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Abstract: This paper investigates the competition between two charge point operators at the same
site for future battery electric long-haul trucks. The charge point operators are located along one
of the busiest highways in Sweden. The investigation is carried out using an agent-based model
where trucks select charge point operators based on charging prices and the length of any queues,
while charge point operators adjust their prices and number of chargers to improve their profitability.
The study aims to predict conditions for trucks and charge point operators in a future public fast-
charging market. Our findings indicate the potential for a well-functioning future public fast-charging
market with small queuing problems, high utilisation, and reasonable prices for public fast charging.
Assuming a price for electricity of EUR 0.08/kWh and a minimum profit margin of EUR 0.001/kWh
for charge point operators, the findings indicate that the price level outside rush hours will be low,
approximately EUR 0.1/kWh. The prices during rush hours will likely be much higher, but it is
harder to predict the value due to uncertainties of how charge point operators will act in the future
market. Still, from the model result, the price during rush hours is suggested to be just above EUR
0.5/kWh, with an average charging price of around EUR 0.15/kWh. It also seems likely that it is
profitable for charge point operators to build enough chargers so that charging queues are short.

Keywords: battery electric truck; battery electric vehicle; charger utilisation; charging station; charge
point operator; CPO; long-haul truck; agent-based model; competing charge point operators; fast-
charging market

1. Introduction

Humans’ dependency on and combustion of fossil fuels have severe disadvantages.
Currently, the oil depletion time is less than 30 years [1], the Earth’s climate system has likely
been affected [2], and several adverse health impacts have emerged, as expressed in the lit-
erature [3]. Battery electric trucks seem to be a part of the solution since several studies have
concluded that battery electric trucks could become a cost-efficient, fossil-free alternative
to today’s commercial diesel trucks [4–8]. The literature shows that the cost-effectiveness
of battery electric trucks is sensitive to driving patterns [4], whereas relatively uniform
driving patterns are most suitable for electrification [4,9]. Hydrogen trucks could also be a
part of the solution; however, previous studies mostly favour battery electric trucks [10,11].
The feasibility of battery electric trucks will likely be good [12], but fuel cells might be
better for heavy-duty trucks on extra-long journeys [13]. Thus, there is no unambiguous
answer to which power train results in the lowest total cost of ownership since it will
depend on how the vehicle is used [14]. The literature also highlights other essential factors
for cost-effective battery electric vehicles, such as the battery price [15,16] and size [4,17].
Further, the price of public fast charging could strongly impact the cost-effectiveness, bat-
tery sizing and charging strategy [5]. Charger utilisation must be high enough for the
installation of chargers to be worthwhile [18], and high utilisation is also a prerequisite for
cheap public fast charging [5]. Some advantages of increased fees during rush hours were
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presented in a previous study [19], including a better meeting of demand, avoiding queues,
and increasing profit. For long-haul trucks, fast charging is expected to be necessary [20],
and a gratifying result from a previous study [21] is that it seems possible to achieve high
charger utilisation and high charger availability of public fast chargers. In [21], the number
of public fast chargers for a system of battery electric trucks was tuned manually. Also,
ref. [21] raised the question of whether their utilisation would be that good on the free
market: “If the system has all the chargers it needs, works well and is profitable, what is
there to stop a new charge point operator from entering the market if there is money to be
made? All the charge point operators might still profit, but the system has too many charg-
ers”. The present paper uses an agent-based model to investigate two competing charge
point operators (CPOs). One of the aims is to fill the gap: Can the free market achieve the
high utilisation of chargers while still having minor problems with queues? This paper
also investigates the price of public fast charging and how prices are affected by the time
variation in the charging demand. It is clear from the literature [4] that knowledge of the
price level of public fast charging is inadequate and that the price of public fast charging
is assumed to be constant over the day [5], which is questioned in the current paper. The
authors of the current paper see the price for public fast charging as one of the key factors
for cost-effective battery electric trucks and their charging strategy. In addition, possible
variations in price over the day could be crucial for the haulage companies’ route planning.
Therefore, this study adds important knowledge and ideas to the existing research.

The method and conclusions are quite general, but only one charging demand is
analysed. It is derived for a charging station in Ödeshög, midway between the Swedish
cities Helsingborg and Stockholm, in a future scenario where all trucks are battery electric.
The two cities are connected by the E4 highway shown on the map in Figure 1, and
the distance between them is 553 km. Ödeshög was chosen since it likely will have a
high demand for public fast charging of trucks. Also, the driving distance from both
Helsingborg and Stockholm suits the mandatory break, and it already has large truck stops.
In the present paper, the charging demand in Ödeshög is assumed to be reflected by the
traffic flow. Thus, the charging need is derived from data from the Swedish Transport
Administration [22].

In the present paper, there are two competing CPOs in Ödeshög. They are modelled
as two agents, changing their price and number of chargers according to a set of rules,
aiming to improve their profit. The trucks are also modelled as agents, selecting between
the two CPOs to minimise their own costs, including a cost for queuing. An agent-based
model is used because, from the author’s view, it is more challenging to create a reliable
macroscopic model than to find reasonable rules for the agents. The agent-based model
provides an opportunity to obtain macroscopic results and to draw system conclusions by
only designing rules on the microscopic level.

The main results of this paper are that the price for public fast charging will likely be
low outside rush hours and significantly higher, but still reasonable, during rush hours.
Also, the CPOs in the analysis seem profitable and able to meet the demand for charging
with minor queuing problems, high utilisation of chargers, and reasonable prices for public
fast charging. This indicates that the basic competition mechanisms seem to be able to
provide an effective charging network.
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Figure 1. The municipality Ödeshög, strategically placed for en-route charging of battery electric
long-haul trucks.

2. Charging Demand

This study analyses a case where all long-haul trucks are battery electric. The data
show that the yearly daily average flow of trucks with trailers passing Ödeshög was
Ft = 3322 trucks per day during the year 2022 [22]. Trucks without trailers were excluded
because we believed that they would not drive long distances and, therefore, would not use
public fast chargers. Further, Ödeshög is located in between Helsingborg and Stockholm.
It takes a truck approximately 4 h to drive from Helsingborg to Ödeshög; therefore, it is
a good place for the mandatory 45 min break and, thus, for charging. In this paper, all
trucks that charged in Ödeshög were assumed to charge the following amount of energy:
Eb = 525 kWh. Also, it was assumed that 499 of the 3322 passing trucks would charge at
Ödeshög, corresponding to a share of rc = 15%. This resulted in a total daily charging
demand of

Etot
c = rc · Eb · Ft = 260,000 kWh. (1)

Data for the hourly flow of trucks with trailers were available at Ödeshög for some
days in 2022 [22]. By studying the data, it was found that the time variation for the different
days was quite alike. Therefore, the time variation over the day used in this article was
created from the time variation of the total flow from Thursday morning of 24 November
to Friday morning of 25 November. The time variation was then scaled so that the total
daily flow of trucks that wanted to charge equalled 499. The flow is presented in Figure 2
as the hourly flow of trucks, but the time they arrive at the charging stations is simulated
with minute resolution. The flow over each hour is relatively even and was constructed so
that no more than one truck arrives at the charging station per minute. Notice that the flow
is the flow of charging trucks and not the total flow of trucks on the road passing Ödeshög.
Since this paper investigates only the charge points, from now on, we call the flow of
charging trucks the truck flow. The selected truck flow created in this paper attempts to
represent charging demand on a typical day at Ödeshög in the case of full electrification.
The truck flow with minute precision is presented in Appendix A.
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Figure 2. Total number of arriving trucks per hour that want to charge at one of the two stations as a
function of time.

3. Model Description

The paper models the competition between two CPOs on one site, and the charging
need for the typical day is described above. Each of the 499 trucks will charge 525 kWh at
one of the two stations. The trucks will select the station associated with the lowest cost,
considering both the charging price and the cost for the time spent queuing (described in a
following subsection).

3.1. Calculating the Profit of the Charge Point Operator

The price for electricity that the CPO pays is assumed to be constant in this analysis,
but the charging price paid by the trucks can vary each hour. In this paper, “each hour”
corresponds to the time intervals 00:00–01:00, 01:00–02:00, and so on. The trucks that arrive
at the stations charge at the price when they arrive, regardless of any price changes during
charging and potential queuing. Thus, the profit for each CPO on the simulated day is then
provided as follows:

I =
∫ T

0

(
Cmean

epub (t)− Ce

)
· P · N(t)dt − Cch · rp · P · Ntot, (2)

where the parameters and variables in the above equation are defined in Table 1 except for
the factor rp = 9

7 , which is a factor that compensates for the fact that the charger does not
run on full power all the time. The assumed value of rp = 9

7 corresponds to a charger of
900 kW, which is expected to deliver 700 kW on average during a charging session.

