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A B S T R A C T

Woven composites exhibit complex meso-scale behavior depending on meso- and micro-structural parameters.
Accurately modeling their mechanical response is challenging and computationally demanding, especially for
inelastic behavior. To address the computational burden, we have developed a Recurrent Neural Network
(RNN) model as a surrogate for meso-scale simulations. As a basis for RNN training, a mean-field model
generates a comprehensive data set representing elasto-plastic behavior. Arbitrary six-dimensional time
histories of strain are used to generate multiaxial stress–strain histories under random walking and cyclic
loading conditions as the source and target tasks, respectively. First, the RNN model is trained for the source
task. The same model is trained leveraging transfer learning for the target task, containing fewer data and
sparse features because only some strain components are non-zero. The candidate model is successfully trained
and validated through a grid search exploration of over 220 different RNN configurations and demonstrates
accurate predictions for both source and target tasks. The results demonstrate that transfer learning could be
used to train the RNN effectively under varying strain conditions and arbitrary constituents’ material properties,
suggesting its potential as an appropriate tool for modeling path-dependent responses in woven composites.
1. Introduction

Woven composite laminates are commonly used in structural ap-
plications due to their automated and cost-effective manufacturing
processes. However, modeling of woven composites presents significant
challenges due to the presence of two heterogeneous sub-scales, the
meso-scale, and the micro-scale, and the intricate interlacing of yarns,
resulting in the development of complex stress states (Doitrand et al.,
2017).

In order to predict the complex behavior of woven composites
governed by the heterogeneous sub-scales configuration, different full-
field micro-mechanical and meso-scale models have been developed
(e.g. (Ma et al., 2021; Doitrand et al., 2015, 2017)). However, one of
the major challenges of using meso-scale models is their high compu-
tational cost, which hinders the usage of these models for engineering
applications (Spilker et al., 2023). As a remedy, mean-field models
have been proposed and used (e.g. (Wu et al., 2021b,a)). In these
models, average stress and average strain are considered for each sub-
scale constituent. A better computational performance (compared to
full-field models) is obtained, although at the expense of lower fidelity
and accuracy.

∗ Corresponding author.
E-mail address: mohsen.mirkhalaf@physics.gu.se (M. Mirkhalaf).

Recently, data-driven approaches have gained considerable interest
in developing surrogate models for different composites (e.g.
(Calleja Vázquez et al., 2023; Rocha et al., 2021; Mentges et al.,
2021; Maia et al., 2023; El Said, 2023; Bessa et al., 2017; Dekhovich
et al., 2023)). Different kinds of Artificial Neural Networks (ANNs)
have been used to develop remarkably efficient and highly accurate
surrogate models. A feed-forward architecture is typically good enough
to develop an ANN-enhanced model in the linear elastic regime (Ghane
et al., 2023). However, for inelastic path-dependent behavior, it is
required to use more advanced ANN architectures (Rosenkranz et al.,
2023). In recent years, different kinds of Recurrent Neural Networks
(RNNs), such as Gated Recurrent Units (GRU) (Cho et al., 2014b) and
Long Short-Term Memory (LSTM) networks (Hochreiter and Schmid-
huber, 1997), have been employed for the inelastic path-dependent
behavior of different composite materials (see e.g. (Mozaffar et al.,
2019; Wu and Noels, 2022; Friemann et al., 2023; Maia et al., 2023;
Li and Zhuang, 2020)). As a result, a remarkable computational en-
hancement and a high level of accuracy were obtained. Contrary to the
current study, in such works, the constitutive properties of the materials
remain constant at a lower scale, and the generalization ability of
the model is determined by loading conditions and micro-structural
vailable online 28 June 2024
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morphologies (Mentges et al., 2021; Cheung and Mirkhalaf, 2024). An
interested reader in an overview of recent developments, challenges,
and potential future developments is referred to Mirkhalaf and Rocha
(2024).

Training RNNs is sensitive to initializing the training parameters
(weights and thresholds) due to the risk of vanishing or exploding
gradients (Glorot and Bengio, 2010). Vanishing gradients result in
slow learning, while exploding gradients lead to unstable training.
Some methods have been suggested for initializing layer weights and
biases (He et al., 2015; Glorot and Bengio, 2010). These methods can
greatly impact how well the deep network trains. However, they are
still based on randomly initializing the training parameters.

Furthermore, RNNs encounter challenges when dealing with sparse
feature data sets where inputs have many zero values. For instance, in
the case of a stress prediction task using strain tensor components as
inputs, when we have pure-shear loading, only one component of the
input feature is non-zero. This results in data sparsity that can interfere
with learning and hinder the network’s ability to capture meaningful
patterns.

This paper employs a physics-guided initialization (Benady et al.,
2023) of weights and thresholds using transfer learning (Yang et al.,
2020). Using transfer learning, RNNs are able to overcome initialization
challenges by leveraging knowledge derived from previously trained
models. The network is initialized with the pre-trained model contain-
ing the expected material parameters, known as the source task. The
network is then fine-tuned in accordance with the target task. This
study’s source task network is to predict the full stress history of plain
woven composites with different constituent properties subjected to
random multiaxial strain histories. The target task is to predict stress
histories under conventional cyclic loading. Models that are trained
on dense or diverse data sets can provide more robust representations
of features that can be generalized well to sparse data sets. This ap-
proach accelerates training, enhances generalization over sparse feature
samples, and facilitates effective learning.

This study formulates various GRU and LSTM models to predict the
elasto-plastic behavior of plain woven composites. The specific nature
of the task determines the choice between GRU and LSTM architectures.
Moreover, the optimal performance of these models is closely linked
to the number of training parameters. This facet is evaluated in depth
within the framework of this study.

To generate the two required data sets, a mean-field model from
Digimat-MF (Anon, 2016) is employed. The matrix and reinforcements
are considered elastic–plastic and elastic, respectively. Notably devi-
ating from prevailing trends observed in developing material-specific
ANN surrogate models for composites (e.g. (Dornheim et al., 2023;
Maia et al., 2023)), this study uniquely incorporates many matrix and
reinforcement properties into its framework.

