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ABSTRACT: Comparisons to experiments are important when developing
kinetic models based on density functional theory (DFT) calculations. The
comparisons are, however, often challenging due to the assumed
uncertainties in the energies from which the kinetic parameters are
calculated. Here, we introduce a genetic algorithm to adjust the DFT-
energies to better match experimental XPS data, using CO hydrogenation
on Rh(111) as an example. The adjustments are made to adsorption
energies, adsorbate−adsorbate interactions, XPS energies, and peak shapes.
While these parameters improve the experimental agreement considerably,
the required changes to the DFT energies are relatively large, which
indicates the need for refined treatments of, for example, possible surface
species and reaction steps, surface inhomogeneities, or higher levels of
electronic structure calculations. We propose the genetic-algorithm based
method as a general tool for assessment of computational models.

■ INTRODUCTION
Computational methods are an integrated part of heterogeneous
catalysis research as they provide atomistic understanding of
reaction mechanisms and can be used to guide the development
of new catalytic materials.1 In this respect, electronic structure
calculations based on density functional theory (DFT) play a
major role as a means to calculate local energy minima and
reaction barriers, which form the basis for first-principles-based
microkinetic modeling (MKM).2,3 While DFT calculations have
proven very useful to develop conceptual understanding and to
study trends, there are intrinsic limitations in the accuracy.
Chemical accuracy is typically out of reach, which may
significantly affect computed rates and even the predicted
reaction pathways. To target these issues and obtain estimates of
the uncertainties in the predicted energetics, the Bayesian Error
Estimate Functional (BEEF)4 with van der Waals correction has
been applied to provide error estimates for the parameters.1,5,6

These have then been used to generate an ensemble of MKM:s
using parameters spanning the uncertainties from which error
estimates of the resulting rates can be derived.5,7 The predicted
rates or yields can subsequently be compared to experiment to
verify the reliability of the constructed MKM and its kinetic
parameters in terms of interaction energies, reaction barriers and
pre-exponential factors.8,9

For each possible reaction path, the highest barriers often
have rate control. Thus, it is generally sufficient to establish these

with high precision, assuming that the other barriers are
reasonably beyond the bounds set by the accuracy of the applied
DFT scheme. A general approach to reach the required accuracy
has recently been proposed for reactions on transition-metals by
Araujo et al.,10 on insulators and in physisorption on Pt(111) by
Sauer and co-workers11−13 through a combination of DFT-
calculations with periodic boundary conditions and corrections
from higher-accuracy methods on smaller cluster models.
However, full consideration of even a simple reaction as
hydrogenation of CO on Rh(111) involves more than 100
potential species and 2000 possible reaction paths,14 making it
infeasible to treat all steps at the same high-accuracy level. This
complexity has been addressed by Nørskov and co-workers14 by,
as a first step, building a surrogate model based on machine-
learned adsorption energies, linear-scaling relationships and a
classifier for the rate-limiting step along each path to find the
overall competing reaction pathways and their rate-limiting
barriers to which higher-level methods can then be applied. In
this way, the complete reaction network can be investigated.
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However, the approach relies on the assumption that the
reaction conditions in terms of the character of the actual, active
catalytic surface (facets, steps, defects, impurities, dynamics,
etc.) are as postulated in the MKM. An alternative approach,
which allows investigating assumptions in the MKM, has been
proposed by Rangarajan et al.15 where the residual in a fitness
function against experimental rates and DFT energies is
minimized. In a combined experimental and computational
study this was applied to the decomposition of formic acid over
various Pt/C catalysts.16

Here, we suggest and explore an additional route that has
recently become possible through the availability of high-
pressure X-ray photoelectron spectroscopy (XPS) data on
intermediate species during the reaction. The spectra contain
information about the operando resting state of the catalyst, in
which species before the rate-limiting step are amassed to a
higher degree than species after the rate-limiting step.
Consequently, the coverages provide information that is
intuitively linked to the actual mechanistic pathway of the
reaction. Thus, instead of focusing on rates or yields, which
depend sensitively on the computed DFT energies, we take an
agnostic attitude toward their accuracy. This entails developing
and applying a genetic algorithm (GA) to evolve the computed
adsorption energies and barriers in the MKM to match the
steady-state coverages on the catalytic surface during operating
(temperature and pressure) conditions. Combining the results
with the knowledge of uncertainties in computed DFT values,
the comparison between experimental and theoretical coverages
makes it possible to investigate modeling assumptions in the
MKM as well as the accuracy of specific values that the GA
changes beyond expected error bars. In addition, if such outliers
persist, this information can be an indication that the MKM
needs to be extended with additional side reactions and to
question whether the catalyst under reaction conditions remains
as assumed in the model.