Table 1. Definition of parameters and variables.

Notation Explanation

[0, T] Time interval over the analysed typical day

Cmean
epub (t) Mean price per kWh paid by the users at time t

Ce = 0.08 e/kWh Purchase price for electricity from the grid (including any
energy-based grid fee)

P = 700 kW Average power of a charger when it is in use

N(t) Number of chargers which are used at time t for a CPO

Cch = 0.32 e/kW/day
Total cost per day for a charger, per kW of charger power

(includes charger depreciation, interest, fixed grid fees, and
maintenance)

Ntot Total number of chargers of a CPO
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To summarise the above equation, the integral term represents the daily income paid
by the users minus the cost of the bought electricity, while the second term represents the
daily cost for the chargers and grid connection.

The average charging power is chosen to match the trucks’ need to charge the energy
Eb in the required time during the mandatory driver break Tc = 45 min; thus,

P =
Eb
Tc

= 700 kW. (3)

3.2. Simulation of the Typical Day

To achieve good initial conditions for the simulation of the typical day, that day is
simulated twice, starting with empty charging stations on the first day. Thus, the second
day begins with trucks already using chargers. All the results presented are from the
second day.

Charging during the day is simulated with a time step ∆t = 1 min. In each time step,
the following steps are carried out:

1. If a new truck arrives for charging, it decides if it shall charge at CPO 1 or 2. The new
truck begins to charge or enters the queue if all chargers are occupied.

2. Each CPO delivers energy to the charging trucks according to the following equation:
E(t) = P · N(t) · ∆t. (4)

3. Each CPO receives income according to the following:

M(t) = P · N(t) · Cmean
epub (t) · ∆t. (5)

This income is used to calculate the income for the whole day using Equation (2).
4. All trucks that are finished charging leave their charger.

Each minute of the typical day is simulated as described above. After the whole day
has been simulated, the profits for the two CPOs are calculated using Equation (2). The
simulation procedure of the typical day is schematically visualised in the right-hand part of
Figure 3. Notice that the investigated day is simulated many times during one simulation
since the goal is to study prices, queues, utilisation, and more after a sufficiently long time
of competition, which results in the market converging to an equilibrium. Since there is no
guarantee that the market is stable, it may converge to a quasi-equilibrium, with small but
repeated variations around a fairly stable state.

3.3. Repeated Simulations of the Typical Day

Each CPO can change its number of chargers and change its prices. The rules for how
the CPO makes these changes are presented in the following subsection, while the details
of the overall simulation are described in the following paragraph.

On a high level, the simulation procedure includes the following steps:

1. The initial conditions, i.e., the individual number of chargers for the CPOs, are set
together with the individual prices of the CPOs.

2. The typical day is simulated, and the result is saved.
3. One of the CPOs updates its prices and its number of chargers (this procedure is

explained in detail in a following subsection).
4. The typical day is once again simulated to evaluate if the updated prices and number

of chargers are more profitable for the CPO that made the changes. If the profit is the
same or higher than with the old prices and number of chargers, the CPO will change
to the new setup. Otherwise, it retains the old one.

5. The typical day is simulated again, and the result is saved.
6. Steps 3 to 5 are repeated many times to give the market sufficient time to converge to

an equilibrium. The number of times will be referred to as the “number of iterations”.
During these iterations, only one CPO attempts to change its prices and its number of
chargers; in the next iteration, the other CPO makes its changes.
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Figure 3. Upper left-hand part: flowchart of the main iterations to find market equilibrium. Lower
left-hand part: flowchart of the subroutine in which CPOs update their number of chargers and
prices. Right-hand part: flowchart of subroutine simulating the typical day.
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Repeated simulations of the typical day are schematically visualized in the upper left-
hand part of Figure 3. Repeating simulations of the same day is not intended to simulate
several different days but rather to find the equilibrium state that the market forces will
lead to. Exactly how that equilibrium is reached in the real world is not simulated. It is
assumed that the market will find it sooner or later. In this paper, we have not looked into
how the search for equilibrium is influenced by the agent’s method of trying new prices
and a new number of chargers. By doing so, a more stable equilibrium could probably be
reached, and the convergence could be made faster by smarter search methods.

3.4. How the Truck Agent Selects a Charge Point Operator

In this subsection, the rules for the truck agents are explained. In summary, the trucks
will aim to charge at the lowest cost when the cost for any queuing is included. Therefore,
an estimated cost for queuing is derived as follows.

The total cost to operate a truck is estimated to be EUR 90/h [5], including the salary
of the driver, vehicle depreciation, maintenance, insurance, and fuel costs. The extra cost
for queuing per minute, Cq/t, is therefore set to

Cq/t = EUR 90/h = EUR 1.5/min. (6)

This estimated cost includes energy consumption, which is not relevant for a truck
standing still in a queue. However, this value is still used since queuing will result in a loss
of income, which is typically close to the cost of operating a truck. It is assumed that the
extra cost for selecting CPO 2 instead of CPO 1 is based on the extra queuing time given by
the following:

Cq = Tdi f f · Cq/t, (7)

where Tdi f f is the difference in queuing time for the CPOs according to the following:

Tdi f f = T2 − T1, (8)

where T2 is the queuing time at CPO 2 and T1 at CPO 1. Since the agents only have the
information on the number of queuing trucks per charger and not exactly how long they
will stay, Tdi f f is estimated to be as follows:

Tdi f f = rq · (q2 − q1) · Tc, (9)

where q2 is the number of queuing trucks per charger at CPO 2 (including the one
that makes the decision), and q1 is the number of queuing trucks per charger at CPO
1 (including the one that makes the decision). Factor rq = 1

2 compensates for the fact
that some charging trucks might have just started charging while others might just be
about to end their charging, with others having any remaining charging time in between.
One obtains the following equation:

Cq = rq · (q2 − q1) · Tc · Cq/t. (10)

Further, the extra cost for selecting CPO 2 instead of CPO 1 due to the price difference
is as follows:

Cp = (P2 − P1) · Eb, (11)

where P2 is the price per kWh at CPO 2 and P1 is the price per kWh at CPO 1. Thus, the
total extra price for selecting CPO 2 instead of CPO 1 is as follows:

Ctot = Cq + Cp = rq · (q2 − q1) · Tc · Cq/t + (P2 − P1) · Eb. (12)

If Ctot > 0, the truck selects CPO 1; if Ctot < 0, the truck selects CPO 2. The first time
a truck arrives and Ctot = 0, the truck selects CPO 1; the next time a truck arrives and
Ctot = 0, that truck selects CPO 2 and so on.
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It should be noted that it is assumed that the trucks have perfect information about
the number of queuing trucks per charger at each CPO. In reality, this is not the case. CPOs
are likely to announce whether there are free chargers via their charging app. However,
they may not announce long queues. So, it will be possible for users to know if there are
free chargers before they arrive. As the CPOs are on the same site, it is also possible for
truck drivers to see the queues when they arrive. For market forces to exert pressure to
reduce queues, it is not necessary to have perfect knowledge of queue length, as long as
the station with a shorter or no queue benefits by getting more customers.

3.5. How CPO Agents Change Their Prices and Number of Chargers

The rules for how CPOs try to adjust their prices and the number of chargers will
affect the outcome of the simulation. Of course, the behaviour of the trucks also affects
the results. Later in this paper, the rules for the CPOs will be changed to investigate how
sensitive the simulation results are to the rules. It is important to emphasise that not only
could the model convergence be sensitive to the rules but also the actual outcome on a real
charging market. With one type of behaviour, a specific price level could be successful,
but it may not be successful under other circumstances. The selected rules for the CPOs
are just one setup among infinitely many. They have been designed to be both realistic
and concise, but most likely, future research will find better rules. It is assumed that CPOs
cannot change the number of chargers or prices in large leaps, as that would probably lead
to extremely fluctuating solutions. Despite this, the system does not run into a steady state
but rather wiggles around a quasi-equilibrium.

The intentions of the CPOs are described in the bullet list below. To achieve these
intentions, six rules are defined at the end of this subsection.

