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A B S T R A C T

The simulation of delamination in layered composites is currently limited for large structures.
Typically, the use of Cohesive Zone Modelling leads to a requirement of keeping the elements
smaller than 1.0 mm. As an alternative, this article presents an Energy Release Rate-based
cohesive method enabling the use of elements significantly larger (up to 5 mm). A novel
algorithm is presented to use the Virtual Crack Closure Technique with distorted elements
not aligned with the delamination front. When the propagation criterion is met, a cohesive
law is introduced to model the progressive crack growth along the newly created crack
surface, ensuring to dissipate the correct amount of energy. The method is validated for
different propagation tests. Notably, Double Cantilever Beam and End-Notched Flexure tests
are accurately modelled with large and distorted elements. Finally, a partially reinforced DCB
test demonstrates the ability of the method in representing an evolving delamination front.

. Introduction

In a context of vehicle structural weight reduction driven by the need to reduce energy consumption, the automotive, railway and
erospace industries are expected to further increase their use of lightweight composite materials such as Fibre-Reinforced Polymers
FRPs). During the design phase, the development teams rely on numerical simulation to assess the mechanical behaviour of the
tructure. In the case of layered FRPs, the modelling of delamination is necessary as it is one of the main damage mechanisms.
owever, the computational cost of available methods is a critical limitation for large structure applications.

Cohesive Zone Modelling (CZM) is currently the preferred solution for the numerical modelling of delamination. A traction–
eparation law is introduced at the layer interfaces prone to delamination to represent the Fracture Process Zone (FPZ) [1,2].
onsequently, the mesh must be smaller than the FPZ [3]. This mesh size requirement becomes restrictive in the case of FRPs
ue to the small FPZ of the delamination interface, typically smaller than 1 mm. Additionally, having at least 3 cohesive elements
n the FPZ is recommended in the literature [3]. Finally, the initiation of propagation is based on the interface stress measured by
ntroducing an artificial stiffness between layers. This stiffness must be sufficiently high such that the added artificial compliance is
egligible. By doing so, it results in small stable time steps when using solvers based on explicit time integration. These computational
imitations lead to the impracticality of the CZM for large structures, especially under dynamic loads.
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Several works have been conducted to alleviate the computational cost induced by CZM. To some extent, the interface strength
an be reduced to artificially increase the size of the FPZ [3]. This workaround is limited as the peak force and damage initiation
apidly become inaccurate. Another improvement lies in optimising the cohesive element integration scheme, allowing for fewer
lements in the FPZ [4]. Ultimately, these solutions are still limited by the size of the FPZ. To overcome this limit, recent works use
igher-order cohesive formulations to better capture the displacement field around the crack tip [5,6]. These promising formulations
llow for cohesive elements larger than the FPZ. However, they require compatible surrounding elements and have not yet been
alidated further than beam-like geometries.

Another well-known approach to assess delamination propagation is the estimation of the Energy Release Rate (ERR). The most
sed methods being the J-integral [7–9] and the Virtual Crack Closure Technique (VCCT) [10,11]. When they are not based on
nderlying CZM [12], the ERR methods are usually based on the assumptions of Linear Elastic Fracture Mechanics (LEFM). That
s, the interface is brittle such that the FPZ is small compared to the existing crack. The ERR evaluation does not necessarily rely
n the interface stress to predict the crack growth. Therefore, under the correct conditions, some ERR methods can be applied to
arger elements. This has been shown in the case of the VCCT [13–15].

Using the VCCT, the ERR is evaluated by means of the crack tip forces, the openings behind the crack tip and the area to be
pened [11]. These quantities are evaluated at nodes of the underlying mesh, which is assumed orthogonal with respect to the crack
ront. Therefore, considerations are needed when the crack front is not aligned with the mesh, or when the elements are distorted.
n an effort to resolve this mesh dependency, a range of algorithms have been proposed. Initial works focused specifically on the
ffect of mesh distortion [16,17]. Conversely, the algorithm from Xie et al. [18,19] considered a regular mesh but an arbitrarily
haped delamination front. Together with other relevant methods [14,20], the algorithm by Xie et al. has been compared recently
or a radial crack in a regular squared mesh by Wu et al. [21]. The algorithm by Xie et al. has been further developed by Liu
t al. [22,23] and later on extended to distorted mesh by Marjanović et al. [24].

The estimation of the ERR by the VCCT predicts the crack propagation initiation but does not actually model this propagation.
hat is, when the ERR reaches the fracture toughness 𝐺𝑐 of the material, the crack front is updated assuming to have suddenly grown
long the entire newly created crack surface. As a result, the method does not dissipate the energy necessary to open this crack
urface. For this reason, instabilities are observed when using large elements [13,25]. Additionally, the delamination is observed
o grow faster when the mesh is not aligned with the crack front [26,27]. The increased growth speed is caused by overestimating
he ERR at sharp corners formed by the discretised front [25,26,28]. These ERR concentrations are due to higher crack tip forces
ppearing at corner nodes.

To solve these issues, Mabson et al. [29,30] have proposed to progressively release the constraint at the crack front once the
CCT criterion is met. Thus, absorbing the energy corresponding to the area being opened and alleviating the unrealistic ERR
oncentrations. The method has latter been extended to arbitrary crack fronts in regular mesh by De Carvalho et al. [28,31,32].
owever, the ability of such approach in modelling an evolving delamination front shape with large and distorted elements is yet

o be demonstrated.
Aiming to develop a similar solution to model delamination propagation with large elements in dynamic cases, the present

uthors have published a method called ERR-Cohesive [33]. Once the VCCT criterion is met, a cohesive law is introduced to model
he progressive growth of the crack along the newly created crack surface. A novel damage formulation ensures to dissipate the
orrect amount of energy corresponding to the current mode-mixity. Additionally, the ERR-Cohesive method does not introduce any
nitial artificial stiffness at the layer interface. Promising results were obtained using large elements (2 mm to 8 mm) in standard
ropagation tests [33]. However, although dissimilar element lengths ahead and behind crack front have been resolved in this
revious publication [33], the problem of an underlying distorted mesh representing an arbitrary shaped crack front has not been
reated. Solving this issue is needed for a wider adoption of the method into the industry, where the mesh is distorted due to the
eometrical complexity of the components.

The aim of the present work is to extend the ERR-Cohesive method to allow for arbitrarily shaped delamination front and
arge distorted elements. Starting from the VCCT and the cohesive formulation derived in the previous work [33], an algorithm is
resented to define the crack front growth direction and the related quantities needed by the VCCT: force at the crack tip, opening
ehind the crack tip, area to be cracked and characteristic lengths on either sides of the crack tip.

The method is implemented in the frame of an adaptive user element [34,35] by means of a subroutine in the commercial solver
S-DYNA [36]. Various examples are presented as numerical validation. Double Cantilever Beam (DCB) and End-Notched Flexure
ENF) tests are simulated with distorted elements and meshes not aligned with the crack front. The method is used to model a square
late [37] where the unbonded area is transitioning from an initial rectangular shape to a steady state circular shape. Finally, the
einforced-DCB test proposed by Carreras et al. [38], with an evolving shape of the delamination front, is modelled with a 1.8 mm
nd 5 mm mesh. The results show the accuracy of the method in predicting the growth of arbitrarily shaped delamination front as
ell as being compatible with distorted elements.

. Model description

The ERR-Cohesive method adapted for arbitrarily shaped delamination fronts is presented in this section. Firstly, the necessary
eminders are made on the ERR-Cohesive method presented in [33]. That is, the crack propagation criterion based on the VCCT, and
he energy dissipation mechanism based on a cohesive law are detailed. Then, the novel adaptations made to account for arbitrarily
2

haped delamination fronts and distorted elements are described.
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Fig. 1. Crack tip configuration used in the present method for the ERR evaluation by the VCCT. This crack tip configuration simplified to a 2D cross-section
can be used when the mesh is aligned with the crack growth direction. Each element is composed of 8 base nodes and 8 extra nodes to represent the crack
interface. The necessary information (e.g. openings and internal forces) is shared among neighbouring elements.

2.1. Framework

The present model is part of an adaptive modelling approach [34,35]. The simulation starts in an unrefined state with the entire
laminate being represented by a single through-the-thickness linear solid-shell element defined by 8 base nodes. In order to detect
delamination risk at unrefined ply interfaces, a method has previously been developed to reliably recover the out-of-plane stress
profiles of linear elements based on first-order shear deformation theory [39]. When a given refinement criterion is triggered, the
model can – where necessary – be refined through the thickness to represent delamination cracks. This is achieved by adding 8 new
nodes at the appropriate ply interface. The laminate is suitably split between the newly defined lower and upper elements.