XPS can be used to determine the operando surface coverage
of a reaction. Traditionally, this has only been possible at low
pressures, but with a recent setup from Amann and co-
workers,17 measurements can be performed at pressures around
1 bar, which is close or closer to realistic reaction conditions.
This high-pressure setup has been applied to investigate, e.g.,
CO hydrogenation on Ni,18 carbide formation in Fischer−
Tropsch synthesis on Fe(110),19 CO and CO2 hydrogenation
on stepped Rh(211),20 the Haber-Bosch process,21 and
methanol synthesis over Zn/ZnO/Cu(211).22 Here, we focus
on measurements of coverages of oxygen- and carbon-
containing species on Rh(111) during CO hydrogenation at
150 mbar and temperatures from 175 to 325 °C.23 In the case of
carbon spectra, the resolution is sufficient to distinguish several
peaks, to which groups of surface species can be assigned based
on their different experimental or computed C 1s XPS binding
energies.

CO hydrogenation on Rh(111) is an important reaction that
has been the topic of several DFT studies in combination with
MKM.5−7,14,24,25 Here, we use the now available XPS data to
illustrate a systematic approach to assess theoretical models and
DFT data, by building an MKM for CO hydrogenation and
using a genetic algorithm (GA) to modify computed energies
and barriers, such that coverages deduced from the XPS spectra
are reproduced. Knowledge of the steady-state coverages during
the reaction gives stronger constraints on the parameters of an
MKM model than when only the overall (temperature- and
pressure-dependent) rate is compared to experimental data.

Naturally, if the rate of the target reaction has been measured,
the GA and MKM can be constrained even further. If the
assumptions of the MKM are consistent with the actual
experimental conditions and reaction network, and the
parameters of the MKM (adsorption energies, reaction barriers
and pre-exponential factors) are correctly obtained by the
computational model, then the changes to these parameters
generated by the GA are expected to be within the error bars of
the applied computational model (typically DFT). In such a
case, the accuracy can potentially be further improved by
applying techniques to reduce the errors, such as suggested in
refs.,10−13 to determine the kinetic parameters for the critical
steps, fix those at the calibrated values and allow the GA to
readjust the remaining parameters in an iterative process.

If there are important reaction steps or interactions missing in
the MKM or the wrong catalytic surface is assumed in the MKM,
the GA will still attempt to fit the target, but now by changing the
DFT computed parameters beyond expectation. When this
happens, it is an indication to reevaluate the assumptions behind
the constructed MKM after ensuring that the errant values have
been computed correctly.

Key to a successful GA is the fitness function that specifies the
target toward which the process evolves. Here, we mainly use the
extracted temperature-dependent carbon and oxygen coverages
and XPS spectra. The genes defining each individual in a step
(generation) of the algorithm are at first simply the adsorption
energies and reaction barriers that enter the MKM, with more
variable parameters added if more complexity is needed. The
first generation is populated by the required number of
individuals with genes as random variations of the computed
energetics. At each step, the MKM is solved for each individual
and the result ranked according to the computed fitness. The
more fit individuals, plus a random selection of individuals with
lower fitness (to avoid inbreeding), are taken to generate the
next generation by crossover, i.e. the first part of the new gene is
taken up to a random point from the first randomly selected
“parent” and the rest from the second randomly selected
“parent”. The “offspring” is thereafter subjected to random
mutations and the thus generated new generation used as input
to a new series of MKM models. To obtain results that are not
completely unphysical, it is necessary to restrict the inputs, e.g.,
penalizing (by fitness contribution) or putting strict limits on the
deviation from DFT energies. Importantly, the most fit
individual(s) are transferred intact to the next generation as a
guarantee that fitness can only improve. Like in evolution by
natural selection, it is thus enough for an individual to not be
among the least fit to be guaranteed to procreate and contribute
its gene to the next generation.

■ METHODS
Energy Calculations for Minima and Transition States.

Density functional calculations for minima and transition states
were performed using VASP5,26−29 where the projector-
augmented wave (PAW)30 method was used to model the
interactions between the valence electrons and the core. The
Kohn−Sham orbitals were represented by a plane-wave basis set
with 500 eV as cutoff energy and a Gaussian smearing of 0.05 eV
applied to the Fermi level discontinuity. BEEF-vdW4 was used as
exchange-correlation functional.

The Rh(111) surface was modeled as four-layer p(3 × 3)
slabs, separated by a vacuum of 20 Å and sampled with (4,4,1) k-
points in a Monkhorst−Pack grid. The gas phase species were
computed in a (20 × 20 × 20) Å cell using only the gamma point.
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The quasi-Newton method was used for structure relaxations
with a total residual force of 0.02 eV/Å as convergence criterion.

