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Abstract. Most commercial wind turbines use proportional-integral (PI) collective blade-
pitch control to regulate rotor speed in the above-rated wind speed regime. A significant
drawback of this type of controller is that it assumes that the blades have identical structural
properties and are subject to similar aerodynamic loads, which is seldom the case. Also,
these controllers are designed to regulate the rotor speed and are not designed for structural
vibration/load reduction. However, it is well known that blade pitch control can reduce
structural loads on wind turbines. This opens up the possibility of designing controllers
that use existing actuators and sensors like the blade pitch actuators to reduce structural
loads/vibrations while maintaining the required rotor speed. Recent studies have investigated
individual blade pitch control (IPC) to address these shortcomings. However, the vast majority
of studies published in the literature depend on the availability of state measurement. Although
sensors are commonly placed on all wind turbines, and some information is readily available,
the measurement required by the typical state-feedback controllers is usually not available.
Displacements and velocities of the blade, the tower and the floating platform are difficult
to measure. This paper develops an observer-based individual blade pitch controller for load
mitigation and power regulation of floating offshore wind turbines. We propose to use a
Kalman filter to estimate the state from the accelerometer and strain gauge measurement for
use in the state-feedback controller. The state-feedback controller was proposed previously
by the authors that showed excellent performance. This paper extends the capability of the
state-feedback controller by designing an observer (Kalman filter) to estimate the state from
limited measurements. The proposed observer based controller is compared against a baseline
proportional integral collective blade pitch controller and full state-feedback controllers to
evaluate its performance. Numerical results show that the proposed output feedback controller
offers performance improvements over the baseline controller, similar to the full state-feedback
controller.

1. Introduction
The future of wind energy lies offshore for several reasons. The wind speeds available offshore
are higher than onshore wind speeds with lower levels of turbulence. This increases the power
potential of offshore turbines and also leads to reduced fatigue loads on the structures. Floating
Offshore Wind Turbines (FOWTs) have been proposed in recent years for deep water deployment



XII International Conference on Structural Dynamics
Journal of Physics: Conference Series 2647 (2024) 032003

IOP Publishing
doi:10.1088/1742-6596/2647/3/032003

2

where the installation of traditional fixed bottom turbines would be impossible. This opens up
vast areas of the marine environment for offshore wind development. However, there remain
significant technical challenges to be overcome to make floating offshore wind a commercially
attractive prospect. In general the structural characteristics of a FOWT are much more dynamic
than an onshore turbine or a traditional fixed base offshore wind turbine. Due to this fact, novel
structures and controllers must be developed specifically for FOWTs. The stability of the
FOWTs (pitching and rolling of the platform) and reduction of aerodynamic loads on FOWTs
is now the topic of considerable research. Much work focuses on the design of new pitch and
torque controllers.

Bossanyi [1, 2] proposed the concept of reducing aerodynamic loads through individual blade
pitch control (IPC). The industry accepted these advanced control algorithms, and modern wind
turbines are now actively pitched to reduce mechanical loads. Field experiments were further
conducted by Bossanyi et al.[3] to validate the previously proposed IPCs.

Mughal and Guojie [4] presented a discussion on various pitch control strategies from primary
PID (proportional-derivative-integral) controllers to complex multivariable controllers like H∞,
neural network, adaptive control. Namik and Stol [5, 6] proposed the most prominent IPCs for
floating offshore wind turbines based on a State Feeback Controller (SFC) and a Disturbance
Accommodating Controller (DAC). In [7] the authors demonstrated the performance of the
above two controllers on a spar-buoy floating wind turbine. The authors showed that while both
controllers can improve power regulation, the DAC has a detrimental effect on the platform
motion. An advanced wavelet IPC was proposed by Sarkar et al. [8] for reducing aerodynamic
loads on the floating wind turbine.

Model Predictive Control of wind turbines using LIDAR measurements providing information
about wind at various distances in front of the wind turbine has also been studied in recent
literature [9, 10, 11]. A nonlinear model predictive control for floating offshore wind turbines
was investigated in [12, 13].

