
Software in science is ubiquitous yet overlooked

Downloaded from: https://research.chalmers.se, 2024-10-26 12:15 UTC

Citation for the original published paper (version of record):
Hocquet, A., Wieber, F., Gramelsberger, G. et al (2024). Software in science is ubiquitous yet
overlooked. Nature Computational Science, 4(7): 465-468.
http://dx.doi.org/10.1038/s43588-024-00651-2

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)

nature computational science Volume 4 | July 2024 | 465–468 | 465

https://doi.org/10.1038/s43588-024-00651-2

Comment

Software in science is ubiquitous
yet overlooked

Alexandre Hocquet, Frédéric Wieber, Gabriele Gramelsberger, Konrad Hinsen, Markus Diesmann,
Fernando Pasquini Santos, Catharina Landström, Benjamin Peters, Dawid Kasprowicz,
Arianna Borrelli, Phillip Roth, Clarissa Ai Ling Lee, Alin Olteanu & Stefan Böschen

Software is much more than just code. It is
time to confront the complexity of licenses,
uses, governance, infrastructure and other
facets of software in science. Their influence is
ubiquitous yet overlooked.

In March 2020, Neil Ferguson, the scientist whose epidemiology model
was used to justify COVID lockdown policies in the UK and around
the world, was urged to make his model’s source code public. The
model received some criticism on scientific grounds, but the most
vocal objections targeted its software engineering aspects, calling
it poorly designed, written and documented1. Such a culture clash is
not surprising to some computational scientists, whose daily routine
consists of designing, writing, maintaining, supporting, testing, debug-
ging, adapting to new hardware, documenting, sharing, licensing and
packaging a piece of software. Both computational researchers and
software engineers are used to interacting with different temporalities,
constraints, norms and work cultures.

In June 2020, in the wake of Ferguson’s controversies, colleagues
across the sciences and humanities published a timely and relevant
manifesto in Nature that proposes “five ways to ensure that models
serve society”2. Yet the manifesto does not mention the concept of
software in their consideration of models. We believe this is lacking
because models and software are entangled in science, and software
does critical work that models cannot perform on their own.

Software is indeed difficult to define, often being mistaken for
code or algorithms. As historian of computing Thomas Haigh puts
it: “Software always involves packaging disparate elements such
as computer code, practices, algorithms, tacit knowledge, and
intellectual property rights into an artifact suitable for dissemina-
tion”. Scientific software involves a diversity of practices regarding
programming, governance, licensing, distribution, maintenance
and support. It is developed and used across a myriad of scientific
disciplines and programming traditions. It ranges in size from per-
sonal ‘scripts’ to huge projects involving entire communities and
global infrastructure. It encompasses freely shared code as well as
commercial packages.

In this Comment, we emphasize the complexity of scientific soft-
ware as a multifaceted socio-technical (and historically grown) system.
We describe facets of software that we define as vantage points from
which the different dimensions of software can be understood. The
multifaceted nature of software implies that the work done by software
has technical, legal, sociological and epistemic consequences. Mod-
els and software are entangled in computational science, and much
remains to be done to comprehend these consequences. We also point

out the diversity of situations involving software in computational
science, which further complicates how to approach software facets.
We highlight a few case studies, with the hope that this starting conver-
sation about software will be enriched by further input.

Engineering
Ferguson’s story reveals something important and widespread1 about
a culture clash between science and software engineering. Some soft-
ware professionals may regard scientists as end-user programmers, yet
scientists do not necessarily share the same norms, aims and practices
as software engineers.

For example, given that validation and verification are often inter-
twined, test suites designed by scientists may focus more on the stabil-
ity and reproducibility of simulation results than on the efficiency of
the code or the structure of the program. In some scientific projects,
risk-averse approaches oppose agile methods3. Software longevity
may not be understood in the same way; whereas software engineers
consider adaptation to new hardware, operating systems or platforms
to be essential, backward compatibility, stability and replicability are
more important for scientists.