In the present work, a delamination crack is assumed to have initiated. Therefore, only the final state of the adaptive procedure
(where the interface is already refined) is used. In order to model a bonded interface, the nodes at the enriched interface are
coincident in space and tied together by imposing equal acceleration on both nodes [33,34]. If a cracked interface is to be modelled,
the refined nodes are set free from each other, and a frictionless penalty contact is introduced. An illustration of the initial state of
refinement for the present study is shown in Fig. 1, although simplified to a 2D cross-section.

2.2. Crack propagation criterion

The method aims to accurately model the propagation of the crack with large elements. The interface considered is assumed
to be brittle, such that the assumption of LEFM can be applied. Furthermore, the FPZ is assumed to be smaller than the element
length. Therefore, the interface stresses at the crack tip would not be accurate and an ERR-based propagation criterion is preferred:
the crack grows when the ERR reaches the fracture toughness 𝐺𝑐 of the interface.

The evaluation of the ERR is made by means of the VCCT. In addition to the original crack closure method by Irwin [40],
he VCCT proposed by Rybicki et al. [10] assumes a self-similar crack propagation which allows for an evaluation of the ERR in

single analysis. It results in a straightforward application to finite element analysis and has proven to be accurate with large
lements [13–15,33]. The mode specific ERRs, 𝐺𝛼 for mode 𝛼 (𝛼 = 𝐼, 𝐼𝐼, 𝐼𝐼𝐼), are evaluated by measuring the force 𝐹 𝑖

𝛼 at the crack
ip node pair 𝑖, the opening 𝛥𝑖−1

𝛼 at the node pair 𝑖 − 1 behind the crack tip and the area 𝐴𝑖 to be opened by the releasing of the
onstraint at node pair 𝑖:

𝐺𝐼 = 1
2𝐴𝑖 𝐹

𝑖
𝐼
⟨

𝛥𝑖−1
𝐼

⟩

𝑐𝑖𝐼 , (1a)

𝐺𝐼𝐼 = 1
2𝐴𝑖 𝐹

𝑖
𝐼𝐼𝛥

𝑖−1
𝐼𝐼 𝑐𝑖𝐼𝐼 , (1b)

𝐺𝐼𝐼𝐼 = 1
2𝐴𝑖 𝐹

𝑖
𝐼𝐼𝐼𝛥

𝑖−1
𝐼𝐼𝐼 𝑐

𝑖
𝐼𝐼𝐼 , (1c)

where ⟨⟩ are the Macaulay brackets defined as ⟨𝑥⟩ = 1
2 (𝑥 + |𝑥|), and 𝑐𝑖𝛼 is a shape correction factor for mode 𝛼 defined below. The

force 𝐹 𝑖
𝛼 responsible for keeping the nodes coincident can be computed by knowing the contributions from the elements below (or

above) the interface at the node pair 𝑖 [33]. The force and the opening are expressed in the crack front local coordinate system
3

shown in Fig. 1.
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For the self-similar assumption to be respected, the distance to the crack tip 𝑙𝑖−1 from which the opening 𝛥𝑖−1 is measured should
be equal to the increase in crack length 𝑙𝑖 resulting from the releasing of node pair 𝑖. To allow for dissimilar element length, the
following correction factors are used in Eq. (1):

𝑐𝑖𝐼 = 𝑙𝑖

𝛥𝑖−1
𝐼

𝜃0(1 − 𝐶) + 𝐶2, (2a)

𝑐𝑖𝐼𝐼 = 𝐶, (2b)

𝑐𝑖𝐼𝐼𝐼 = 𝐶, (2c)

here 𝐶 = 𝑙𝑖

𝑙𝑖−1
and 𝜃0 is the crack tip opening angle. 𝜃0 is approximated as 𝜃0 = 𝜃0𝑈 + 𝜃0𝐿 where 𝜃0𝑈 and 𝜃0𝐿 are the angles formed

etween the sub-laminate cross section and the crack tip normal, respectively, for the upper and lower arm, see Fig. 1. For more
etails on the derivation of these corrections factor, refer to [33].

The total ERR 𝐺𝑇 is calculated as the sum of the modal ERRs:

𝐺𝑇 = 𝐺𝐼 + 𝐺𝐼𝐼 + 𝐺𝐼𝐼𝐼 . (3)

The critical fracture toughness 𝐺𝑐 is defined using the Benzeggagh–Kenane equation [41] by means of the pure mode I fracture
toughness 𝐺𝐼𝑐 and assuming that mode II and mode III have the same fracture toughness 𝐺𝐼𝐼𝑐 ,

𝐺𝑐 = 𝐺𝐼𝑐 +
[

𝐺𝐼𝐼𝑐 − 𝐺𝐼𝑐
]

𝐵𝜂 , (4)

where 𝐵 is the mixed-mode ratio defined as

𝐵 =
𝐺𝐼𝐼 + 𝐺𝐼𝐼𝐼

𝐺𝑇
, (5)

and the exponent 𝜂 is a parameter to be determined experimentally.
Following the fracture mechanics growth criterion, when the total ERR 𝐺𝑇 exceeds the corresponding fracture toughness 𝐺𝑐 of

the interface, the crack propagation initiates. To represent the progressive crack growth from node pair 𝑖 to node pair 𝑖 + 1, the
constraint keeping the node pair coincident is gradually released through the introduction of a cohesive law. This cohesive law
ensures that the amount of energy 𝐴𝐺𝑐 corresponding to the opening surface will be dissipated.

2.3. Energy dissipation mechanism

The cohesive law needs to initiate with an initial non-zero traction force 𝐹 𝑖
𝛼 . This force corresponds to the interface force needed

to tie the node pair 𝑖 at the moment the ERR propagation criterion is met. Below, the cohesive law is derived for any given node
pair being released, the superscript 𝑖 is dropped in the notation and the initial tying force 𝐹 𝑖

𝛼 becomes 𝐹 0
𝛼 .

Recalling the derivations presented in [33], the interface force 𝐹 0
𝛼 is degraded according to the cohesive law expressed as

𝐹𝐼 =
|

|

|

𝐹 0
𝐼
|

|

|

𝛥𝑚𝑎𝑥
𝐼

(1 −𝐷)
(

⟨𝛥𝐼 ⟩ + 𝛥𝑜𝑓𝑓𝑠𝑒𝑡
𝐼

)

− 𝑘𝑝 ⟨−𝛥𝐼 ⟩ , (6a)

𝐹𝐼𝐼 =
|

|

|

𝐹 0
𝐼𝐼
|

|

|

𝛥𝑚𝑎𝑥
𝐼𝐼

(1 −𝐷)
(

𝛥𝐼𝐼 + 𝛥𝑜𝑓𝑓𝑠𝑒𝑡
𝐼𝐼

)

, (6b)

𝐹𝐼𝐼𝐼 =
|

|

|

𝐹 0
𝐼𝐼𝐼

|

|

|

𝛥𝑚𝑎𝑥
𝐼𝐼𝐼

(1 −𝐷)
(

𝛥𝐼𝐼𝐼 + 𝛥𝑜𝑓𝑓𝑠𝑒𝑡
𝐼𝐼𝐼

)

, (6c)

where 𝑘𝑝 is a penalty contact stiffness, the damage variable 𝐷 and the maximum opening 𝛥𝑚𝑎𝑥
𝛼 will be defined below, and 𝛥𝑜𝑓𝑓𝑠𝑒𝑡

𝛼 is
an opening offset introduced to avoid infinite initial stiffness. The opening offset is defined for a desired initial stiffness 𝑘0𝛼 through

𝛥𝑜𝑓𝑓𝑠𝑒𝑡
𝛼 =

𝐹 0
𝛼

𝑘0𝛼
. (7)

For unloading cases, the opening offset 𝛥𝑜𝑓𝑓𝑠𝑒𝑡
𝛼 should be small to avoid unrealistic behaviours, refer to [33] for more details. Finally,

the maximum opening in mode 𝛼 is defined as

𝛥𝑚𝑎𝑥
𝐼 = max

𝜏∈[0,𝑡]

⟨

𝛥𝐼 (𝜏) + 𝛥𝑜𝑓𝑓𝑠𝑒𝑡
𝐼

⟩

, (8a)

𝛥𝑚𝑎𝑥
𝐼𝐼 = max

𝜏∈[0,𝑡]
|

|

|

𝛥𝐼𝐼 (𝜏) + 𝛥𝑜𝑓𝑓𝑠𝑒𝑡
𝐼𝐼

|

|

|

, (8b)

