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Abstract We propose a machine-learning-based method to detect and classify eavesdropping and
mechanical vibrations in an optical network based on state of polarization variations. Tests in two real-
world installations with links of different lengths demonstrate an accuracy of 86.5% in 7 distinct normal
and malicious scenarios. ©2024 The Author(s)

Introduction

Cyber security is widely recognized as a critical
concern due to the immense significance of online
services and information transmitted over commu-
nication networks. In turn, the security of fiber
optical network infrastructure as the foundation
of global communications is rapidly gaining rel-
evance. The recent years have observed an in-
creasing number of confirmed sabotage attempts
on fiber optical installations worldwide[1]–[3], which
could have a high impact on the global connec-
tivity, economy and defense strategies. The risk
of fiber eavesdropping and/or tampering with sen-
sitive information is also becoming severe. An
eavesdropper can couple out light from an opti-
cal fiber relatively easily. Recent study[4] sheds
light on the vulnerability of optical fiber systems to
eavesdropping. The information transmitted in the
fiber can be detected by an eavesdropper tapping
a certain percentage of the light. The success of
such eavesdropping attempts strongly depends
on the technique employed for tapping the light
and the distance of the breach from the transmit-
ter. Gaining access to the optical signal within
a certain distance from the transmitter enables
an eavesdropper to detect sensitive data. This
necessitates the development of eavesdropping
detection strategies capable of accurately iden-
tifying eavesdropping activities even amidst the
prevalent noise in fiber optical networks.

Optical fiber tampering causes changes of the
polarization state of the carried light. In general,
polarization state movement (PSM) data offers
crucial insights into the polarization characteristics
of light signals in a network. Continuous moni-
toring of the state of polarization (SOP) has been
demonstrated as essential for prompt identification
of network disruptions, enabling early detection

of potential fiber damage[5]. Close examination
of SOP changes at the receiver and comparison
with variations associated to normal system be-
haviour can enable detection of eavesdropping
attempts that cannot be discovered by monitoring
the received optical power. This technology was
demonstrated in[6]. Earlier research looked into
naive Bayes classifiers to spot vibrations in optical
fibers caused by mechanical stress[5],[7]. Vibra-
tions, created by robotic arm movements, were
detected with a coherent receiver. Additionally,[8]

suggested a transfer learning method to classify
high-risk events using limited SOP data.

In[9], we experimentally collected and analyzed
13 distinct polarization signatures using a super-
vised ML algorithm. The results demonstrated
that our model could accurately detect and differ-
entiate between signatures from eavesdropping
attacks and other potentially harmful and non-
harmful events, achieving an accuracy of 92.3%.

In this paper, we study how polarization signa-
tures can be recorded and classified, originating
from an installed transmission line in a real-life
network OpenIreland, operated by Trinity College
and located under the street in Dublin, Ireland.
Analysing two separate installations with transmis-
sion lengths of 0.15 km and 10.5 km, respectively,
we obtained 86.5% accuracy in classifying the sig-
natures using supervised ML.

Experimental setup
The experimental setup is illustrated in Fig.1. A
continuous-wave, linearly polarized distributed
feedback laser (DFB laser) is used as a transmitter
to inject light into the transmission line. The opti-
cal power from the DFB laser is first transmitted
through a 1 km coupling fiber and then connected
to the cable installation. Another 1 km long cou-
pling fiber is added before the receiver. The two
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Fig. 1: Experimental setup for analyzing polarization signatures in installed cables with 0.15 km and 10.5 km

fiber cable installations, 0.15 km and 10.5 km long,
are used with two fibers connected in a loop, re-
sulting in the total transmission length of either 2.3
km or 23 km. The launch optical power is approxi-
mately -10 dBm and the received optical power is
in the range of -11 to 21 dBm. The polarization of
the transmitted light is affected by the vibrations
originating from the street traffic taking place dur-
ing the experiment. The cable duct consists of
a fiber blown into a tube, which partially protects
against vibrations but allows direct contact with
the tube wall, leading to vibration-induced noise
caused by the street traffic.

Accessing the fiber for manipulation requires
altering the cable. To reliably detect vibration sig-
natures related to this manipulation, they must no-
tably exceed the background noise, which may
arise from benign sources like non-harmful vi-
brations or potentially harmful activities such as
eavesdropping and nearby excavation. The po-
larization signatures are collected by monitoring
the PSM on the Poincaré sphere. The received
optical signal is analyzed by an optical and an ML
analyzer.

We adopt the analytical procedure from[9] to de-
rive a unique signature for each event type. The
process begins with the sampling block captur-
ing PSM samples from the polarization analyzer
on the Poincaré sphere every 0.5 ms during a
20-minute recording period, resulting in 2.4 mil-
lion samples for each event. The system then
calculates the numerical value of distances be-
tween consecutive PSM, generating what is re-
ferred to as numerical polarization state movement
(NPSM) data. The NPSM values are grouped into
batches of 500, forming individual time slots. A fast
Fourier transform (FFT) analysis is then performed
on these segments using a Hamming window[10],
producing a power spectrum dataset with 4800
rows (each corresponding to a time slot) and 512
columns (each representing a frequency bin). This
dataset forms the unique signature for each spe-
cific event. ML techniques are then applied to the
data to identify distinct signatures and trigger an
alarm if a threat to the transmission line is detected.