• CPOs try to adjust the number of chargers so that every charger is profitable.
• CPOs try to adjust prices so that the utilisation of their chargers is at least as good as

the utilisation of the competitor’s chargers.
• CPOs try to increase their prices when the demand exceeds the supply.
• CPOs test if other price changes, in addition to those previously mentioned, can

increase profit.
• When a price increase is investigated, the price is set to just below the competitor’s

price or higher.
• When a price decrease is investigated, the price is set to the competitor’s level or

just below.
• CPOs always sell charging at a higher price than their cost for purchasing electricity,

i.e., their income always covers the marginal cost.

Notice that the above intentions do not map the six rules for CPOs presented later in
this subsection point by point.

CPOs can adjust their conditions in their charging station by changing their number of
chargers by one and changing the price for some hours. Imagine that one of the chargers is
only used when all the other chargers at the station are allocated; this charger is called the
“last” charger. The decision to build or take away one charger depends on whether the last
charger built is profitable or not. Let Cepub(t) be the price for public fast charging for the
arriving trucks. By assuming that Cmean

epub (t) ≈ Cepub(t) and slightly modifying Equation (2),
one realises that the last charger for a CPO is probably not profitable if the following applies:∫ T

0
σ(t)

(
Cepub(t)− Ce

)
· Pdt − Cch · rp · P < 0, (13)

where the integral estimates the net income per day from the “last” charger, the second
term is the fixed cost per day for having one charger, and

σ(t) =

{
1 if the charger is used
0 else.

(14)
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Since P ̸= 0, one obtains∫ T

0
σ(t)

(
Cepub(t)− Ce

)
dt − Cch · rp < 0. (15)

This equation will be used as a condition for trying to change the number of chargers
for the CPOs. The CPOs update their number of chargers and prices by the following rules,
where each change for the individual operator occurs with a probability of Pprob = 1

4 for
each iteration. The reason that the probability is not 1 is that, if a CPO always tries to
perform all changes, one misses the opportunity to make a change to one condition that
may lead to a better profit, while two simultaneous changes may lead to a lower profit.
For example, only increasing the price for one hour may lead to a better profit, but in
combination with building an extra charger, it might lead to a decrease in profit. Sometimes,
it could be the other way around, i.e., simultaneous changes increase profit, while one
change alone does not. This method gives an opportunity to sometimes not make changes,
sometimes make one, and sometimes make several.

1. The CPO removes one charger if

∫ T

0
σ(t)

(
Cepub(t)− Ce

)
dt − Cch · rp < 0. (16)

If the CPO only has one charger, it will not remove it. This reluctance to remove the
last charger prevents the simulation from getting stuck in a monopoly situation.

2. The CPO adds one charger if

∫ T

0
σ(t)

(
Cepub(t)− Ce

)
dt − Cch · rp > 0. (17)

3. If the competitor has a higher average utilization of the chargers for some hours. The
CPO randomly picks one of these hours and sets its price ∆Cepub lower than that of its
competitor’s. One hour refers to, for example, the time between 4 a.m. and 5 a.m. or
2 p.m. and 3 p.m. However, the price cannot be lower than Ce + Pi

marg, where Pi
marg is

the profit margin for CPO i ∈ {1, 2}.
4. If there are hours with queues, the CPO randomly pick one of these and increases the

price by ∆Cepub for this hour. If that results in a higher price, the CPO increases the
price to ∆Cepub less than that of its competitor’s for this hour.

5. One hour of the day is selected randomly, where each hour has the same probability
of being chosen. The price for that hour is increased by ∆Cepub or, if that results in a
higher price, is altered to ∆Cepub less than the competitor’s price for that hour.

6. If there exist hours when the price is higher than or equal to the competitor’s, one of
these hours is selected randomly, with equal probability. Then, the price is reduced to
the competitor’s level for this hour, with probability 1

2 . Otherwise, the price is reduced
to ∆Cepub below the competitor’s level for this hour. However, as stated earlier, the
price cannot be lower than Ce + Pi

marg.

In this paper, parameter Pi
marg is called the profit margin and is set to EUR 0.001/kWh

for all simulations. How the CPOs update the number of chargers and prices is schemat-
ically visualized in the lower left-hand part of Figure 3. The rules are designed to make
the CPOs adjust their number of chargers and prices so they will improve their profit
under competition. The rules do not perfectly reflect the actual market, but since the effect
on the profit is always evaluated, the rules do not necessarily have to be perfect for the
found quasi-equilibrium to reflect the market’s response to the competitive situation in a
good way.
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4. Results
4.1. Low Sensitivity to Initial Conditions

The simulation results do not seem to be sensitive to the initial number of chargers
and the initial prices at each station. For example, in Figures 4a and 5a, CPO 1 initially has
one charger, and CPO 2 has two, while the initial price is EUR 0.15/kWh over the whole
day for both CPOs. In Figures 4b and 5b, CPO 1 starts with 20 chargers and CPO 2 with 25,
where the initial price is EUR 0.55/kWh over the whole day for both stations. Figure 4
shows the number of chargers as a function of the number of iterations, while Figure 5
shows the maximum and minimum price over the day and the mean price. The mean price
(yellow curve) is defined as the total income for both CPOs divided by the total energy
delivered by both stations. In these simulations, the parameter ∆Cepub was set to EUR
0.001/kWh. Even though the initial conditions were different, the price level and number
of chargers were similar after a sufficiently number of iterations.

(a) (b)
Figure 4. Number of chargers as a function of the number of iterations. (a) Initial number of chargers
was set to one for CPO 1 and two for CPO 2. The initial price was was set to EUR0.15/kWh over the
whole day for both CPOs. (b) Initial number of chargers was set to 20 for CPO 1 and 25 for CPO 2.
The initial price was was set to EUR 0.55/kWh over the whole day for both CPOs.

(a) (b)
Figure 5. Price levels as a function of the number of iterations. (a) Initial number of chargers was set
to one for CPO 1 and two for CPO 2. The initial price was was set to EUR 0.15/kWh over the whole
day for both CPOs. (b) Initial number of chargers was set to 20 for CPO 1 and 25 for CPO 2. The
initial price was was set to EUR 0.55/kWh over the whole day for both CPOs.

4.2. Market Convergence

Figures 4 and 5 show that the number of chargers and prices for CPO 1 and 2 are not
converging to a fixed value after many iterations. Instead, the system wiggles around a
steady state, which in this paper will be referred to as a quasi-steady state. This outcome
seems reasonable since the CPOs try to adjust their strategies to improve their profit. The
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CPOs then respond to each other’s actions, and thus, the system fluctuates between the
iterations. This is further discussed in Section 5. Due to the randomness of the changes
in the number of chargers and prices for the CPOs, two simulations with the same initial
conditions do not provide identical results. Still, the bigger picture is similar.

Now, it is investigated if the quasi-steady state is affected by the size of the parameter
∆Cepub. The initial number of chargers was set to 12 for both CPOs, and the initial price
for fast charging was set to EUR 0.15/kWh over the whole day for both CPOs. The
price levels can be seen in Figure 6 when the value on ∆Cepub is set according to the
sub-captions in the figure. The number of iterations differs between the cases since a
smaller value of ∆Cepub requires more iterations to reach the quasi-steady state. The figure
shows that the maximum price level becomes more stable with decreasing ∆Cepub, while
the lower price is unaffected. Also, one notices that the maximum price is significantly
lower for ∆Cepub = EUR 0.01/kWh when compared with ∆Cepub = EUR 0.001/kWh and
Cepub = 10−4 EUR/kWh. One significant difference when comparing these three cases
is that in the case with ∆Cepub = EUR 0.01/kWh, the price difference of ∆Cepub between
the stations is high enough to make a truck prefer to queue instead of selecting the more
expensive station, which puts a higher downward pressure on the prices. The conditions
for this to happen are described in the following calculations.

Assume that CPO 1 has a price ∆Cepub = EUR 0.01/kWh higher than CPO 2; then, an
arriving truck prefers to queue if the cost for queuing is less than the extra cost for charging,
i.e., Ctot < 0 in Equation (12). Thus, the truck selects CPO 2 if

rq · (q2 − q1) · Tc · Cq/t + (P2 − P1) · Eb < 0 ⇐⇒ q2 − q1 <
(P1 − P2) · Eb
rq · TC · Cq/t

⇐⇒ q2 − q1 <
∆Cepub · Eb

rq · TC · Cq/t
.

