track which is 206 km long from Nice to Col
de la Couillole, is known for its varied and challenging hilly terrain, which includes
significant elevation changes.

Flat Surface

The Stockholm Marathon is an internationally recognized event, and the accuracy of its
course measurement is crucial for official records and athlete performance assessments.
The measurement process involves multiple steps to ensure precision, including the use of
calibrated measuring equipment and validation by certified officials. This high standard of
measurement makes the Stockholm Marathon Course an ideal benchmark for evaluating
the accuracy of various distance calculation methods.
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LILJEHOLMEN
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Figure 4.1: Track Marked on Map with Kilometers[28].

By comparing the methods against this well-documented ground truth value, we can de-
termine which method provides results closest to the actual measured distance for the flat
terrain. This comparison is critical for assessing the reliability of the methods in real-world
applications, such as vehicle navigation, geospatial analysis, and residual range prediction.
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The use of such a reliable reference ensures that our findings are robust and applicable to
other precise distance estimation needs[28].

5000m 0000 15.00: 20000 5.000 30 000r 5000 40.000m

Figure 4.2: Elevation Profile of the Track[28].

Hilly Region

For the hilly region, we selected one of the iconic tracks from the Tour de France, specif-
ically the route from Nice to Col de la Couillole. This track is approximately 132.8
kilometres long and is known for its significant elevation changes, providing a rigorous
test for any distance measurement method. By examining the accuracy of different mea-
surement techniques on this challenging course, we can gain valuable insights into their
performance and suitability for diverse geographical conditions. The varied terrain of this
route, with its steep climbs and descents, offers a comprehensive assessment of how well
these methods handle the complexities of real-world environments.
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Figure 4.3: Track of the Path on Map[31].

By analyzing the results, we can determine which methods provide the most reliable mea-
surements under such demanding conditions. To illustrate this analysis, the track path
4.3 and elevation profile 4.4 images, offer a visual representation of the terrain and the
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specific challenges it presents. This comparative study aims to enhance our understand-
ing of distance measurement techniques in hilly regions, ultimately contributing to more
accurate and effective applications in various fields.
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Figure 4.4: Elevation profile of the track([31].

4.1.2 Distance Calculations

Using the GPS coordinates of the marathon track as inputs, we calculated the distances
with each method for both flat surface and hilly regions, incorporating both elevation and
slope data where applicable. This allows us to determine which method provides results
that are closest to the ground truth value. The results are presented in the tables below
4.5 for flat and 4.6 hilly regions respectively, showing the calculated distances and the
error percentages relative to the ground truth value. This comparison highlights the most
reliable methods for accurate distance estimation, which are crucial for applications such
as the dOC model and residual range prediction.

4.1.3 Accuracy and Efficiency Comparison

In this section, we compare the accuracy and efficiency of various distance calculation
methods for flat and hilly regions. The flat surface data is taken from the Stockholm
Marathon Course, and the hilly region data is from the Tour de France track from Nice to
Col de la Couillole. The methods include Haversine, Geodesic, Spherical Law of Cosines,
Vincenty Variant, and 3D Distance Formula. The analysis aims to identify the most
reliable and computationally efficient method for precise distance estimation in the dOC
model.

The tables 4.5 and 4.6 show the calculated distances, their differences from the ground
truth, error percentages, and computation times for each method. Here’s a detailed dis-
cussion of the results:
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FLAT SURFACE

Methods Distance Difference Errer_percentage Time (s)
Haversine 42064.80018 -130.1998216 0.308566943 | 0.005748034
Haversine(elevation) 42064.91904 -130.0809575 0.308285241 | 0.005748034
Geodesic 42166.1446 -28.85540389 0.068385837 | 0.398048878
Geodesic(elevation) 42166.26317 -28.73682551 0.068104812 : 0.398048878
Spherical Law of Cosines 42064.80103 -130.1989672 0.308564918 | 0.005023956
Spherical Law of H
Cosines(elevation) 42064.9199 -130.0801032 0.308283216 0.005023956
Vincenty Variant 42191.54552 -3.454476449 0.008186933 | 0.009519339
3D Distance Formula 42065.05736 -129.9426352 0.307957424 0.006843805
Ground Truth 42195 0 0 0
Figure 4.5: Comparison Table for flat surface.
HILLY REGION
Methods Distance Difference Error percentage | Time (s)
Haversine 131968.4957  -831.5043015 0.626132757  0.021517992
Haversine(elevation) 132400.2206  -399.7794173 0.301038718  0.021517992
Geodesic 132084.3495  -715.6504542 0.538893414  1.202219486
Geodesic(elevation) 132515.6255  -284.3744642 0.214137398 1.202219486
Spherical Law of Cosines 131994.9129 -805.087063 0.606240258  0.019957304
Spherical Law of Cosines(elevation) 132426.6343 -373.365651 0.281148834 0.019957304
Vincenty Variant 132664.176  -135.8239862 0.102277098  0.031770706
3D Distance Formula 132418.1581 -381.8419036 0.287531554 0.033400297
Ground Truth 132800 0 0 0
Figure 4.6: Comparison Table for hilly region.
Accuracy Comparison:
1. Flat Surface (Stockholm Marathon Course):

The Vincenty Variant method shows the highest accuracy with an error per-
centage of 0.008186933%.

Geodesic methods
0.068385837%.

The Haversine and Spherical Law of Cosines methods show similar moderate
accuracy with error percentages around 0.308%.

also perform well with error percentages around

The 3D Distance Formula provides moderate accuracy of 0.30795%.

2. Hilly Region (Tour de France Nice to Col de la Couillole):

The Vincenty Variant method again demonstrates the highest accuracy with
an error percentage of 0.102277098%.

Geodesic (elevation) shows a relatively low error percentage of 0.214137398%.

Haversine (elevation) and Spherical Law of Cosines (elevation) also perform
well with error percentages around 0.301% and 0.281% respectively.

The basic Haversine and Spherical Law of Cosines methods have higher error
percentages around 0.626% and 0.606% respectively.
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3D Distance formula has a difference of -381.84 metres with an absolute error
percentage of 0.2875%.

Efficiency Comparison:

1. Flat Surface (Stockholm Marathon Course):

The Haversine and Spherical Law of Cosines methods are the most efficient
with computation times around 0.005 seconds.

The Vincenty Variant method, while highly accurate, takes slightly longer at
approximately 0.009 seconds.

The Geodesic methods are the slowest, with computation times around 0.398
seconds.

The computation time for the 3D Distance Formula on the flat surface is
0.006843805 seconds, indicating it is reasonably efficient.

2. Hilly Region (Tour de France Nice to Col de la Couillole):

The Haversine and Spherical Law of Cosines methods remain the most efficient
with computation times around 0.021 and 0.019 seconds respectively.

The Vincenty Variant method takes approximately 0.031 seconds.

The Geodesic methods have the highest computation times, taking about 1.202
seconds.

In the hilly region, the computation time is 0.033400297 seconds, which, while
slightly longer than some other methods, still represents a good balance between
speed and accuracy.

4.1.4 Ideal Option: Balancing Accuracy and Efficiency

As we have compared the accuracy and efficiency of various distance calculation methods,
it becomes evident that finding a balance between these two factors is crucial for selecting
a reliable method.