Definition of signatures and data collection
Our ML analysis uses data from seven real-life
network signatures to differentiate between po-
larization patterns obtained during normal oper-
ation and those suggesting malicious vibrations
and eavesdropping. We denote normal events as
relaxed (rlx) and soft bending (sbd) fiber scenar-
ios. The rlx scenario identifies a baseline scenario
without eavesdropping, vibrations, or bending for
both the 0.15 km (rlx-0.15km) and the 10.5 km (rlx-
10.5km) fiber installation. sbd involves only gentle
bending of the cable to assess its resilience to
benign environmental stress. Signatures from soft
bending events are collected for the 0.15 km (sbd-
0.15km) and 10.5 km (sbd-10.5km) installations.
Eavesdropping on the 0.15 km installation (eav-
0.15km) scenario assesses the ability to detect
unauthorized interception attempts by observing
subtle manipulations of the cable, such as sub-
jecting it to a pulling force while it is bent. As
referenced in[4], eavesdropping can cause optical
power attenuation below 0.3 dB, a level typically
undetectable by an Optical Time-Domain Reflec-
tometer (OTDR). The objective of collecting this
signature is to determine if our model can distin-
guish this eavesdropping activity from soft bending
(sbd-0.15km). Potentially harmful events consid-
ered include fiber vibrations at 80 Hz (80vb), typi-
cally corresponding to an excavator digging close
to the cable installation and threatening to cut the
cable, here generated by a loudspeaker. Vibration
data at this frequency is gathered for the 0.15 km
(80vb-0.15km) and the 10.5 km (80vb-10.5km) in-
stallation. The collected dataset is randomly parti-
tioned into training and testing subsets, containing
70% (3360) and 30% (1440) points, respectively,
to ensure equal representation of the seven sce-
narios. Consequently, the training set consists
of 23,520 samples, while the testing set contains
10,080 samples. This dataset, labeled into seven
distinct classes, represents a supervised ML clas-
sification problem.
Fig.2 shows a comparison of the data collected in
the lab[9] and the real-world data for the relaxed
(Fig.2a) and 80 Hz vibration (Fig.2b) scenarios,
revealing distinct behavior. While the lab data ex-
hibits a narrower distribution and lower variability,
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Fig. 2: Comparison between the data collected in the lab[9]

and the real-world data for the 10.5 km link.

the real-world data shows a wider spread and in-
creased variability. These differences highlight
how environmental conditions affect real-world
data by introducing more noise, thereby making
the task of detection and classification for ML al-
gorithms more complex.

Results
We evaluate several ML algorithms to determine a
suitable classifier for our seven-class classification
problem. The assessment involves the following
classifiers from the Scikit-Learn library: Extreme
Gradient Boosting (XGBoost), Histogram Gradi-
ent Boosting (HGB), Gradient Boosting, Support
Vector Machine, Logistic Regression, Extra Trees
Classifier, Bagging Classifier, and Linear Discrim-
inant Analysis. The classifiers are evaluated in
terms of their accuracy and F1-score on the testing
dataset after training. The final result for the three
top-performing classifiers is summarized in Fig. 3.
HGB outperforms other models in the real-world
dataset, achieving an accuracy of 86.5% and an
F1-score of 0.866. XGBoost also demonstrates ac-
curate results, closely matching the performance
of HGB. The confusion matrix of the HGB clas-
sifier in Fig.4 demonstrates good performance,
achieving high accuracy across different scenar-
ios. A clear impact of the link length is identifiable
from the matrix, where the accuracy is higher for
the shorter than for the longer link. For the 0.15
km link, the model achieves 91.04% accuracy for
rlx-0.15km, 98.47% for sbd-0.15km, 88.54% for
eav-0.15km, and 99.65% for 80vb-0.15km.Notably,
while the 88.54% accuracy for eav-0.15km reflects
good performance, it is slightly poorer than in the
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Fig. 3: Accuracy and F1-score for the top 3 classifiers
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Fig. 4: Confusion matrix of Histogram Gradient Boosting

other shorter link scenarios. This suggests that the
model is effective at classifying eav-0.15km, but
a few instances of misclassification, primarily with
rlx-0.15km (4.44%) and sbd-0.15km (3.19%), can
occur, possibly due to similarities among these
event types at this distance. The accuracy is lower
for the longer link, with 76.67% for rlx-10.5km,
79.44% for sbd-10.5km, and 71.74% for 80vb-
10.5km, with notable misclassifications primarily
between rlx-10.5km and 80vb-10.5km (15.62%
and 23.96%) and between sbd-10.5km and rlx-
10.5km (7.5% and 13.4%). These results highlight
the good performance of the model, particularly for
short links, while identifying areas for improvement
in distinguishing between similar event types over
longer distances.

Conclusion
This study demonstrated the effectiveness of using
PSM data and supervised ML to detect and clas-
sify mechanical vibrations and eavesdropping in
fiber optic networks. Trained and tested with data
collected from a real-world installation in Dublin ur-
ban area, our method achieved 86.5% accuracy in
event identification, underscoring its practical appli-
cability for enhancing network security. While the
classification of a short-distance link showed high
accuracy, improvements are needed for longer dis-
tances. Therefore, improving the data collection
method as well as the applied ML models are con-
sidered as the future work.
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