(18)

Inserting ∆Cepub = EUR 0.01/kWh and the parameter values used in this paper, the
queuing difference can be found. The trucks choose to queue if

q2 − q1 < 0.16 queuing trucks per charger. (19)

Suppose there are free chargers at CPO 1, then q1 = 0. If CPO 2 has 12 chargers
or less (but more than 6), the above inequality means that one truck could select CPO
2 even if all its chargers are occupied. If CPO 2 has 13 chargers or more, it means that
two trucks could select CPO 2 even if all its chargers are occupied. In the case when
∆Cepub = EUR 0.001/ kWh, the price difference of ∆Cepub for charging is too small to
make trucks queue. Thus, the larger step size in prices will create a situation in which
trucks prefer to queue even though they would not do that if they were given the option to
pay just a little more to avoid queuing.

The way in which the size of ∆Cepub affects the number of chargers is not that clear.
However, for the main results in this paper, the value of the parameter ∆Cepub is set to
EUR 0.001/kWh since this is very similar to the resolution in the prices on the Swedish
fast-charging market right now (SEK 0.01). A price difference of EUR 0.001/kWh leads to a
total price difference of around EUR 0.5 when a truck charges 525 kWh.
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(a) ∆Cepub = 0.01 e/kWh.

(b) ∆Cepub = 0.001 e/kWh. (c) ∆Cepub = 10−4 e/kWh.

Figure 6. Comparison between results for different values of ∆Cepub.

4.3. Main Results

The model was then run again for 3 · 105 iterations. The initial number of chargers
was set to 12 for both CPOs, and the initial price for fast charging was set to EUR 0.10/kWh
over the whole day for both CPOs. The results are shown in Figures 7–10. By averaging
over the last 2 · 105 iterations, one finds that the mean number of chargers for one CPO is
12.5, the mean profit per day for one station is EUR 3200, the mean value for the highest
price at the two stations is EUR 0.413/kWh, the mean value for the price is EUR 0.132/kWh,
the mean value of the longest queue during rush hours is 0.067 queuing trucks per charger
(corresponding to an expected queuing time of 1.5 min), and the average charger time
utilisation is 62.6%. The time utilisation of the chargers is defined as the share of time a
charge is used per day. In this case, this is not the same as energy utilisation, which is the
energy delivered by a charger divided by the highest possible energy the charger could
have delivered. In this paper, utilisation refers to energy utilisation. Since it is assumed
that 900 kW chargers, on average, deliver 700 kW, the energy utilisation of the chargers
equals seven ninths of the time utilisation. The reason the time utilisation is shown in
the figure is that it is easier to interpret. A charger time utilisation of 62.6% is a fantastic
value, but unfortunately, it is only realistic when a single day is considered and not realistic
if all weekdays and a whole year are considered. A more realistic value is presented in
Section 5. Figure 10a shows the CPOs’ hourly time utilisation over the day. The reason for
the significantly higher time utilisation at midnight and just before rush hours for CPO 1
is the slightly lower price at this time of the day, which is barely visible in Figure 8a. The
utilisation is higher after rush hours for CPO 2 due to it having fewer chargers than CPO 1,
see Figure 7a.

In Figure 8b, one sees that the typical value for the peak price is around EUR
0.413/kWh and the mean price is around EUR 0.132/kWh. The lowest price over the
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day is stable and equals EUR 0.081/kWh, which is the lowest allowed price, i.e., the price
for electricity plus the profit margin. Figure 8a shows the price over the whole day for the
last iteration and is representative of all the iterations in the quasi-steady state. Comparing
that price with the traffic flow in Figure 2, one sees that the price drops to a very low level
throughout the day except during rush hours. This will be further analysed in Section 5.
Figure 8a shows large variations in the price over the day, from very low throughout
most of the day to much higher, but still reasonable, during rush hours. Interestingly, a
reasonable price during rush hours is achieved with very short queues. Figure 9a shows the
queue length that a truck arriving at different times of the day will experience for the last
iteration. There is no queue almost all day, except for around 0.1 queuing trucks per charger
during rush hours. This figure also shows one advantage of having more chargers than
the competitor. Namely, if all chargers are allocated without a queue, the arriving truck
prefers the station with the most chargers since it results in a queue with fewer queuing
trucks per charger. Figure 9b shows that the worst queue over the whole day, considering
both CPOs, is around 0.1 queuing trucks per charger or lower. A queue of 0.1 trucks per
charger corresponds to an expected queuing time of around 2 min. In summary, the market
reaches a state with reasonable prices and low queuing problems.

(a) (b)
Figure 7. (a) Number of chargers as a function of the number of iterations. (b) The CPOs profit as a
function of the number of iterations.

(a) (b)
Figure 8. (a) The price over the day for arriving trucks for the last iteration. (b) The maximum,
mean, and lowest price as a function of the number of iterations shown on the left y-axis and moving
average, over 104 iterations, of the total number of chargers in the system on the right y-axis.
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(a) (b)
Figure 9. (a) The length of the queue that a truck arriving at different times of the day will experience
for the last iteration. (b) The maximum queue over the day as a function of the number of iterations.

(a) (b)
Figure 10. (a) The time utilisation of the chargers over the day for the last iteration. (b) The time
utilisation of the chargers for a full day as a function of the number of iterations.

5. Comparative Analytic Calculations: Analyses and Corrections

In this section, some analytic calculations are performed to support and explain the
simulation results. Also, a more realistic average charge utilization for a whole year is
estimated based on the results from the simulated day.

5.1. How Prices Reduce at Times with More or Less Charger Overcapacity

The model result shows prices at really low levels outside rush hours; see
Figures 2 and 8a. Now, some calculations are performed to explain this result. First,
start by assuming that the two CPOs have an equal number of chargers, Ntot. This is a
reasonable assumption by symmetry since both CPOs have the same conditions to compete.
During calm hours, the system has many more chargers than needed. Now, introducing the
variable k, which is the ratio between charging demand and total charger power capacity,

k =
charging power demand

available charger power capacity
. (20)

If k is below 0.5, the charging demand is so low that one CPO alone could supply the
whole market. Then, the CPO that has the lowest price will sell charging to all trucks, and
the other one will not sell any charging at all. This will likely lead to a price at the lowest
level, which explains the low price during hours with really low demand. Now, consider
the case when k ∈ (0.5, 1) for a given time interval with length ∆T, meaning that there
are more chargers than needed, but one CPO could not supply the whole market without
increasing queues. The time ∆T is assumed to be long, so one can disregard the situation
before and at the beginning of the time interval. Assume that the two CPOs have the same
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price, Cepub, which is over the minimum level. This leads to a charger utilisation for both
CPOs of

Γbe f ore = k, (21)

and the profit over the time interval becomes

Ibe f ore = Γbe f ore · Ntot · P · ∆T · (Cepub − Ce)− cost for chargers and grid

= k · Ntot · P · ∆T · (Cepub − Ce)− cost for chargers and grid.
(22)

Then, one of the CPOs drops the price by ∆Cepub, leading to a charger utilization of

Γa f ter = 1 (23)

for that CPO since all trucks will prefer this station as long as there are free chargers at
this station. This small price difference is, as seen before, not sufficient to make the trucks
queue unless they have to. The new profit can now be obtained as follows:

Ia f ter = Γa f ter · Ntot · P · ∆T · (Cepub − ∆Cepub − Ce)− cost for chargers and grid

= Ntot · P · ∆t · (Cepub − ∆Cepub − Ce)− cost for chargers and grid.
(24)

The difference in profit is given by the following:

∆I = Ia f ter − Ibe f ore

= Ntot · P · ∆T · (Cepub − ∆Cepub − Ce)− k · Ntot · P · ∆T · (Cepub − Ce)

= Ntot · P · ∆T · (Cepub − Ce)(1 − k)− Ntot · P · ∆T · ∆Cepub.

(25)

Thus, the CPO will lower the price if the following is true:

∆I ≥ 0 ⇐⇒ ∆Cepub ≤ (Cepub − Ce)(1 − k). (26)

Notice that a lower value for ∆Cepub is necessary if either Cepub is low or k is large. If
∆Cepub can be set arbitrarily small, the CPO will always improve the profit by dropping the
price just below the competitor. In response, the competitor can lower its price, increase its
profit, and so on. Thus, the price will likely be at the lowest level after a sufficient number
of iterations regardless of k. In reality, ∆Cepub cannot tend to zero; in our case, the size of
∆Cepub is set to EUR 0.001/kWh. The above inequality means that CPOs will lower their
prices if the following is true:

∆Cepub

1 − k
+ Ce ≤ Cepub. (27)

The case with equality will be an upper price limit, and its dependence on k is shown
as the blue curve in Figure 11 for ∆Cepub = EUR 0.001/kWh and Ce = EUR 0.08/kWh.
From the figure, one may, for example, see that k = 2/3, k = 0.75, and k = 0.90 lead to a
maximum price of EUR 0.083/kWh, EUR 0.084/kWh, and EUR 0.090/kWh, respectively.
To clarify, if both CPOs have the same price, above this limit, one of the CPOs will increase
their profit by lowering the price with the step ∆Cepub.