Vincenty Variant Method

e Accuracy: The Vincenty Variant method consistently provides the highest accuracy
for both flat and hilly regions, with minimal error percentages of 0.008186933% and
0.102277098% respectively.

« Efficiency: While it is not the fastest method, its computation times of 0.009519339
seconds for flat regions and 0.031770706 seconds for hilly regions are reasonable given
its superior accuracy.

e Analysis: This method is ideal for applications where precision is critical, such as
residual range prediction and high-precision geospatial analyses.
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Geodesic Method

e Accuracy: This method also demonstrates high accuracy, particularly in hilly re-
gions with an error percentage of 0.214137398%.

« Efficiency: It is slower, with computation times around 0.398048878 seconds for
flat regions and 1.202219486 seconds for hilly regions.

e Analysis: Suitable for applications where high accuracy is required and there are
sufficient computational resources to handle the longer processing times.

Haversine and Spherical Law of Cosines

e Accuracy: Both methods exhibit moderate accuracy, with error percentages around
0.308% for flat regions and 0.626% for hilly regions.

o Efficiency: These methods are highly efficient, with computation times around
0.005 to 0.021 seconds.

e Analysis: These methods are best for applications that necessitate quick computa-
tions, where moderate accuracy is acceptable.

Conclusion

The analysis highlights that more complex methods like the Vincenty Variant and Geodesic
(elevation) offer superior accuracy, though they come at the cost of increased computation
time. For applications requiring high precision, the Vincenty Variant method is recom-
mended. However, for real-time applications where speed is critical, the Haversine or
Spherical Law of Cosines methods may be more appropriate despite their lower accuracy.
This comprehensive evaluation provides a clear understanding of the trade-offs involved,
guiding the selection of the most suitable method based on specific application require-
ments and geographical conditions. Whether the application involves predominantly flat
or hilly terrains, the choice of method can be tailored to balance accuracy and efficiency
accordingly.

4.2 Statistical Analysis of Distance Calculation Methods

To assess the accuracy and reliability of various distance calculation methods, three tests
were conducted using routes from the Tour de France: Test 1 (Piacenza to Turin, flat
terrain), Test 2 (Semur to Colombey-les-Deux-Eglises, hilly terrain), and Test 3 (Monaco
to Nice, short hilly terrain).

The table 4.7 shows the difference between the truth value and the error percentage for
each test. Using this information, we will focus on Mean Absolute Error (MAE), Root
Mean Squared Error (RMSE), and Standard Deviation (SD) to compare the performance
of each method. This analysis aims to identify the most accurate and reliable distance
calculation method based on these statistical measures.

92



Difference Error percentage Difference Error percentage | Difference | Error percentage
Haversine 544.7110526 0.239960816 -480.2749091 0.271341757 -151.28 0.429894308
Haversine(elevation) 698.2137165 0.307583135 -354.8422603 0.200475853 -50.4624 0.257068396
Geodesic 8949577762 0.394254527 -247.1825034 0.139651132 -108.131 0.307278147
Geodesic(elevation) 1048.315443 0.46181297 -121.9549839 0.068901121 -47.3921 0.134674898
Spherical Law of Cosines 546.6692733 0.240823468 -429.0493205 0.242400746 -123.85 0.352231586
3D Distance Formula 1192.871701 0.525494141 -343.0148668 0.19379371 -88.9492 0.252768536
Vincenty Variant 703.8767556 0.310077866 39.6206936 0.022384573 -7.19686 0.020451432

Figure 4.7: Test Results Showing Differences and Error Percent-
ages.

The Table 4.8 shows the Mean Absolute Error (MAE), Root Mean Squared Error (RMSE),
and Standard Deviation (SD) for each distance calculation method across the three test
routes from the Tour de France. Using these statistical measures, the accuracy and relia-
bility of each method are analysed.

Methods | MAE (%) | RMSE (%) | SD (%)

Haversine 0.3137 0.3246 0.0795
Haversine (elevation) 0.255 0.2587 0.0471
Geodesic 0.2804 0.2808 0.0204
Geodesic (elevation) 0.2218 0.227 0.044
Spherical Law of Cosines 0.2785 0.2845 0.0545
Vincenty Variant 0.1176 0.1241 0.0866
3D Distance Formula 0.1183 0.1292 0.1166

Figure 4.8: MAE, RMSE, and Standard Deviation for Various
Distance Calculation Methods Across Different Ter-
rains

Haversine Method: The Haversine method shows moderate accuracy across all tests,
with an MAE of 0.3137% and an RMSE of 0.3246%. The method has relatively higher
error in hilly terrains, indicating its sensitivity to elevation changes.

Haversine with Elevation: Incorporating elevation improves the accuracy of the Haver-
sine method, reducing the MAE to 0.2550% and RMSE to 0.2587%. This indicates that
considering elevation data significantly enhances distance measurement accuracy.

Geodesic Method: The Geodesic method demonstrates better accuracy compared to
the standard Haversine method, with an MAE of 0.2804% and RMSE of 0.2808%. It
performs well in both flat and hilly terrains but shows some sensitivity to elevation.

Geodesic with Elevation: This method yields the lowest errors among all tested meth-
ods, with an MAE of 0.2218% and RMSE of 0.2270%. The inclusion of elevation data
greatly enhances its performance, making it the most accurate method in this study.

Spherical Law of Cosines: Similar to the Haversine method, the Spherical Law of
Cosines shows moderate accuracy with an MAE of 0.2785% and RMSE of 0.2845%. Its
performance improves slightly with the inclusion of elevation data.

Vincenty Variant: The Vincenty method has the lowest error rates, with an MAE of
0.1176% and RMSE of 0.1241%. This suggests that it is the most accurate method in this
study, making it suitable for routes with significant elevation changes.
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3D Distance Formula: This method shows low errors, with an MAE of 0.1183% and
RMSE of 0.1292%. The 3D Distance Formula’s ability to directly incorporate elevation
changes makes it highly accurate, especially in hilly terrains.

The analysis reveals that methods incorporating elevation data, such as Geodesic with
Elevation and the Vincenty Variant, provide the most accurate distance measurements.
The Vincenty Variant method shows the best overall performance with the lowest MAE
and RMSE, making it ideal for applications requiring high precision. The Geodesic with
Elevation method also performs exceptionally well, particularly in hilly terrains. Con-
versely, the Haversine method, while accurate in some scenarios, shows higher errors in
this study.

4.3 Experiments

Collect GPS Coordinates of ion of Di C i
— leadi - ompare Results with
Marathon Track eading to Calculation Methods = - Cornpaed Ground Truth

|
w
3
|

Choose Optimal Method for| " a o

dOC Model Accuracy and EFf Compare Compt Effi v Evaluate Meost Accurate Method

Figure 4.9: Workflow of the process.

Therefore, before diving into the creation of the dOC files, the understanding of the
experiment within the context of the flowchart has to be made clear. Each step listed
in the 4.9 provides a rigorous measure upon proper evaluation of the various distance
calculation methods in terms of accuracy and computational efficiency. It is only then
that the process of choice will be ideal in the establishment of dOC files, which have to
be efficient and reliable in residual range prediction, among other uses.