Transition states were calculated using the dimer method31,32

or the climbing image nudged-elastic band method.33 Vibra-
tional modes were calculated by diagonalization of the Hessian
matrix, where the derivatives of the forces were computed by
means of the central difference approximation with a displace-
ment of 0.05 Å. The energies for gas phase molecules, adsorbates
and transition states are defined as formation energies from the
stoichiometric amount of gas-phase CO, H2 and H2O and a
clean Rh(111) surface.
XPS.Density functional calculations for XPS binding energies

were performed with pairs of single-point calculations in VASP
using 600 eV as cutoff on four-layer p(4 × 4) slabs with (4,4,1) k-
points. The number of calculated bands for the core-hole state
was chosen to be n

2
e + 150, where ne is the total number of

electrons in the supercell, to allow proper relaxation of the
valence; for ground state calculations, the default is enough.
Other relevant parameters are the same as for the minima
calculations above.

The XPS binding energy (BE) shifts were obtained by
simulating a core-ionized state where the PAW potential
included the explicit core-hole. The final BE was obtained
using the expression

BE E Efinal gs=

where Efinal is the total electronic energy of the final (core-hole)
state, and Egs is the total electronic energy of the ground-state.
Because of error cancelation, XPS shifts are more accurately
computed than absolute XPS binding energies and are
furthermore less sensitive to the choice of functional.34 Thus,
on-top CO was taken as computational reference and all
computed XPS energies shifted such that the absolute value for
CO coincided with the experimentally determined XPS value
(C: 286.0 eV35).

A Shirley background36 was subtracted between 282 and 288
eV prior to fitting, accounting for inelastic scattering of
photoelectrons in the adsorbate layer and in the gas phase.
XPS spectra were modeled assuming Gaussian broadening
around the peak BE. A Lorentzian contribution to the peak
shape was not considered here since the lifetime broadening of
the compounds is relatively small in comparison to the Gaussian
part of the peak shape. The broadening, i.e., the standard
deviation σ of the normal distribution, is estimated from the
experimental peak at 325 °C (in, e.g., Figure 2) to be 0.45 eV,
which is used unless the broadening is allowed to vary. The
experimental C 1s spectra and total coverages are taken from
ref.23 The reason that we do not use the O 1s spectra is that there
was an overlap between the electron energy loss peak and the O
spectra in the experiment. It also means that the accuracy of the
total C coverages is higher than the total O coverages.
Microkinetic Model. A mean-field microkinetic model

(MKM) without lateral adsorbate−adsorbate interactions
results in a CO-poisoned surface, in contrast to experimental
results. The reason for this is that the CO adsorption energy is
coverage-dependent.35 Thus, Yang et al.5 introduced a DFT-
based, piecewise linear adsorbate−adsorbate interaction for CO
with itself and other intermediates. In the present work, we apply
a simplified model with adsorbate−adsorbate interactions
(AAI) included in a linear fashion, such that

E E mS S
A

S A A,0 ,= +

where ES is the differential adsorption energy of surface species S
(adsorbate or transition state), ES,0 the corresponding differ-
ential adsorption energy at zero coverage, θA the coverage of
adsorbate A, and mS,A the linear parameter for the interaction
between S and A. The parameter between two adsorbates is
symmetric, i.e., mA,B = mB,A where B is also an adsorbate. To
further simplify the model, cross-interaction parameters
between adsorbates were approximated as the average of the
self-interaction parameters, i.e., mA B

m m
, 2

A A B B, ,= +
. This simple

model can be compared to the piecewise linear model with
smooth transitions used by Lausche et al.37 and the second order
expansion in coverage by Yang et al.5

A microkinetic model was constructed for the hydrogenation
of CO to methane, water, and methanol. Note that higher
carbon-containing (C2+) species were not included. Similarly to
Yang et al.5 and Schumann et al.,6 atomic hydrogen occupies up
to 1 monolayer (ML) in a reservoir site (◇), while the rest of
the adsorbates share a maximum of 1 ML on regular surface sites
(*); hydrogen is, thus, assumed to not compete for sites while
still affecting other species through AAI.

The following reactions were included in the model:

CO(g) CO

H (g) 2H

CO H COH

CO H CHO

COH C OH

CHO H CH O

CHO H CHOH

CH O H CH O

CHOH H CH OH

CH O H CH OH(g)

CH OH H CH OH(g)

COH C OH

CHOH CH OH

C H CH

CH H CH

CH H CH

CH H CH (g)

OH H H O

H O H O(g)

2

2

2 3

2

3 3

2 3

2 3

3 4

2

2 2

+ * *

+

* + * +

* + * +

* + * * + *

* + * +

* + * +

* + * +

* + * +

* + + * +

* + + * +
* + * * + *

* + * * + *

* + * +

* + * +

* + * +

* + + * +

* + * +
* + *

The resulting ordinary differential equations (ODEs) have the
form:
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t
r

d
d

n
n i i

i
,=

where νn,i is the stoichiometric coefficient of species n in
elementary reaction step i and ri is the reaction rate of
elementary reaction step i. The reaction rates are functions of
rate constants ki and species coverages θn. The forward and
reverse rate constants k of the activated surface reactions were
calculated according to the harmonic transition state theory
(TST) with the Eyring-Polanyi equation:

k
k T

h
e G k TB /a B=

whereGa is the activation free energy of the elementary step,T is
temperature, and kB and h are the Boltzmann and Planck’s
constants, respectively. The forward (reverse) activation free
energy is the difference in the Gibbs free formation energy
between the transition state and the reactant (product) species
of a given elementary reaction. For the adsorption reactions the
rate constants were calculated according to the Hertz-Knudsen
equation:

k
pA
mTk2ads

B

=

where p is the partial pressure of the gas phase species, A is the
area of the adsorption site, andm is the mass of a single molecule
of the gas. The Gibbs free energies of gas and surface species
were calculated using the thermochemistry module found in the
Atomic Simulation Environment (ASE) software package.38