Six-dimensional arbitrary loading paths (for six independent strain
components) are generated and applied to the meso-structural simu-
lations. The simulation results serve as a data set for the source task.
Bi-axial and pure shear cyclic load paths are generated for the target
task data set, each containing a different peak strain, strain ratio,
load ratio, and number of cycles. As a result, two comprehensive data
sets (including stress–strain responses) for generic woven composites
(varying matrix and reinforcement properties) subjected to randomly
sampled and cyclic loading histories are generated.

When training a neural network, highly sensitive parameters and
hyperparameters are present, such as learning rate, minibatch size, reg-
ularization strength, dropout rate, and network architecture (Pascanu
et al., 2013). The identification of the best combination of hyperpa-
rameters requires a comprehensive study, which is frequently neglected
throughout the literature due to the time-consuming nature of the
process (Mozaffar et al., 2019; Abueidda et al., 2021; Huang et al.,
2020; Vlassis and Sun, 2023; Jones et al., 2022; Friemann et al., 2023).
We attempt to determine an optimal network by testing many possible
2

combinations. The results show that an LSTM model is successfully w
trained and validated on the target task, enabling highly efficient
elasto-plastic path-dependent simulations.

The remainder of this paper is structured as follows. Section 2 de-
scribes the data generation process, including the sub-scale mean-field
modeling approach, material constituents, and design of computational
experiments. Section 3 details the RNN model design and training
and transfer-learning strategy. The obtained results and comparisons
to micro-mechanical simulations are presented in Section 4, followed
by a discussion of the developed RNN model. Concluding remarks are
provided in Section 5.

2. Data generation

Every data sample contains (i) a particular set of constituent mate-
rial properties, (ii) a 6D random strain loading path, and (iii) a 6D time
history of homogenized stress components. The database is generated,
considering various material parameters and loading conditions, to
capture the complex behavior of various woven composites subjected
to complex strain states. Two comprehensive data sets (one for the
random walk1 loading and one for the cyclic loads) are created by care-
fully controlling the input variables and using mean-field simulations
as described below.

2.1. Homogenization of woven composite

Several scale-transition methods have been developed to compute
the effective (homogenized) macroscale behavior of heterogeneous
materials (Spilker et al., 2023), including computational homogeniza-
tion (Xu et al., 2015; Espadas-Escalante and Isaksson, 2019), and
mean-field homogenization (MFH) (Udhayaraman and Mulay, 2019).
Computational homogenization of Representative Volume Elements
(RVE) is commonly employed for woven composites. While this method
offers general accuracy and detailed microscale fields, it presents no-
table drawbacks. Generating a suitable mesh for complex or realis-
tic microstructures can be challenging and time-consuming. Addition-
ally, computational costs, including CPU time and memory usage, can
become excessive, particularly for nonlinear problems.

A mean-field model which uses the Mori–Tanaka theory (Mori and
Tanaka, 1973) for homogenization, implemented in Digimat-MF (Anon,
2016), is used to conduct non-linear path-dependent elasto-plastic sim-
ulations of woven composites with varying properties. When employing
the MFH method to homogenize woven composite behavior, neither
the specific weave pattern nor the resulting crimp (or undulations)
can be considered. The yarn region is not explicitly specified, and
the reinforcement material properties are assumed to be transversely
isotropic, aligned with the direction of the reinforcements. The com-
posite is assumed to have a balanced weave, and the microstructure
is solely determined by the assumed orthogonal orientations of the
warp and weft directions. Notably, failure mechanisms are excluded
from consideration. While the geometry of the meso-scale structure re-
mains unchanged, the micro-structural constituent’s properties change
in each virtual sample (see more details in Section 2.2 below). As a
consequence, the MFH procedure involves two steps. In the first step,
the sub-scale of the composite material being studied is divided into
smaller units called pseudo-grains (PGs). Each PG represents a localized
region within the composite. Once the division into PGs is completed,
the homogenization process begins. In the case of a woven composite,
there are two PGs. One in the warp and one in the weft directions. Each
PG is individually subjected to a homogenization procedure, where the

1 It is worth noting that the term ‘‘random walk’’ is often associated with
tochastic processes, where an unpredictable element determines the next step
r state. Random walks in strain loading suggest that a strain value evolves
ver time due to random factors, resulting in a pattern that may resemble a
alker’s path.
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Table 1
blueConstitutive material parameters for a sample carbon fiber/epoxy resin used in
comparing MFH and FE..

Parameter Value

Fiber
Young’s modulus 𝐸F 385.5 GPa
Poisson’s ratio 𝜈F 0.37
Fiber volume fraction 𝑉 𝑅𝑉 𝐸

𝑓 0.16

Matrix

Young’s modulus 𝐸M 6 GPa
Poisson’s ratio 𝜈M 0.34
Yield stress 𝜎y 48.5 MPa
Linear hardening modulus 𝐻 100.5 MPa
Hardening modulus 𝐻∞ 20 MPa
Hardening exponent 𝑚 250.5

behavior and properties of the constituent materials within the PG are
analyzed. In the second step, homogenization is extended to the entire
sub-scale. The effective response of the entire sub-scale is computed by
averaging over the collective behavior of all the homogenized pseudo-
grains. An interested reader is referred to Doghri and Tinel (2005) for
a more comprehensive understanding of the modeling approach.