𝛥𝑚𝑎𝑥
𝐼𝐼𝐼 = max

𝜏∈[0,𝑡]
|

|

|

𝛥𝐼𝐼𝐼 (𝜏) + 𝛥𝑜𝑓𝑓𝑠𝑒𝑡
𝐼𝐼𝐼

|

|

|

, (8c)

here 𝛥𝑚𝑎𝑥
𝐼 is initialised to |𝛥𝑜𝑓𝑓𝑠𝑒𝑡

𝐼 | to account for cases where 𝛥𝑜𝑓𝑓𝑠𝑒𝑡
𝐼 is negative. By defining the current stiffness in mode 𝛼 as a

unction of the damage 𝐷 and the maximum opening 𝛥𝑚𝑎𝑥
𝛼 such that

𝑘𝛼 =
|

|

|

𝐹 0
𝛼
|

|

|

𝑚𝑎𝑥 (1 −𝐷) , (9)
4

𝛥𝛼
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Fig. 2. Force–opening representation of the cohesive law. The cohesive law is initiated with the forces 𝐹 0
𝐼 and 𝐹 0

𝐼𝐼 for which ERR = 𝐺𝑐 . The mode III representation
s not shown as it is analogous to mode II representation. The opening offset 𝛥𝑜𝑓𝑓𝑠𝑒𝑡

𝛼 ensures the initial stiffness to have a finite value.

he cohesive law can also be expressed as

𝐹𝐼 = 𝑘𝐼
(

⟨𝛥𝐼 ⟩ + 𝛥𝑜𝑓𝑓𝑠𝑒𝑡
𝐼

)

− 𝑘𝑝 ⟨−𝛥𝐼 ⟩ , (10a)

𝐹𝐼𝐼 = 𝑘𝐼𝐼
(

𝛥𝐼𝐼 + 𝛥𝑜𝑓𝑓𝑠𝑒𝑡
𝐼𝐼

)

, (10b)

𝐹𝐼𝐼𝐼 = 𝑘𝐼𝐼𝐼
(

𝛥𝐼𝐼𝐼 + 𝛥𝑜𝑓𝑓𝑠𝑒𝑡
𝐼𝐼𝐼

)

. (10c)

The damage variable 𝐷 is defined through the damage function 𝑑 as

𝑑 = 1
2𝐴𝐺𝑐

(

|

|

|

𝐹 0
𝐼
|

|

|

⟨

𝛥∗
𝐼
⟩

+ |

|

|

𝐹 0
𝐼𝐼
|

|

|

⟨

𝛥∗
𝐼𝐼
⟩

+ |

|

|

𝐹 0
𝐼𝐼𝐼

|

|

|

⟨

𝛥∗
𝐼𝐼𝐼

⟩

)

, (11)

where 𝛥∗
𝛼 is the damage-driving opening which has to be adapted for the opening offset as

𝛥∗
𝐼 =

⟨

𝛥𝐼 + 𝛥𝑜𝑓𝑓𝑠𝑒𝑡
𝐼

⟩

− |

|

|

𝛥𝑜𝑓𝑓𝑠𝑒𝑡
𝐼

|

|

|

, (12a)

𝛥∗
𝐼𝐼 = |

|

|

𝛥𝐼𝐼 + 𝛥𝑜𝑓𝑓𝑠𝑒𝑡
𝐼𝐼

|

|

|

− |

|

|

𝛥𝑜𝑓𝑓𝑠𝑒𝑡
𝐼𝐼

|

|

|

, (12b)

𝛥∗
𝐼𝐼𝐼 = |

|

|

𝛥𝐼𝐼𝐼 + 𝛥𝑜𝑓𝑓𝑠𝑒𝑡
𝐼𝐼𝐼

|

|

|

− |

|

|

𝛥𝑜𝑓𝑓𝑠𝑒𝑡
𝐼𝐼𝐼

|

|

|

. (12c)

he damage is ensured to be in the [0, 1] interval by setting

𝐷 = max
𝜏∈[0,𝑡]

[min{1, 𝑑(𝜏)}] . (13)

The function 𝑑 can be expressed equivalently as

𝑑 = 𝐵𝐼

⟨

𝛥∗
𝐼
⟩

|

|

|

𝛥𝑓
𝐼
|

|

|

+ 𝐵𝐼𝐼

⟨

𝛥∗
𝐼𝐼
⟩

|

|

|

𝛥𝑓
𝐼𝐼
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. (14)

here 𝐵𝛼 = 𝐺𝛼
𝐺𝑇

is the mode-mixity obtained from the VCCT and 𝛥𝑓
𝛼 is the failure opening defined as the opening at which the

energy 𝐴𝐺𝛼 would be consumed by linear softening in mode 𝛼,

𝛥𝑓
𝛼 =

2𝐴𝐺𝛼

𝐹 0
𝛼

. (15)

An illustration of the cohesive law is presented in Fig. 2. It is worth mentioning that the constitutive equations of the cohesive
aw are implemented in the local coordinates of the deformed interface, allowing for large displacement analysis. The energy 𝐴𝐺𝑐
o be dissipated is obtained from the area and mixed-mode ratio evaluated by the ERR. In that sense, 𝐴𝐺𝑐 is an input of the cohesive
aw and is kept constant during the node releasing. Although the force 𝐹 0

𝛼 is degraded equally for the three modes, the damage 𝐷
is a function of the openings. Therefore, the cohesive law does not impose the softening to be linear. In practice, linear softening is
5

observed under constant mode-mixity. In the case of a sudden change to a lower mode-mixity, the bilinear law represented by the
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Fig. 3. Present crack propagation modelling. The crack propagation is triggered by the ERR estimation. A cohesive law is introduced to model the crack
ropagation along the newly created crack surface.

reen line in Fig. 2 is an opening path allowed by the present formulation. Similarly, in the case of a progressive transition towards
igher mixed mode ratio, the cohesive law could follow the blue line.

One of the motivations behind the damage function in Eq. (11) and Eq. (14) is that it ensures the input amount of energy 𝐴𝐺𝑐
to be dissipated for any monotonic paths that could be followed by the openings during the node releasing. More specifically, it has
been demonstrated in [33], that the energy dissipated is proportional to the damage 𝐷 such that

 = 𝐴𝐺𝑐𝐷. (16)

This equation leads to an interpretation of 𝐷 as being the proportion of cracked area over the total area to be opened 𝐴. It should
be reminded that the present method is aimed to be used with elements larger that the FPZ. Thus, the cohesive law represents a
crack growing along the newly created crack surface, see Fig. 3.

The present cohesive law introduces a penalty stiffness, which can limit the stable time step in analysis with explicit integration
scheme. However, a relatively low stiffness can typically be used for two reasons. First, the stiffness is localised at the crack front,
avoiding general artificial compliance to be added to the model. Second, the impact of the chosen stiffness value is limited to
unloading, as the cohesive law initiates at damage initiation, see Fig. 2. Ultimately, mass scaling could be used locally at the crack
tip to ensure a convenient stable time step.

2.4. Interface damping

In addition to the constitutive model presented in [33], a mass proportional damping is introduced at the interface node pair
during the progressive releasing. The use of interface damping allows to stabilise unrealistic local vibrations. It is extensively used
in commercial software, especially for contact problems. In the present case, it has shown to reduce vibrations under unstable crack
propagation. The damping is based on the relative velocity of the two interface nodes �̇�𝛼 and the damping coefficient 𝑐𝑑𝑎𝑚𝑝 through:

𝑑𝑎𝑚𝑝 ̇
6

𝐹𝛼 = 𝑐𝑑𝑎𝑚𝑝𝛥𝛼 . (17)
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Fig. 4. Examples of regular mesh with different orientation with respect to the imposed crack front. The configurations are observed when the crack front
reaches the node 𝑖. These cases illustrate the need to account for the damage 𝐷 of the nearby nodes to define the crack front.

The damping coefficient is taken as 10% of the critical damping 𝑐𝑐 calculated for a typical spring–mass system through

𝑐𝑐 =
4
𝑏

√

𝑚𝑘0𝛼 , (18)

where 𝑚 is the effective mass of the node pair and 𝑏 is a coefficient depending on the stiffness of the connected elements (𝑏 = 1.2
is considered here). The damping is present only while the cohesive law is acting on the node pair, it is removed when 𝐷 = 1.