The gas species were treated in the ideal gas approximation, with
translational, rotational and vibrational degrees of freedom
considered independent. Surface intermediates and transition
states were evaluated within the harmonic approximation which
treats all degrees of freedom as harmonic vibrations. The mean-
field microkinetic model, i.e. the set of ODEs, was solved with
Python by numerical integration. Within this methodology, no
assumptions on the rate controlling steps or most abundant
surface species are made a priori. The numerical integration is
carried out subject to initial conditions from time t = 0 until
steady state, i.e., the surface coverages are no longer changing
with time:

d
dt

0n =

The initial coverage of the surface species was set to zero or to
the steady-state coverage of “adjacent” temperature, if available.
The pressures of gas phase species were kept constant during the
integration, the initial values being 100 mbar H2 and 50 mbar
CO as in the experiment. The numerical integration was
performed using the solve_ivp function found in the Scipy
package scipy.integrate.39

Genetic Algorithm. A genetic algorithm was used (see
Figure 1) to modify the energies of the species, to which later
AAI parameters and XPS peak and broadening parameters are
added. The fitness function that should be minimized had four
components:

1. Agreement between the output coverages from the MKM
and the experimental XPS signal. The spectrum deviation
averaged over data points and temperatures is denoted S̅.

2. Agreement between output total coverage and total
experimental coverages. The deviation between total

coverage averaged over temperature and element (C,O) is
denoted C̅.

3. Agreement with DFT energies. While it is within the
scope of the algorithm to alter the energies from DFT, it is
important to control this process so that the results
remain reasonable. Particularly, only a subset of all
energies will affect the coverages, corresponding to rate-
controlling steps for the overall rate. Thus, energies
should only be altered if it leads to better experimental
agreement fitness. To be more tolerant to small changes
and more penalizing to large changes, the penalty is
proportional to the square of the energy deviation
averaged over all species, E2 .

4. Adsorbate−adsorbate interaction. If a parameter is greater
than a threshold, it is included and contributes with a
constant penalty; if a parameter is smaller than a
threshold, it is not included. The threshold was set to 0,
under the approximation that only repulsive interactions
will be of significance. The proportion of used AAI
parameters, i.e., the number of used parameters divided by
the number of possible AAI parameters, is denoted μ.

The fitness function is calculated as

f c S C c E cS E m
2= + + +

where cS = 10,cE = 1,cm = 0.05 are empirically determined
coefficients, in order to prioritize the components in the order
spectra, total coverage, DFT agreement, and AAI, while still
having a noticeable impact from each term.

We used an initial population of 1000 individuals and
subsequent populations of 200 individuals. The 100 fittest
individuals were selected as parents, plus 20 more individuals at
random (Selection). The fittest two individuals survive without
changes to the next generation, and “children” are generated
from two randomly selected parents from the pool above, by
inheriting each gene from either parent at random (Crossover)

Figure 1. Overview of Genetic algorithm with Microkinetic Modeling.
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to make up the rest of the population. 10% of the “children” were
mutated (Mutation); for each of these, a number of mutations
between 1 and 13−17% of the total number of genes (4/32, 40/
270, 50/292) was calculated at random; each mutation was
carried out by first determining with equal probability an
increase or decrease of the value and then selecting a uniformly
random value between the current gene and the upper or the
lower boundary. Convergence is defined as 250 generations
without fitness improvement or reaching a maximum of 2000
generations. To improve optimization, we perform 50 runs with
the same parameters, and then 5 more, where the fittest
individuals among the 50 runs are included in the initial
population. The developed Python code is available on
GitHub.40

■ RESULTS AND DISCUSSION
Energies, barriers, and vibrations were calculated with DFT, and
the raw data is available in the SI. Running the microkinetic
model with the DFT-calculated energies and barriers without
lateral interaction resulted in a coverage of >99% of a ML CO at
all temperatures, in accordance with previous DFT results.5,6 As
the experimental CO coverages were <15% of a ML for all
temperatures and the coverage of pure CO on Rh(111) is known
to saturate at 75% of a ML,35 it was clear that the adsorption
energy of CO needed to be changed to match the experiment.