Also, software engineers may tend to account for diverse potential
users, whereas scientists sometimes devise software for the exclusive
use of their close collaborators. Therefore, standards pertaining to
portability or the user-friendliness of interface design may differ sub-
stantially. Tasks such as software maintenance or bug fixes might be
idiosyncratic and have temporalities of their own.

To manage the unmanageable in increasing software complexity
and in the labyrinth of available libraries, communities develop guide-
lines on how to use and improve scientific software in alignment with
scientific research norms. In doing so, the field of research software
engineering has emerged, aiming to bridge both cultures. The growing
importance of research software engineering underlines the need to
study the diversity of working cultures in scientific software. To this
end, the FAIR (findable, accessible, interoperable and reusable) prin-
ciples for research software4 and similar initiatives should be assessed
and compared to established practices in open source communities.
Moreover, the issue of recognition or credit for engineering work in
science is also pressing.

Governance
Governance — that is, the social structure of a software project — is an
important facet of software that has more than one author. The way
software development and maintenance are collectively organized
affects the science that relies on it.

In the computational chemistry project Q-Chem, a professional
workforce dedicated to development and maintenance is financed by
software package sales. The project is thus commercial, centralized

 Check for updates

http://www.nature.com/natcomputsci
https://doi.org/10.1038/s43588-024-00651-2
https://www.tomandmaria.com/Tom/Research
https://www.tomandmaria.com/Tom/Research
https://hidden-ref.org/
https://www.q-chem.com/
http://crossmark.crossref.org/dialog/?doi=10.1038/s43588-024-00651-2&domain=pdf

nature computational science Volume 4 | July 2024 | 465–468 | 466

Comment

and durability of the software project in the context of diverse hardware
and portability initiatives. That is why the source code of Gaussian is
provided, as a warrant for transparency, but many corporate actions
forbid users to modify it, to avoid proliferation of uncontrolled and
inconsistent versions of the program7. The history of distribution
strategies of the Gaussian package over decades sheds light on dif-
ferent strategic choices regarding reproducibility. Nowadays, it is the
evolution of software rather than hardware environments that needs
to be taken into account.

Software environments can be stored and transferred, which is
the role of container technologies such as Docker. These have become
popular in scientific computing, alongside version control systems that
permit source code changes to be tracked. The missing link between
version control and executable containers is a record of the transforma-
tion process from source code to executable. This task is performed
by compilers and related tools and orchestrated by package managers.
However, some package managers do not keep track of the versions
of compilation tools, which are subject to change as well. A different
compiler can cause unpredictable changes in the results of calculations.
Software management tools such as Nix or Guix ensure full provenance
tracking, but their use is still far from widespread.

Infrastructure
Infrastructure studies have revealed issues of long-term development,
scale and the interplay of technical and organizational structures, as
well as tensions between what is planned and what emerges. Infrastruc-
ture constitutes a software facet of its own, especially when software
projects involve or support entire communities10.

Nowadays, platforms as infrastructure are becoming increasingly
detached from their hardware support. In science, this means that the
portability of models to a variety of competing hardware is less of an
issue than it was a few decades ago, whereas software infrastructure is
nowadays more fragile, described by historian Paul Edwards as “flam-
mable”10. Large scientific instruments such as telescopes are now well
established elements of scientific infrastructure, and have correspond-
ing funding models, but the same cannot yet be said for software, which
has a similarly fundamental role.

For example, the field of computational neuroscience is striving to
separate the formal specification of concrete neural network models
from generic simulation engines, which can run a variety of models
from different research groups. This kind of generic engine rests on
software infrastructure suffering from distinctive long-term develop-
ment and maintenance issues11. With many research groups depending
on the continued usability of the shared engine, its maintenance must
be governed and funded collegially and on a timescale extending far
beyond that of a typical research grant12.

Budgets for software maintenance must be planned and approved
as long-term investments, just like the budgets for traditional scientific
infrastructure such as particle accelerators. For this to happen, science
funding and policy actors need a better understanding of how software
is made usable and for whom.

