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Abstract: A methodology to study statistical properties of anomalous transport in fusion plasma is
investigated. Three time traces generated by the full-f gyrokinetic code GKNET are analyzed for this
purpose. The time traces consist of heat flux as a function of the radial position, which is studied
in a novel manner using statistical methods. The simulation data exhibit transport processes with
both medium and long correlation length along the radius. A typical example of a phenomenon with
long correlation length is avalanches. In order to investigate the evolution of the turbulent state, two
basic configurations are studied, one flux-driven and one gradient-driven with decaying turbulence.
The information length concept in tandem with Boltzmann–Gibbs and Tsallis entropy is used in the
investigation. It is found that the dynamical states in both flux-driven and gradient-driven cases are
surprisingly similar, but the Tsallis entropy reveals differences between them. This indicates that the
types of probability distribution function are nevertheless quite different since the higher moments
are significantly different.

Keywords: plasma turbulence; gyrokinetic simulations; information length; Tsallis entropy

1. Introduction

Turbulence in magnetically confined plasma is still a popular research field due to the
high impact of heat transport in fusion-related plasma [1]. This corroborates the need to
investigate large-scale transport events such as bursts, streamers, blobs and avalanches [2–11].
These heterogeneous structures occur intermittently and may have a significant impact on
the transport to the edge. Furthermore, simulation efforts have been suggested with the aim
to investigate the effect of blobs and avalanching. The simulations indicate that blobs may
alleviate the local heat flux because they enlarge the plasma-wetted area of the limiter/divertor
targets. On the other hand, the prospect of avalanching is concerning and warrants further
investigation. Avalanches are characterized by rapid spatial diffusion and convection of
turbulence to the edge.

To investigate a broader perspective of transport induced by meso- and large-scale
structures, including avalanching, global flux-driven models are needed where the profile is
self-consistently determined and the radial gradients develop over time in contrast to fixed
gradient-driven systems. In the global simulation framework, intermittent events, which
exhibit temporal structures with frequent bursts and radial coherence, may be supported.
Such transport events are called avalanches [11]. The likelihood of intermittent transport
events may be studied through the properties of the probability distribution function (PDF).
Intermittent transport is often characterized by unimodal PDFs with elevated exponential
tails compared to a Gaussian distribution. An comprehensive analytical theory has been
presented that elucidates the properties of intermittent transport of heat flux in magnetically
confined plasma [12]. A significant breakthrough would be, for instance, to be able to
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mitigate or control of edge heat flux loads, which depend on the instantaneous amplitude
of fluctuations. The elevated tails of the heat flux PDFs is a manifestation of meso- or
large-scale coherent structures mediating transport [4,13]. The statistical intermittency is
quantified by higher-order cumulants, e.g., the skewness and kurtosis, of the PDFs [12].

In plasma transport exhibiting meso- or large-scale events, long-range correlations
may be expected. For independent processes or systems determined by mean field theory,
Boltzmann–Gibb statistical mechanics is sufficient; however, for systems with long-range
correlations, a more general approach is needed. Tsallis statistics are now widely ap-
plied, e.g., to solar and space plasma such as the heliosphere magnetic field; see Ref. [14].
Intermediate states between the Gaussian and Lévy distributions can be found in non-
extensive statistical mechanics, which provides distributions determined by a continuous
real parameter q; see Ref. [14]. In previous work, it was indicated that such processes
should be detectable using the Tsallis entropic function, which accentuates the tail parts of
the distributions.

One other possible option for detecting large-scale events is to work with the different
metrics for the thermodynamic length [15–20] and the information length [21,22], which
is the generalization to non-equilibrium systems. A possible solution is to use the PDFs
to construct the Fisher metric in statistical space, enabling determination of the statistical
length. It is thus a geometric methodology to understand stochastic processes involved in
order–disorder transition, which may be expected when long-range correlations are present.
As the system evolves, the PDFs change with time, and the information length measures
the total number of different statistical states that a system passes through in time [21,22].
The availability of time-dependent probability density functions (PDFs) as the system
evolves enables investigations into the entropy and information length of the system over
time. In comparison, entropy concerns the uncertainty or disorder for one PDF (at any
time), while relative entropy compares two PDFs (e.g., at two different times). However,
the information length at any time is non-zero since it captures the evolution of a system
between the initial and final states. In comparison, when the initial and final states are
identical, the relative entropy between them is zero. The information length is proportional
to the time integral of the square root of the infinitesimal relative entropy. Note also that
the concept of information length is generally applicable across different fields, allowing us
to comprehensively assess different processes by the same mathematical method.