To demonstrate a comparison, Fig. 1 illustrates shear stress–strain
responses of RVEs with a particular set of constitutive material proper-
ties (given in Table 1) but with different yarn cross sections under an
in-plain shear cycle. Accordingly, the MFH of the same constitutive ma-
terial system is plotted. The balanced weave in the RVE homogenization
approach has 15 yarns/cm in both warp and weft with a yarn spacing
ratio equal to 0.1 and 0.5 crimp. The RVE overall fiber volume fraction
(𝑉 𝑅𝑉 𝐸

𝑓 ), the amount of reinforcing fibers in a composite material
relative to the total volume of the composite, is restricted to be constant
and equal to the one in MFH by controlling the filament count and yarn
density. Nevertheless, the yarn cross-section area varies in different
realizations by changing spindle heights. Based on the comparison
results, the adopted MFH serves as an approximation method and does
not precisely capture the weaving pattern and behavior of the woven
composite; however, the FE model is, on average, twelve times more
time-consuming than the MFH model (up to 60 s). The main goal of
this study is to develop a proof of concept for data-driven modeling
of the complex non-linear behavior of woven composites. Hence, the
trained neural network at the end is not designed to outperform the
RVE computational homogenization nor MFH in terms of accuracy, but
rather to demonstrate flexibility with respect to the material selection
and speed. Therefore, we adopt the semi-analytical MFH model for the
data-generation phase because it remains highly efficient compared to
computational homogenization methods, which effectively serves the
purpose of the current study.

The primary advantages of MFH models include their ease of use,
low CPU time requirements, and reduced memory usage. The MFH
model, however, provides only approximations of the volume averages
of stresses and strains, either at the macro level or at the phase level.
In order to improve homogenization accuracy, the framework is always
open to adding more accurate data bases.

2.1.1. Constitutive behavior of sub-scale phases
Polymeric materials typically show a strain rate-dependent mechan-

ical response (see, e.g. (Mirkhalaf et al., 2016, 2017)). However, an ap-
proximation of rate-independent behavior could be considered for most
thermoset polymeric materials under quasi-static loading rates and at
room temperature. Therefore, this study considers a rate-independent
elasto-plastic response for the matrix material.

The matrix is assumed to obey 𝐽2-plasticity with linear-exponential
hardening (Simo and Hughes, 2006). The yield function is given by

𝛷(𝜎, 𝜅) = 𝜎vM − (𝜎y + 𝜅) ≤ 0, (1)

where 𝜎y is the yield stress, and 𝜎vM is the von Mises stress defined by

𝜎 =
√

3𝝈 ∶ 𝝈 , 𝝈 = 𝝈 − 1 tr(𝝈)𝐈. (2)
3

vM 2 dev dev dev 3
Fig. 1. Comparison of mean-field homogenization (solid black line) and finite-element
homogenization (colored dashed lines) for four RVE realizations with different yarn
cross sections under one in-plain shear cycle. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Table 2
Ranges of material parameters used to generate the required data set during simula-
tions. All data samples in the training and testing sets are distinguished by a unique
set of properties of their micro-structural constituents.

Parameter Value

Fiber
Young’s modulus 𝐸F 69–700 GPa
Poisson’s ratio 𝜈F 0.25–0.49
Fiber volume fraction 𝑉𝑓 0.10–0.48

Matrix

Young’s modulus 𝐸M 2–10 GPa
Poisson’s ratio 𝜈M 0.2–0.49
Yield stress 𝜎y 31–66 MPa
Linear hardening modulus 𝐻 1–200 MPa
Hardening modulus 𝐻∞ 10–30 MPa
Hardening exponent 𝑚 1–500

In Eq. (2), 𝝈dev is the deviatoric stress tensor, and 𝐈 is the second-order
identity tensor. In Eq. (1), 𝜅 is the hardening stress which is given by

𝜅 = 𝐻𝜀p +𝐻∞

(

1 − 𝑒−𝑚𝜀𝑝
)

, (3)

where 𝐻 is the linear hardening modulus, 𝐻∞ is referred to the
hardening modulus, 𝑚 > 0 is the hardening exponent, and �̄�p ≥ 0 is
the accumulated plastic strain.

Reinforcements are assumed to be isotropic and linearly elastic and
obey Hooke’s generalized law. Furthermore, the matrix and reinforce-
ment phases are assumed to be perfectly bonded. Despite the fact that
this assumption may not be true in all cases, it provides a reasonable
basis for examining the overall behavior of the woven composite under
study.

2.2. Design of computational experiments

This study involves two sets of input features for computational
experiments: (i) static features representing fiber and matrix material
properties and (ii) multi-dimensional sequential load path components
(Section 2.2.2). A wide range of properties are considered for the static
features, which are given in Table 2.

2.2.1. Sampling material features
Having uniformly distributed input features to train an ANN prop-

erly is beneficial. Regular grids of sample points can lead to coinci-
dent projections in different hyper-planes (Bessa et al., 2017), neg-
atively impacting machine learning, especially in high-dimensional
spaces (Bishop and Nasrabadi, 2006). Thus, using an effective sampling
technique helps to achieve a random and uniform distribution while
reducing simulation costs.
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Fig. 2. t-SNE distribution (van der Maaten and Hinton, 2008) of 9-dimensional
tatic feature space described in Table 2. Different micro-structural configurations are
escribed by three fiber elasticity, three matrix elasticity, and three matrix plasticity
eature parameters. The 2D scatter plot shows no clustering or pattern in the input
pace.

Random sampling and stratified sampling often result in clusters
nd gaps in a data set. Alternatively, Sobol sequence sampling (Saltelli
t al., 2010), a quasi-random sampling technique, offers a solution. Un-
ike other pseudo-random algorithms, Sobol sequence sampling avoids
lustering and gaps even in smaller data sets (Renardy et al., 2021).
t aims to generate multiple parameters uniformly distributed across a
ulti-dimensional parameter space. Thus, in the current work, Sobol

equence sampling generates a comprehensive design space. 10,000
ata samples are generated with different combinations of the static
eatures given in Table 2. The resulting design space enables the
xploration of various material and micro-structural configurations,
roviding valuable insights into the behavior of woven composite
aterials.