Now, the opposite case is investigated, i.e., when two CPOs have the same price and
one of them considers increasing the price. The profit for the CPOs before the increase is
given by the following:

Ibe f ore = Γbe f ore · Ntot · P · ∆T · (Cepub − Ce)− cost for chargers and grid

= k · Ntot · P · ∆T · (Cepub − Ce)− cost for chargers and grid.
(28)
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Figure 11. The maximum and minimum price for a long time period when the ratio of the demand
of charging power to the available charging power equals k and both CPOs have the same number
of chargers.

After the increase, the CPO with the higher price will have a utilization of

Γa f ter = 2k − 1 (29)

since 2k is the sum of the average charger utilisation. After the increase, the CPO with the
lower price will have charger utilisation 1, and the CPO with the higher price will only get
the trucks which could not find a charger at the low-price station. The profit for the CPO
with the higher price after the increase is given as follows:

Ia f ter = Γa f ter · Ntot · P · ∆T · (Cepub + ∆Cepub − Ce)− cost for chargers and grid

= (2k − 1) · Ntot · P · ∆T · (Cepub + ∆Cepub − Ce)− cost for chargers and grid.
(30)

The difference in profit is now obtained as follows:

∆I = Ia f ter − Ibe f ore

= (2k − 1) · Ntot · P · ∆T · (Cepub + ∆Cepub − Ce)− k · Ntot · P · ∆T · (Cepub − Ce)

= k · Ntot · P · ∆T · (Cepub − Ce)− Ntot · P · ∆T · (Cepub − Ce) + (2k − 1) · Ntot · P · ∆T · ∆Cepub

= Ntot · P · ∆T((Cepub − Ce)(k − 1) + (2k − 1)∆Cepub).

(31)

The price increase is profitable if the following is true:

∆I ≥ 0 ⇐⇒ (Cepub − Ce)(k − 1) + (2k − 1)∆Cepub ≥ 0

⇐⇒ Cepub ≤ 2k − 1
1 − k

· ∆Cepub + Ce,
(32)

where the last form of the inequality is reached by the fact that k − 1 < 0 and 2k − 1 > 0.
Since the price for public fast charging is never smaller than the sum of the price for
electricity and the profit margin, which in this paper is the same for both CPOs, one knows
that Cepub ≥ Ce + pi

marg. In this paper, pi
marg = ∆Cepub = EUR 0.001/kWh, and according

to inequality (32), the price does not increase from the lowest level if the following applies:

2k − 1
1 − k

≤ 1 ⇐⇒ k ≤ 2
3

. (33)

This, together with inequality (32), determines the lower limit of the price, shown as
the red curve in Figure 11. Thus, if both CPOs have the same price, below this limit, one of
the CPOs will increase their profit by increasing the price with the step ∆Cepub. It might be
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interesting to notice that the gap between the two curves in the figure for k ≥ 2
3 is given

as follows:

∆Cepub

1 − k
+ Ce − (

2k − 1
1 − k

· ∆Cepub + Ce) =
2 − 2k
1 − k

· ∆Cepub = 2 · ∆Cepub. (34)

If the price for both CPOs is between the curves in Figure 11, none of the CPOs will
increase their profit by either increasing or decreasing their price for fast charging. Even
though the calculations in this subsection are performed under simplified conditions, they
show quite a strong force acting for low prices even for relatively low overcapacity of
chargers in the system. It also shows that for medium to large overcapacity, it is even harder
not to have prices at the lowest level. Furthermore, the results of these calculations, shown
in Figure 11, strongly suggest that for a given number of chargers, it is favourable to change
the prices with varying demand. This is an argument that a CPO that uses time-varying
prices will compete better than a CPO that uses a fixed price over the whole day.

5.2. Price during Rush Hours

The previous subsection investigated the situation when there is more charger capacity
than demand. Now, the opposite situation is considered. Assume that there is a period
when k is slightly smaller than one followed by a period of length Th when there is a greater
charging demand than available charger power, visualised in Figure 12. Since the price
difference of ∆Cepub is too small to make a truck queue instead of selecting more expensive
charging, a CPO can, without losing many users, increase the price by this small step and
thereby increase its profit. It is even possible that the CPO that makes the increase does
not lose any users at all since, with equal conditions on prices and queues, a truck has to
make a decision, and one station will be rejected, with or without a higher price. After
the increase, the other station can increase its price and so on. So, when there is a time
when the demand is equal to or greater than the supply, the prices will likely increase. This
will continue, but at some point, the price is sufficiently high to build more chargers, and
when more chargers are built, the system no longer has a greater demand than supply,
so the price increase stops. The fluctuations in both chargers and price at rush hours in
the simulations, observed in, for example, Figure 8b, indicate that the system does go
back to a condition with more chargers than necessary, which makes the prices fall again
until the extra chargers are removed and so on. It is likely that the fluctuating behaviour
in the system is increased because the number of chargers only changes in steps of one,
which is a rather big step relative to the average 12.5 chargers that the stations have in the
analysed case.

Figure 12. A schematic figure of k as a function of the time during rush hours when there is a greater
demand than supply in the system.

To check the model, the simulation is rerun two times for 2 · 104 iterations. The starting
price is set to EUR 0.1/kWh over the whole day for both CPOs but with the same fixed
number of chargers for both CPOs over all iterations. First, the number of chargers for each
CPO is set to 12, see Figure 13, and then the number of chargers for each CPO is set to 13,
see Figure 14. As seen from the figures, the model follows the predictions. In Figure 13a,
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one notices that there are times with queues and, therefore, also times when there is no
queue but all chargers are allocated. As seen from Figure 13b, this leads to increasing prices
during rush hours. There are only queues at CPO 1 in the late afternoon because of the
slightly higher price offered by CPO 2. From Figure 14a, one notices that the queue is gone
when the number of chargers is increased to 13 for both CPOs, resulting in a greater supply
than demand and low prices. Still, the prices in rush hours are a bit higher than the prices
at other times and are around EUR 0.095/kWh, which, according to Figure 11, corresponds
to a value of k close to one in the simplified analytic calculation.

(a) (b)
Figure 13. Simulation results when both CPOs have 12 chargers each, which cannot be changed.
(a) The queuing situation for the last iteration. (b) Price levels as a function of the number of iterations.

(a) (b)
Figure 14. Simulation results when both CPOs have 13 chargers each, which cannot be changed.
(a) The queuing situation for the last iteration. (b) Price levels as a function of the number of iterations.

Finally, finding a rule of thumb for when new chargers are built would be desirable.
Assume that the number of chargers is a continuous variable and consider Figure 12. With
the same price for public fast charging, Cepub, and the same number of chargers, the two
CPOs will split the charging demand that the system cannot supply at time Th. The red
striped area in the figure corresponds to this unfulfilled charging demand if it is multiplied
by the total charging power in the system. Thus, a CPO that builds chargers for this peak
demand will increase its income corresponding to half this energy, i.e., the extra income for
building chargers for the peak demand is given as follows:

extra income =
(k − 1) · Th · Ptot

2
· (Cepub − Ce), (35)

where Ptot is the total power in the system before any extra chargers were built. To meet
the demand, the extra chargers have to be able to charge the energy (k − 1) · Th · Ptot in the
time Th, which gives the extra needed power as follows:
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extra power =
(k − 1) · Th · Ptot

Th
= (k − 1) · Ptot. (36)

This will increase the cost according to the following:

extra cost = (k − 1) · Ptot · T · rp · Cch, (37)

where we recall that T is one day, Cch is the cost for the charger and grid per kW and day,
and rp is the factor compensating for the charger’s average power being lower than their
maximum power. So, new chargers will increase the profit if the extra income is greater
than the extra cost, i.e.,

(k − 1) · Th · Ptot

2
· (Cepub − Ce) > (k − 1) · Ptot · T · rp · Cch. (38)

Since it was assumed that k > 1, this can be simplified as follows:

Cepub >
2T · rp · Cch

Th
+ Ce. (39)

By roughly studying Figure 13a, one may say that k is about one or larger for ap-
proximately 2 to 3 h. This corresponds well to Figure 8a, where two hours (1 p.m.–3 p.m.)
have high prices and one hour (3 p.m.–4 p.m.) has relatively high prices. Thus, we insert
Th = 2.5 h in the above inequality among with T = 1 day, rp = 9

7 , Cch = EUR 0.32/kW/day
and Ce = EUR 0.08/kWh and obtain the approximate limit for when new chargers are
built for the example used in our simulations:

Cepub > 0.409 e/kWh, (40)

which agrees with the result. See, for example, Figure 8b. Clearly, this limit and the results
would not have been that alike if Th had been set to 2 or 3 h instead of 2.5. Still, the limit
agrees fairly well and is used as a plausibility check of the agent-based model.