The basis of dOC creation is organizing the data about the distance calculated and all
applicable attributes varying from speed, elevation, slope, curvature, weather, and traffic
data in CSV format. Such structured data is created as an operational model of the vehicle
over its journey; it, therefore, details the exact path of travel. The optimal method that
has been selected according to the flowchart procedure ensures that the dOC files shall be
accurate but also very computationally efficient. Hence, they, in both ways, can serve the
purpose of several geospatial analyses or vehicle simulations.
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In this experiment, we utilize the Geodesic Inclined distance method as the independent
variable to create Deterministic Operating Cycle (dOC) files using coordinates from real
road scenarios. This approach allows us to evaluate the method’s effectiveness in practical,
real-world applications, assess the number of intermediate points generated, and evaluate
the overall efficiency of the process.

Furthermore, along with the creation of dOC files, we introduce normally distributed noise
to the input coordinates to assess how the results change. This additional step aims to
evaluate the robustness of the dOC model and the distance calculation methods in the
presence of noise. By comparing the original and noisy data, we can identify which methods
are most prone to noise and understand the impact of data quality on the accuracy of the
dOC files. This comprehensive analysis ensures that the chosen methods and the resulting
dOC files are robust, reliable, and applicable to various real-world scenarios.

4.3.1 Experimentl: Adding Noise to the input

Before generating the dOC files, we conducted an experiment in which normally distributed
errors were introduced into the input coordinates. Specifically, we added an error with a
standard deviation of 0.0001 to the latitude and longitude values sent to the HERE Maps
API. This test aimed to identify the robustness of the HERE Maps data and the distances
calculated after data manipulation in the presence of such noise.

In this context, noise was added to mimic the real-world inaccuracies that could arise from
GPS errors or data entry inconsistencies. Introducing normally distributed noise allows
us to assess the sensitivity of the HERE Maps API and the distance calculation methods
to such perturbations. By doing so, we can evaluate how resilient the HERE Maps data is
and how the resulting distance calculations vary due to the presence of noise. To further
understand the impact of noise, we also directly employed the noisy latitude and longitude
values in our distance calculations without passing them through the HERE Maps API
again. This was done to see how the distance calculations change when noise is directly
applied to the input coordinates versus when the noise is processed by HERE Maps.

The noisy inputs were then sent to the HERE Maps API to evaluate how well the API could
handle such perturbations. Interestingly, despite the fact that many of the noisy input
points were located off-road, the HERE Maps API demonstrated significant robustness.
The HERE maps effectively mapped these noisy points to the nearest road, filtering out
the noise and providing clean output coordinates that were accurately aligned with the
road. This behaviour was evident in the figure 4.10 where black points represented the
noisy input traces, and green points showed the corresponding matched points on the
road. The matched path indicated that HERE Maps successfully corrected the noisy
inputs, resulting in latitude and longitude values that were consistent with those obtained
without noise.

Additionally, as depicted in the figure 4.12, the noisy coordinates sometimes marked a
path that was not exactly on the actual route. Despite this, the HERE Maps API, by
considering the direction and alignment of the surrounding points, successfully matched
the expected route. This demonstrates the HERE maps sophisticated ability to interpret
and correct noisy input data, ensuring that the overall route remains consistent with the
intended path. This capability is crucial for maintaining the accuracy and reliability of
geospatial analyses, especially when dealing with imperfect input data.

However, to further understand the impact of noise, An additional experiment was con-
ducted to understand the impact of noise on distance calculation methods by using noisy
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Route

Figure 4.10: Images where black points represent noisy input

trace points and green points represent matched
points and route

Methods with noise | Distance Difference Error._percentage
Haversine 255516.24404253913 74474.81958781517  41.136894394266285
Haversine(elevation) 255598.32387450957 74413.72421690417  41.07066735115894
Geodesic 255803.57191563002 74474.08571  41.07113921165204
Geodesic(elevation) 255885.55884173987 74413.10053283401  41.00517578605047
Spherical Law of Cosines 255516.7177541151 74472.32643477159  41.13484316860727
Spherical Law of Cosines(elevation) | 255598.79115657913 74411.31571024537 41.06868619
Vincenty Variant 256090.8331660371 74511.91443877804  41.035553554924945
3D Distance Formula 255602.4936770258 74414.89746544018  41.070635640278944
Ground Truth 181100 0 0

Figure 4.11: Results of Distance Calculations with Directly Input
Noisy Data

latitude and longitude values directly, along with the actual elevation data, without pro-
cessing them through the HERE Maps API. The results, as shown in the table 4.11, re-
vealed significant errors in the distance calculations across all methods, including Geodesic
Inclined, Haversine, Spherical Law of Cosines, and Vincenty. The introduced noise led to
large discrepancies in the computed distances, with error percentages exceeding 41%. This
indicates a critical limitation: while the HERE Maps API effectively handles noisy inputs
by mapping coordinates to the nearest road, the distance calculation methods themselves
are highly susceptible to errors when directly fed noisy data.

The results of this experiment revealed significant errors in the distance calculations. Since
the methods used for calculating distances—such as Geodesic Inclined, Haversine, Spher-
ical Law of Cosines, and Vincenty—were not inherently resistant to noise, the introduced
perturbations led to large discrepancies in the computed distances. This highlighted a cru-
cial limitation: while the HERE Maps API is robust in handling noisy inputs, the distance
calculation methods themselves are vulnerable to errors when directly fed noisy data. The
magnitude of the error matters greatly, as even small inaccuracies can significantly impact
the effectiveness and reliability of these applications.

In conclusion, this case study demonstrates the importance of using robust APIs like
HERE Maps to preprocess noisy GPS data before performing distance calculations. The
APT’s ability to filter out noise and provide accurate road-matched coordinates ensures
the reliability of the distance measurements. Conversely, directly using noisy data with-
out such preprocessing can lead to substantial errors, emphasizing the need for robust
preprocessing steps in any geospatial analysis workflow.
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Figure 4.12: Image showing path matched by here maps despite
of noisy input

4.3.2 Experiment2: Creating a dOC File for a Shorter Distance (Lund
to Malmo)

In this section, we discuss how the dOC file can be generated for a lesser length, say from
Lund to Malmo, which is approximately 20 km long. By employing the Geodesic Inclined
distance method as the independent variable for the dOC file, we will attempt to capture
all of the operation conditions data available at various locations along the path.

Travel Time Departure Arrival Transport
25'40"  12:54:54 132034

SUMMARY  INSTRUCTIONS ~ TBT ACTIONS GRAPHSg

Total -

TOTAL DURATION

NCL. TOTAL TRAFFIC DURATION

02 min 46 sec
TOTAL LENGTH

SERVER RESPONSE TIME
13.876 ms

CLIENT RESPONSE TIME
69 ms

Section 1 =

Figure 4.13: Path from Lund to Malmo on HERE Maps Router
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Steps:

1. Selection of Route: The route is between Lund and Malmo, covering around 20
km, given the input as GPS coordinates

2. Data Collection: The Coordinates, elevation and the data along the route were
collected using HERE Maps API

3. Distance Calculation: The Geodesic Inclined distance method is used to get the
distances between subsequent points so that in a way the distance includes the
elevation along with the distance.

4. dOC File: dOC file is created taking distance as an independent variable from the
above step. We have a resultant number of points as 527 along the path. This allows
for detailed operating conditions data at 527 distinct points over the 20-kilometer
route.