For visualizing high-dimensional data sets, t-SNE (t-Distributed
tochastic Neighbor Embedding) is utilized (van der Maaten and Hin-
on, 2008; Hinton and Roweis, 2002). It minimizes the discrepancy
etween high-dimensional and low-dimensional distributions using the
ullback–Leibler (KL) divergence (Mehlig, 2021) as a cost function.
L divergence quantifies how one probability distribution (from a
ulti-dimensional space) diverges from the expected (into a 2D space)
robability distribution. The algorithm iteratively adjusts data point po-
itions to minimize the cost function. Monitoring KL divergence during
ost minimization indicates capturing data structure and relationships
n the lower-dimensional domain successfully. t-SNE preserves local
tructures, patterns, and clusters. While it is primarily a visualization
ool, it can effectively represent data distribution, as shown in Fig. 2.
o pattern or gap is visible on the scattered 2D plot, indicating a good
orrelation between regular grids and random distributions in the static
eature space.

.2.2. Loading path generator
In order to sample representative strain paths, different approaches

an be employed, e.g. (Heidenreich et al., 2023; Friemann et al., 2023).
n the source task, a random walk representing long-term trends is com-
ined with noises representing local variations. The algorithm (Frie-
ann et al., 2023) utilizes a six-dimensional space for independent

train components. Components are sampled independently from a nor-
al distribution to generate direction vectors, then normalized to unit

ectors. The algorithm defines parameters: 𝑁𝑇 as the total number of
steps (constant and equal to 2000), 𝑛1 as the number of drift directions
4

(the number of major changes in the loading direction selected from
Fig. 3. Four samples of input strain loading paths from random walk data set (scaled
between [−1,1]). Each graph contains six components of the strain tensor applied on
a randomly chosen material set.

{1, 2, 5, 10, 20, 25, 50, 100, 200}), 𝑛2 as the noise vector with elements
selected randomly from ⌊0, 1), and 𝛾 as the perturbation amplitude
factor (chosen randomly from ⌊0, 1)).

Initially, 𝑛1 drift directions are chosen randomly, and each of these
directions is iteratively repeated 𝑁∕𝑛1 times to form a vector compris-
ing a total of 𝑁𝑇 elements. Subsequently, a noise vector, denoted as 𝑛2,
is generated with an equivalent number of elements as 𝑁∕𝑛1 and is then
scaled by a factor of 𝛾. The vector of drift directions and the scaled noise
vector are combined and scaled to a maximum of randomly selected 1%
to 5% to complete one strain component of an input load sample. All
components of a strain loading sample have the same number of 𝑛1 but
differ in other parameters. Fig. 3 shows four samples of the generated
loading paths.

Some loading samples have sparsity in their input features, such as
the fourth case in Fig. 3, where the input strain tensor only includes
the transverse strain component, while all other components are zero.
Since this rarely occurs, the trained network based on such a data set
may need help to generalize the solution to cases with high feature
sparsity, such as conventional cyclic loadings. Therefore, a second data
set is generated based only on cyclic loads in shear and bi-axial load
cases where plasticity is significant in woven composites. Fig. 4 shows
four samples from the second data set. Indicating factors in the cyclic
loads include the peak strain value, the strain ratio (ratio of shear strain
to tensile strain in bi-axial scenarios), the load ratio (fraction of the
maximum positive strain to the minimum negative strain value), and
the number of cycles.

3. Recurrent neural networks

RNNs excel in handling data sequences of long lengths, making
them suitable for language modeling, speech recognition (Chan et al.,
2015), machine translation (Cho et al., 2014b; Sutskever et al., 2014),
and time-series prediction (Mehlig, 2021). RNNs effectively model
sequential data due to their internal memory, capturing temporal de-
pendencies. Feedback loops in the RNN architecture enable informa-
tion flow between input and output, maintaining an internal state for

predictions based on current and past inputs.
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Fig. 4. Four input strain loading paths samples from a smooth cyclic path data set.
Each graph contains six components of the strain tensor applied on a randomly chosen
material set. The smooth cyclic loading paths include (from up-left to down-right) pure
in-plain shear 𝜖12, out-of-plain shear 𝜖23 and bi-axial [𝜖11 , 𝜖12] and [𝜖12 , 𝜖23] loading.

3.1. Transfer learning rescuing RNNs from initialization and sparsity hur-
dles

In the transfer learning paradigm, a model initially trained on a
source task with abundant data serves as a foundational framework for
a closely related target task. The primary objective is to leverage the
pre-trained model’s acquired knowledge of features, representations,
and patterns to enhance the learning process on the target task (Yang
et al., 2020). Furthermore, during the training phase for the source task,
pre-trained models undergo regularization mechanisms, which mitigate
overfitting risks. Transfer learning entails initializing the model with
optimized weights specific to certain features, resulting in noteworthy
acceleration of convergence and optimization improvements tailored
for the target task. Transfer learning has been proven helpful for data
fusion in elastic regime (Callaghan et al., 2023) and elasto-plastic
behavior of short-fiber composites (Jung et al., 2022).

One specific strategy within transfer learning is fine-tuning (Hei-
denreich et al., 2023). This approach is employed when the source
and target tasks are closely related, allowing for the adjustment of
weights in a pre-trained model based on the data specific to the target
task. In the context of this study, the source task involves predicting
the six components of stress sequences derived from random loading
simulations. Subsequently, during the original network training, the
target task is formulated to predict stress components associated with
cyclic loading paths. The RNN model employed for the source task
integrates an a priori model, initially trained on extensive data sets,
to adapt and enhance its performance on novel tasks. The weights and
biases derived from the neural networks at the end of training serve as
the initialization for the neural networks used in transfer learning.