5.3. Discussion of Fluctuations around a Quasi-Steady State

Previously, it was discussed that the simulation fluctuations are caused by a variation
in the number of chargers in the system, as too few chargers favours high prices and too
many chargers favours low prices. This simulation seems to keep the system fluctuating
around a quasi-steady state. The prices increase until more chargers are built, and prices
drop until chargers are removed. Still, the system fluctuates and does not run into a true
steady state. This subsection will analyse these fluctuations by studying some examples of
prices and the number of chargers.

The model is rerun for 105 iterations, and the prices and number of chargers for the
last iteration are used as the starting point for this subsection. The price at CPO 2 between
1 p.m. and 2 p.m. for this iteration is EUR 0.001/kWh higher than for CPO 1. The number
of chargers is 13 for both CPOs. Since the number of chargers is enough to supply the
trucks without queues (according to previous investigations), one would expect the profit
to increase for CPO 2 if the price this hour is set to EUR 0.001/kWh below the price at CPO
1. When the typical day is run with this price change, CPO 2 increases its profit. But, if CPO
2 instead increases its price during this hour by EUR 0.001/kWh, it is likely that the income
would also increase since the price difference of EUR 0.002/kWh still does not make trucks
queue at CPO 1. Thus, CPO 2 does not lose any users but increases the price, leading to an
increase in profit. This is confirmed by increasing the price and running the typical day
once again. Situations like this are likely to be common during a simulation. If the price is
lowered, CPO 1 might successfully respond with prices below CPO 2, and the price falls.
If CPO 2 instead increases the price, CPO 1 could increases its price by EUR 0.001/kWh
and increase its profit, leading to increasing prices. In summary, so far, there are situations
where both a decrease and an increase in price for an hour lead to an increase in profit for a
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CPO. This means there is no unambiguous direction for the price to change and this is one
possible explanation for the fluctuating behaviour of the system.

One may ask if an optimal setup of prices and number of chargers exists. This means
that if a CPO has this setup, no other setup generates a higher profit against this setup. If
so, an idea for finding this setup could be to run two different setups and save the one
with the highest profit. Then, one tests other setups using some optimisation methods
and if one finds a setup that makes a higher profit than the previous one, one saves this
setup and continues searching for a setup that beats the new setup and so on until one
finds an optimal setup. Then, one ends up in a stable, steady state where all possible
changes decrease the profit. However, this seems not to be the case since examples can be
found that contradict this, like in the game “Rock, Paper, Scissors", where none of the items
wins over both the others. As an example, three different setups will now be considered.
Firstly, setup “rock”, with prices for CPO 1 being the same as in the above simulation but
with 14 chargers. Secondly, setup “scissors”, with prices being the same as for CPO 2 with
13 chargers. Thirdly, setup “paper”, with prices the same as for CPO 1 with 12 chargers. Just
as in the game, simulations of the typical day show that rock beats scissors, scissors beats
paper, and paper beats rock. These three setups were found manually, without much effort,
which is a reason to believe that this property is common during a simulation. This finding
indicates that an optimal setup does not exist, but rather, whether a setup is successful
depends on the competitor’s setup. This can be likened to natural evolution, where there is
no optimal species. Whether a species is successful or not depends on the environment and
its competitors. These findings explain the fluctuating behaviour of the simulation. It is a
topic of future research to develop methods to find the quasi-steady state.

5.4. Sensitivity to the Rules for the CPOs

One may ask if this model is sensitive to changes in how the agents act. The trucks
trying to minimise their cost for each individual charging decision seems reasonable but, of
course, the model for that might be conducted in other ways. The CPOs aim to increase
their profit, but in which way? In this paper, they follow six different rules. These rules
could be designed in many ways, still with good arguments. Would small changes in the
rules change the results to a great extent? In many cases, the answer seems to be no. For
example, changing the rules so that one and only one update to the prices or number of
chargers is carried out in every iteration, with equal probability, the result remains very
similar to the results presented in Section 4.3. But, as seen from the work carried out
in this paper, a change of ∆Cepub from EUR 0.001/kWh to EUR 0.01/kWh decreased the
price during rush hours from around EUR 0.40/kWh to a little less than EUR 0.30/kWh.
Previously, it was shown that there are situations where a CPO can increase its profit
both by increasing or decreasing the price just a little bit. Thus, one may guess that the
price level depends on how likely it is that the CPOs try to increase their prices compared
to how likely they try to decrease their prices. As seen previously, there are no queues
when there are 26 chargers in the system. Therefore, one will suspect that the number of
chargers for each CPO should be around 12 to 13. Still, there are situations when a CPO
successfully continues building chargers far above these values (consider Figure 7, where
CPO 1 has many chargers and high profit for many iterations). In a similar simulation, the
authors observed that the price during rush hour was slightly lower for the CPO, which
increased the number of chargers. Since the price was lower, all the chargers of the CPO
with more chargers were selected first, which in rush hours means that the chargers have
full utilisation even if there are many. The CPO with fewer chargers but a higher price
still did not utilise their chargers well, resulting in the removal chargers. But, if a CPO
has fewer chargers than the competitor, would that CPO not have the opportunity to offer
fast charging at a lower price due to a lower cost for the chargers? So, a seventh rule was
implemented for the CPOs, which occurred with probability Pprob = 0.25. The rule says
that if the competitor has more chargers, the CPO test to put the price during rush hours
(1 p.m. to 4 p.m.) a step ∆Cepub below the competitors for these three hours. The result is
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seen in Figure 15b and can be compared with the result without this rule in Figure 15a and
with the new rule added one notices that the price during rush hours is lower, down to
a little less than EUR 0.30/kWh. Thus, a change in the rules for the CPOs can affect the
price level during rush hours. Notice that the total number of chargers, in the same way,
decreased with more than one charger on average, likely because the lower price level in
the peak was insufficient to fully meet the demand for charging. Also, comparing the left
and right-hand panels of Figure 16 shows that the magnitude of the fluctuations in the
number of chargers for the individual CPOs decreased with the extra rule.

By averaging the last 2 · 105 iterations, one finds that the maximum queue each day in
the system is 0.125 queuing trucks per charger to be compared with 0.067 queuing trucks
per charger for the original simulations. These queues correspond to an expected queuing
time of 2.8 and 1.5 min, respectively. So, lower prices generated a little worse queues. Still,
a price difference of EUR 0.1/kWh corresponds to an extra cost of EUR 52.5 for a full charge,
and a queuing difference of 1.3 queuing trucks per charger corresponds to an extra queuing
cost of only EUR 2.0, so this new setup seems to be more cost-effective overall.

(a) (b)
Figure 15. The maximum, mean, and lowest price as a function of the number of iterations
shown on the left y-axis and the moving average of the total number of chargers in the system
on the right y-axis. For local means, 104 iterations were used. (a) The original rules for the CPOs.
(b) Including the extra rule that a CPO with fewer chargers strives to have slightly lower prices than
the competitor during rush hours.

(a) (b)
Figure 16. The number of chargers as a function of the iterations. (a) The original rules for the CPOs.
(b) Including the extra rule that a CPO with fewer chargers strives to have slightly lower prices than
the competitor during rush hours.
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Outside rush hours, the overall price picture was quite similar when comparing the
original rules with the extra rule added, see Figure 17. One notices that the peak in price is
higher and a bit thinner in the original case (left-hand panel) compared to when the extra
rule is added (right-hand panel). The thinner price peak does not fully compensate for the
additional height, which can be seen by comparing the mean price in Figure 15, where the
left-hand side is about EUR 0.13/kWh and the right-hand side is about EUR 0.12/kWh.
This subsection shows that the price during rush hours can be sensitive to the actions of
CPOs, while the price at other times seems far more stable. Still, the simulations show
prices at rush hours of similar magnitude and far higher than those during other times.
The mean prices are quite similar when the rules of the CPOs are changed, and the queuing
conditions seem pretty good in both cases. Thus, the investigations indicate that the rules
of CPOs can affect prices during rush hours and, to some extent, queuing times for trucks.
Thus, no exact answer for the future price during rush hours can be given, but this method
could be a good way of estimating a likely value. In this paper, the prices are assumed to be
time-dependent, with arguments that this will outcompete a fixed price over the day. Still,
there might be other ways of varying the prices, such as a function of charger utilisation.