We calculated the C 1s binding energies of carbon-containing
adsorbates, which are displayed in Table 1 in addition to

reported experimental data. The raw data is available in the SI.
As described in the Method section, calculated values are
calibrated so that the CO binding energy is equal to the
experimental value of 286.0 eV. To simulate spectra from
calculated coverages, we choose the experimental value (or
averages if there are several), with the exception of CH3O for
which we only have the data on Cu(111), otherwise the DFT

value. When we allow XPS binding energies to be altered below,
we allow a maximum change of 0.3 eV based on the spread of the
data in the table.

GA with Altered Energies and Barriers. As a first
illustration of the GA approach, we apply the GA to the MKM
without including the adsorbate−adsorbate interaction (AAI) in
the model, i.e., assuming that it is only a question of DFT
uncertainties. This is intentional to demonstrate how the GA can
be used to find deficiencies in the assumed MKM model. In
Figures 2a and 2c, we show spectra and total C and O coverages,
respectively, where the energies of gases, adsorbates and
transition states are allowed to be altered by up to 0.3 eV,
which is a reasonable margin with respect to typical DFT
errors.1,45 It is immediately clear that, even allowing these
alterations, the XPS spectrum cannot be reproduced, as
specifically seen in the coverage of CHx species (peak around
284 eV) at higher temperatures. The presence of a notable
amount of CH is the only difference compared with applying the
MKM with purely DFT energies (which leads to a surface
poisoned by CO). We do not display the calculated hydrogen
coverage, which lacks experimental data to be compared with the
hydrogen coverage behaves like a Langmuir isotherm, which is
expected in the model, as there is no competition for surface sites
with other species and AAI is not included in the present case.

In Figures 2b and 2d we show that with larger energy margins
(1.0, 0.5, and 0.3 eV for adsorbates, transition states, and gases,
respectively), it is possible to approach an experimental fit within
this MKM even in the absence of AAI. The CHx coverage at
higher temperatures has now been pushed down (note the
differences in scale between Figures 2a and 2b) at higher
temperatures, but the agreement with experiment is not
convincing. The total O coverage is worse than before, but as
stated in the Method section, the O coverage is the least accurate
of the experimental data. However, in terms of total C coverage,
we find a significant improvement in the comparison with
experiment. These larger energy margins are used for Figures 3
and 4, where we discuss the significant changes of the computed
adsorption energies and barriers.

Figure 3 shows the changes introduced by the GA to the DFT
computed adsorption energies, gas energies, and activation
energies. The subscript 0 denotes coverage-independent
energies which is trivial in the absence of AAI. Adsorbed CO
is weakened by almost 0.8 eV, and consequently, the barriers to
form COH and CHO are lowered; this prevents the CO
poisoning with DFT values above and allows the reaction to
move on. Note that the variable limited by ±0.5 eV is the
transition state energy relative to gas phase, and that the shown
activation energies in Figure 3b are relative to the adsorbate
precursors. The strengthened adsorption of CH2 and CH3 and
increase of the barriers to CH3 and CH4 increases the coverage
of the former adsorbates (Figure 2d). It is not clear why H2O
adsorption is weakened (with a similar formation barrier).

In Figure 4, we compare energy landscapes with DFT energies
and GA-generated energies for the reaction path with the highest
rate obtained with the latter energies. This path produces
methane and water.

We conclude that the GA manages to find modified
adsorption energies and barriers that result in a clearly improved
agreement with the experimental temperature-dependent cover-
ages, but this requires an unphysically large change in the CO
adsorption energy, leading to a much more weakly bound CO.
Thus, the GA indicates that the effective CO adsorption energy
should be weakened, which, in a more physical approach, can be

Table 1. C 1s Binding Energies (BEs) for Reaction
Intermediates

BE (eV) Source Used BE (eV)

CH2OH 284.95 This work 284.95
CH2O 284.61 This work 284.61
CH2 283.65 This work 283.80

283.7 Solymosi41

283.9 Klivenyi42

CH3O 285.98 This work 285.98
285.7 Orozco (on Cu(111))a43

CH3 284.05 This work (fcc) 284.35
284.2 Solymosi41

284.5 Klivenyi42

CHOH 284.83 This work 284.83
CHO 284.93 This work 284.93
CH 283.51 This work 283.70

283.7 Vesseli44

COH 285.21 This work 285.21
CO 286.00 Smedh35 286.00
C 283.64 This work 283.30

283.3 Vesseli44

aExperimental XPS binding energy for CH3O on Rh is not available,
so we approximate it with the reported binding energy on Cu(111).43

Since the CH3O species binds through the O atom rather than the C
atom, the binding energy in a C 1s spectrum is not largely affected by
the different metal substrates.
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Figure 2. C 1s spectra (a, b; note the different y axis scales) and coverages (c,d) without AAI. Experimental data shown in blue and calculated in red.
Specific (calculated) species are indicated by different shades of red. Changes in energies are limited to ±0.3 eV for all species in (a, c) and ±1.0, ± 0.5,
± 0.3 eV for adsorbates, transition states, and gases (b, d), respectively.