It can be noted here that, common to all the IPCs reviewed above, the controller typically
assumes that information about the state is available in the form of measurements. However,
this is seldom the case. Typically, displacements and velocities are difficult to measure. This
paper proposes using a Kalman filter to estimate the state using strain gauges and accelerometer
measurements that are much simpler and readily available. Researchers have used Kalman filters
for various purposes like wind speed estimation [14] fault detection in blade pitch systems [15],
estimating fatigue stress at critical locations using acceleration and thrust force measurements
[16]. A modified application of the Kalman filter is presented here to tackle the fact that the
plant (the FOWT) is subjected to non-zero mean coloured noise. Unlike traditional Kalman
filters, the plant input is estimated from measurements rather than being known inputs. This
enables one to tackle the fact that the plant is primarily excited by unknown non-zero mean
coloured noise.

2. PROPOSED OBSERVER BASED CONTROLLER
A nonlinear aeroelastic 22-DOF model of the FOWT [17] has been used in this study to simulate
its dynamic behaviour subjected to a stochastic wind-wave loading environment and evaluate
the performance of the proposed controller. For brevity, details of the 22 DOF system are not
presented in this paper. The reader will find more details in [18].

The controller strategy proposed in this paper is based on a reduced degree of freedom 6-
DOF model. It consists of a continuous time Kalman filter coupled to a state-feedback controller
proposed previously by the authors in [19]. This paper extends the capabilities of the previously
proposed controller by coupling it to a Kalman filter to estimate the state from measurements.
In the following subsections, first, the controller is summarized, then the proposed Kalman filter
is presented.
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2.1. Low authority Linear Quadratic controller
As shown in [19] the control input of the individual blade pitch angles are obtained as

Θ = θ +Θl (1)

where θ ∈ ℜ is the collective pitch angle obtained from the integral controller and Θl ∈ ℜ3×1

is the individual pitch angles obtained from a low authority LQ (Linear Quadratic) controller.
The Θl is obtained from a low authority steady-state LQ controller as

Θl = −R−1B(θ)TPx(t) = −K(θ)x(t) (2)

Where, P is the solution of the algebraic Riccati equation associated with the reduced degree
of freedom system, B(θ) is the control input matrix, R is the input weight matrix and K(θ) is
known as the LQR gain. In the above equation the state of the reduced DOF system given as

q = {qP qTFA1 qB1F1 qB2F1 qB3F1 qε}
x = [q q̇]T

(3)

Where the subscripts, P denotes the platform pitching mode, TFA1 denotes tower first fore-aft
bending mode, and BiF1 denotes the first flapwise bending mode of the ith blade. The LQ
controller is combined with an integral action as shown in Figure 1. The integral controller has
been obtained from [20]. For brevity, the derivation of the controller has been omitted from this
paper, and the reader is referred to [19].

Figure 1. Controller schematic

2.2. Continuous time Kalman filter
It can be observed from equation (2), the LQ controller requires the complete state of the
reduced DOF system to estimate the control input. However, measuring the velocities and
displacements of the blades, the tower and the platform are typically more complicated and
not readily available. Therefore, in this paper, a continuous-time Kalman filter is designed to
estimate the system’s state from accelerometer and strain gauge measurements. Three strain
gauges are assumed to be located at the root of the three blades to measure the flapwise bending
strain. Moreover, three accelerometers are used to measure the accelerations at the tip of the
three blades.