The path dependence of the information length was shown to be useful for understand-
ing the dynamical system, in particular, the attractor structure. Moreover, the information
length, relative entropy and Jensen divergence were compared, and it was shown that only
the information length captures a linear geometry of a linear Ornstein–Uhlenbeck process
by a linear relation between L(t → ∞) and the mean position of an initial Gaussian PDF.

Therefore in this work, we analyze quasi-stationary time series of heat flux generated
by the global gyrokinetic software GKNET . The simulation set-up of the heat flux as
a function of time and radius is discussed in Section 2. A previous study using some
of the data was published in Ref. [23], which focused on the properties of the PDF tails.
In this work, the analysis is extended to the Boltzmann–Gibbs entropy, Tsallis entropy
and the information length. This is explored in Section 3, which provides the indicators
of coherent structures and events. Here, the information length quantifies the differences
between different statistical states of the system during its evolution, whereas the entropy
is used to track instantaneous changes between states. At the end of the paper, Section 4,
the discussion and conclusions are presented.

2. Numerical Model and Set-Up

The software and one data set have been presented in an earlier paper; see Ref. [23].
In this previous work, a statistical analysis of a global gyrokinetic simulation of ion tempera-
ture gradient (ITG) mode turbulence with adiabatic electrons by the software Gyro-Kinetic-
Based Numerical Experimental Tokamak (GKNET) was performed. The early development
of the GKNET software was presented in [24]. In the following, a brief summary of the data
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is presented. The simulation framework uses a circular concentric tokamak configuration
with R0/a = 2.79, a/ρti = 150 and q(r) = 0.85 + 2.18( r

a )
n. Here, n = 2 in the normal case.

The initial plasma parameters at r/a = 0.5 are (R0/Ln)r=a0/2 = 2.22, (R0/LTi)r=a0/2 = 10.0,
(R0/LTe)r=a0/2 = 6.92 and ν⋆ = 0.28, respectively. In this configuration, simulation param-
eters are taken as follows: the time step length is ∆t = 2× 10−3R0/vti, and the grid number
and system size are (Nr, Nθ , Nϕ, Nv|| , Nµ) = (128, 128, 64, 64, 16) and (Lr, Lθ , Lϕ, Lv|| , Lµ) =

(150ρi, 2π, π, 12vti, 18v2
ti/B0), respectively. Note that a 1/2 wedge torus is employed in this

simulation. Figure 1 in Ref. [23] shows (a) initial density, temperature and safety factor
profiles and (b) deposition profiles of Asrc and Asnk. Here, the source and sink parameters
are chosen to avoid large deviations from the Maxwellian distribution in the heating region
and possible non-physical oscillations triggered by the fixed outer boundary condition.
Within this framework, we performed gyrokinetic simulations of flux-driven toroidal ITG
turbulence with external heat input Pin = 16 [MW]. Note that not only turbulence and
zonal flow but also the neoclassical transport and mean flow determined self-consistently
by evolving equilibrium profiles can be properly traced in this framework. An investigation
of the statistical properties of the heat flux in these simulations was performed in Ref. [23],
which was centered around the base case with parameters similar to those of the cyclone
base case, i.e., a/ρi = 150, a/R0 = 0.36 and τ−1

snkR0/vti = 0.25.
In Ref. [23], the tails of the PDFs were analyzed, and the time traces of heat flux were

processed to retain their stochastic parts with only the help of Box–Jenkins modeling to
remove deterministic autocorrelations. . The time evolution of the PDF is shown at four
instances in Figure 1; here, the change with time is apparent, and evidently this impacts the
micro-turbulent properties, although it is difficult to discern and immediately connect PDFs
to a change in the dynamics such as one that may be expected of a meso- or large-scale
event unless careful investigation of the PDF tail properties is performed. It is concluded
that this serves as a useful test case for both the previously developed methodology and
for exploring entropic methods.

Figure 1. The time evolution of PDF of the electrostatic potential (ϕ) at mid radius displayed at four
different time windows.