3.2. Recurrent learning with GRU and LSTM units

Gated Recurrent Units (GRUs) and Long Short-Term Memory (LSTM)
networks are two types of recurrent neural networks (RNNs) that
address the vanishing and exploding gradient problems encountered
in traditional RNNs (Pascanu et al., 2013; Lipton et al., 2015; Chung
et al., 2014). GRUs use two so-called gating mechanisms, an update
gate, and a reset gate, to selectively update and reset their hidden
state. This enables them to gather information across time steps and
retain long-term dependencies (Cho et al., 2014a). LSTM units, on the
5

other hand, employ three gating mechanisms: the input gate, the forget
gate, and the output gate. These gate mechanisms control the flow of
information, select information to retain or discard, and filter relevant
information for output, respectively (Hochreiter and Schmidhuber,
1997). An interested reader is referred to Author(s) of the Documen-
tation (2021) for a more comprehensive understanding of LSTM and
GRU units. Since GRUs have only two gates, they are computationally
more efficient and easier to train with fewer parameters. However, they
may not be as effective at capturing complex long-term dependencies as
LSTMs. LSTMs with three gating mechanisms can model more complex
relationships over longer sequences, but they have a higher computa-
tional cost and require more training data to prevent overfitting (Géron,
2022). The choice between GRUs and LSTMs depends on the specific
task at hand, the availability of computational resources, and the
desired trade-off between model complexity and performance. To better
understand how data flows through an RNN network containing two
layers of recurrent units, Fig. 5 is provided. Learning rate, minibatch
size, regularization strength, dropout rate, and network architecture
are crucial parameters during RNN training. This is especially critical
before the transfer learning process on the target task. Regularization
(also called weight decay) (Bishop and Nasrabadi, 2006) adds a penalty
term to the loss function, promoting smaller weights in the network.
This prevents the model from becoming overly sensitive to training data
and enhances its generalization ability to unseen data. Additionally,
the dropout layer (Srivastava et al., 2014) randomly sets a fraction of
input units to zero during training, preventing co-adaptation of neurons
and encouraging the network to learn more robust and independent
representations. Combining 𝐿2 regularization with dropout mitigates
overfitting, reduces model complexity, and fosters more generalizable
representations (Murphy, 2012). Gradient clipping, setting the absolute
value to one or using the maximum of normalized features, helps
eliminate exploding gradients (Pascanu et al., 2013).

3.3. Feature scaling

Differences in input variable magnitudes can bias neural networks
and hinder network learning. Variables with larger values dominate
and overshadow smaller ones, leading to unstable weight updates
and sub-optimal performance. Standardization equalizes input feature
scales, ensuring smoother convergence in the network training and
preventing disproportionate variable influence. It also allows direct
magnitude comparison and enhances interpretability, thereby promot-
ing stable training, faster convergence, and improved neural network
performance (Mehlig, 2021).

The standardization process involves normalizing sequential strain
components to an absolute maximum value of one. Non-sequential
material properties undergo min–max scaling to have values between
zero and one. This enables neural networks to capture the underly-
ing patterns better, resulting in improved performance and reliable
predictions.

The network input consists of sequential data with 15 different
features, concatenating 6 sequential strain tensor components and 9
static material properties. In each instance, the non-sequential features
(the material properties) are repeated throughout the entire sequence
of 𝑁𝑇 = 2000 pseudo-time increments.

The output signals are components of the stress tensor. In Voigt
notation, the symmetric stress tensor is represented as a six-component
column vector as follows:

�̃� = (𝜎11, 𝜎22, 𝜎33, 𝜎12, 𝜎13, 𝜎23)𝑇 ≡ (𝜎1, 𝜎2, 𝜎3, 𝜎4, 𝜎5, 𝜎6)𝑇 (4)

The mean squared error loss function is computed at the regression
layer for training through back-propagation. The loss function for a
batch of data is given by

𝐿 = 1
𝑁batch
∑

𝐿𝑖, with 𝐿𝑖 =
1

𝑁𝑇
∑

6
∑

(�̂�(𝑡)𝑐 − 𝜎(𝑡)𝑐 )2. (5)

𝑁batch 𝑖=1 2𝑁𝑇 𝑡=1 𝑐=1
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s

Fig. 5. A schematic representation of the data flow for feeding the RNN model with one multiaxial strain history. As shown on the left side of the figure, a woven composite and
train loading paths have been randomly sampled from the data set. Each stripe represents a time step of the strain tensor (�̃�(𝑛)) containing six strain components (𝜖𝑝𝑞). Red dashed

lines indicate time increments in a load path. Six random loads are presented in the input layer in purple. Afterwards, the data propagates through the LSTM (or GRU) network
layers. The network outputs are in green. The internal variables flow can also be seen in one of the network layers. A hidden (and/or cell) state is indicated by ℎ𝑡. It should be
noted that the RVE geometry in the input space is only representing the material type and not the actual type of data used in this study. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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As described in Eq. (4), six components of the stress tensor is considered
in the output. �̂�(𝑡)𝑐 and 𝜎(𝑡)𝑐 are the predicted and desired normalized
stress component at time step 𝑡 in a training sample, respectively.
𝑁𝑇 is the data sequence length, and 𝑁𝑏𝑎𝑡𝑐ℎ is the batch size (the
number of samples in each batch.) The reason for adding the 1

2 is a
common practice, primarily for computational convenience during the
optimization process.

3.4. Metrics beyond loss

Network performance relies not only on architecture but also on
hyperparameters like learning rate, regularization strength, batch size,
etc. The choice of hyperparameters can significantly impact the vali-
dation loss, potentially overshadowing the effect of selecting the op-
timal network architecture based solely on validation loss described
in Eq. (5). The effectiveness of loss as a performance metric after
training is limited, mainly because it does not incorporate the effect
of normalization. This limitation makes it difficult to effectively com-
pare outputs across different test samples when they exhibit varying
magnitudes of stress components.

This study considers additional evaluation metrics to find an op-
timal network configuration. For this purpose, we use the von Mises
stress as defined in Eq. (2) as a scalar representative measure of the
stress output. It is acknowledged that the von Mises stress measure
is not necessarily appropriate to define the behavior of anisotropic
materials such as woven composites, but it still serves as a convenient
scalar measure of the magnitude of the stress.