Data Visualization and Analysis

Once the dOC file is generated, it can be utilized in several data visualization and analysis
applications. The following are a few use-case scenarios:

HPX vs HPY Elevation Profile
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Figure 4.14: Visualisation of data from dOC file.

1. Path Tracing:

e Latitude and Longitude Plotting: Plotting the latitude and longitude co-
ordinates can result in a view of the complete route from Lund to Malmo on
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a map. This helps to understand precisely which route is followed and if any
deviations or something is interesting en route.

e Tools: From the data these can be plotted using GIS or Python libraries with
Matplotlib and Folium for the visualization

2. Plot Elevation Profile:

e One can plot the elevation to show how it varies across a route. This is par-
ticularly useful in determining the elevation and the amount of any significant
climbing and descending.

e Tools: Python can be used with libraries like Matplotlib for plotting an eleva-
tion plot, which produces a careful breakdown of the ground.

3. Speed Analysis:

o Plotting Speed: If speed data is in hand, it can be plotted against distance to
see how speed changes over the route. This can help detect dropping or gaining
speeds in segments, which might be due to several effects like road conditions
and traffic.

e Free Flow Speed Plotting: Additionally, the free flow speed along the path
can be plotted to compare the actual speed with the ideal conditions, providing
insights into the impact of traffic and other constraints.

e Tools: Speed data could be visualized in an application for plotting libraries
to make speed profiles in detail.

4. Other Plots: Besides the analyses described above, the values present in any of
the dOC files can be easily mapped on user demand for multiple requirements. For
example, traffic signal locations over the path can be located to analyze how the
density of the signals affects travel times. The same is true for other elements: speed
limits, road types, and points of interest. This enables an all-inclusive analysis of
the various factors that influence the journey, thus allowing more informed decisions
regarding route planning, traffic management, and vehicle navigation. The dOC
model becomes a powerful tool for a wide range of applications related to geospatial
and transportation by tailoring the visualizations according to specific requirements.

Path with Traffic Signals

—— Path
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Figure 4.15: Ploting of Traffic Signals along the path.
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4.3.3 Experiment 3: Creating a dOC File for a Longer Distance (Oslo
to Bergen)

In this experiment, we aim to create a Deterministic Operating Cycle (dOC) file for a
longer distance, specifically the route from Oslo to Bergen, which spans approximately
463.34 kilometres. By having distance as the independent variable, we can capture detailed
operating conditions data at each point along the route. For this extensive distance, we
have 15,360 points, ensuring comprehensive coverage of the route’s operating conditions.

1> Travel Time Departure Arrival Transport
+ 06h 33' 11" 01:52:18 08:25:29
-—
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SERVER RESPONSE TIME
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Terms ofuse  © 1987-2024 HERE 3148 ms

Figure 4.16: Path from Oslo to Bergen on HERE Maps Router.

The process of creating the dOC file involves collecting GPS coordinates and elevation
data using the HERE Maps API, similar to the experiment conducted for shorter distances
4.3.2. The Geodesic Inclined distance method is applied to calculate the distances between
subsequent points, incorporating elevation data to enhance accuracy. Each point along the
463-kilometer route is then annotated with various attributes, such as speed, elevation,
slope, curvature, and other relevant operating conditions. This approach ensures that the
model is robust and provides a granular view of the route’s characteristics.

HPX vs HPY Elevation Profile
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Figure 4.17: Visualisation of data from dOC file.
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The creation of such a detailed dOC file, with distance as the independent variable, offers
significant advantages for numerous applications. By capturing operating conditions at
each of the 15,360 points along the route, the model becomes highly reliable for tasks
such as residual range prediction, vehicle simulation, route optimization, and real-time
navigation assistance. The ability to visualize and analyze data for longer distances,
regardless of the number of points, enhances the model’s applicability and usability in
real-world scenarios 4.17. This comprehensive dataset allows for in-depth analysis and
decision-making, making the dOC model a valuable tool for a wide range of geospatial
and transportation-related applications.
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Chapter 5

Conclusion

5.1 Summary

his thesis has extensively analyzed and compared multiple distance calculation methods
to arrive at an optimal solution for the crucial need for accurate distance measurements in
predicting the residual range. The methodologies evaluated include the Haversine method,
Geodesic method, and elevation-embedded algorithms, all of which are essential for cal-
culating precise path lengths. These accurate distance measurements are fundamental to
the deterministic Operating Cycle (dOC) model, which encapsulates critical road data
and serves as a crucial element in simulations for predicting the residual range of vehicles.

The study has demonstrated that the choice of distance estimation method significantly
impacts the accuracy of residual range predictions. The findings enable the selection of
the most suitable method based on specific application requirements, thereby enhanc-
ing the reliability of vehicle performance simulations. This research not only addresses
the posed research questions but also contributes to the advancement of sustainable trans-
portation systems. By providing insights into effective distance calculation techniques and
their integration into the dOC model, this study supports the broader goal of promoting
sustainable, safe, and efficient transport solutions, ultimately aiding in the mitigation of
climate change impacts.

5.2 Limitations

Despite its contributions, this study has several limitations. The model’s reliance solely on
data from HERE Maps means that using a different geospatial API would require adjusting
the dOC model attributes. Additionally, importing new attributes from other platforms
may necessitate further modifications. The distance calculations are more computationally
intensive than traditional methods, potentially affecting evaluation efficiency and run-time.
The accuracy of the model is heavily dependent on the quality of input data, such as GPS
accuracy and road information. Furthermore, while the model has been tested with real-
time data and can be customized for different vehicle types, integrating data from multiple
sources presents interoperability challenges, affecting consistency and accuracy.
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5.3 Future Works

Future work should focus on seamlessly integrating attributes from various geospatial
platforms, taking into account the distance traveled by the vehicle. The dOC model will
be developed with a more flexible and adaptive framework to accommodate heterogeneous
data sources, enhancing its applicability and robustness. This integration will ensure the
model remains adaptable to new data formats and attributes, maintaining compatibility
with different geospatial APIs and platforms.

Efforts should also be made to eliminate small discrepancies in distance calculations and
attribute integrations. By refining algorithms and methodologies, the dOC model can
be transformed into a comprehensive road data tool for diverse applications. This tool
can provide accurate and detailed road data tailored to specific use cases, such as urban
planning, autonomous vehicle navigation, and transportation logistics.

Further improvements should aim at enhancing the computational efficiency of distance
calculation methods, making them suitable for real-time applications. Optimization of
computational efficiency will reduce processing times without losing information, through
improved algorithms and advanced computing techniques.

In conclusion, the development of the dOC model in geospatial analysis and vehicle simula-
tion holds significant potential. With the integration of attributes from different platforms,
accuracy enhancements, and improved computational efficiency, the model will become a
valuable tool for researchers, developers, and industry experts, contributing to the evolu-
tion of sustainable and intelligent transportation systems.
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Appendix

A.1 Poster

In the appendix, I have included the poster summarizing my thesis work, which was
presented at the SVEA (Swedish Vehicular Engineering Association) conference. This
poster provides a concise overview of my research findings and methodologies, highlighting
the key aspects and contributions of my study.
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A.2 Working Code

In this section, I have included the working code used in my thesis. This code is essential for
replicating the study and understanding the detailed computational processes involved in
the research. Below is an overview of the functionalities provided by the code. I have also
added my GitHub below where you can refer and clone the repository for the usage.The
primary goal of this code is to extract detailed road data from GPS traces and create a
deterministic operating cycle (DOC) model. This model is used for various applications,
including residual range estimation for vehicles.