Embedded theory
In scientific models, software embeds theory, and different versions of a
piece of software entail different versions of a model or its parameters,
or even different underlying theoretical principles. In the context of
in silico experiments in climate modeling13, changes in the software
might imply changes in the models and theories they are based upon
and, thus, correspond to different settings for such experiments.

and proprietary, which is supposed to ensure its stability5. Open source
would arguably be a better way forward for transparency, but it does
not solve the problem of who is able to commit what (and themselves)
to a project. The SciPy community consists of scientist-developers with
diverse interests, both in terms of numerical techniques and scientific
disciplines, and different computational needs. Even though the SciPy
libraries are open source, development choices tied to hierarchies
in governance or the representation of scientific disciplines in the
community influence how practical their use can be in different com-
munities. Forking can mitigate the diversity issue but is not always an
effective solution, because it tends to fragment or even divide open
source communities.

Users and funders are sometimes not aware of governance issues.
To understand a software project, one should situate it within diverse
types of social structure6. Moreover, governance should include both
developer and user communities, because their perspectives and
priorities often differ considerably.

Licensing
Beyond governance, software is also concerned with the administra-
tion of its uses. Licenses are the contracts that software authors and
users must abide by. Although definitely entangled with governance,
licensing takes a legal rather than a social perspective, translating intel-
lectual property rights into the world of software.

For example, licensing may differ for academic and industrial
users. The MacroModel licensing policy distinguishes between dis-
counted academic licenses that forbid tinkering with certain model
parameters, and industrial licenses that do allow such tinkering. Some
scientists have argued that academic licenses restrain scientific poten-
tialities while the industrial ones raise reproducibility issues linked to
uncertain versioning7.

Given that the license defines what the user is entitled to do,
the actionability of a model embedded in a piece of software follows
directly from licensing policies. Yet such end-user license agreements
are notoriously seldom taken into account by users. Indeed, much
scientific software lacks any licensing policy at all. Even within open
source projects, license differences affect the possibilities for the reuse
and combination of software8. For example, ‘Permissive’ licenses such
as MIT, Apache or BSD differ from ‘copyleft’ licenses such as GPL or
LGPL. Better literacy regarding licensing issues is desirable, as these
issues illustrate a tension: scientific software is at once a valuable
technical artifact subject to intellectual property, and an expression
of models and methods whose scientific value comes from disclosure
and sharing.

Circulation
According to Haigh9, software is only as useful as it is “suitable for dis-
semination”, but what this means depends on the context. As soon as
exchange is envisioned for a computational project, software is what
enables code to be packaged for traveling through space (that is, across
different communities or userbases), time (because of maintenance
and support), pieces of hardware (for instance, for portability), and
software environments (for backwards compatibility).

For example, the history of the Gaussian computational chemistry
package is a decades-long story of strategic changes. Gaussian began as
a freely available source code, and eventually a company was founded
to distribute and sell Gaussian as a software suite. The Gaussian story,
however, is not merely one of software commodification. For Gaussian,
maintaining control over official versions is key for the accountability

http://www.nature.com/natcomputsci
https://www.docker.com/
https://nixos.org/
https://guix.gnu.org/
https://blog.khinsen.net/posts/2017/11/22/stability-in-the-scipy-ecosystem-a-summary-of-the-discussion.html
https://blog.khinsen.net/posts/2017/11/22/stability-in-the-scipy-ecosystem-a-summary-of-the-discussion.html
https://www.schrodinger.com/platform/products/macromodel/
https://gaussian.com/
https://gaussian.com/i70/

nature computational science Volume 4 | July 2024 | 465–468 | 467

Comment

To ensure consistency, some climate researchers have adopted meth-
ods for comparative assessment of models and parameters that also
include evaluation of the software.

Another example is the effort to standardize mathematical con-
cepts in computational neuroscience. An analysis of connectivity
patterns in neural network models implemented either in terms of
predefined routines of a generic simulator or as custom code in a
general-purpose programming language has unveiled a diversity
of interpretations of its core connectivity concept that challenges
reproducibility14.