The rotor speed is commonly an available measurement, hence, the speed error DOF in
equation 3 is removed from the plant model used to develop the Kalman filter. Therefore, a
5-DOF model of the FOWT is used as the plant. The linearized 5DOF system can be written
as

Mẍ+Cẋ+Kx = f (4)



XII International Conference on Structural Dynamics
Journal of Physics: Conference Series 2647 (2024) 032003

IOP Publishing
doi:10.1088/1742-6596/2647/3/032003

4

An approximation of the mass, damping and stiffness matrices are obtained from a linearization
analysis. The force vector is obtained as

f =



∫ Lb

0 p1x(r)ϕ(r)dr∫ Lb

0 p2x(r)ϕ(r)dr∫ Lb

0 p2x(r)ϕ(r)dr∑3
i=1

∫ Lb

0 pix(r)dr

Hhub
∑3

i=1

∫ Lb

0 pix(r)dr

(5)

Where, pix(r) is the distributed flapwise force on the ith blade, Lb is the length of the blade, ϕ(r)
is the fundamental mode shape of the blade and Hhub is the height height of the turbine from
the mean sea level (MSL). The above linearized plant system can be written in state-space form
as

ẋ = Ax+Bu+Gw

y = Cx+Du+ v
(6)

In conventional Kalman filter design, the control input vector u = f is the known input to the
plant. For the FOWT, the input to the system is the aerodynamic and hydrodynamic loads.
These forces are generally unknown, have non-zero mean and are coloured in nature. In this
paper, we propose that the inputs (i.e., only the aerodynamic forces) are estimated from the
strain measurements in the case of unknown system inputs. The moments at the blade roots
are estimated from the strain measurements as

M =
ϵI

y
(7)

The moment on the blades due to the distributed aerodynamic loads can be approximated by a
point load as

M = Px1 =⇒ P = M/x1 (8)

The center of mass of the distributed load xm can be obtained as

x1 =

∫ Lb

0 rpx(r)dr∫ Lb

0 px(r)dr
(9)

It has been observed that for small changes in wind speed or rotor speeds x1 is constant.
Therefore, a constant x1 is assumed to estimate of the point load P from the measured blade
root moments. The forces on the blades, the tower and the platform is then approximated as

f̃ =



P1
x1
x2
ϕ(x2)

P2
x1
x2
ϕ(x2)

P3
x1
x2
ϕ(x2)∑3

i=1 Pi

Hhub
∑3

i=1 Pi

(10)

where, f̃ is the vector of approximated forces and moments on the blades, the tower and the
platform; and Pi is the approximated point load on the ith blade. In the above equation x2 is
obtained as

x2 =

∫ Lb

0 rpx(r)ϕ(r)dr∫ Lb

0 px(r)ϕ(r)dr
(11)
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The terms of equation (6) are given as

A =

[
0 I

M−1K M−1C

]
B =

[
0

M−1I

]
G = B

C =
[
−M−1K −M−1C

]
1:3

D =
[
M−1I

]
1:3

(12)

where the subscripts 1:3 denote the first three rows of the matrices since it is assumed that
only the blade tip accelerations are available as measurement. The vectors w and v are the
additive white process and measurement noise respectively. The continuous system describe
in equation (6) is discretized in MATLAB[21] using the c2d function by applying a zero-order
hold on the inputs and a sample time of 0.0125 sec. Using the resulting discrete time system
a Kalman filter is designed using the kalman function in MATLAB[21]. The resulting system
is a system that has 10 states, 8 inputs and 13 outputs. The inputs include 3 acceleration
measurements and 5 estimations of forces and moments from equation (10). The outputs include
3 filtered acceleration measurement and 10 estimated displacements and velocities that form the
estimated state of the reduced DOF system.

3. RESULTS AND DISCUSSION
The 5MW OC3 Hywind turbine, a spar-type FOWT, defined in [20] has been used for numerical
purposes. The structural and aerodynamic properties of the tower and the blades are defined
in [22]. MATLAB [21] has been used as the simulation platform. A sampling rate of 40 Hz
has been used for time integration using the Runga-Kutta 4th order method. Aerodynamic and
hydrodynamic loads on the wind turbine are estimated using the Blade Element Momentum
(BEM) theory and Morison’s equation, respectively. The mooring cables are modelled using
MoorDyn [23]. In the following sections, the performance of the Kalman filter and controller
is presented. The load case investigated in this paper, TurbSim [24] is used to generate a 3D
wind field with a hub height mean wind speed of 19 m/s with a Normal Turbulence Model. The
Pierson-Moskowitz spectrum with a wave height of 2.25 m and a wave period of 6.25 sec is used
to generate the wave kinematics.
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Figure 2. Simulated blade root bending
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Figure 4. Comparison of the true state and the estimated state from the Kalman filter
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Figure 5. Comparison of the true state and the estimated state from the Kalman filter