Features

o Extract Road Data: The code extracts road data by processing latitude and
longitude GPS traces from a vehicle.

» Generate DOC Model: It returns a deterministic operating cycle (DOC) model
in CSV format, which includes attributes such as elevation, slope, speed limit, and
more.

o Distance Calculation: Implements accurate distance calculation using Haversine
and Vincenty formulas.

e Energy Consumption Analysis: Facilitates analysis of energy consumed by the
vehicle and estimation of remaining travel distance based on available battery or
fuel.

Installation and Usage

To get started, clone the repository of mine to your local machine

git clone https://github.com/Yogiiil762/doc_model_road.git

Requirements

Ensure you have the following dependencies installed:

jsonpath-ng==1.5.3
numpy==1.21.2
pandas==1.3.3
pyproj==3.2.1
haversine==2.5.1
matplotlib==3.4.3
requests==2.26.0

Usage
Extracting Road Data

To extract road data and generate the DOC model, you will need a HERE Maps API key.
Run the script given in the github

e API key: Your HERE Maps API key
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e Input: Path to the input CSV file containing latitude and longitude GPS traces.

e Output: Path to the output CSV file where the DOC model will be saved. (Op-
tional: by default the input directory)

Input and Output

The input should be a text file and should contain gps traces like below :

Latitude, Longitude
x1, y1
x2,y2
Xn,yn

The output is a dOC file as explained before 3.6.2.

A.2.1 Code

# file: Doc_Model.py

#Description : This program reads an input file to extract latitude and longitude data, which it
sends to the HERE API to retrieve route information. It then processes the JSON response to
obtain necessary attributes, calculates the distance between consecutive points, and saves the
data to a CSV file. Additionally, the program generates a report and a graph of the vehicle's
path.It cleans the data automatically.

# author: Yogeswaran Amsavalli

# version: 3.2.2

# date: 2024-05-09

#Import the necessary libraries.

import json

from jsonpath_ng import jsonpath, parse
import numpy as np

import pandas as pd

from math import radians, sin, cos, sqrt, atan2, asin
from pyproj import Geod

from haversine import haversine

import matplotlib.pyplot as plt

import os

import requests

def process_file(filepath, output_directory):

#importing Json file from API_call (Replace with your own API key)
url = "https://routematching.hereapi.com/v8/match/routelinks"
api_key = "Replcae with your HERE Maps API Key"

#To access single file from the computer: Add the filepath here

with open(filepath, "r") as file:
lat_lon_data = file.read().strip()

headers = {
"Content-Type": "application/json"
+

params = {

"apikey": api_key,

"mode": "fastest;truck;traffic:disabled",

"routeMatch": "1",

"attributes": ["ADAS_ATTRIB_FCn(x)", "APPLICABLE SPEED LIMIT(*)", "TRAFFIC_SIGN FCn(*)", "
TRAFFIC_PATTERN_FCn(*)", "ARCHIVED_WEATHER(x)"]
}

response = requests.post(url, headers=headers, params=params, data=lat_lon_data)
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if response.status_code == 200:
datal= response.json()
print ("Getting Response from API Successful")
else:
print ("Error:", response.status_code, response.text)

#This Functiuon reads the coordinates from the file and returns the start and end coordinates for
calculation

def read_coordinates(filepath):
with open(filepath, "r") as file:
lines = [line.strip() for line in file.readlines() if line.strip()] # Skip empty lines

# Skip the first line (header)
lines = lines[1:]

# Initialize start and end coordinates
start_lat, start_lon, end_lat, end_lon = None, None, None, None

# Iterate over the lines
for line in lines:
# Replace ", " with "," and split the line into latitude and longitude
try:
lat, lon = map(float, line.replace(", ", ",", ).split(","))
# If this is the first valid line, set the start coordinates
if start_lat is None and start_lon is None:
start_lat, start_lon = lat, lon
# Update the end coordinates
end_lat, end lon = lat, lon
except ValueError:
# If the line could not be split into two floats, skip it
continue

return start_lat, start_lon, end_lat, end_lon

start_lat, start_lon, end_lat, end lon = read_coordinates(filepath)

#Uncomment the below code to read the JSON file from the computer and specify the path of the
file in the filePathl variable:

# filePathl = "/home/yogil762/MScThesis_d0C-generator_2024/MScThesis_d0C-generator_2024/
StartupLibrary/Test_Responses/0slo. json"

# datal= datal

#Extracting the data from the JSON file:

# with open(filePathl, 'r') as file:

# datal = json.load(file)

# start_lat,start_lon = add start coordinates here

# end_lat,end_lon = add end coordinates here

# Exrtracting data from json and appending to lists for calculations
Latitude = []

Longitude = []

Elevation = []

Slopes = []
Curvatures = []
Headings = []
Ref Nodes = []

NonRef Nodes =[]

jsonpath_expr = parse("$.response.route[0].leg[0].1link[*].1inkId")
LinkID = [int(match.value) for match in jsonpath_expr.find(datal)]

#Link data from HERE API

link_length = parse("$.response.route[0].leg[0].1link[*].length")

link_length _Match = [float(match.value) for match in link_length.find(datal)]
Distance_HERE= datal['response'] ['route'] [0] ['summary'] ['distance']
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attributes = ['HPY', 'HPZ', 'HPX', 'SLOPES', 'CURVATURES', 'HEADINGS','REFNODE_LINKCURVHEADS',
NREFNODE_LINKCURVHEADS' ]

attr_matches = {}

# Iterate over attributes and find matches
for attr in attributes:
jsonpath_expr = parse(f"$.response.route[0].leg[0].link[*].attributes.ADAS_ATTRIB_FCN[O0].{
attr}")
matches = [json.loads(match.value) for match in jsonpath_expr.find(datal)]
attr_matches[attr] = matches

# Extend lists maintaining order
for i in range(len(attr_matches[attributes[0]])):
for attr in attributes:
matches = attr_matches[attr]
if i < len(matches):
if attr == 'HPY':
Latitude.append (matches[i])
elif attr == 'HPZ':
Elevation.append(matches[i])
elif attr == 'HPX':
Longitude.append (matches[i])
elif attr == 'SLOPES':
Slopes.append(matches[i])
elif attr == 'CURVATURES':
Curvatures.append (matches[i])
elif attr == 'HEADINGS':
Headings.append (matches[i])
elif attr == 'REFNODE_LINKCURVHEADS':
Ref_Nodes.append (matches[i])
elif attr == 'NREFNODE_LINKCURVHEADS':
NonRef Nodes.append (matches[i])
else:
# If no match found for a particular index, extend with [0, 0, 0]
if attr == 'REFNODE_LINKCURVHEADS':
Ref_Nodes.append([0, 0, 0])
elif attr == 'NREFNODE_LINKCURVHEADS':
NonRef _Nodes.append([0, 0, 0])
else:
# For other attributes, extend with None or any other default value if necessary
pass