The Journal of Physical Chemistry C pubs.acs.org/JPCC Article

https://doi.org/10.1021/acs.jpcc.4c02020
J. Phys. Chem. C 2024, 128, 11598−11611

11603

https://pubs.acs.org/doi/10.1021/acs.jpcc.4c02020?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.4c02020?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.4c02020?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.4c02020?fig=fig2&ref=pdf
pubs.acs.org/JPCC?ref=pdf
https://doi.org/10.1021/acs.jpcc.4c02020?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


achieved by including the well-known adsorbate−adsorbate
interaction (AAI) in the MKM.
Including AAI in the GA. Knowing that a larger energy

change in CO adsorption energy is necessary, and similar to
previous studies on the system5,6 we extend the MKM to include
adsorbate−adsorbate interaction in the GA. The linear
parameters mS,A were allowed to vary in the interval [0,1] and
the energies by at most 0.3 eV. The optimized solution is shown
in Figures 5-7 and in Table 2.

In Figure 5, we see that the inclusion of AAI has improved the
fit to experiment significantly, compared to both energy margins
in Figure 2. At high temperatures, the spectra agree very well,
and at low temperatures, the peak at 284 eV matches experiment
reasonably but with broader width of the calculated peak.
However, the transitional regime at 250 and 275 °C is not
captured to the same extent. The total C coverages agree well,
with qualitatively the same adsorbates as with high energy

margins in Figure 2d. The model indicates notable coverages of
COH, CH2 and CH3 at low temperatures. The O coverage at
high temperatures is improved relative to the same settings, but
still deviates from experiment at high temperatures.

In Figure 6, we see that the GA still alters the adsorbate, gas,
and transition state energies significantly while still being within
the assumed 0.3 eV range of DFT errors. In particular, CO and C
adsorption are weakened while CH2 and CH3 adsorption are
strengthened. The barriers to form CH3, CH4 and HCOH are
increased, mainly following strengthening of precursor
adsorption (including H), which can explain the increase in
coverage of CH2, CH3 and COH. In addition to the coverage-
independent adsorption energy, the AAI has a contribution. AAI
parameters corresponding to self-interaction and TS cross
interaction with notable adsorbates are shown in Table 2.

The interaction energy for CO comes from self-interaction
(0.89 * θCO, < 0.1 eV at all temperatures) and cross-interaction
with the present coadsorbates CH2, CH3, COH, and H. As all of
these have zero self-interaction parameter, and the cross-
interaction is the average of the self-interaction parameters, the
cross-interaction contributes with 0.44 * (θCH2 + θCH3 + θCOH +
θH), which is 0.88 eV at 175 °C. Similarly, the adsorption of C
and CH are weakened by 0.77 and 0.71 eV, respectively. As the
algorithm favors increased adsorption of CH2, CH3, and COH, it
is reasonable that as little AAI is introduced for them as possible.
Thus, they do not have a self-interaction slope, which means that
they do not experience any self-interaction or interaction with
each other, but only cross-interaction with CO (0.44 * θCO).
The fact that the GA does not introduce self-interaction for CH2,
CH3, and COH (or H) should not be interpreted as an
indication that it does not exist, but rather that the introduction
of such interactions does not improve the fitness, i.e., the
experimental fit or decrease the DFT deviation. Lastly, the
transition states in the table have cross-interaction with
adsorbates in a straightforward way, e.g., 0.8 * θCOH, for
CH2−H. CH3−H is destabilized by 0.56 eV at 175 °C because of
its interactions.

Figure 3. Difference between GA and DFT energy without AAI for (a) adsorbates (blue) and gas species (red, but barely visible), (b) activation
energies (green).

Figure 4. Energy landscape for the reaction with the highest rate. DFT
energies are shown in blue and GA-generated energies in red. ΔE0
denotes the coverage-independent part of the energy change, which in
the absence of AAI is the entire change.
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Figure 7 shows the energy landscapes for the reaction with
highest rates after application of GA including AAI at 175 and
325 °C, compared to the same reaction with the AAI component
removed for each surface species, and compared to the original

DFT. The point is to visualize the components; e.g., for CO
adsorption, the non-AAI energy change ΔE0 = 0.25 eV comes
from Figure 6a and ΔEAAI = 0.88 eV at 325 °C due to high
coadsorbate coverage discussed above.

Figure 5. C 1s spectra and coverages with AAI and GA restricted to 0.3 eV adsorption/gas/transition state energy variations. Experimental data is
shown in blue and calculated in red. Specific (calculated) species are indicated by different shades of red (b).
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From these results, we can conclude that it is possible to
explain the main disagreements between pure DFT and
experiment with reasonable DFT uncertainties plus AAI. We
do not suggest that our AAI model is “correct”, but rather simple
enough to work within our GA variable framework and indicate
whether AAI could be enough.