As shown in this section, there are situations when a CPO can increase its profit either
by decreasing or, just as well, increasing the price at a particular hour. This was presented
as a part of the explanation for the fluctuating behaviour of the solution in the quasi-steady
state. A suggestion to address this ambiguity could be to investigate which of the actions
gives rise to the highest profit and select that one. However, that has not been done in
this paper.

(a) (b)
Figure 17. The price over the day for arriving trucks for the last iteration. (a) The original rules for
the CPOs. (b) Including the extra rule that a CPO with fewer chargers strives to have slightly lower
prices than the competitor during rush hours.

5.5. Adjusting Charger Utilisation for Non-Modelled Variations in Charging Demand

In Section 4.3, the time utilisation of the chargers was found to be 62.6%. This agrees
well with results from a previous study [21] in which the number of chargers was manually
tuned under the co-condition that the queuing problems should be minor instead of decided
by market mechanisms. The previous study observed the utilisation of fast chargers along
the road between Helsingborg and Stockholm (see Figure 1) to be 59% before compensating
for variations in traffic flow, such as unexpected peaks in traffic flow, weekends, and the
factor rp = 9

7 . After these compensations, the previous study ended up with a utilisation
factor as high as 30% and minor queues. That paper concluded that the result was very
good but asked, “If the system has all the chargers it needs, works well and is profitable,
what is there to stop a new CPO from entering the market if there is money to be made?
All the charge point operators might still profit, but the system has too many chargers”.
However, the result from this paper indicates that the free market will manage to keep
the utilisation high and queues short, just as well as the manual selection in the previous
study. In addition, this study also found that this is achievable with low prices for much of
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the day and high prices only during rush hours. In [21], the required number of chargers
for the system was increased by 33% to resist unmodelled variations in traffic flows, such
as unexpected peaks or increased traffic volume on certain days. Further, the utilisation
was multiplied by 7

9 to go from time utilisation to energy utilisation. Finally, the utilisation
was multiplied by a factor of 6

7 since it was assumed that the trucks were on the road on
average six days per week, while the typical day models a weekday. By applying the same
compensation in the present study, one obtains a charger utilisation as high as 31%. In
addition, since the price is predicted to have significant variations, such that it will be much
cheaper to charge at off-peak hours, some haulage companies might reschedule their trips.
That will lead to even better charger utilisation and likely lower the average price on public
fast charging.

5.6. Adjusting the Price to Reflect Non-Modelled Flow Variations

In this subsection, the price level will be adjusted in a similar way as the utilisation
factor was adjusted in the previous section. Here, we assume that the extra cost for
increasing the number of chargers by 33% in the system and the reduced income due to
the total charging demand being reduced by a factor of 6

7 is compensated by increasing the
price for public fast charging. Section 4.3 shows that the typical total number of chargers
for one CPO is 12.5; thus, the typical number of chargers in the system is 25. The mean
price, i.e., total charging cost for all trucks divided by the total amount of energy delivered
by both CPOs, was found to be EUR 0.132/kWh and the peak price to be EUR 0.413/kWh.
Consider Equation (2). The total number of chargers in the system is increased by 33%,
which corresponds to eight additional chargers. This results in an increased cost for the
chargers (the last term of the right-hand side) according to the following equation:

cost for extra chargers = EUR 0.32/kW/day · 9
7
· 700 kW · 8 = EUR 2300/day. (41)

The difference between the mean charging price and the electricity price is approxi-
mately EUR 0.05/kWh. Since the traffic flow is decreased by a factor of 6

7 due to weekends,
the CPOs will lose income according to one-seventh of the charging need multiplied by
EUR 0.05/kWh, resulting in the following:

reduce income due to weekends =
1
7
· 260,000 kWh/day · EUR 0.05/kWh

= EUR 1900/day.
(42)

Using Equations (41) and (42), one obtain the following:

extra cost after adjustment = EUR 2300/day + EUR 1900/day = EUR 4200/day. (43)

It is assumed that COPs can compensate this by implementing higher prices. Thus,
the price adjustment is as follows (remember that the charging need is reduced by a factor
of 6

7 ):

price adjustment =
EUR 4200/day

6
7 · 260,000 kWh/day

= EUR 0.019/kWh. (44)

Thus, the adjusted mean price is as follows:

typical mean price = EUR 0.132/kWh + EUR 0.019/kWh ≈ EUR 0.15/kWh. (45)

The results in this paper indicate that it is hard to increase the prices for non-rush
hours. Thus, this extra cost is assumed to spread over the hours with already high prices,
i.e., 1 p.m.–4 p.m., see Figure 8a. According to Figure 2, approximately 100 of the almost
500 trucks per day arrive during these hours. Since the typical value of the peak price
was found to be EUR 0.413/kWh, the new, adjusted, typical price during rush hours is
estimated to be as follows:
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typical price during rush hours

= EUR 0.413/kWh + EUR 0.019/kWh · 500 trucks
100 trucks

≈ EUR 0.5/kWh.
(46)

Since the extra cost is assumed only to be distributed over rush hours, the lower price
level remains the same:

typical price outside rush hours = EUR 0.081/kWh ⪅ EUR 0.10/kWh. (47)

5.7. Profitability of CPOs

The mean total profit for one CPO can be found in Section 4.3 to be EUR 3200/day,
with the typical value of 12.5 chargers per CPO. Thus, for the entire system, the profit is
EUR 6400/day with a typical value of 25 chargers. The daily profit is the income minus
all daily costs minus fixed costs like the payback of investments. Of course, one may
ask, is this profitable enough? As previously mentioned in [4,5], chargers are assumed
to be used for seven years before they are replaced, and the cost of the charger and grid
connection, including depreciation, is estimated to be Cch = EUR 0.32/kW/day. The
fixed costs for twenty-five 900 kW chargers and the corresponding grid connection over
seven years becomes

cost for twenty-five 900 kW charger over 7 years

= 25 · EUR 0.32/kW/day · 900 kW · 7 years · 365 days/year = EUR 18,400,000
(48)

and the corresponding profit becomes

profit for twenty-five 900 kW charger over 7 years

= EUR 6400/day · 7 years · 365 days/year = EUR 16,350,000 .
(49)

Thus, the ratio of the profit to the expenditures over seven years can be calculated
as follows:

profit
expenditures

=
16,350,000 EUR
18,400,000 EUR

= 88.87%. (50)

Indeed, this seems to be a very profitable business for CPOs. This indicates that the
fairly low prices and short queues are not achieved at the expense of the profitability of
the CPOs. Instead, one may ask, if there is hard competition between CPOs, would the
profit not be lower than this? Naturally, it is possible that the CPOs in this paper do not
compete that strongly, and further improvement of the agent rules may lower the prices
and, thus, the profit. Such analysis has not been made in this paper, but it is an interesting
topic for further research. A reason for this high profit could be that the CPOs try to adjust
the number of chargers so that every charger is profitable. So, if the least used charger is
profitable, all the others are even more profitable, which makes good business for the CPOs.
Notice that the profit is not adjusted for less charging on weekends and overcapacity due to
variations in the daily traffic flow since we, in this paper, assume that CPOs can adjust the
price to compensate for this, as presented in the previous subsection.

6. Discussion and Conclusions
6.1. Limitations of the Study and Further Developments

This paper studied the market interaction between charging trucks and
two competing CPOs on the same site, with a reasonably simple spot market model
with inflexible charging demand and no competing charging stations elsewhere. Therefore,
the results and conclusions mainly describe a few fundamental market forces in a market
with spot prices and are not predictions for the overall market. The simulation uses traffic
flow from real data, but only one variation over the day has been analysed, even though
the same method can be used to include variations from day to day if one simulates, for
example, a typical year instead of a typical day. Of course, one may add more details to
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the model, but there is no guarantee that a more complicated model will provide more
accurate results or provide a better understanding of the system.