Three statistical measures (Willmott and Matsuura, 2005) are used
to assess and compare the predictive performance of multiple neural
network configurations. In the following, 𝑒(𝑡) represents an individual
6

𝑖

model-prediction (for one sample) error at time step 𝑡, defined as

𝑒(𝑡)𝑖 = �̂�(𝑡)𝑣𝑀,𝑖 − 𝜎(𝑡)𝑣𝑀,𝑖, (6)

here �̂�(𝑡)𝑣𝑀 is the predicted von Mises stress at time step 𝑡 and 𝜎(𝑡)𝑣𝑀 is
he desired von Mises stress at 𝑡.

ean Absolute Error
The mean Absolute Error (MAE) measures the average magnitude of

rrors over the data sequence length (𝑁𝑇 ) between the predicted and
esired values. MAE is calculated by taking the average of the absolute
ifferences between each predicted and desired value, normalized by
he number of tested samples from the unseen data set (𝑀):

AE = 1
𝑀𝑁𝑇

𝑀
∑

𝑖=1

𝑁𝑇
∑

𝑡=1

|

|

|

𝑒(𝑡)𝑖
|

|

|

. (7)

MAE provides an indication of the average size of errors produced
by the model. There is no consideration for the direction of errors
(overestimation or underestimation), and all errors are given equal
weight. A lower MAE indicates a better performance.

Root Mean Square Error
Another commonly used measure of prediction error is the Root

Mean Square Error (RMSE). It is obtained by taking the square root
of the average of the squared differences between the predicted values
and the desired values as

RMSE =

√

√

√

√
1

𝑀𝑁𝑇

𝑀
∑

𝑖=1

𝑁𝑇
∑

𝑡=1
(𝑒(𝑡)𝑖 )2. (8)

Due to the squaring operation, larger errors are penalized more heavily.

RMSE gives a measure of the overall deviation or dispersion of errors.
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Similarly to MAE, a lower RMSE indicates a better performance. Simi-
larly to MAE, RMSE does not consider whether the model overestimates
or underestimates a quantity at a given time instant.

Mean Bias Error
The bias or Mean Bias Error (MBE) refers to the systematic deviation

between model predictions and the desired values in a data set. Bias can
be positive or negative, indicating whether the predictions consistently
overestimate or underestimate desired values. The scale and units of the
predicted and desired values typically determine the bias range. MBE
is computed by

MBE = 1
𝑀𝑁𝑇

𝑀
∑

𝑖=1

𝑁𝑇
∑

𝑡=1
𝑒(𝑡)𝑖 . (9)

4. Results and discussion

For data consistency, only completed simulations are used.2 The
computational programming language MATLAB (Author(s) of the Doc-
umentation, 2021) is employed for implementing recurrent neural
networks. Training for different network configurations is done on the
Vera hardware (Anon, 2023) at Chalmers University of Technology.

Two data sets are generated, including 28,000 data samples for
the source task on random walk loading paths and 10,000 samples
for the target task on smooth cyclic loading paths. Each data set is
randomly split into training (80%), validation (10%), and test (10%)
sets. For each task, the training data set is iteratively passed through
the neural network for multiple epochs, with shuffled data at each
epoch. The validation set helps for tuning hyperparameters, such as
batch size, learning rate, and regularization parameters, to achieve an
optimal model performance. The test set serves as unseen data for final
performance evaluation after the network training and validation.

Section 4.1 presents results related to the source task. The purpose
of Section 4.2 is to emphasize the importance of tuning the network
architecture and hyperparameters. Once the network’s generalization
ability is confirmed for a random load path, the transfer learning
method is used in Section 4.3 for training a network to predict smooth
cyclic loads (target task).

4.1. Prediction on the random strains test samples

A piece-wise learning rate decay strategy is employed, reducing
the learning rate by 10% every ten epochs to enhance convergence.
The training process uses ADAM optimizer (Kingma and Ba, 2014). In
order to prevent overfitting, early stopping is used instead of a fixed
number of epochs. Training stops when the model’s performance on
the validation set plateaus, while the loss on the training set continues
to decrease. Fig. 6 illustrates the loss evolution for LSTM and GRU
networks in accordance with Eq. (5). The plateau region on the vali-
dation set indicates convergence in the training of both cases. While
the GRU network struggles more to reach the minimum loss value at
the beginning, the minimum loss values are almost equal.

The three metrics, defined in Section 3.4, are computed based on the
predictions made for each sample in the test set. The mean value over
pseudo-time steps for three error metrics is obtained and presented in
Tables 1 and 2 in supplementary materials for different network archi-
tectures and the number of training parameters. Various configurations
of GRU and LSTM networks are presented in these tables in order to
determine the best architecture. The network configuration is defined
by the number of GRU (or LSTM) units and the specification of the
subsequent dropout layer. For example, the ‘‘3GRU(128) dp(40%)’’ net-
work consists of three GRU layers, each containing 128 units, followed
by a 40% dropout layer. For detailed error evaluations on GRU and

2 Some of the simulations with the highest number of loading drifts (200)
are not converged in the Digimat-MF solver.
7

Fig. 6. Two examples of the training and validation loss evolutions on the random
strain data set. Each network consists of three layers with 512 units of LSTM or GRU
plus a 50% dropout after the first layer. In both cases, the learning rate is 0.001,
the 𝐿2 regularization is set to 0.001, and the minibatch size is 128. Yellow and gray
lines indicate the training loss calculated at each iteration. The dashed lines in red and
purple indicate the loss calculated at the end of each epoch for the validation set. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

LSTM networks, the reader is referred to the supplementary material of
this study. Our objective is to determine the optimal architecture first;
afterward, various hyperparameters are discussed using LSTM or GRU
units in Section 4.2. Based on von Mises stress, Fig. 7 compares two
best-performing LSTM and GRU networks in predicting two random
walk loads from the unseen data set.