The accuracy of the modeled PDFs can be evaluated by comparing higher statistical
moments (kurtosis) of the PDFs where a good representation was found. Previous local
gyrokinetic simulations, as shown in Ref. [12], found similar probability density functions
(PDFs). However, due to the global nature of the model, these simulations introduced
consistently different non-Gaussian features, such as stretched exponential and Laplacian
PDFs. Thus, significant heat is mediated by coherent structures such as blobs/coherent
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structures or streamers/avalanches. In the simulations, large, avalanche-like structures
are present as an indication of this mode of transport. Although we analyzed time traces
three times longer than the original simulations (which had 4000 time steps), we obtained
similar results.

In order to understand the properties as a function of time of the numerically generated
time traces, a study of a few key indicators was performed in addition to the work of
Ref. [23] where the PDFs of heat flux were investigated. In the flux-driven simulations,
the radial profile self-consistently evolves over time, and the PDFs are determined by a
time window of 100 samples in the time trace. It is indicated that these are characterized by
fluctuations above marginal stability, and the linear stability limit is adopted from a fluid
model [25] in the temperature gradient (R/LTi) of that profile. The likelihood of instability
is shown in Figure 2, where the PDF of the temperature gradient scale length is displayed.
More importantly, it is evident that the plasma is in the unstable region for most of the time
during the simulation in the standard case.

In the following, X will denote the sample time trace with elements X1, X2, . . . , Xn.
Another quantity of interest is the Hurst exponent [26] of X. In general, 0 < H < 1 but
if H = 0.5, the series is considered random (uncorrelated); if H > 0.5, the series has a
long-term positive autocorrelation, meaning that high (low) values in the series X will have
a higher probability of being followed by another high (low) value. Conversely, if H < 0.5,
in the long run, with high probability, high (low) values in X will have a higher probability
of being followed by another low (high) value. The Hurst exponent is calculated by the
rescaled range (RS) method as the exponent H such that E[R(n)/S(n)] = CnH for n → ∞,
where C is a constant, E[x] is the expected mean, S(n) is the standard deviation of the series
X1, X2, . . . , Xn, and R(n) is the range of the n cumulative deviations from the mean; that is,
R(n) = max(Z1, Zs, . . . , Zn)− min(Z1, Zs, . . . , Zn), Zj = ∑

j
i=1(Xi − m), m = (∑n

i=0 Xi)/n.
Then, H is calculated as the slope of the line that fits the log(R(n)/S(n)) data as a function
of log(n).

Figure 2. The PDF of the temperature gradient (R/LTi) at mid radius a/ρi = 75.

In Figure 3, high values of the Hurst exponent are displayed. It is evident that the
physical process favors repeated values. This was shown to be of importance in Ref. [27],
which indicates that cumulative changes in the dynamical time may be visible as rapid
increases in the information length and thus indicate a change in the state of turbulence.
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Figure 3. The Hurst exponent of heat flux as a function of the radial coordinate displayed for the three
cases, standard, gradient-driven and flux-driven. The gradient-driven and flux-driven (at 4 MW)
cases are obtained from a later iteration of GKNET.

3. Results

In this section, the entropy and information length will be computed. Both methods
rely on the accuracy of estimating the turbulent state defined by the PDF. Moreover, it
is expected that important information is stored in the tail part of the PDF; this thus
indicates that sampling of the data is crucial. In this work, the sampling of the time series
is determined by the window length WL. The window length needs to be adjusted to
match the physical processes of interest. Specifically, there should be enough data points to
capture the skewness and kurtosis (i.e., the third and fourth moments of the distribution)
while remaining short enough to capture the dynamics of the relevant processes. If the
window length is too long, processes occurring on a shorter time scale will be obscured and
not fully captured. The PDFs are thus computed at the midpoint of WL ∈ 2k + 1 (where k
is an integer) and at each time instance after k + 1 at the start of the time trace until k + 1
samples from the end.

The dynamic time τi(t) of the Xi subsequence estimates the instantaneous change and
is computed as

τi(t)
2 = 1/

∫
dXi

1
p(Xi, t)

(
∂p(Xi, t)

∂t

)2
. (1)

More information is found in Refs. [27,28]. The information length, L(t), can be directly
obtained from the dynamic time by time integration:

L(t) =
∫ t

0
ds

1
τi(s)

. (2)

The implementation of Equations (1) and (2) are discrete and estimated by summations
and discrete differentiations, respectively, since Xi and t are discrete. In this work, special
attention is given to entropy and information length computed by the time dependent PDFs.
It should be noted that one of the crucial quantities that characterizes out-of-equilibrium
systems (e.g., turbulence) is temporal change in PDFs. The information length is sensitive to
this temporal change since it is based on how quickly PDFs change in time (see Equation (2)).
Physically, τ in Equation (1) gives us a characteristic time scale of a PDF. The time integral
in Equation (2) then picks up the intermediate dynamics between the initial and final
states (at time 0 and time t) and is obtained by measuring the clock time (dt) in unit of
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the instantaneous time scale τ(t). Specifically, it tells us the total number of statistically
different states that a system passes through in time along the path. A unique specialty
of the information length is this path dependence. Each contribution stemming from
integration of the dynamic time is positive; thus, the information increases as the system
evolves and changes state. It is also dependent on the path in the phase space, which
indicates that the history determines the information length and would give a good estimate
of changes in the state.

