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1    Introduction
In  recent  years,  advancements  in  onboard  computing  hardware
and  wireless  communication  technology  have  remarkably
stimulated  the  development  of  intelligent  and connected  vehicles
(ICVs).  Specifically,  some  researchers  have  investigated  the  issue
of employing various advanced control techniques to optimize the
performance of autonomous vehicles in practice (Sun et al., 2023;
Zhang et al.,  2023a, 2023b). Therefore, this article aims to discuss
why  and  how  control  engineering  plays  an  essential  role  in  the
development of ICVs.

To live up to intelligent and connected characteristics, a vehicle
should  possess  four  abilities  (Fig.  1):  the  ability  to  sense,
communicate,  make  decisions  and  actuate.  The  ability  to  sense
enables machines to abstract knowledge from their surroundings.
Intersystem  communication  weaves  networks  that  integrate
fragmented information collected by individual vehicles. Decision-
making  modules  are  responsible  for  finding  the  current  optimal
choice,  while  actuating  modules  interpret  decisions  into  signals
that  actuators  can  understand  to  manipulate  system  states
accordingly.  Apart  from  decision  making,  all  other  aspects  are
closely correlated with control theories and their applications.

There  are  currently  two  main  problems  for  sensing:
(1)  obtaining  more  accurate  results  based on data  collected  from
multiple sources and (2) estimating states that are not measured or
measurable.  The  key  to  the  first  issue  is  to  find  the  optimal
weighting  strategy  among  the  many  sources  we  have,  and  the
problem  is  classified  as  a  state  filtering  problem.  The  second
question  is  relatively  difficult  because  we  can  only  use  the
correlation  among  known  states  and  unknown  states  to “guess”
the unknown factors.

Wireless  communication  is  essential  for  constructing
networked  autonomous  vehicles.  Although  4G  techniques  can
guarantee  a  data  transmission  speed  of  100  MB  per  second  in
theory,  we  still  cannot  model  networked  vehicles  as  nodes  with
unlimited  bandwidth  due  to  the  various  types  of  data  (videos,
point cloud data, etc.) and the potentially high number of vehicles
within a specific neighborhood.

Robust  motion  control  methods  are  the  foundation  of  multi-
vehicle cooperation such as platooning, formation control, drone-

based  parcel  delivering,  and  dynamical  inter-vehicle  docking.
Depending  on  whether  a  vehicle’s  motion  dynamics  is  easy  to
obtain,  there  are  model-based  control  methods  and  model-free
control  methods.  Model-based  approaches  usually  require  less
algorithm  complexity  and  computational  capabilities,  but  their
performance  can  be  jeopardized  by  uncertain  factors  such  as
actuator  faults,  model  bias,  and  measurement  errors.  Although
remarkable  advances  have  been  achieved  in  both  directions,
unsupervised  autonomous  vehicles  are  difficult  for  the  public  to
fully accept, indicating the necessity of developing human-in-the-
loop controllers.

2    Filtering for multisource data
Sensing  modules  are  the  eyes  of  vehicles,  and  various  types  of
sensors  have  been  attached  to  autonomous  vehicles  because  of
their distinguished abilities (Butt et al., 2022). Cameras are efficient
and  economical  for  classifying  the  texture  of  their  surroundings.
The  development  of  event  cameras  has  further  conquered  the
issues of transmission latency and motion blur (Klenk et al., 2023).
Radars  are  implemented  for  blind  spot  warning,  collision
avoidance,  and  adaptive  cruise  control,  while  Lidars  can  provide
point cloud data that helps us construct three-dimensional models
of  the  local  environment.  In  addition,  real-time  kinematic
positioning is proposed to offer centimeter-level precision for real-
time localization.

However,  each  kind  of  sensor  has  its  own  shortcomings.  For
example,  cameras  need  to  work  with  proper  brightness,  and
simultaneous  localization  and  mapping  are  not  dependable  for
Lidars  due  to  their  fatal  cumulative  error.  To  avoid  the  above
issues, we can integrate the available sensors to achieve intersensor
compensation.  The  solution  in  control  engineering  is  Kalman
filtering,  where  an  optimal  weighted  average  of  noisy
measurements and model-based predictions is achieved (Chui and
Chen, 2017).