2.5. Arbitrarily shaped front

For the estimation of the ERR by the VCCT, the quantities appearing in Eq. (1) need to be evaluated. If a regular squared mesh
oriented orthogonally with respect to the crack front is assumed, the evaluation is straightforward, see also Fig. 1. However, defining
the necessary quantities is challenging when the underlying mesh is distorted and not aligned with the crack front. This applies to
the following:

• The local coordinate system at node 𝑖 defining the crack growth direction. The force 𝐹 𝑖
𝛼 and opening 𝛥𝑖−1

𝛼 will be expressed in
this coordinate system.

• The node 𝑖 − 1 from which the opening 𝛥𝑖−1
𝛼 is retrieved.

• The area 𝐴𝑖 to be opened when releasing node 𝑖, according to the local shape of the crack front.
• The characteristic lengths ahead of the crack tip 𝑙𝑖 and behind the crack tip 𝑙𝑖−1, needed for the correction factor 𝑐𝑖𝛼 .

As explained in the introduction, several authors have proposed algorithms to solve this issue. Naturally, the algorithm proposed
n this paper is largely inspired by these works. However, a particular focus is made on the compatibility with both a damage
echanism and distorted elements. The energy absorption mechanism removes the binary nature of the nodes being either closed

r opened. Instead, some node pairs near the crack tip are partially released according to the cohesive law expressed in Eq. (6).
t is worth mentioning that the algorithm is defined for 8-node solid-shell elements, 6-node elements (extruded triangles) are not
onsidered.

Recalling that the FPZ is assumed to be much smaller than the element length, the crack front is reduced to a line. In the algorithm
y De Carvalho et al. [32], the damage value is used to interpolate the crack front position along the element’s edges orthogonal to
he front. In the present case, where arbitrarily shaped fronts are expected to propagate in large and distorted elements, a linearly
nterpolated crack front based on the damage value would be poorly defined. Furthermore, it should be remembered that the method
oes not assume a crack growth direction a priori.

As an alternative approach, it is assumed that the crack front follows the element edges and diagonals. In addition, the relative
istance of the partially released nodes to the crack front is assumed to be proportional to the damage 𝐷, as suggested by Eq. (16).

A threshold value 𝐷0 is defined to decide whether the partially released node should be considered for the current crack front.
Therefore, nodes with a low damage value (𝐷 < 𝐷0) are assumed to be part of the current crack front. Nodes with a higher damage
alue (𝐷 > 𝐷0) are assumed to be far from the current crack front.

To motivate for the definition of a threshold value 𝐷0, three different crack tip configuration examples are presented in Fig. 4.
hese examples present an idealised straight crack front growing in a DCB-like specimen, modelled with a regular mesh of different
rientations. The node status and associated damage values are observed at the time the ERR reaches the critical value 𝐺 at node
7

𝑐
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Fig. 5. Crack front centred around node 𝑖. Only the bottom nodes of the interface are represented. The nodes are either tied with their paired upper node
(i.e. ERR< 𝐺𝑐 ), connected to their paired upper node by the cohesive law (0 < 𝐷 < 1), or free (𝐷 = 1). To define the crack front, the nodes with 𝐷 < 𝐷0 are
assumed to be bonded. The crack front is then defined by vectors 𝒄1 and 𝒄2 delimiting the bonded and free areas.

𝑖. The presented examples are obtained with a 5 mm mesh for a specific specimen and DCB-like load case. However, the general
observations have shown to stand when using the present solid-shell formulation and modelling configuration.

In case 1, when the crack front is aligned with the mesh, the crack front follows the element edges. Along the front, one node
will open sooner than the others, typically due to its central position. However, the damage 𝐷 at this node will remain low until
the other nodes of the crack front open as well. In this case, it is clear that low values of 𝐷 do not induce a change in the shape of
the crack front. In practice, with distorted meshes and non-aligned edges, some nodes tend to accumulate damage faster than other
in the same crack front. Depending on the degree of distortion, such cases can reach damage values higher than 𝐷 ≈ 0.20. In case 2,
where the mesh is oriented at 45◦, the crack front follows the diagonals of the elements. It is observed that the node 𝑖 should open
when some nodes behind the crack tip have a damage 𝐷 ≈ 0.35. These nodes are part of a preceding crack front and should not
be considered for the current crack front. Finally, in case 3, with a mesh oriented at 22.5◦, there is no clear crack front definition
based on element edges and diagonals, However, it is observed that node 𝑖 should open when some nodes behind the crack tip have
a damage 𝐷 ≈ 0.27. For such cases, several crack front directions will be considered, as explained below.

These examples motivate for a value of 𝐷0 roughly between 0.20 and 0.27. Namely, 𝐷0 = 0.25 (corresponding to 25% of the
energy dissipated), gives the best results in practice and is used in the present work. It is likely that the value of 𝐷0 would need to
be adapted when using another element formulation or modelling configuration. For a better assessment of the chosen value of 𝐷0
regarding the sensitivity to mesh size and element distortion, refer to Section 3.

Considering a tied node 𝑖 at the crack front (see Fig. 5), the crack front in its vicinity is defined by two vectors 𝒄1 and 𝒄2.
Considering all neighbouring nodes in a counter-clockwise direction, 𝒄1 points from the tied node to another bonded node (i.e. tied
or 𝐷 < 𝐷0) that is followed by a free node. Further, 𝒄2 points to the bonded node that is preceded by a free node.

Once the crack front is defined, the area 𝐴𝑖 that will be opened by the releasing of node 𝑖 can be estimated. 𝐴𝑖 is used both for
the evaluation of the ERR by the VCCT and for the cohesive law through the energy to be dissipated, 𝐴𝑖𝐺𝑐 . The way in which 𝐴𝑖

is evaluated depends on the angle 𝛽 from 𝒄2 to 𝒄1. A threshold value 𝛽0 = 150◦ is defined to differentiate between a convex crack
front 𝛽 < 𝛽0, and a straight or concave crack front 𝛽 > 𝛽0. The value 𝛽0 = 150◦ is chosen sufficiently lower than 180◦ such that
nearly straight crack fronts are still treated with the straight or concave front definition (𝛽 > 𝛽0). At the same time, it is defined
sufficiently larger than 135◦ to ensure that the case 3 of Fig. 7 is treated according to the convex front definition (𝛽0 < 𝛽0). The area
𝐴𝑖 is defined as follows:

• If 𝛽 > 𝛽0, it is assumed that the crack front is sufficiently well represented. The nodes pointed by vectors 𝒄1 and 𝒄2 are
expected to open almost simultaneously with node 𝑖. In this case, 𝐴𝑖 is defined by the polygon delimited by the points
(

𝑖,C1
2,
(

C2
2

)

edge
,E1,… ,E𝑁 ,

(

C2
1

)

edge
,C1

1

)

as shown in the case 4 and 5 of Fig. 6. C1
2 (equivalently C1

1) is halfway along 𝒄2
(𝒄1). The notation (∙)edge around C2

2 (equivalently C2
1) specifies that this point is included in the definition of the polygon only

if 𝒄2 (𝒄1) is along an element edge. In that case, C2
2 (equivalently C2

1) is the midpoint of the bonded edge opposite to 𝒄2 (𝒄1).
Finally, the nodes E1 to E𝑁 are the nodes, in the counter-clockwise direction, between 𝒄2 and 𝒄1 sharing an edge with node 𝑖.

• If 𝛽 < 𝛽0, it is assumed that the crack front is not well represented. The nodes pointed by 𝒄1 and 𝒄2 will not open at a time
near the opening of node 𝑖. In this case, 𝐴𝑖 is defined by the polygon delimited by the points

(

𝑖,C1,E ,… ,E ,C1
)

as shown
8
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Fig. 6. General definition of the area 𝐴𝑖. The general definition applies when at least 4 consecutive nodes are bonded (𝐷 < 𝐷0), starting in the counter-clockwise
direction with the node pointed by 𝒄2 and ending with the node pointed by 𝒄1. The definition of 𝐴𝑖 is different for the case 𝛽 > 𝛽0 and 𝛽 < 𝛽0 with 𝛽0 = 150◦.

o show the continuity around the crack front, the area considered for the neighbouring nodes are also shown with transparency.

in the case 6 of Fig. 6. C1
2 (equivalently C1

1) is the node pointed by 𝒄2 (𝒄1). The nodes E1 to E𝑁 have the same definition as in
the 𝛽 > 𝛽0 case

In Fig. 6, the areas considered by the neighbouring nodes along the crack front are shown with transparency. In the convex crack
front case, where the crack front is assumed to be poorly discretised, the neighbouring areas represent nodes which are considered
to belong to the preceding or following state of the crack front. Under the assumptions of steady-state growth and limited distortion,
the considered areas are continuous along the front and do not present overlap.