3.1. Performance of the Kalman filter
The Kalman filter is designed with the following selection of the plant noise covariance matrix
M and the measurement noise covariance matrix N

M =


6e13 0 0 0 0

0 8e9 0 0 0
0 0 1.5e8 0 0
0 0 0 1.5e8 0
0 0 0 0 1.5e8


N = 0.1× I3×3

(13)

For numerical investigation, the simulated measurements are artificially corrupted with white
noise. The approximated loads and moments are corrupted with a standard deviation of 14%
error in each measurement, and a standard deviation of 31% error corrupts the acceleration
measurements. The simulated blade one root moment with and without the additive noise is
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Figure 6. Comparison of the true state and the estimated state from the Kalman filter

shown in Figure 2 and the simulated blade one tip acceleration with and without the additive
noise is shown in Figure 3. The results of blades 2 and 3 are similar. The state prediction
obtained from the Kalman filter is summarized in Figure 4 through Figure 6. It can be observed
that the estimation of the blade and tower displacements obtained from the Kalman filter in
Figure 4 and Figure 5 are satisfactory. The estimation of the platform pitch rotation is slightly
poor, as shown in Figure 6. However, the impact of this estimation error is insignificant on the
controller performance, as shown in the next section.
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Figure 7. Blade out-of-plane displacement
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Figure 8. Tower top fore-aft displacement

3.2. Performance of the observer based individual blade pitch controller
The LQ controller is designed with the following selection of the state weight matrix Q and the
input weight matrix R

Q =

[
Ql(1− ρ) · · ·

· · · ρ

]
(14)
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Figure 10. Floating platform pitch rotation

Response LQR [19] Kalman Filter-LQR
Blade OOP 28 34
Tower FA 20 19
Platform pitch 12 16
Platform roll 24 22
Rotor speed 29 35

Table 1. Percentage reduction in standard deviation over the baseline controller
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Figure 11. Rotor speed
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Figure 12. Blade 1 pitch angle

where Ql = 0.001× I11×11. Ql is further modified by increasing the weight on the platform and
tower degrees of freedom to 1. Pareto optimization of the controller in [19] has shown that the
best choice is ρ = 0.6. The input weight matrix is simply assumed to be R = I3×3.

The performance of the controller is presented in Figures 7 through 12. The controller
presented in this paper is labelled as “Kalman Filter - LQR”. The proposed controller is
compared against the state-feedback controller proposed by the authors in [19] and is labelled
as “LQR” and the baseline controller labelled as “Baseline”. It can be observed, in Table 1,
that the performance of the proposed controller is similar to the full state-feedback “LQR”
controller and is significantly better than the “Baseline” controller in both reducing structural
displacements and regulation rotor speed of the FOWT. The similarity of performance to the
“LQR” controller demonstrates that the state estimation provided by the Kalman filter is of
sufficient accuracy.
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4. CONCLUSIONS
An observer based controller has been presented in this paper that combines a Kalman filter
for state estimation and a state-feedback IPC. The state-feedback IPC was proposed by the
authors previously, and this paper extends its capabilities by designing a Kalman filter that can
provide a state estimation from limited and readily available measurements. Only strain gauge
and accelerometer measurements are assumed in this paper. The results presented here show
that the proposed Kalman filter can satisfactorily estimate the state of the FOWT plant, and
successive controller performance is similar to a state-feedback controller. The results presented
in this paper show that the promising performance offered by state-feedback IPCs can be realized
by using simple and readily available measurements and observers.

It must be noted that even the reduced DOF system used by the authors to design the
Kalman filter is nonlinear, and a linearized approximation was used in this work. As part
of future work, the authors are investigating an unscented Kalman filter and the associated
performance improvements.
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