The problem is not only one of theoretically diverse conceptions
of connectivity, but also one of the implementation of any of these
conceptions across different software frameworks such as MATLAB,
NEURON or NEST. Using different pieces of software thus means using
different connectivity theories. The way forward lies in developing
standardized ontologies of the terms the community is using, backed
up not only by mathematical definitions but also by reference software
implementations.

Users
Because users rarely form a homogeneous group, the potential diver-
sity of uses accentuates the underlying complexity and diversity
of software. As a medium, software constitutes an interface within
and through which users operate. As such, software sets opera-
tional affordances that organize users’ interactions with models.
For example, a command-line interface and the use of scripts may
enhance reproducibility because invocations can be recorded15,
whereas a graphical user-friendly interface might enhance usability.
Beyond the command-line interface versus graphical user-friendly
interface debate, users’ interactions with software must be under-
stood as being bound to research cultures. For example, in pro-
tein crystallography, user interfaces shape the handling of models
on the screen, but the interface design itself is influenced by a
common understanding of molecules through physical ball-and-
stick models16.

The diversity of application scenarios often transcends the sci-
entific context itself. For instance, in water management, computer
models are supposed to be used by water management professionals.
Although such programs are nowadays published as open source
code, they are less frequently used by professionals other than the
scientists involved in their creation, as their design may be some-
what opaque to non-scientists. For a scientific computer model to
become usable in water management, extensive development effort
is required to transform it into a software package suited to a wider
audience. This translation process of turning models into usable
software is pivotal17.

Even within scientific communities, such as that of functional
magnetic resonance imaging, the engagement and retention of users
is challenged by competing software packages. Usability assessment
is crucial because user experience choices presumably affect the sci-
entific analysis itself18. Beyond code, reflexive studies about scientific
software need a broader perspective to encompass the entire trajectory
from the context of development to the context of application.

Conclusion
Our argument is that software influences models and their outputs,
just as it shapes (and is shaped by) scientific practices. That software
is multifaceted implies that the work software performs has not only
technical or sociological but also epistemic consequences. Concerns

about software robustness, maintenance and durability, reproducibil-
ity and actionability, dissemination and consistency, all have epistemic
dimensions.

Some of the issues are currently being addressed. To name some
initiatives, Software Heritage endeavors to preserve all available ver-
sions of scientific code; Software Carpentry promotes computational
literacy; the Software Sustainability Institute and the Research Software
Alliance work towards better recognition; the ReScience C journal aims
at replicating results.

Nevertheless, more is needed. Coming back to the abovemen-
tioned manifesto about models and society2, it should now be clear that
the entangled epistemic, social and technical dimensions of software
give substance to the issues raised in said manifesto2.

The diversity of software practices implies that a form of interdis-
ciplinarity is key to understanding software facets. We should gather
perspectives from different academic (such as computational scien-
tists as well as humanists and social scientists) and professional back-
grounds (such as developers, users, maintainers, and so on) to reveal
the tensions between different meanings of software.

In this spirit, more case studies in various scientific fields and
epochs should help us to understand the entanglement of software
and models within their diversity and different temporalities. We hope
this will improve our comprehension of the situatedness of software
and enrich the conversation we are calling for.

Alexandre Hocquet   1,2 , Frédéric Wieber   1,
Gabriele Gramelsberger2, Konrad Hinsen   3,4, Markus Diesmann   5,
Fernando Pasquini Santos   2,6, Catharina Landström2,7,
Benjamin Peters2,8, Dawid Kasprowicz   2, Arianna Borrelli2,9,
Phillip Roth   2, Clarissa Ai Ling Lee   2,10, Alin Olteanu   2 &
Stefan Böschen   2
1Archives Poincaré, Université de Lorraine, Nancy, France. 2Käte
Hamburger Kolleg, Cultures of Research, RWTH, Aachen, Germany.
3Centre de Biophysique Moléculaire, CNRS, Orléans, France.
4Synchrotron SOLEIL, Saint Aubin, France. 5Institute for Advanced
Simulation (IAS-6), Forschungszentrum Jülich, Jülich, Germany.
6Department of Computer Science, Calvin University, Grand Rapids,
MI, USA. 7Science, Technology and Society Division, Chalmers
University of Technology, Gothenburg, Sweden. 8Department of Media
Studies, The University of Tulsa, Tulsa, OK, USA. 9History of Science
Institute, TU Berlin, Berlin, Germany. 10Center for Interactive Media,
Multimedia University, Cyberjaya, Selangor, Malaysia.