Before measuring the opening behind the crack front, it is necessary to define the crack growth direction. Following the
self-similar growth assumption of the VCCT, the crack is assumed to grow orthogonally to the local delamination front:

• In the case where 𝛽 < 𝛽0, the crack front is poorly represented and three possible crack front directions are considered: 𝒏1, 𝒏2
and 𝒏0 (see the cases 3 and 6 in Fig. 7). The normalised vectors 𝒏1 and 𝒏2 are respectively orthogonal to 𝒄1 and 𝒄2. Then, 𝒏0
is defined through:

𝒏0 =
𝒏1 + 𝒏2

‖

‖

𝒏1 + 𝒏2‖‖
. (19)

• In the case where 𝛽 > 𝛽0, the crack front is assumed to be sufficiently well represented and only 𝒏0 is considered (see the cases
1, 2, 4 and 5 in Fig. 7).

For each considered growth direction, a local coordinate system is defined by the growth direction vector 𝒏𝑑 (𝑑 = 0, 1, 2) and
he normal to the interface plane. The vector tangent to the crack front being orthogonal to these two vectors. The opening is
easured at the point 𝑖 − 1 defined as the intersection between the perimeter edges of the neighbouring elements and the crack

rowth direction on the debonded side, see examples in Fig. 7. The opening 𝛥𝑖−1
𝛼 is calculated by subtracting the displacement of

he upper and lower surface of the interface at point 𝑖 − 1. The opening 𝛥𝑖−1
𝛼 and the force 𝐹 𝑖

𝛼 are expressed in the local coordinate
ystem of the considered growth direction, allowing to decompose mode I, II and III contributions according to Eq. (1).
9
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Fig. 7. Examples of crack front configurations around the node 𝑖 following the general definition of the area. If 𝛽 < 𝛽0, 3 crack growth directions are considered:
𝒏1, 𝒏2 and 𝒏0. If 𝛽 > 𝛽0, the crack growth direction 𝒏0 is solely considered. The openings are retrieved at node 𝑖 − 1 at the intersection between the perimeter
edges and the crack growth direction on the debonded side.

Finally, 𝑙𝑖, 𝑙𝑖−1 and 𝜃0 are defined for the evaluation of the shape correction factor 𝑐𝑖𝛼 . The characteristic length 𝑙𝑖−1 is taken as
the distance from 𝑖 to 𝑖 − 1. Similarly to 𝑖 − 1, a point 𝑖 + 1 is defined on the bonded side and the length 𝑙𝑖 is measured from 𝑖 to
+ 1. It is recalled that the angles 𝜃0𝑈 and 𝜃0𝐿 define the crack tip opening angle through 𝜃0 = 𝜃0𝑈+ 𝜃0𝐿, see Fig. 1. The angles 𝜃0𝑈 and
0
𝐿 are taken as projected angles in the plane formed by the growth direction 𝒏𝑑 and the normal to the interface.

In the definition of the area 𝐴𝑖, a series of particular cases have to be considered for a wider application of the method. These
ases, listed in Fig. 8, occur when only 1 to 3 consecutive nodes are bonded on the perimeter. They can be found at corners
f rectangular bonded areas or at geometrical free edges. Following the convex definition (𝛽 < 𝛽0), the standard 3 crack growth
irections are considered. Rather, the particularity lies in the definition of the area 𝐴𝑖. For some of these particular cases, the area is
efined differently for each growth direction 𝒏𝑑 , thus designated

(

𝐴𝑖)
𝒏𝑑

. The definition of the area 𝐴𝑖 for each situation is illustrated
n Fig. 8. It should be noted that all these particular cases follow the general case for the remaining of the algorithm.

With all necessary quantities defined, the VCCT is applied for each of the considered crack growth directions. The releasing
f the tied condition at node 𝑖 is triggered when 𝐸𝑅𝑅 ≥ 𝐺𝑐 as explained in the previous subsections. When two possible growth
irections are triggered at node 𝑖 in the same time increment, the direction maximising the ratio 𝐸𝑅𝑅

𝐺𝑐
is chosen as suggested in [42].

However, for the particular cases of Fig. 8, the direction 𝒏0 with an expected larger delaminated area is preferred over directions
𝒏1 and 𝒏2. It should be clarified that the impact of the triggering growth direction on the following crack propagation modelled by
the cohesive law is limited to the energy to be dissipated 𝐴𝑖𝐺𝑐 .

Finally, it should be mentioned that the algorithm is fed with adjacent elemental history variables through a built-in user
subroutine in LS-DYNA. The latter allows to sync non-local information between neighbouring elements distributed in different
memory partitions (computational nodes). The shared information comprises the elemental contribution to the interface forces at
node 𝑖, the current position of the nodes, the tied status and damage value at the nodes.
10
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Fig. 8. Particular cases considered for the definition of the area 𝐴𝑖. These cases occur when only 1 to 3 consecutive nodes are bonded on the perimeter.

3. Validation

In this section, various numerical examples are presented to assess the ability of the adapted ERR-Cohesive method in modelling
arbitrarily shaped delamination fronts with distorted large elements. Firstly, standard DCB and ENF tests are simulated with distorted
elements and a mesh not aligned with the crack front. Then, the case of a plate with an initial rectangular crack transitioning towards
a steady-state circular crack front is presented. Finally, the Reinforced-DCB test with an evolving shape of the delamination front is
modelled and compared to the experimental results from Carreras et al. [38].

3.1. DCB and ENF

The DCB and ENF tests from a benchmark proposed by Krueger [43] are used to model a straight propagation in pure mode
I and pure mode II. It is recalled that the constitutive model had been validated under mixed mode propagation in a previous
publication [33]. The dimensions and material properties are extracted from the benchmark proposed by Krueger [43]. They
are summarised respectively in Fig. 9 and Table 1. The laminate is made of unidirectional carbon-FRP layers, aligned along the
11
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Table 1
Material and interface properties used in the different validation tests.

Property DCB ENF Square plate Reinforced-DCB Units

Reference [43] [43] [37] [38]

Substrate properties
Material name T300/1076 IM7/8552 Aluminium Carbon-FRP
𝐸11 139.4 161.0 70 154 GPa
𝐸22 = 𝐸33 10.16 11.38 – 8.5 GPa
𝐺12 = 𝐺13 4.6 5.2 – 4.2 GPa
𝐺23 3.54 3.9 – 3.036 GPa
𝜈12 = 𝜈13 0.30 0.32 0.3 0.35 –
𝜈23 0.436 0.45 – 0.40 –
𝜌 1500a 1500a 2700 1500b kg m−3

Interface properties
𝐺𝐼𝑐 0.170 0.212 0.212 0.305 kJ m−2

𝐺𝐼𝐼𝑐 0.494 0.774 0.774 2.77 kJ m−2

𝜂 1.62 2.1 2.1 2.05 –

a Not specified in [43], a standard value is used.
b Not specified in [38], a standard value is used.

Fig. 9. Benchmark configurations used for the DCB and ENF tests [43].

longitudinal direction of the coupons. In order to ensure stable crack growth, the initial crack length has been adapted to 𝑎0 = 0.69𝐿
for the ENF case.

The presented ERR-Cohesive method is employed with three different meshes, visible in the results in Fig. 11 and Fig. 13. The
first model is a regular 3 mm mesh used as reference. A regular 4.5 mm mesh oriented at 45◦ with respect to the crack direction is
used to evaluate the method in a case where the mesh is not orthogonal with respect to the crack front. To allow for a quad-only
45◦ mesh, this latter is defined such that the specimen boundaries correspond to the outermost continuous element diagonals. The
outermost interface node pair is set free to respect for the initially bonded area that is marked on the meshes shown in the result
figures. Finally, the method is challenged with a distorted mesh presenting element lengths ranging from 1 to 5 mm. Apart from the
element length limits, the distorted mesh meets typical quality criteria which can be found in the industry about skewness, taper
and aspect ratio. These different mesh configurations are coarse in the sense that the elements are larger than the expected FPZ for
such interface.

Some simulations parameters share common definition for all the models using the ERR-Cohesive method presented afterwards.
That is, the load is introduced through an imposed displacement following the ramp-up phase of a sinusoidal shape with a
termination time of 0.5 s. No global damping is applied to the models. However, as mentioned in Section 2.4, a local interface
damping is used at the nodes where the cohesive law is acting. The cohesive stiffness is set such that the interface stable time step
is 0.25 μs [33]. Finally, the two parameters of the algorithm for arbitrarily shaped crack are recalled: 𝐷0 = 0.25 and 𝛽0 = 150◦.