In Figure 4, the information length computed by Equation (2) at different radii relevant
for the source, core and edge regions is displayed. It is found that the information increases
almost linearly over the time trace; interestingly, the information in the outboard side of the
simulation domain is increased in comparison to the inboard side. This indicates the effect
of generation of structures on the information length. The structures appear and disappear
intermittently, reflecting an increase in the information length due to the differences in the
PDFs of the different states.

Figure 4. The information length L at different radial positions with a linear fit (dashed line).

In Figure 4, the information length is almost linearly growing. A linear fit (dashed
line) is included for comparison. The information length is here computed with running
PDFs with a window length of 200 time steps.

The information length appears to grow almost linearly, with interesting variations
arising from the generation of coherent structures. This suggests that further investigation
into the integrated parameter, dynamic time, would be worthwhile. The recent literature
has derived analytical probability density functions (PDFs) for many different dynamical
systems, including a system with a logarithmic non-linear quantity. Although the objective
of Ref. [29] was different, the results are generally applicable.

Logarithmic non-linearities are found in various models, including the logarithmic
non-linear Schrödinger equation (LNLSE), which is mathematically appealing because it
supports solitary wave solutions (Gaussons) while retaining many simple features of linear
equations. Ref. [29] implies that there is a statistical structure in the generation of dynamic
time and entropy. In that work, a dynamical equation of the form was considered:

dζ(x, t)
dt

+ cζ(x, t) log(|ζ(x, t)|) + η∇2ζ(x, t) = f , (3)

where is ζ(x, t) is a smooth function of the dynamical system, c is a constant, η is a
damping term and f is the forcing. For simplicity, the statistics of the forcing is assumed
to be Gaussian with a short correlation time modeled by the delta function. The model
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Equation (3) representing the system leads to a likelihood distribution for ζ or is in the
form of a probability distribution function with ζ as the variable, p(ζ):

p(ζ) ∼ e−
ζ
α (ln

ζ
α −1). (4)

Note that the exponential scaling of the PDF is uniquely determined by the non-linear term
in the dynamical Equation (3). Although the data are scarce, it is found that the numerical
scaling of the generated dynamical time in the simulation roughly follows the theoretical
scaling of entropic systems. The scarcity of the data creates the non-smoothness in the
PDFs; however, this is also indicated in the similarity of all scalings of the information
length that mostly grow in an almost linear manner. Note that the dynamic time acts as
the time unit in the statistical space, but more importantly, it measures the correlation time
over which the probability density function (PDF) changes (Figure 5).

Figure 5. The PDF of the dynamic time τ at different radial position with a model fit (dashed line)
using Equation (4).

Next, the remaining part of the paper is dedicated to the data sampled from the new
version of GKNET; see Ref. [30]. The main difference in the data is that, in the new data,
a distinct comparison between a gradient-driven and a flux-driven case is made. For both
data sets, a sixth-order safety factor q(r) = 0.85 + 2.18( r

a )
6 is utilized in combination with a

smaller radial cross-section of a0/rhoti = 100. In the gradient-driven case, the initial profile
evolves over time, yielding decaying turbulence, whereas in the flux-driven case additional
power is used as input Pin = 4 MW. Note that the updated software enables studies with
kinetic electrons; however, here, only adiabatic electrons are retained.

Although a significant difference in the turbulence should be expected, the time
evolution of the simulation is remarkably similar since the information lengths, as seen
in Figure 6, closely follow each other at the different radii. It could then be concluded
that similar large-scale structures are generated regardless of the differences, generating a
similar dynamical process; however, it is also evident that, as time passes, the differences in
the information length increase. Note that it is only at the radial location r/ρi = 68 where
the gradient-driven case has higher information length over time.
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Figure 6. The information length L at different radial positions for the gradient-driven (solid lines)
and flux-driven (dashed lines) cases, respectively.