The test dataset was used to evaluate multiple neural network
architectures and hyperparameter combinations. As a result of ex-
tensive experimentation, we identified the network with the lowest
RMSE as the ‘‘candidate network’’. Although the smallest network,
‘‘GRU(32)’’, had the lowest validation loss, it cannot generalize well
due to higher MAE and RMSE error ranges when testing unseen test
data. ‘‘3LSTM(512) dp(50%)’’ displayed the lowest MAE and RMSE,
indicating better prediction and generalization on unseen data than
other models. However, note that the MBE of ‘‘3LSTM(512) dp(50%)’’
is not closest to zero, and its negative value suggests a systematic
underestimation of von Mises stress.

Fig. 8 shows predictions for stress components on two randomly
selected test samples for the candidate network based on error metrics
‘‘3LSTM(512) dp(50%)’’. Fig. 8(a) shows a strong correlation between
the predictions and the desired stress values. However, stress prediction
deviates for 𝜎33, where the desired value is close to zero throughout the
loading increments. It is potentially related to the general underlying
issue with neural networks, known as feature sparsity (Mehlig, 2021),
which needs further research to handle sequential regression tasks. A
network might have difficulty predicting features that are close to zero
in a sample when there is a high number of input features (15 in this
case).

In spite of a highly random loading path, in Fig. 8(b), the predicted
values match well with the desired values from mean-field simulation.
It can be seen that the predictions on normal components are better
than those on shear components. This observation could be related to
the higher level of non-linearity in shear components.

4.2. Discussion on hyperparameters

Various networks have undergone grid search training to find the
best hyperparameter combination. The tested hyperparameters have
been examined as follows: Minibatch Size = [16, 32, 64, 128], 𝐿2
Regularization = [0.001, 0.01, 0.], Dropout Rate = [0.2, 0.5, 0.8],
Learning Rate = [0.0001, 0.001, 0.01]. The grid search method leads to

https://chalmers-my.sharepoint.com/:b:/r/personal/ghane_chalmers_se/Documents/supplementary_materials_RNN_MF.pdf?csf=1&web=1&e=iNy6W7
https://chalmers-my.sharepoint.com/:b:/r/personal/ghane_chalmers_se/Documents/supplementary_materials_RNN_MF.pdf?csf=1&web=1&e=iNy6W7
https://chalmers-my.sharepoint.com/:b:/r/personal/ghane_chalmers_se/Documents/supplementary_materials_RNN_MF.pdf?csf=1&web=1&e=iNy6W7
https://chalmers-my.sharepoint.com/:b:/r/personal/ghane_chalmers_se/Documents/supplementary_materials_RNN_MF.pdf?csf=1&web=1&e=iNy6W7
https://chalmers-my.sharepoint.com/:b:/r/personal/ghane_chalmers_se/Documents/supplementary_materials_RNN_MF.pdf?csf=1&web=1&e=iNy6W7
https://chalmers-my.sharepoint.com/:b:/r/personal/ghane_chalmers_se/Documents/supplementary_materials_RNN_MF.pdf?csf=1&web=1&e=iNy6W7
https://chalmers-my.sharepoint.com/:b:/r/personal/ghane_chalmers_se/Documents/supplementary_materials_RNN_MF.pdf?csf=1&web=1&e=iNy6W7
https://chalmers-my.sharepoint.com/:b:/r/personal/ghane_chalmers_se/Documents/supplementary_materials_RNN_MF.pdf?csf=1&web=1&e=iNy6W7
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Fig. 7. Candidate LSTM (dashed black lines) and GRU (dashed blue lines) predictions
on two samples with (a) 𝑛1 = 1 and (b) 25 drift directions from the random walk paths
f the unseen data set. The von Mises stresses are plotted on the real scale for two
istinct sets of micro-structural constituents material properties. (For interpretation of
he references to color in this figure legend, the reader is referred to the web version
f this article.)

raining and evaluating more than 200 LSTM and GRU networks with
ifferent hyperparameter combinations. For detailed error evaluations,
lease refer to Table3 in the supplementary material of this study.

The candidate LSTM and GRU networks have three layers, each con-
aining 512 units. As a result of the hyperparameters grid search, the
STM network’s optimum learning rate and minibatch size are 0.001
nd 128, respectively, while the candidate GRU network optimum is
.1 and 32. The regularization and the dropout rate are optimal in both
etworks at 0.001 and 50%, respectively. While LSTM networks outper-
orm GRU networks in minimizing RMSE and MAE, they come with the
ost of longer training times. Training and validating the tested GRU
etworks takes 20–100 min, and for LSTM networks, 120–300 min.
nce trained, the network can predict the stress–strain response on
800 random test sets, all in less than a second. In comparison, it
akes between 18–60 s to compute each individual response to complex
8

Fig. 8. Network (3LSTM(512) dp(50%)) predictions against micro-mechanical results
for two samples from unseen random load cases. Stress values are scaled between
[−1, 1] (a) Six components of stresses in a case with a rather uniform load and (b) a
case with high randomness in loading. The solid red line is the mean-field simulation
output (desired values), and the dashed black lines are the network predictions. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

general 3D-loading (such as that found in the random test data) using
digimat-mf.

4.3. Prediction on conventional load cycles

The initial task, referred to as the source task, involves predict-
ing loading cases associated with random walk loading paths. Subse-
quently, the focus shifts to the target task, where the objective is to
predict loading paths characterized by conventional cyclic patterns.

However, a notable challenge is associated with applying the trained
network to the target task involving cyclic loads. The input features
of cyclic loading samples consist of only one (for pure shear cases) or
two (for bi-axial loading cases) active sequential features in addition
to the static features (micro-structure). As a result, the cyclic loading

https://chalmers-my.sharepoint.com/:x:/r/personal/ghane_chalmers_se/Documents/NetworksEvaluationWithVonMisesStress.xlsx?d=w097efe717f8e473e88bfcb15528fde29&csf=1&web=1&e=4KOZcm
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Fig. 9. On the source task, the original LSTM network training and validation losses are
presented in yellow and dashed purple, respectively. Transfer learning is then applied
to the target task (cyclic loads), and the loss is computed (gray for training and red
for validation). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

features are sparse, and the ANN models have difficulty predicting
stresses based on sparse samples. Therefore, the network undergoes
fine-tuning with a data set specific to the target task. As seen in Fig. 9,
the evolution of loss illustrates the convergence of the transfer learning
process following the initial training of the LSTM network. As a result
of the first 7000 iterations, the network loss function converged on
both the training and test sets of the random load paths data set.
The loss function jumps at the beginning of the fine-tuning process
when samples from cyclic loads are fed to the network. The network
is then trained using cyclic load samples through more iterations, and
convergence occurs after 20,000 iterations.