The cost-minimizing rules for the trucks are reasonable, but the choices for real trucks
are probably more complex. Likely, they act partly on habit, so they are more prone to
charging where they used to charge, even if the price is slightly higher. Most likely, there
are other things than the charging price that are also relevant, such as good food. Still, it is
argued that for commercial vehicles, there will always be a strong component of selecting
chargers based on low prices and short queues, even if other factors will add to the decision.

The rules for the CPOs were designed with the aim of increasing profit under com-
petition. There are many sets of rules that, through the market iterations, can increase
the profit, and the ones used in this analysis have been selected to be easy to understand
and include some random changes to avoid getting stuck in a sub-optimum. Even though
the rules seem to work well and feel intuitive, it has been shown that the design of these
rules can impact the results. As a further development of this study, it will be interesting
to investigate competing CPOs that follow different rules to see which behaviours can
out-compete others. Could competing CPOs that follow different rules compete equally
well? Further, it will be interesting to investigate a system with more than two CPOs and
charging stations spread out geographically. Two charging stations far from one another
are not directly competing since trucks cannot choose between those two stations when
they need to charge. But, between them, there might be several charging stations, each
competing with its closest neighbours. Therefore, one may suspect that the price at a
station is affected by the price at another station that is far away due to the chain of stations
in between.

6.2. Conclusions

The interactions in the fast-charging market are rather complex, and this paper demon-
strates two ways of investigating the conditions and some basic market mechanisms in
the future fast-charging market. On the one hand, analytic calculations on limited parts of
the market mechanisms increase the understanding of the system with a high degree of
control but fail to find the bigger picture. On the other hand, an agent-based model allows
one to investigate a more complicated and realistic system, but one loses some of that
control since it acts partly as a black box. The agent-based model provides an opportunity
to obtain macroscopic results and draw system conclusions by only designing rules on the
microscopic level, which is a strength. Combined with simplified analytic calculations, the
authors consider agent-based models as a powerful tool to investigate the complexity of the
system of battery electric trucks and CPOs. Thus, it will be a key to a better understanding
of how a system with public chargers will work from a market perspective. So, despite
having to rely on rules for the agents and some other assumptions presented in this paper,
this investigation has produced some interesting conclusions:

1. For the analysed location and a charging demand reflecting the current traffic flow,
the study indicates potential for really low prices, around EUR 0.1/kWh over a
large part of the day. The price will likely be much higher during rush hours, about
EUR 0.5/kWh. The price during rush hours was found to be sensitive to changes in
how the CPOs act. The mean price was found to be EUR 0.15/kWh. These prices can
be achieved with profitable CPOs.

2. Under the assumption that truck owners are willing to pay the price, the results
indicate low problems with queues, even during rush hours. This may make charger
booking systems less important or even redundant.

3. The system charger utilisation factor was estimated to be 31%, which is very high,
especially considering that it is achievable with such minor queuing problems. This
utilization is derived for one long-haul truck flow in Sweden and a strategically located
charging station along a busy road. The utilization will be different for different types
of charging stations with different time variation in charging demand. Stations with
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lower utilization will likely lead to higher average charging prices than found in
this study.

4. The calculations and simulations performed in this paper indicate that a CPO in
competition will adjust its prices in line with demand and supply. Thus, this study
makes it likely that a CPO that uses time-varying prices will out-compete a CPO with
a fixed price for charging over the day.

5. Even though the market simulation converges, there seems to be no stable equilibrium
in which a CPO can just keep its price and number of chargers fixed. Instead, a CPO
needs to constantly adjust to what the competing CPO does, much like the game
"Rock, Paper, Scissors", in which there is no move that always wins.

6. The simulations indicate that the free market can provide a system of chargers with
high utilisation, profitable CPOs, low queuing problems, and reasonable prices on
public fast charging only due to competition and profit interests.

This paper suggests rules for how trucks select CPOs and how competing CPOs set
prices and decide the number of chargers at a station. These rules (presented in Section 3)
seem to work quite well, and similar rules might be used in future models where one may
add, for example, geographically spread charging stations.

Many things could be changed in the rules and the iteration method in the agent-based
model to study the sensitivity of the results. Thus, more and deeper investigations on this
subject would be good to either confirm or question the above conclusions.
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Nomenclature

Ctot
Extra cost for selecting CPO 2 (EUR)

Cch Combined price for charger and grid (EUR/kW/day)
Ce Price for electricity for the CPO (EUR/kWh)
Cepub(t) Price for public fast charging for arriving trucks at time t (EUR/kWh)
Cmean

epub (t) Mean price for the users at a CPO at time t (EUR/kWh)
Cp Extra cost for price difference (EUR)
Cq Extra queuing cost (EUR)
Cq/t Cost for operating a truck (EUR/min)
∆Cepub Discretisation step of the price for charging (EUR/kWh)
∆I Difference in income after a change in price (EUR)
∆T Length of a time interval with a given demand and supply (hour)
∆t Time step (min)
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E(t) Delivered energy from a CPO during a time step (kWh)
Eb Charging need for each truck (kWh)
Etot

c Total daily charging need at Ödeshög (kWh)
Ft Average flow of trucks with trailer passing Ödeshög (trucks per day)
Γa f ter Utilisation after change in price (-)
Γbe f ore Utilisation before change in price (-)
I Profit for a CPO (EUR/day)
k Ratio of power demand to power supply (-)
M(t) Earning during a time step (EUR)
N(t) Number of charging trucks at a charging station at time t (-)
Ntot Number of chargers at a CPO (-)
P Average power for the chargers (kW)
P1 Charging price at CPO 1 (EUR/kWh)
P2 Charging price at CPO 2 (EUR/kWh)
Pi

marg Profit margin for CPO i (EUR/kWh)
Pprob Probability for the different changes of N.o. chargers and prices (-)
q1 Queuing trucks at CPO 1 (trucks/charger)
q2 Queuing trucks at CPO 2 (trucks/charger)
rc Share of charging trucks passing Ödeshög (-)
rp Factor compensating power decrease with state of charge (-)
rq Factor for uncertainty in queuing
σ(t) Defined by Equation (14) (-)
T Length of the typical day (day)
Th Length of time interval with high power demand (hour)
T1 Queuing time at CPO 1 (min)
T2 Queuing time at CPO 2 (min)
Tdi f f Different in queuing time between the CPOs (min)
Tc Time for charging (min)
Abbreviations
CPO Charge Point Operator

Appendix A

This appendix presents the truck arrival time used in the simulations. The truck flow
is described for each hour, where hour 1 corresponds to the time interval 00:00–01:00,
hour 2 corresponds to the time interval 01:00–02:00 and so on. Minute 1 of a given hour
corresponds to the first minute of that hour, while minute 33, for example, corresponds to
the 33rd minute of that hour. The truck flow is given in Table A1.

Table A1. Arrival times of the trucks used in the simulations.

Hour One Truck Arrives Minute

1 1, 4, 7, . . . , 58 and 2, 59
2 4, 7, 10, . . . , 55 with exception of 25
3 1, 7, 13, . . . , 55 and 2
4 7, 13, 19, . . . , 55 with exception 25
5 7, 13, 19, . . . , 55
6 1, 7, 13, . . . , 55
7 1, 7, 13, . . . , 55 and 2, 14, 36, 52
8 1, 7, 13, . . . , 55 and 2, 14, 36, 52
9 1, 7, 13, . . . , 55 and 2, 14, 36, 48, 52
10 1, 4, 7, . . . , 58 with exception of 4
11 1, 4, 7, . . . , 58 and 5
12 1, 4, 7, . . . , 58 and 5, 23, 33, 42, 57
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Table A1. Cont.

Hour One Truck Arrives Minute

13 1, 3, 5, . . . , 57 with exception of 5, 31
14 1, 3, 5, . . . , 59 and 4, 30, 38, 58
15 1, 3, 5, . . . , 59 with exception of 3
16 1, 3, 5, . . . , 59 and 4, 30
17 1, 3, 5, . . . , 59
18 1, 3, 5, . . . , 59 with exception of 3, 31, 47
19 1, 4, 7, . . . , 58 and 3, 32, 47
20 1, 4, 7, . . . , 58 and 3, 32, 38, 47
21 1, 4, 7, . . . , 58 and 3, 32, 47
22 1, 4, 7, . . . , 58 and 3
23 1, 4, 7, . . . , 58 and 3, 32
24 1, 4, 7, . . . , 58 and 3, 32
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