The  original  Kalman  filter  was  first  built  for  linear  systems
where  both  the  measurement  noise  and  process  noise  are
uncorrelated  white  Gaussian  noise  sequences.  To  enhance  the
practicality  of  the  algorithm,  complex  scenarios  in  which  both
noise  sequences  are  correlated,  both noise  sequences  are  colored,
and  the  system  model  is  nonlinear  are  investigated.  In  addition,
smoothers  with  dynamic  windows  are  developed  to  perform
dynamic  optimization  of  our  estimation.  The  Kalman  filter  is  a
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popular choice for state estimation and target tracking (Cao et al.,
2023).

The  current  main  focus  of  sensor  fusion  regarding  the
development  of  autonomous  vehicles  is  achieving  intersensor
collaboration  to  integrate  data  with  unique  information.  For
example,  Lidars  cannot  abstract  colors  (RGB  values)  from  the
environment,  but  cameras  can.  Therefore,  combining  these  two
types of sensors can lead to colored point clouds, which are helpful
for  the  construction  of  three-dimensional  models.  However,  few
studies have discussed the optimal weighted average of data from
different categories of sensors.

Specifically,  if  we  employ  both  Lidars  and  cameras  (without
thermal modules) for an autonomous vehicle, can we always trust
the  outputs  of  cameras  and  Lidars  equally  regardless  of  weather
conditions and brightness? Perhaps the answer is not because the
precision  of  camera-based  computer  vision  is  compromised  in
dark  environments,  which  is  the  reason  why  the  autonomous
driving  feature  is  compulsorily  terminated  when  lights  are
unavailable for Tesla products.

Therefore,  we  think  that  the  upcoming  challenge  in  terms  of
sensor fusion for autonomous vehicles is to develop an evaluation
scheme  that  determines  the  trustworthiness  of  each  sensor
according to its characteristics and the current environment. This
scheme  should  be  able  to  achieve  a  dynamic  and  adaptive
combination  of  sensor  data,  which  can  help  us  reconstruct  a
vehicle’s local surroundings in different scenarios.

Case  study  1: The  core  concept  of  the  Kalman  filter  is  to
achieve an adaptive average of measurement outcomes and model-
based  prediction.  The  weight  is  correlated  with  the  confidence
level of different data resources, which is determined by the source’
s  noise  sequence’s  variance.  A  higher  variance  leads  to  a  lower
confidence level.

In  terms  of  sensor  fusion,  we  usually  use  environmental
conditions to adjust the confidence rates.  However, we only have
sensor  data  from  different  sources  without  any  model-based
predictions. For instance, when overall brightness is compromised,
the  fusion  algorithm  should  decrease  the  confidence  rate  of  data

from visible light cameras and increase the confidence rate of data
from  Lidars.  In  addition  to  the  characteristics  of  measurement
noise,  factors  such  as  the  effective  region,  sample  frequency,  and
resolution ratio should also be considered.

Q1 = 0.09
Q2 = 0.04

For  direct  illustration,  an  example  is  given  in Fig.  2,  where
sensors  with  different  characteristics  are  applied.  Sensor  1  is  less
trustworthy  with  a  noise  variance  of ,  while  sensor  2
has .  After  implementing  the  Kalman filter  technique,
we  are  able  to  achieve  a  weighted  average  of  data  from  both
sources,  which  is  represented  in  red.  The  fusion  result  has  the
lowest error variance and thus is more stable and more suitable for
decision making, trajectory planning and motion control.

3    Robust  and  adaptive  estimation  of  unknown
factors
Compared  to  the  problem  of  sensor  fusion,  the  estimation  of
unknown states requires a different way of thinking because there
are no available sensors. Therefore, we need to find the correlation
between  the  measurable  states  and  the  unknown  states,  which
requires partial knowledge of the actual system dynamics.