#Creating the Lists for the data and Replacing the missing data with O

for i in range(len(Curvatures)):
for j in range(len(Curvatures([i])):
if Curvatures[i] [j]== 1000000000 :
Curvatures[i] [j]=0

for i in range(len(Curvatures)):
if not Curvatures[i]:

if LinkID[i] > O:
Curvatures[i] = [Ref_Nodes[i] [1], NonRef_Nodes[i] [1]]
Headings[i] = [Ref_Nodes[i] [2], NonRef_Nodes[i] [2]]

elif LinkID[i] < O:
Curvatures[i] = [NonRef Nodes[i] [1], Ref_Nodes[i] [1]]
Headings[i] = [NonRef Nodes[i] [2], Ref_Nodes[i][2]]

else :

if LinkID[i] > O:
Curvatures[i] .insert (0,Ref_Nodes[i] [1])
Curvatures[i] .append(NonRef Nodes[i] [1])
Headings[i] .insert(0,Ref_Nodes[i] [2])
Headings[i] .append (NonRef _Nodes[i] [2])

elif LinkID[i] < O:
Curvatures[i].insert(0,NonRef_Nodes[i] [1])
Curvatures[i] .append(Ref_Nodes[i] [1])
Headings[i] .insert (0,NonRef Nodes[i] [2])
Headings [i] .append (Ref_Nodes[i] [2])
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#Creation of Lists Ends here
#Scaling of the data for calculation:

flip_data = [Latitude, Longitude, Elevation, Slopes, Curvatures, Headings]
scales = [1e7, le7, 1le2, 1e3, 1e6, 1e3]

for i in range(len(LinkID)):
for data_list, scale in zip(flip_data, scales):
data_list[i] = list(np.cumsum([float(x) for x in data_list[i]]))
data_list[i] = [x / scale for x in data_list[i]]
if int(LinkID[i]) < O:
data_list[i] = np.flip(data_list[i]).tolist()

#Slicing Start and Final:

def find_nearest_point(input_points, latitudes, longitudes):
min_distance = float('inf')
nearest_point = None
nearest_index = None
for i, (lat, lon) in enumerate(zip(latitudes, longitudes)):
point = (lat, lon)
distance = haversine(input_points, point)
if distance < min_distance:
min_distance = distance
nearest_point = point
nearest_index = i
return nearest_point, nearest_index
if start_lat is not None and start_lon is not None and end_lat is not None and end_lon is not
None:
input_points_start = (start_lat, start_lon)
input_points_end = (end_lat, end_lon)
start_point, start_index = find_nearest_point(input_points_start, Latitude[0], Longitude[0])
end_point, end_index = find_nearest_point (input_points_end, Latitude[-1], Longitude[-1])

#Start point and end point variables can be accessed if needed

#Slicing the data based on the start and end points and slicing operation has been written long
for understanding: can be made shorter//

if start_index == len(Latitude[0]) - 1:
Latitude[0] = Latitudel[O] [start_index-1:]
Longitude[0] = Longitude[0] [start_index-1:]
Latitude[0] [0] = start_lat
Longitude [0] [0] = start_lon
Elevation[0] = Elevation[0] [start_index-1:]
Slopes[0] = Slopes[0] [start_index-1:]
Curvatures[0] = Curvatures[0] [start_index-1:]
Headings[0] = Headings[0] [start_index-1:]

elif start_index ==
Latitude[0]=Latitude[0] [start_index:]
Longitude [0]=Longitude [0] [start_index:]
Elevation[0]=Elevation[0] [start_index:]
Slopes[0]=Slopes[0] [start_index:]
Curvatures [0]=Curvatures[0] [start_index:]
Headings [0]=Headings[0] [start_index:]

else:
Latitude[0]=Latitude[0] [start_index:]
Longitude [0]=Longitude [0] [start_index:]
Elevation[0]=Elevation[0] [start_index:]
Slopes [0]=Slopes[0] [start_index:]
Curvatures [0]=Curvatures[0] [start_index:]
Headings [0]=Headings [0] [start_index:]

if end_index ==
Latitude[-1]= Latitude[-1][:2]
Longitude [-1]= Longitude[-1][:2]
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Latitude[-1] [-1]= end lat
Longitude[-1] [-1]= end_lon
Elevation[-1]= Elevation[-1][:2]
Slopes[-1]= Slopes[-1][:2]
Curvatures[-1]= Curvatures[-1][:2]
Headings[-1]= Headings[-1][:2]

elif end_index == len(Latitude[-1]) - 1:
Latitude[-1]= Latitude[-1][:]
Longitude [-1]= Longitude[-1] [:]
Elevation[-1]= Elevation[-1] [:]
Slopes[-1]= Slopes[-1]1[:]
Curvatures[-1]= Curvatures[-1] [:]
Headings [-1]= Headings[-1] [:]

else:
Latitude[-1]= Latitude[-1] [:end_index+1]
Longitude[-1]= Longitude[-1] [:end_index+1]
Latitude[-1] [-1]= end_lat
Longitude[-1] [-1]= end_lon
Elevation[-1]= Elevation[-1] [:end_index+1]
Slopes[-1]= Slopes[-1][:end_index+1]
Curvatures[-1]= Curvatures[-1] [:end_index+1]
Headings [-1]= Headings[-1] [:end_index+1]

else:
print("Start and end points not provided. Skipping slicing operation.")

#Distance Calculation Functions
def haver(pointl, point2):

earth_radius = 6371e3

latl, lonl, elevl = radians(point1[0]), radians(pointi[1]), pointl[2]

lat2, lon2, elev2 = radians(point2[0]), radians(point2[1]), point2[2]

dlon = lon2 - lonl

dlat = lat2 - latl

a = sin(dlat / 2) * sin(dlat / 2) + cos(latl) * cos(lat2) * sin(dlon / 2) * sin(dlon / 2)
c = 2 * asin(sqrt(a))

horizontal_distance = earth_radius * c

vertical_distance = abs(elev2 - elevl)

inclined_distance = sqrt(horizontal_distance ** 2 + vertical_distance ** 2)
return horizontal distance, inclined_distance

def Geo_distance(pointl, point2):

geod = Geod(ellps='WGS84')

elel = point1[2]

ele2 = point2[2]

_, _, distance = geod.inv(point1[1], point1[0], point2[1], point2[0])
inclined_distance = sqrt(distance ** 2 + (ele2 - elel) *x 2)

return distance, inclined_distance

#calculation Execution

distance_list_hav = []

distance _list_hav_inclined = []

distance_list_geo = []

distance_list_geo_inclined = []

for i in range(len(Latitude)):
link_hav = []
link_hav_inlcined=[]
link_geo = []

link_geo_inclined = []
distance_list_hav.append(link_hav)
distance_list_geo.append(link_geo)
distance_list_geo_inclined.append(link_geo_inclined)
distance_list_hav_inclined.append(link_hav_inlcined)

for j in range(len(Latitude[i])-1):

pointl = (Latitude[i] [j], Longitude[i][j], Elevation[il [j])
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point2 = (Latitude([i] [j+1], Longitude[i] [j+1], Elevation[i] [j+1])
hav,hav_inclined = haver(pointl, point2)

link_hav.append(hav)

link_hav_inlcined.append(hav_inclined)

geodesic, geodesic_inclined= Geo_distance(pointl, point2)
link_geo.append(geodesic)
link_geo_inclined.append(geodesic_inclined)