The force–displacement curves obtained for the different meshes are compared to the analytical solution obtained from the
orrected Beam Theory (CBT) [44–46] in Fig. 10 and Fig. 12, respectively, for the DCB and ENF tests. In Fig. 11 and Fig. 13,
ome crack propagation states are presented, corresponding to different values of imposed displacement. The damage plot for the
RR-Cohesive method is shown together with the crack length obtained from the analytical solution. For the present method, it is
orth recalling that the damage value at a given node can be related to the fraction of assigned area which has been opened, see
q. (16). For example, if a node of a regular mesh has a damage value of 0.5, the crack front is expected to be halfway through the
12
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Fig. 10. DCB force–displacement results for 3 different meshes: a regular mesh, a distorted mesh and a regular mesh oriented at 45◦ with respect to the
propagation direction. The different meshes are visible for 3 propagations states in Fig. 11.

Fig. 11. DCB propagation states for the 3 different meshes. The 3 propagations states corresponding to displacements of 1 mm, 2 mm and 3 mm are superposed
in the same mesh representation.
13
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Fig. 12. ENF force–displacement results for 3 different meshes: a regular mesh, a distorted mesh and a regular mesh oriented at 45◦ with respect to the
propagation direction. The different meshes are visible for 2 propagations states in Fig. 13.

Fig. 13. ENF propagation states for the 3 different meshes. The propagations states corresponding to displacements of 1.32 mm and 2.5 mm are superposed in
the same mesh representation.
14
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Fig. 14. Geometry of the square plate with unbonded rectangular area [37]. Symmetry conditions are applied such that a quarter of the plate is represented.
Two different cases are defined to load separately the interface in mode I and mode II.

As expected from [33], the results for the regular mesh are excellent as they closely follow the analytical solution both for the
force–displacement curve and for the crack propagation. The results for the 45◦ mesh and the distorted mesh are considered good
in view of the suboptimal mesh configurations employed. The difference with respect to the analytical solution is relatively low and
the instabilities are limited.

Looking closely at the DCB force–displacement curve of the 45◦ mesh in Fig. 10, an early initial propagation can be observed
at a force of about 42 N. This early propagation is due to ERR concentrations at the sharp corners delimiting the bonded area.
This overestimation of the ERR has been observed by others authors [26,27]. However, in the present case, the energy dissipation
mechanism ensures the force to reach the expected values. Then, the following nodes do not experience this unrealistic ERR
concentration thanks to the damage mechanism still acting at the previous nodes, smoothing the crack tip forces along the front. It
should be clarified that the reversed thumbnail shape of the crack front appearing at a displacement of 1 mm is caused by the front
being merged with the initially unbonded outermost free node. The real shape of the crack front can be seen for a 2 mm or 3 mm
imposed displacement. Thus, the presented VCCT evaluation algorithm allows to detect the correct growth direction, although the
mesh is not aligned with the crack front.

The distorted mesh case further exemplifies the robustness of the method. The crack front remains relatively straight despite
the mesh distortion. Additionally, the accuracy of the force–displacement curve shows that the algorithm globally dissipates the
correct amount of energy. The energy dissipated by the cohesive law through Eq. (16) is highly dependent on the area to be
opened 𝐴 considered by the VCCT algorithm explained on Section 2.5. Therefore, the correct force–displacement curve and the low
instabilities show the ability of the algorithm in evaluating the area to be opened in distorted meshes. Finally, it can be observed
that the analytical crack front corresponds to damage values around 0.20 to 0.30 (cyan colour) in the present method. This is an
indication for the chosen empirical value of 𝐷0 = 0.25 in Section 2.5.

In the ENF test, some instabilities have been observed when applying the method with the solid-shell formulation employed,
corresponding to LS-DYNA reduced integration thick shell ELFORM 5. Such instabilities are greatly reduced by rising the anti-
hourglass coefficient. However, the latter artificially increases the stiffness of the element in the case of bending along the element
diagonals. For this reason, the initial stiffness of the 45◦ mesh and the distorted mesh is higher than the expected one according to
the analytical solution, see Fig. 12. For a better comparison, the analytical solution with a 10% stiffness increase is also plotted. At a
displacement of 1.32 mm, the nearly-unstable crack growth phase ends with accurate propagation states observed for the regular and
45◦ mesh. The distorted mesh shows a slightly advanced crack growth compared to the analytical solution due to a short unstable
growth episode. The following, more stable, propagation phase is well captured by all the meshes. These ENF results confirm the
accuracy of the method in modelling mode II propagation in non-aligned and distorted coarse mesh.

3.2. Square plate

The following example is a square plate with an unbonded rectangular area in its centre. Proposed by De Carvalho et al. [37],
it is used to evaluate the ability of the method in modelling a non-self-similar crack growth. The crack front transitions from the
initial rectangular shape to a steady-state circular shape.

Referring to the model illustrated in Fig. 14, the aluminium plate is 4.5 mm thick with a side length of 100 mm. It is made
from two 2.25 mm-thick plates bonded together, except for a central rectangular area. Only a quarter of the model is simulated by
applying symmetry conditions. An imposed displacement is applied in a square area at the centre of the plate. Mode I is created by
applying an upward displacement on the top side and a downward displacement on the lower side, while the plate is free of any
boundary condition apart from the symmetry conditions. Mode II is created by clamping the outer edges and applying a downward
15
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Engineering Fracture Mechanics 306 (2024) 110193P.M. Daniel et al.

m
𝑘

c
o
o
f

The present method is used with a 2 mm and a 5 mm mesh. As comparison, an Abaqus/Standard® CZM simulation with a 0.5 mm
esh is also performed. Apart from the fracture toughness in Table 1, the conventional cohesive elements use a penalty stiffness of
𝐼 = 𝑘𝐼𝐼 = 5.0 × 105 MPa.mm−1 and a strength of 𝑋𝐼 = 𝑋𝐼𝐼 = 30 MPa.

Additionally, analytical solutions have been derived considering a circular crack front, see Appendix. In the present case, the
rack front becomes circular once steady-state growth is reached with a radius of the delaminated area corresponding to the diagonal
f the initial rectangle: 𝑎 = 22.36 mm. After that, the front is perfectly circular for mode I due to the absence of boundary conditions
n the outer edges. For mode II, the front is not perfectly circular due to the square shape of the clamped outer edges. Still, the
ront is assumed circular for moderately small crack radius. Instead of the 100 × 100 plate dimension, a substitute outer radius is

considered for the analytical solution following 𝑅 =
√

(100 × 100∕𝜋) [47].
For mode I, the force–displacement curves are presented in Fig. 15, and the crack propagation states for two displacements

values are shown in Fig. 16. The results of the present method are considered close to the refined CZM model. At a displacement
of 0.1 mm, the crack propagation has initiated on the longer side of the initially unbonded area. The present method correctly
detects this initial propagation responsible for the stiffness change at a force around 250 N. This first propagation phase shows
the ability of the method in modelling a non-self-similar growth. At a displacement of 0.25 mm, the crack front has recovered the
steady-state circular propagation. The different models are well in agreement with the crack front radius of 𝑎 = 24.24 mm predicted
by the analytical solution. The excellent circular shape obtained under steady-state growth demonstrates that the propagation is
independent to alignment of the mesh with respect to the crack front, refer to the 3 cases in Fig. 4.

The force–displacement curves for mode II are presented in Fig. 17, and the crack propagation states in Fig. 18. As previously
explained, some instabilities occur in mode II when a low anti-hourglass coefficient is used. In this example, the anti-hourglass
coefficient is kept low to limit the stiffness increase which would invalidate the comparison with CZM. Consequently, some
instabilities can be observed, especially for the 2 mm elements presenting a high thickness-to-length ratio. These instabilities are
visible through vibrations in the force–displacement curves and through a distinctive pattern where alternating damage values are
obtained along parts of the crack front that are orthogonal to the mesh. Such instabilities under mode II propagation have also been
observed by Brambilla et al. [25].

In addition, the CZM model presents a large FPZ length, estimated to 10.4 mm according to the expression by Soto et al. [48]. This
large FPZ complicates the propagation state comparison between CZM and the present method. A non-linear damage colour scale
is used for the CZM propagation shown in Fig. 18 as conventional cohesive elements present a highly non-linear relation between
damage values and dissipated energy [49,50]. Arguably, the analytical crack state serves as a better reference. Nonetheless, the
results are satisfactory as the force–displacement curves of the present method are close to the one obtained with CZM, especially
the 5 mm mesh.

3.3. Reinforced-DCB

The Reinforced-DCB test is based on the experimental benchmark proposed by Carreras et al. [38]. The test is designed such
that the shape of the crack front evolves notably from a concave to a convex shape. The experimental data [51] includes the
measured shape of the delamination front at different propagation states. It is especially suitable to validate algorithm aiming to
model arbitrarily shaped crack front.