The original network is trained on random walk paths and then fine-
tuned on cyclic loading. There are two possible alternative scenarios:
(1) the original network is limited to being trained on cyclic loads,
or (2) the original network is initially trained on cyclic loads and
fine-tuned with random walk paths. Three instances of cyclic loads
are shown in Fig. 10, corresponding to a one-cycle test, a three-
cycle test, and a ten-cycle test, respectively. It can be clearly seen
that the original network trained based on the random walk data set
(represented by the solid yellow line) cannot predict the cyclic loads
despite its performance on the random walk data set. The dashed gray
line indicates that the data set for the cyclic load is insufficient and that
most features are too sparse to train a network to predict unseen test
targets. The dashed blue line illustrates an alternative approach that
involves training the network on cyclic loads and fine-tuning it using
random walks. According to the results, transfer learning, in this case,
cannot perform satisfactorily, referred to as negative transfer.

The success of learning a target task depends on its relation to
the source task. In general, transfer learning between two tasks does
not necessarily work in both directions. It has been demonstrated
empirically by Rosenstein et al. (2005) that knowledge transfer across
dissimilar domains results in performance degradation. However, ad-
dressing negative transfer remains an open question (Weiss et al., 2016)
and is beyond the scope of this study. Cross-domain noise is increased
when the source task has data sparsity or scarcity compared to the
target task. Such noise reduces the ability to extract beneficial knowl-
edge and may lead to negative transfer (Khan et al., 2024). In other
words, transfer learning negatively affects the network performance on
the target task.

The most promising results are obtained by training the model on
random walk load paths (Section 4.1) and then fine-tuning it for cyclic
loads, as illustrated by the dashed black line. With the transferred
network, stress values can be predicted from sparse feature samples
9

Fig. 10. LSTM network predictions on conventional cyclic loading compared with
desired stress values (red solid lines with stars). Stress values are normalized between
[−1, 1]. Black dashed lines indicate the candidate transferred model predictions. The
blue dashed lines indicate predictions of a model trained initially on cyclic loads and
then fine-tuned by random loads. The yellow and gray lines show the predictions of
models that have been trained only on random and cyclic loads, respectively. (a-left)
One cycle is pure out-of-plain shear, and (a-right) three cycles are pure in-plain shear.
(b) ten cycles pure out-of-shear vs. load increments. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

through the entire loading increments not only for one-cycle tests
(Fig. 10(a)-left) but also for multiple cycles (Figs. 10(a)-right and
10(b)). In some cases, the predictions deviate from the desired values
at the beginning of loading, as shown in Fig. 10(a)-right. This behavior
can be attributed to the nature of RNNs, which forget about the first
part of a sequence when asked to predict the whole sequence at once,
and not for forecasting and predicting one step ahead (Géron, 2022).

5. Conclusions

Woven composite laminates are used across a wide range of in-
dustries due to their cost-effective and automated manufacturing pro-
cedures. However, computationally efficient and industrially feasible
models are still required to drive their use further. This study has
investigated the capabilities of Recurrent Neural Networks (RNNs) com-
bined with the transfer learning strategy in supervised learning of the



European Journal of Mechanics / A Solids 107 (2024) 105378E. Ghane et al.

V
m
W
t
n
F

D

c
i

D

nonlinear behavior of woven composites, specifically when plasticity
is present in the matrix phase. The present research has examined the
predictive power of RNNs based on mean-field simulated data to be
used as a fast and accurate surrogate model for mesoscale homoge-
nization. A limitation of the present data-driven model stems from its
reliance on low-fidelity MFH training data. Model predictions are also
deterministic, unlike plain woven composite behavior in experiments,
which is stochastic. To improve model accuracy, we intend to enhance
future datasets with higher-fidelity homogenization techniques. More-
over, incorporating uncertainty sources into the model will also be a
potential future development of the RNN model.

The RNN model incorporates two types of input features: (1) static
input features sampled from a random design space for elastic fiber and
elasto-plastic matrices with varying volume fractions; (2) sequential
input features including six-dimensional time histories of the meso-
scale strain tensor. The RNN model aims to predict six components
of meso-scale homogenized stresses as outputs. Two distinct task data
sets are considered. In the first one, named the source task, a random
walk strategy ensures a diverse and comprehensive exploration of
input strain path trajectories. Conventional cyclic strain loadings are
considered in the second one, named the target task. The second task
was found to be more challenging due to the presence of multiple zero-
vectors in the sequential input features, known as feature sparsity. We
have systematically examined a variety of GRU and LSTM architectures,
along with several hyperparameters, in order to identify the most suit-
able model for predicting homogenized stresses in unseen test samples
derived from random loads (source task). Having been exposed to
random loads, the network has been retrained using a transfer learning
paradigm and has demonstrated satisfactory performance in predicting
stress components under conventional cyclic load conditions (target
task).

In conclusion, this study provides evidence for transfer learning
neural networks as an effective method for domain adaptation across
diverse loading types and micro-structural constituent properties in
material data sets. Our findings set a precedent for future investigations
into knowledge transfer across varying-quality datasets. The results pro-
vide a robust foundation for future studies to tailor models for full-field
simulations and even limited experimental data. Additionally, more
relevant physics causing non-linearity, such as damage behavior, can
be investigated by extending the data sets for training and validation.
The insights gained from mean-field simulations can be used to develop
models that are applicable in a wider range of settings and represent a
significant opportunity for further advancement in this field.
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