Allowing Altered BE Peaks and Broadening. The
spectra fit in Figure 5a could be improved, so we investigate if
it can be explained by small changes in the XPS parameters.
Thus, as a last addition to the GA, we allow the XPS BE peaks

Figure 6. Difference between coverage-independent (non-AAI) part of GA and DFT energy with AAI included in the algorithm for (a) adsorbates
(blue) and gas species (red), (b) activation energies (green).

Figure 7. Energy landscape for the reaction with highest rate with AAI included. Pure DFT data is shown in blue. The coverage-independent (non-
AAI) part of the GA-generated energy change is shown in red. The full GA-generated data including AAI is shown in green (175 °C) and magenta (325
°C).

Table 2. GA Self-Interaction Slopes for Notable Adsorbates
and Slopes with Transition Statesa

CO COH CH2 CH3 C CH H

self-inter. 0.89 0.78 0.72
CH2−H 0.8
CH3−H 0.39 0.95 0.06 0.39 0.15
H−OH 0.25 0.09
aEmpty cells indicate lack of interaction.
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and broadening (σ, the standard deviation of the normal
distribution) to vary. We allow a range of 0.3 eV around the
computed or chosen value in Table 1, which notably allows the
variation to cover both computed and experimental values for

the binding energies shown in the table. Noting that the
calculated peak at 284 eV at low temperatures in Figure 5 is too
broad, we set the range of σ to [0.2, 0.5] eV, i.e., mostly lower
than the value based on the 286 eV peak at high temperatures

Figure 8. C 1s spectra and coverages with AAI and variable XPS peaks and broadenings. Experimental data is shown in blue and calculated in red.
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(0.45 eV). The lower end of the range is determined by the limit
of the photon bandwidth and analyzer resolution in the
experiment, while the upper end is based on the observed
width of the peaks in the raw data. We do not add any penalty for
changes; the point of a penalty is to single out the most
important contributions, and in this case, these are the
adsorbates with notable coverage.

Figure 8 shows the spectra and total coverages with AAI and
variable XPS peaks and broadenings. The spectra are now in
good agreement, though not perfect at the transitional
temperatures of 250 and 275 °C. However, while the total C
coverages agree well, the adsorbate distribution is different from
before, compared to CH2 and CH3 contributions in Figures 2d
and 5b. At low temperatures, it is now CH that dominates. As
can be seen from the GA-generated XPS BEs and broadenings in
Table 3, the CH peak is moved by the maximum amount to

higher energy, ending up at the 284 eV peak in the spectra. The
CH2 peak is also changed to 284 eV, so in isolation, it could have
been responsible for the peak. However, high CH2 coverage
required strengthening of the CH2 adsorption energy in Figures
3a and 6a; thus, as CH coverage replaces CH2 coverage, there is
no need for the CH2 energy change, as seen in Figure 9a. If the
BE parameter range is smaller, e.g., ± 0.15 eV instead of ±0.3 eV,
the CH peak cannot shift enough, leading to the previously
observed behavior of CH3, CH2, and COH domination at lower
temperatures. We show this effect in the SI.

The other changes in XPS BE in Table 3 relating to adsorbates
with notable coverage (COH, CO) and adsorbates with notable
coverage in previous runs (CH2, CH3) are smaller. The
broadening of the CH peak is less than the previously fixed
0.45 eV, as expected, but the COH and CO broadenings remain
high.

In Figure 9a, no change is applied by the GA to CH2 and CH3
adsorption, as these adsorbates in this case do not contribute to
the coverage. Instead, CHO adsorption is strengthened, which
only results in a small impact regarding coverages. Otherwise,
the COH and H strengthening, and the CO weakening are in
line with previous results in Figure 6a. Regarding activation
energies in Figure 9b, it mostly follows from the adsorption
energies that barriers from CHO are increased the most. The
barriers are increased more, generally speaking, than in Figure
6b.

The important AAI parameters can be seen in Table 4. Similar
to in Table 2, the CO and C cross-interaction with the significant
adsorbates (in this case CH, COH, and H) with the average
parameter of self-interactions, i.e., 0.41, contributes the most to
the energy correction, which sums up to 0.82 and 0.76 eV at 175
°C for CO and C, respectively. Compared to the case without
altered peak parameters, more transition states have significant
interaction.