#Link Length Calculation below :
Haversine distance =[]
Haversine_distance_inclined = []
Geodesic_distance = []
Geodesic_distance_inclined = []

for i in range(len(Latitude)):
Haversine_distance.append(sum(distance_list_hav[i]))
Haversine_distance_inclined.append(sum(distance_list_hav_inclined[i]))
Geodesic_distance.append(sum(distance_list_geo[i]))
Geodesic_distance_inclined.append(sum(distance_list_geo_inclined[i]))

Total_haversine_distance = sum(Haversine_distance)
Total_haversine_distance_inclined = sum(Haversine_distance_inclined)
Total_geodesic_distance = sum(Geodesic_distance)
Total_geodesic_distance_inclined = sum(Geodesic_distance_inclined)

#Model Attributes
#Speed Limit

links_parse = parse("$.response.route[0].leg[0].link[*]")
speed_limit_parse = parse("$.attributes.APPLICABLE_SPEED_LIMIT[O] .APPLICABLE_SPEED_LIMIT")
speed_limits = []

for link in links_parse.find(datal):
speed_limit = speed_limit_parse.find(link.value)
speed_limits.append(int (speed_limit[0].value) if speed_limit else None)

speed_limit_updated = speed_limits.copy()

for i in range(len(speed_limits)):
# If the current speed limit is None
if speed_limits[i] is None:
# If it's the first element, find the next available speed limit

if i ==
j=1
while speed_limits[j] is None and j < len(speed_limits) - 1:
j+=1
speed_limit_updated[i] = speed_limits[j]
else:

# Otherwise, use the previous speed limit
speed_limit_updated[i] = speed_limits[i - 1]

#Get from the LINKS* Tree:
links_parse = parse("$.response.route[0].leg[0].1link[*]")

Traffic_Condition = []
Traffic_Sign = []

Free_Flow_Speed = []

Wind_Direction = []
Wind_Velocity = []

for i,link in enumerate(links_parse.find(datal)):
condition_parse = parse("$.attributes.TRAFFIC_SIGN_FCN[0] .CONDITION_TYPE")
condition = condition_parse.find(link.value)

Traffic_Condition.append(int(condition[0].value) if condition else None)

sign_parse = parse("$.attributes.TRAFFIC_SIGN_FCN[0].TRAFFIC_SIGN_TYPE")
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sign = sign_parse.find(link.value)
Traffic_Sign.append(int (sign[0].value) if sign else None)

free_flow_speed_parse = parse("$.attributes.TRAFFIC_PATTERN_FCN[O].FREE_FLOW_SPEED")

free_flow_speed = free_flow_speed_parse.find(link.value)

Free_Flow_Speed.append(int(free_flow_speed[0] .value) if free_flow_speed else
speed_limit_updated[i])

wind_direction_parse = parse("$.attributes.ARCHIVED_WEATHER[O] .WIND_DIRECTION")
wind_direction = wind_direction_parse.find(link.value)
Wind_Direction.append(float(wind_direction[0] .value) if wind_direction else None)

wind_velocity_parse = parse("$.attributes.ARCHIVED_ WEATHER[O] .WIND_VELOCITY")
wind_velocity = wind_velocity_parse.find(link.value)
Wind_Velocity.append(float(wind_velocity[0].value) if wind_velocity else 0)

#Creating a list of lists as Latitudes, Longitudes, Elevation etc. to match the length

Speed_parse = dict(zip(LinkID, speed_limit_updated))

speed_limits_list = [[Speed_parse[link_id]] * len(lat) for link_id, lat in zip(LinkID, Latitude)]
speed_limits_list_float = [[float(value) / 3.6 for value in sublist] for sublist in
speed_limits_list]

traffic_signal_parse = dict(zip(LinkID, Traffic_Condition))
traffic_signals = [[traffic_signal_parse[link_id]] + [0]*(len(lat)-1) for link_id, lat in zip(
LinkID, Latitude)]

Traffic_sign_parse = dict(zip(LinkID, Traffic_Sign))
traffic_signs = [[Traffic_sign parse[link_id]] + [0]*(len(lat)-1) for link_id, lat in zip(LinkID,
Latitude)]

free_flow_speed_parse = dict(zip(LinkID, Free_Flow_Speed))

Free_Flow_Speed = [[free_flow_speed_parse[link_id]] * len(lat) for link_id, lat in zip(LinkID,
Latitude)]

Free_Flow_Speed_float = [[float(value) / 3.6 for value in sublist] for sublist in Free_Flow_Speed
]

wind_direction_parse = dict(zip(LinkID, Wind_Direction))
Wind_Direction = [[wind_direction_parse[link_id]] + [0]*(len(lat)-1) for link_id, lat in zip(
LinkID, Latitude)]

wind_velocity_parse = dict(zip(LinkID, Wind_Velocity))

Wind_Velocity = [[wind_velocity_parse[link_id]] + [0]*(len(lat)-1) for link_ id, lat in zip(LinkID
, Latitude)]

wind_velocity_float = [[float(value) / 3.6 for value in sublist] for sublist in Wind_Velocity]

# Flattening of Lists for DOC File

flat_latitudes = [item for i, sublist in enumerate(Latitude) for item in sublist[:-1] if i != len
(Latitude) - 1] + Latitude[-1]
flat_longitudes = [item for i, sublist in enumerate(Longitude) for item in sublist[:-1] if i !=

len(Longitude) - 1] + Longitude[-1]

flat_elevations = [item for i, sublist in enumerate(Elevation) for item in sublist[:-1] if i !=
len(Elevation) - 1] + Elevation[-1]

flat_slopes= [item for i, sublist in enumerate(Slopes) for item in sublist[:-1] if i != len(
Slopes) - 1] + Slopes[-1]

flat_curvatures = [item for i, sublist in enumerate(Curvatures) for item in sublist[:-1] if i !=
len(Curvatures) - 1] + Curvatures[-1]

flat_headings = [item for i, sublist in enumerate(Headings) for item in sublist[:-1] if i != len(
Headings) - 1] + Headings[-1]

flat_speed_limits = [item for i, sublist in enumerate(speed_limits_list_float) for item in
sublist[:-1] if i != len(speed_limits_list_float) - 1] + speed_limits_list_float[-1]
flat_free_flow_speed = [item for i, sublist in enumerate(Free_Flow_Speed_float) for item in
sublist[:-1] if i != len(Free_Flow_Speed_float) - 1] + Free_Flow_Speed_float[-1]

flat_traffic_signals = [item for i, sublist in enumerate(traffic_signals) for item in sublist
[:-1] if i !'= len(traffic_signals) - 1] + traffic_signals[-1]

flat_traffic_signs = [item for i, sublist in enumerate(traffic_signs) for item in sublist[:-1] if
i !'= len(traffic_signs) - 1] + traffic_signs[-1]

flat_wind_direction = [item for i, sublist in enumerate(Wind Direction) for item in sublist[:-1]
if i !'= len(Wind_Direction) - 1] + Wind_Direction[-1]
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flat_wind_velocity = [item for i, sublist in enumerate(wind_velocity_float) for item in sublist
[:-1] if i != len(wind_velocity_float) - 1] + wind_velocity_float[-1]