The geometry of the sample is described in Fig. 19. For the numerical modelling, the nominal dimensions of the coupon are
considered according to [52]. The load application is similar to a standard DCB test. Both the laminate of the main plate and
the reinforcement are made of unidirectional Carbon-FRP plies oriented longitudinally, the properties of the ply and interface are
presented in Table 1. The initial crack length is 35 mm. For more details on the experimental test, refer to [38].

The experiment has been modelled with the present method for a 1.8 mm and a 5.0 mm mesh. A CZM model with a 0.25 mm
mesh made with Abaqus/Standard® is used for additional numerical comparison. The conventional cohesive elements use a penalty
stiffness of 𝑘𝐼 = 𝑘𝐼𝐼 = 1.0 × 105 MPa mm−1 and a strength of 𝑋𝐼 = 𝑋𝐼𝐼 = 20 MPa. This strength value has been reduced compared
to the original strength [52] to avoid mesh size dependency [3].

The force–displacement results are shown in Fig. 20. The curves of the specimen A, B and C show the cyclic loading which have
been used to measure the shape of the crack front at different propagation states, see [38]. The specimen D has been loaded without
interruption. The different propagation states obtained numerically are compared to the experimental ones in Fig. 21. The results
show that the present method is able to model the propagation both with the 1.8 mm and the 5 mm mesh. The force–displacement
curves and the shape of the delamination front at the different propagation states are close to the experimental data.

Each propagation phase can be analysed more specifically. At a displacement of 6 mm, the first propagation phase is ending as
the crack approaches the reinforcement. The delamination front is starting to be concave. The CZM crack appears slightly ahead
of the experiment. After 6 mm, the force increases as the propagation reaches the reinforcement. At a displacement of 10 mm, this
ascending phase is ending and an accurate concave crack front is clearly visible in all the models.

Before reaching the last propagation phase, a force peak can be seen at around 11 mm to 12.5 mm of applied displacement in
the numerical models. The peak is followed by an unstable growth corresponding to the sudden reversal of the front concavity.
The force peak is not present in the experiment. The fine-mesh CZM simulation shows that this force peak is not related to the
ERR-Cohesive method. It is believed that this force peak is caused by an insufficient mesh resolution at the reinforcement borders
due to the expected stress concentration at this point. A clear tendency can been seen in the results where the peak is being reduced
with finer models. However, additional experimental factors cannot be discarded, such as unnoticeable plasticity at the bonded
16
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Fig. 15. Mode I force–displacement results for the square plate. The analytical solution is known once the steady-state circular crack front is recovered. See
Fig. 16 for the propagation comparison.

Fig. 16. Comparison of the mode I square plate results at two different states of propagation.
17
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Fig. 17. Mode II force–displacement results for the square plate.

Fig. 18. Comparison of the mode II square plate results at two different states of propagation. The CZM results show a large FPZ. Thus, a non-linear damage
colour scale is used to better estimate the position of the crack front. Instabilities are observed for the present method when high thickness-to-length ratio
elements are used with a low anti-hourglass coefficient. These instabilities appear through alternating damage values along parts of the crack front that are
orthogonal to the mesh.
18



Engineering Fracture Mechanics 306 (2024) 110193P.M. Daniel et al.
Fig. 19. Geometry of the Reinforced-DCB test according to [52].

interface between the reinforcement and the main plate, or the effect of some fibre bridging observed at the end of the experiment
by Carreras et al.

Afterwards, the last propagation phase is reached as the crack front is beyond the reinforcement border. The delamination shape
is now convex. At a 12 mm displacement, the numerical models capture well the front shape, but the crack is slightly ahead compared
to the experiment. In the case of the 5 mm mesh, the corresponding plot in Fig. 21 is shown for a displacement of 12.5 mm, just
after the unstable growth. The latter is delayed due to the high curvature of the crack front being poorly discretised by the coarse
mesh.

Finally, at the end of the experiment, the propagation continues in a seemingly steady-state growth. The front shape is well
captured apart from the outpaced growth. This final difference between the numerical and experimental results is believed to come
from the mentioned fibre bridging, which appears at the main interface below the reinforcement. Overall, the results of present
method are excellent considering that the large mesh employed is able to match the fine-mesh CZM results.

3.4. Discussion

The results show that the method is able to model the presented propagation tests with non-self-similar crack growth. This
non-self-similarity is either caused by the mesh distortion or by the evolution of the front shape. Thus, the results indicate that the
method does not inherit the self-similarity limitations of the VCCT.

The self-similarity hypothesis is important in the evaluation of the opening behind the crack front 𝛥𝑖−1
𝛼 . Traditionally, this opening

is viewed as an estimation of the opening that would appear at node pair 𝑖 due to a virtual self-similar crack growth. This virtual
crack growth is used to evaluate the rate in the loss of elastic energy at the current propagation state. Similarly, the opposite idea
could be argued where 𝐹 𝑖

𝛼 can be seen as an estimation of the force necessary to close the opening 𝛥𝑖−1
𝛼 , representing a virtual

closure of the current crack wake. With this latter consideration, it is intuitive that the propagation following the triggering of the
growth criterion does not need to occur under self-similarity.

When the growth criterion is triggered (i.e. 𝐺𝑇 > 𝐺𝑐), the front is allowed to propagate up to the next segment defined by the
mesh (new line of nodes) by dissipating the corresponding amount of fracture energy 𝐴𝐺𝑐 . Thus, the dynamic of the propagation is
solved through the cohesive law based on the stiffness response of the structure. Once the next segment is reached, the local crack
front configuration is re-evaluated based on the new shape of the crack front, following the presented algorithm. The cohesive law,
acting on the nodes in the vicinity, avoids the ERR concentrations traditionally appearing when the crack front is poorly discretised
by the mesh.

For these reasons, the present method allows to relax the self-similarity hypothesis in terms of evolving crack front shape and
mesh distortion provided that the mesh size is reasonable compared to the curvature of the front. The self-similarity in terms
of varying mode-mixity has not been challenged in the presented propagation tests. However, it should be mentioned that the
cohesive law has been designed to allow for changes in mode-mixity. Namely, the predefined energy 𝐴𝐺𝑐 is ensured to be accurately
dissipated for any monotonic opening, including non-linear softening induced by a variation in mode-mixity. The fracture energy
𝐴𝐺𝑐 is updated for the current mode-mixity at each segment newly encountered. Thus, it is believed that the present method could
account for evolving mode-mixity occurring at a reasonable rate compared to the element size.

Finally, the developed algorithm has two input parameters, 𝐷0 and 𝛽0. These parameters are not expected to be adjusted for
specific propagation test and element size. It is recalled that the presented results have been obtained with fixed values, 𝐷0 = 0.25
and 𝛽0 = 150◦, for all the presented propagation tests and employed meshes. Based on the authors’ experience during the method
development, the results are not very sensitive to the respective variations of 𝛽0 in the [140◦, 160◦] interval and 𝐷0 in the [0.20, 0.27]
interval. Due to its geometrical nature, 𝛽0 is not expected to need adjustment when using other modelling configurations. However,
the damage threshold 𝐷 is related to the opening in the crack wake through the cohesive law. Thus, significant variations in the
19
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Fig. 20. Reinforced-DCB force–displacement results. The experimental results are taken from [51].

Fig. 21. Reinforced-DCB delamination front comparison. The experimental results are taken from [51].
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cohesive law, element formulation and mesh size could affect the recommended [0.20, 0.27] interval. In this case, it is advised to
redefine this interval following the iterative process explained in Section 2.5 and summarised in Fig. 4.

4. Conclusions and outlook

4.1. Conclusions

In this article, a method has been presented for the modelling of arbitrarily shaped delamination fronts in composite materials.
The crack propagation is predicted by an estimation of the ERR by means of the VCCT. An algorithm has been developed to apply
the VCCT in cases where the crack front is not aligned with the mesh. Furthermore, the algorithm is designed to apply to large and
distorted elements.

The presented algorithm is compatible with the energy dissipation mechanism of the previously published ERR-Cohesive
method [33]. That is, a cohesive law is triggered when the VCCT-calculated ERR reaches the interface fracture toughness 𝐺𝑐 . The
cohesive damaging process ensures the correct amount of energy to be dissipated, given the mode-mixity that prevails.