Table 3. GA-Generated XPS Binding Energies, the Change
from the Previously Used BEs (Experimental Value on
Rh(111) if Possible, otherwise DFT), and Broadening
Parameter σ

GA BE (eV) ΔBE (rel. to used BE) σ (eV)

CH2OH 284.95 0.00 0.27
CH2O 284.66 +0.05 0.21
CH2 284.00 +0.20 0.49
CH3O 286.26 +0.28 0.26
CH3 284.52 +0.17 0.24
CHOH 284.79 −0.04 0.35
CHO 284.63 −0.30 0.20
CH 284.00 +0.30 0.38
COH 285.38 +0.17 0.50
CO 285.89 −0.11 0.48
C 283.17 −0.13 0.37

Figure 9. Difference between coverage-independent (non-AAI) part of GA and DFT energy for (a) adsorbates (blue) and gas species (red), (b)
activation energies (green), with AAI and variable XPS peaks and broadenings in the algorithm.
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In Figure 10, we see that the reaction path with highest rate
has changed from Figure 7, going through CHO rather than
COH. This is interesting, as the coverage of COH is higher than
CHO, but it is possible that the reaction paths through COH are
slower. The AAI impact is moderate in comparison with Figure
7, with the exception of CO adsorption.

Allowing altered XPS BEs and broadenings improved the
spectrum fit, with changed coverage distribution and dominant
reaction path. Either the CH2 adsorption energy or the CH XPS
binding energy needs to be altered to fit to experiment, in
addition to, e.g., CO adsorption weakening. While caution needs
to be exercised in the process, the introduction of variation in the
XPS peak parameters can give direction for spectrum
interpretation in cases where the accuracies of both computed
and experimental reference spectra are uncertain.

A natural extension is to add reaction steps leading to C2+
species, as there are, e.g., ethanol intermediates that could have
similar C XPS binding energies and thus contribute to the
observed high coverages of hydrocarbon species, i.e. some CHx
species being CyHx allowing multiple carbons associated with a
Rh atom. Another possible next step is to study the adsorbates
and barriers, that needed altered energies, on edges or defects.
Inclusion of such sites−even though the experiment was

performed on single-crystal Rh(111) − may be justified as
single-crystals can have a defect density of 1 per 20th unit cell.
The induced defect density may be particularly high under
operating conditions with strongly interacting molecules, such
as CO. Although not the case here at 150 mbar pressure, it has
been observed previously20 that at a higher pressure of 2 bar
undercoordinated adatoms may move from the lattice onto the
surface. Furthermore, the presence of step sites and point defects
has been shown to destabilize CO on Rh,46 in accordance with
the prediction of the GA.

Of course, species needing AAI should be considered with a
more realistic model of AAI, such as in ref.,5,47,48 and higher
orders of electronic structure calculations can be considered for
the species with large energy changes. Note that, AAI involving
hydrogen is included in the MKM even though hydrogen is
treated as a reservoir and does not compete for sites.

However, we limit ourselves in the present work to the proof
of concept with the coupled genetic algorithm and MKM
modeling to compare with experimental high-pressure XPS data.
The method can be expanded to a wide range of models of
heterogeneous catalysis and provide a new method of
construction and validation.

■ CONCLUSIONS
To improve microkinetic modeling based on DFT calculations,
which is an important tool to better understand reaction
mechanisms in heterogeneous catalysis, we have developed and
applied a genetic algorithm (GA) to modify the parameters of
the microkinetic (MKM) model to target a reference experi-
ment. Given a microkinetic model of CO hydrogenation to
methanol, methane and water on Rh(111), we investigated what
energies and barriers would need to be changed in the MKM to
agree with experimental coverage data determined under
reaction conditions using high-pressure XPS. We found that
CO adsorption must be substantially weaker relative to the
computed DFT energy. However, introducing a simple, linear
adsorbate−adsorbate interaction allows the changes of low-

Table 4. GA Self-Interaction Slopes for Notable Adsorbates
and Slopes with Transition States, with Variable XPS Peaks
and Broadenings in the Algorithma

CO COH CH2 C H

self-inter. 0.84 0.77
C−OH 0.91
CH2−H 0.68
CH3−H 0.92 0.98
CO-H 0.63 0.69
H−COH 0.97
H−CO 0.93

aEmpty cells indicate lack of interaction.

Figure 10. Energy landscape for the reaction with highest rate with AAI and variable XPS peaks and broadenings included in the algorithm. Pure DFT
data is shown in blue. The coverage-independent (non-AAI) part of the GA-generated energy change is shown in red. The full GA-generated data
including AAI is shown in green (175 °C) and magenta (325 °C).
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coverage adsorption energy to remain <0.3 eV and improves the
experimental fit. Furthermore, letting the XPS binding energies
and broadenings vary, improves the spectrum fit even further,
with changed coverage distribution and preferred pathway. This
opens up a question on what is more reliable: adsorption
energies or XPS binding energies. We conclude that the model
indicates the need for more complexity, such as, e.g., expansion
of the model with C2 species, introducing edges or defects,
going to higher orders of electronic structure calculations.

The GA in combination with the temperature-dependent
coverages in terms of XPS peaks has thus highlighted problems
with the initial DFT MKM model. We propose that the
combination of GA and MKM and now available detailed
coverage data can be used to iteratively increase the accuracy of a
given MKM, together with interpretation and hypothesis testing.
The GA approach can be used as a complement and test of DFT
in heterogeneous catalysis in general when reliable coverage
data, such as the present, becomes available.
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