 e-mail: alexandre.hocquet@univ-lorraine.fr

Published online: 1 July 2024

References
1. Thimbleby, H. Computer J. 67, 1381–1404 (2024).
2. Saltelli, A. et al. Nature 582, 482–484 (2020).
3. Kelly, D. J. Syst. Softw. 109, 50–61 (2015).
4. Barker, M. et al. Sci. Data 9, 622 (2022).
5. Hocquet, A. & Wieber, F. Eur. J. Phil. Sci. 11, 38 (2021).
6. Schrape, J.-F. Convergence 25, 409–427 (2017).
7. Hocquet, A. & Wieber, F. IEEE Ann. Hist. Comput. 39, 40–58 (2017).
8. Morin, A. et al. PLOS Computat. Biol. 8, e1002598 (2012).
9. Haigh, T. Commun. ACM 56, 31–34 (2013).
10. Edwards, P. N. Platforms are infrastructures on fire. In Your Computer is on Fire

(eds Mullaney, T. S. et al.) 313–336 (MIT Press, 2021).
11. Einevoll, G. et al. Neuron 102, 735–744 (2019).
12. Knowles, R. et al. Nat. Computat. Sci. 1, 169–171 (2021).
13. Gramelsberger, G. et al. J. Adv. Model. Earth Syst. 12, e2019MS001720 (2019).
14. Senk, J. et al. PLOS Computat. Biol. 18, e1010086 (2022).
15. Baker, M. Nature 541, 563–565 (2017).

http://www.nature.com/natcomputsci
https://www.mathworks.com/products/matlab.html
https://www.neuron.yale.edu/neuron/
https://www.nest-simulator.org/
https://www.softwareheritage.org/
https://software-carpentry.org/
https://www.software.ac.uk/
https://www.researchsoft.org/
http://rescience.github.io/
http://orcid.org/0000-0001-6361-5780
http://orcid.org/0000-0001-7167-9813
http://orcid.org/0000-0003-0330-9428
http://orcid.org/0000-0002-2308-5727
http://orcid.org/0000-0002-2259-7229
http://orcid.org/0009-0005-6020-6865
http://orcid.org/0000-0001-5213-3348
http://orcid.org/0000-0001-9705-5689
http://orcid.org/0000-0002-4712-2529
http://orcid.org/0000-0003-0519-5030
mailto:alexandre.hocquet@univ-lorraine.fr

nature computational science Volume 4 | July 2024 | 465–468 | 468

Comment

16. Myers, N. Rendering Life Molecular: Models, Modelers, and Excitable Matter
(Duke Univ. Press, 2015).

17. Landström, C. TATuP J. Technol. Assess. Theory Practice 32, 36–42 (2023).
18. Pasquini, F. et al. in Proc. 18th Int. Joint Conf. Computer Vision, Imaging and Computer

Graphics Theory and Applications (VISIGRAPP) Vol. 2, 63–72 (SCITEPRESS, 2023).

Acknowledgements
The joint research was funded by the Käte Hamburger Kolleg Cultures of Research for Advanced
Study in the Humanities with funds from the German Federal Ministry of Education and Research.

Author contributions
All authors contributed equally.

Competing interests
The authors declare no competing interests.

Additional information
Peer review information Nature Computational Science thanks Stefanie Betz and the other,
anonymous, reviewer(s) for their contribution to the peer review of this work.

http://www.nature.com/natcomputsci

	Software in science is ubiquitous yet overlooked
	Engineering
	Governance
	Licensing
	Circulation
	Infrastructure
	Embedded theory
	Users
	Conclusion
	Acknowledgements