The cohesive energy dissipation mechanism is essential for the accuracy of the ERR evaluation. With the traditional VCCT, a
faster delamination growth is observed when the mesh is not aligned with the crack front. For this case, the crack growth rate
is exaggerated by the overestimation of the ERR at sharp corners of the discretised front [25,26,28]. In the present method, the
progressive damage mechanism acting at nodes in the vicinity of the crack front removes the binary nature of the VCCT (where
nodes are either closed or opened). This allows for smoother crack tip forces along the front.

Several numerical examples have been carried out to illustrate the method. The DCB and ENF tests demonstrate the accuracy
of the method when using distorted elements as well as meshes not aligned with the crack front. The example of a plate with
planar propagation is used to show the ability of the method in modelling non-self-similar growth. Finally, the Reinforced-DCB test
validates that the presented method can model an evolving crack front as observed experimentally.

The presented method is able to obtain results similar to conventional Cohesive Zone Modelling, but with large element ranging
from 2 to 5 mm. Therefore, the extended ERR-Cohesive method emerges as an efficient solution for the modelling of crack
propagation with engineering mesh. It opens possibilities for industrial applications where delamination propagation needs to be
modelled in large structures.

4.2. Outlook

Classical materials are typically modelled in the transportation industry with a single through-the-thickness 5 mm shell. The
conventional modelling of delamination in composite materials results in two additional refinements: out-of-plane and in-plane. The
out-of-plane refinement is associated to the need of representing each ply interface prone to delamination. The in-plane refinement
arises from the use of cohesive elements, which need to be smaller than the Fracture Process Zone of the interface, typically smaller
than 1 mm.

The presented work is part of a wider strategy to enable the efficient modelling of delamination for large structure applications. To
relieve the computational cost associated to the out-of-plane refinement, an adaptive modelling strategy is used [34,35]. Namely, the
model starts in an unrefined state with a single through-the-thickness element. Interfaces are refined only when and where necessary.
A method has been developed to recover the out-of-plane stress profile of laminated represented by a single through-the-thickness
linear shell element [39]. The recovered stresses can be used to compute a refinement criterion at the different interfaces. The
in-plane refinement is relieved by the use of the ERR-Cohesive method [33] extended to arbitrarily shaped front in the present
work.

Naturally, the ERR-Cohesive method inherits some of the traditional limitations of the VCCT. Namely, mesh dependency might
be observed when estimating the mixed-mode ERR at interfaces between plates of dissimilar compliance [11]. This is the case of
interfaces between layers of different orientations or unsymmetrical cracks [53]. However, this effect is expected to be limited to
fine modelling [11] and should not be critical for the present configuration where large elements are employed.

More importantly, the estimation of the ERR by the VCCT relies on the existence of an initial crack. Thus, the opening of initial
cracks is the remaining aspect to be solved to ensure the transition between interface refinement and crack propagation. Then, it
would constitute a complete delamination modelling strategy for large structures.

CRediT authorship contribution statement

Pierre M. Daniel: Writing – review & editing, Writing – original draft, Visualization, Validation, Software, Investigation,
Conceptualization. Johannes Främby: Writing – review & editing, Validation, Software. Martin Fagerström: Writing – review
& editing, Validation, Supervision. Pere Maimí: Writing – review & editing, Validation, Supervision, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared
to influence the work reported in this paper.
21



Engineering Fracture Mechanics 306 (2024) 110193P.M. Daniel et al.

A

I

A

w

Data availability

No data was used for the research described in the article.

cknowledgements

An important part of P.M. Daniel’s work has been funded by Barcelona Technical Center S.L. (Btechc). The financial support of
the Agencia de Suport a l’Empresa Catalana (ACCIÓ) through the grant ACE034/21/000015 is acknowledged. This work has also
been partially funded by the Spanish Government (Ministerio de Ciencia e Innovación) under contract PID2021-126989OB-I00.
M. Fagerström and J. Främby gratefully acknowledge the financial support through Vinnova’s strategic innovation programme
LIGHTer (LIGHTer Academy grant no. 2020-04526). Open Access funding provided thanks to the CRUE-CSIC agreement with
Elsevier.

Appendix. Circular plate with central delamination (Analytical solution)

The analytical model consider an quasi-isotropic circular plate with a central delamination of radius 𝑎 illustrated in Fig. A.22.
n the following, the derivations for mode II and mode I are presented.

.1. Mode II

The derivations for mode II are based on the work by Wagih et al. [47]. The force–displacement relationship is expressed as

𝐹 = 1
𝐶𝐼𝐼
𝑏 + 𝐶𝐼𝐼

𝑠
𝑢 + 1

𝐶𝐼𝐼
𝑚

𝑢3, (A.1)

where 𝐶𝐼𝐼
𝑏 , 𝐶𝐼𝐼

𝑠 and 𝐶𝐼𝐼
𝑚 are respectively the bending, shear and membrane compliance. They are defined as

𝐶𝐼𝐼
𝑏 = 𝑅2 + 3𝑎2

16𝜋𝐷
, (A.2a)

𝐶𝐼𝐼
𝑠 = 1

𝑘𝑠ℎ
, (A.2b)

𝐶𝐼𝐼
𝑚 = 𝑅2

𝑘𝐼𝐼𝑚 ℎ
, (A.2c)

here the bending stiffness 𝐷 reads

𝐷 =
𝐸11ℎ3

12
(

1 − 𝜈12𝜈21
) , (A.3)

and the stiffness parameters 𝑘𝑠 and 𝑘𝑚 are expressed as [54]

𝑘𝑠 =
4𝜋𝐺13

3
𝐸11

𝐸11 − 4𝑣13𝐺13

(

4
3
+ ln

(

𝑅
𝑟𝑐

))−1
, (A.4a)

𝑘𝐼𝐼𝑚 =
𝜋𝐸11
1 − 𝜈12

353 − 191𝜈12
648

, (A.4b)

with 𝑟𝑐 being the contact radius between the impactor and the plate.
The crack growth is defined by the propagation criterion from LEFM:

ERR = − 𝜕𝑈
𝜕𝐴

= 𝐺𝑐 . (A.5)

The elastic energy 𝑈 is expressed by integrating Eq. (A.1) as

𝑈 = ∫ 𝐹𝑑𝑢 = 1
2
(

𝐶𝐼𝐼
𝑏 + 𝐶𝐼𝐼

𝑠
) 𝑢2 + 1

4𝐶𝐼𝐼
𝑚

𝑢4, (A.6)

and defining 𝜕𝐴 = 2𝜋𝑎𝜕𝑎 for a circular crack. Injecting into Eq. (A.5), it is obtained

𝐺𝑐 =
1
2
𝜕𝐶𝐼𝐼

𝑏
𝜕𝑎

1
(

𝐶𝐼𝐼
𝑏 + 𝐶𝐼𝐼

𝑠
)2

1
2𝜋𝑎

𝑢2, (A.7)

from which the crack radius can be expressed as a function of the displacement by

𝑎 =

√

1
3

(

16𝜋𝐷
(

𝑢
𝐹𝑑𝑛

− 𝐶𝐼𝐼
𝑠

)

− 𝑅2
)

, (A.8)

with

𝐹 =
√

32𝜋2𝐺 𝐷. (A.9)
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Fig. A.22. Representation of the circular plate with central delamination for mode I and mode II loading.

he force–displacement curve under propagation is obtained by updating the bending compliance 𝐶𝐼𝐼
𝑏 in Eq. (A.1) with the

orresponding crack length radius 𝑎 based on Eq. (A.8).

.2. Mode I

The mode I solution is derived similarly with the additional hypothesis that the shear compliance is negligible. The force is
efined as

𝐹 = 1
𝐶𝐼
𝑏

𝑢 + 1
𝐶𝐼
𝑚
𝑢3, (A.10)

where the compliances are adapted to

𝐶𝐼
𝑏 = 𝑎2

𝜋𝐷
, (A.11a)

𝐶𝐼
𝑚 = 8 𝑎2

𝑘𝐼𝑚ℎ
, (A.11b)

ith the stiffness parameter [54]:

𝑘𝐼𝑚 =
191𝜋𝐸11

648
. (A.12)

The elastic energy expressed as

𝑈 = ∫ 𝐹𝑑𝑢 = 1
2𝐶𝐼

𝑏

𝑢2 + 1
4𝐶𝐼

𝑚
𝑢4 (A.13)

is injected in Eq. (A.5) and the crack radius is expressed as

𝑎 = 4

√

1
2𝜋𝐺𝑐

(

𝜋𝐷𝑢2 + 1
16

𝑘𝐼𝑚ℎ𝑢4
)

. (A.14)

The force–displacement curve under propagation is obtained by updating the compliances in Eq. (A.10) with the corresponding
crack length radius 𝑎 based on Eq. (A.14).
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