#Sgnals and signs filtering

Traffic_signal =[flat_traffic_signals[i] == 16 for i in range(len(flat_traffic_signals))]
Stop_sign=[flat_traffic_signs[i] == 20 for i in range(len(flat_traffic_signs))]
Yield_sign=[flat_traffic_signs[i] == 42 for i in range(len(flat_traffic_signs))]
pedestrian_crossing=[flat_traffic_signs[i] == 41 for i in range(len(flat_traffic_signs))]

print ("Extracting the attribues from the JSON file is successful")

#Distance between Consecutive Points after flattening the lists:
def calculate_distances(points):

wgs84_geod = Geod(ellps='WGS84')

distances = []

inclined_distances = []

for i in range(len(points)-1):
lonl, latl, elel = pointsl[i]
lon2, lat2, ele2 = points[i+1]

# Calculate horizontal distance
azl12, az2l, dist = wgs84_geod.inv(lonl, latl, lon2, lat2)
distances.append(dist)

# Calculate inclined distance

ele diff = abs(ele2 - elel)

inclined_dist = sqrt(dist**2 + ele_diff#**2)
inclined_distances.append(inclined_dist)

return distances, inclined_distances
print ("Distance Calculation Successful")

#CSV FILE Creation Section :

flat_distance, flat_inclined_distance = calculate_distances(list(zip(flat_longitudes,
flat_latitudes, flat_elevations)))

flat_distance.insert(0, 0)

flat_inclined_distance.insert(0, 0)

distance_model = np.cumsum(flat_inclined_distance)

check_distance= np.round(flat_distance,2)

check_distance = sum(check_distance)

Total_flat_distance = sum(flat_distance)
Total_flat_inclined_distance = sum(flat_inclined_distance)

#CSV FILE and Folder Creation Section

csv_files_directory = os.path.join(output_directory, 'CSV_Files')
os.makedirs(csv_files_directory, exist_ok=True)

base_name = os.path.splitext(os.path.basename(filepath)) [0]
output_file_path = os.path.join(csv_files_directory, base_name + '.csv')

Test = pd.DataFrame({'Linklenghth': link_length_Match, 'Geodesic Distance': Geodesic_distance,
'Geodesic Distance Inclined': Geodesic_distance_inclined})
Test.to_csv('Test.csv', index=False)

Model = pd.DataFrame({'Latitude': flat_latitudes, 'Longitude': flat_longitudes, 'Elevation':
flat_elevations, 'Slopes': flat_slopes, 'Curvatures': flat_curvatures, 'Headings': flat_headings
, 'Distance': distance_model,

'Speed Limits': flat_speed_limits, 'free_flow_speed': flat_free_flow_speed, '

Traffic Signals': Traffic_signal, 'Stop Sign': Stop_sign, 'Yield Sign': Yield_sign, 'Pedestrian
Crossing': pedestrian_crossing, 'Wind Direction': flat_wind_direction, 'Wind Velocity':
flat_wind_velocityl})

Model.to_csv(output_file_path, index=False)

print (f"Model File Saved")
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#Printing Function/ creating Report
reports_directory = os.path.join(output_directory, 'Reports')
os.makedirs (reports_directory, exist_ok=True)

with open(os.path.join(reports_directory, base_name+ 'Distance Report.txt'), 'w') as f:

# print("Distance from HERE MAPS:", Distance_HERE)

print (£"\n HAVERSINE:{Total_haversine_distance} Difference: {Total_haversine_distance -
Distance HERE}\n Error: {((Total_haversine distance - Distance HERE)/Distance HERE)*100}%", file
=f)

print (£"\n HAVERSINE Inclined:{Total_haversine_distance_inclined} Difference: {
Total_haversine_distance_inclined - Distance HERE}\n Error: {((Total_haversine_distance_inclined

- Distance_HERE)/Distance HERE)*100}%", file=f)

# # print(f"\n Geodesic Distance:{Total_geodesic_distance} Difference: {
Total_geodesic_distance - Distance HERE}\n Error: {((Total_geodesic_distance - Distance_HERE)/
Distance_HERE)*100}%")

# # print(£"\n Geodesic Distance Inclined:{Total_geodesic_distance_inclined} Difference: {
Total_geodesic_distance_inclined - Distance HERE}n Error: {((Total_geodesic_distance_inclined -

Distance_HERE)/Distance_ HERE)*100}%")
print (£"\n GEODESIC:{Total_flat_distance} Difference: {Total_flat_distance - Distance_HERE}\n
Error: {((Total_flat distance - Distance_HERE)/Distance HERE)*1003}%", file=f)

print (£"\n GEODESIC Inclined:{Total_flat_inclined_distance} Difference: {
Total_flat_inclined_distance - Distance HERE}\n Error: {((Total_flat_inclined_distance -
Distance_HERE)/Distance_HERE)*100}%", file=f)

# print(f"\n Geodesic Distance:{total_geo_flat} Difference: {total_geo_flat - Distance_HERE}\
n Error: {((total_geo_flat - Distance_HERE)/Distance_HERE)*100}%")

# print(£"\n rounded distance:{check_distance} Difference: {check_distance - Distance_HERE}\n

Error: {((check_distance - Distance_HERE)/Distance_HERE)*100}%")

++

#Plotting the Graphs

plt.plot(flat_longitudes, flat_latitudes)

# # plt.plot(np.cumsum(dist_vinc_int),interpol HPZ, 'x-', label='interpolated HPZ')
# plt.axes('equal')

plt.xlabel('Longitudes')

plt.ylabel('Latitudes')

# plt.legend()

plt.title('Vehicle Path')

plt.savefig(os.path.join(reports_directory, base_name + 'Vehicle Path.png'))

# plt.show()

pass

HOH OH O HH O HEH

# The Program Execution Starts from here : Incase if you are using json file directly, Comment this
function
def process_files_in_directory(directory, output_directory, extension=".txt"):
for filename in os.listdir(directory):
if filename.endswith(extension):
file_path = os.path.join(directory, filename)
try:
print (f"Processing file: {filename}")
process_file(file_path, output_directory) # Call your function here
except Exception as e:
print(f"Failed to process file: {filenamel}. Error: {str(e)}")

input_directory = "C:/path/to/folder" # Specify the input txt files folder here

output_directory = input_directory # Specify the output folder by default it will be inside the input
directory

process_files_in_directory(input_directory, output_directory)

Methodology and Application

The methodology and the application of the code as follows, Methodology:

o Data Collection: The script collects GPS traces (latitude, longitude, and option-
ally elevation) from a CSV file.
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e Distance Calculation: It calculates the distance between consecutive GPS points
using Haversine and Vincenty formulas.

¢« Road Data Extraction: It uses HERE Maps API to extract road attributes such
as speed limit, slope, and curvature based on the GPS traces.

e DOC Model Generation: The extracted data is compiled into a deterministic
operating cycle (DOC) model in CSV format.

Applications:

¢ Residual Range Estimation: The DOC model can be used to estimate the re-
maining travel distance with the available energy in the battery or fuel.

e Energy Consumption Analysis: Analyzes the energy consumed by the vehicle
based on accurate distance estimation and road conditions.

e Simulation and Testing: Provides detailed road conditions and vehicle dynamics
for simulation and testing purposes.
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