In general, a measure of the number of ways a system can be arranged is denoted
entropy; here, the generalized Tsallis entropy was investigated. Note that this generalized
statistical mechanics q-entropy or Tsallis entropy has a free parameter q which denotes the
degree of fractality. Let p be the probability density function. Then, the q-entropy can be
introduced as; see [14]:

Sq(p) =
1 −

∫
dv(p(v))q

q − 1
. (5)

Here, it should be mentioned that the q-entropy is reduced (by L’Hospital’s rule) to the
conventional Boltzmann–Gibbs entropy S = −

∫
dX log(p(X))p(X) for Gaussian statistics,

where q → 1. In analyzing complex systems out of equilibrium, non-extensive statistical
mechanics has a solid theoretical basis where the parameter q describes the degree of
non-extensivity in the system.

Due to the similarities in the information length found in Figure 6, a direct computation
of the entropy at the different time steps is performed. This should interpreted as the
instantaneous entropy generated at each time step and not the total entropy in the system.
The entropy is only computed using the PDFs generated with a limited time window of
200 time steps. In Figure 7, the Boltzmann–Gibbs entropy (S) for the gradient-driven system
(blue and orange lines) and the flux-driven system (yellow and purple) at two different
radii are shown. Here, the time evolution of the systems is quite similar, at least until
1000 time steps thereafter, at which point more differences can be noted; however, the order
is similar, and large fluctuations are present. The Tsallis entropy is computed according
to Equation (5), and the result is shown in Figure 8. In Figure 8, the Tsallis or q-entropy
(Sq, with q = 3.1) for the gradient-driven system (blue and orange lines) and the flux-driven
system (yellow and purple) at two different radii are shown. The q is taken to accentuate
differences in non-Gaussian properties of the PDFs; here, it is evident that at the outer
radii it is around an order of magnitude difference in q-entropy. It is expected that the
properties of the meso- and large-scale structures rest in the tail parts of the PDFs; thus,
skewness and kurtosis are of interest. This gives another useful indicator of anomalous
transport properties.
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Figure 7. The Boltzmann–Gibbs entropy computed for the gradient and flux-driven cases at two
different radii r/ρi = 43 and r/ρi = 93, respectively.

Figure 8. The Tsallis entropy computed for the gradient and flux-driven cases at two different radii
r/ρi = 43 and r/ρi = 93, respectively.

4. Summary and Conclusions

The full-f gyrokinetic code GKNET is utilized to generate heat flux time traces in
several different cases. The main difference is that one case is flux-driven, and one case
is gradient-driven, where the profiles are allowed to evolve according to the fluxes. This
means that the gradient-driven system is more or less a decaying state where no additional
energy input is used. The information length concept in tandem with Boltzmann–Gibbs and
Tsallis entropy are used in the investigation of the dynamical system. In the information
length concept, the probability distribution functions (PDFs) in time are computed and
analyzed. The information length is obtained by computing an integral (see Equation (2))
summing up positive definite contributions over time. The information length measures
the difference between two states in terms their PDFs. In comparison, for a Gaussian PDF,
a statistically different state is obtained due to the mean value change (the peak position
of a PDF) or due to the standard deviation (the width of a PDF). Physically, the former
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(mean value change) is due to the work, while the latter (standard deviation change) is
due to the entropy change. More technically, for the information length, the mean value
change is to be normalized by the smallest scale (standard deviation) as the width of a
Gaussian PDF gives the uncertainty (error) in measuring the mean position and thus the
smallest scale. In addition to the analysis by the Hurst exponent and information length,
the Boltzmann–Gibbs and the Tsallis entropy are computed, and all these measures indicate
different aspects of the properties of the PDFs.

It is found that although the dynamical state in the studied flux-driven and gradient-
driven cases is surprisingly similar, the Tsallis entropy reveals inherent differences. This
indicates that the types of probability distribution function are nevertheless quite different.
In Ref. [27], time traces of gyrokinetic simulations performed by GENE were analyzed,
where a combination of different metrics (information length, dynamic time and Hurst
exponent) were needed to find interesting differences in physics; however, in this case, all
these metrics are rather similar, making a similar analysis difficult. It seems that using
direct computation of the Tsallis entropy, some aggregated information on the differences
in the PDFs could be found. Moreover, a test of the PDF of dynamic time is presented that
seems to roughly follow a certain scaling based on analytical estimates found in Ref. [29].
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