In  control,  we  classify  systems  in  accordance  with  the  specific
dynamics order if applicable, and first-order dynamics and second-
order  dynamics  are  usually  sufficient  for  our  analysis.  However,
high-order  models  are  needed  if  we  want  to  perform  precise
control of a system’s jerk or snap, which cannot be measured. To
overcome this issue, a structure called the extended state observer
(ESO) is developed, where an additional state vector is defined to
represent  the  unknown  derivative  of  the  state  with  the  highest
order  (Hong  et  al.,  2023).  By  correcting  the  states  in  each  layer
according  to  the  difference  between  the  virtual  system  and  the
physical  system,  system  states  with  arbitrary  orders  can  be
approximated.

Although the ESO design can also estimate model uncertainties,
such a method is problematic because it sometimes does not make
full  use  of  the  available  information.  Hence,  the  uncertainty
estimator  is  proposed to  concentrate  on model  uncertainties  and
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Fig. 1    Key features of an autonomous vehicle.
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x ∈ Rn
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external  perturbations.  When  all  system  states  are  accessible,
neural  networks  are  embedded into the  ESO structure  to  replace
the extended state (Fei et al., 2022) to further obtain neural-based
observers  (NBOs).  Sometimes,  when  the  physical  model  is  too
complex to analyze, it is also acceptable to use one artificial neural
network  to  represent  the  entire  system  model.  Specifically,  if  the
system state is , then the model estimator is constructed as

,  where  is  the  weight  matrix  of  the  hidden
layer,  is  the activation function and  is  the weight matrix
prior to network output.

In  recent  years,  the  concept  of  digital  twins  (DTs)  has  gained
popularity  in  the  field  of  intelligent  vehicles  and  transportation.
The  concept  was  first  introduced  in  2011  to  indicate  a  dynamic
mapping from the physical world to the digital world. Specifically,
one DT should have the following three characteristics: (1) possess
identical dynamics as the physical system; (2) maintain consensus
with  the  physical  system  through  real-time  data  collection;  and
(3)  provide  information  that  can  be  used  for  the  control  of  its
physical  twin.  In  short,  a  DT  in  engineering  should  be  a  virtual
system  that  constantly  maintains  consensus  with  the  physical
system and provides helpful information for decision making and
motion  control  (Botín-Sanabria  et  al.,  2022).  In  particular,
researchers believe that DTs have a promising future in the field of
fault diagnosis and estimation (Classens et al., 2021).

However, how to construct,  control,  and visualize digital twins
remains an open question for the engineering sector. In particular,
for  vehicles,  in  addition  to  observing  uncertain  factors  regarding
motion dynamics,  DTs should also help us monitor components
and  hardware  attached  to  vehicles  and  further  provide  us  with
recommendations for customized maintenance according to real-
time  estimations  of  vehicular  health.  Therefore,  DTs  have
promising potential for advancing intelligent vehicles.

Case study 2: DTs have great potential for estimating actuator
faults.  For  example,  our  goal  is  to  control  an  omnidirectional
robot (Fig. 3) subjected to a random actuator fault. To ensure the
robustness  of  the  proposed  controller,  it  is  necessary  to  diagnose
the fault and how the fault affects system performance.

x− x̂ ̸= 0
ŵ x− x̂ → 0

ŵ

w̃ = w− ŵ w̃

In  theory,  a  DT  is  an  identical  copy  of  a  physical  system,
meaning  that  the  ideal  state  propagation  laws  are  identical.  By
employing the same set  of  control  laws,  the digital  robot and the
physical robot will move simultaneously, yet the actuator fault will
lead to .  Then,  we can implement  adaptive  algorithms
to determine the value of  that will result in , and the
system  performance  will  be  improved  by  compensating  for  the
effect of  in the control law. With proper design, if we define the
difference  between  the  actual  fault  and  the  estimated  fault  as

,  then  the  value  of  should  share  similar  trends  as
the purple curve in Fig.  4,  where the estimation error of the DT-
based finite-time approximation scheme converges within 3 s. The
results  indicate that DT-based estimation has a fast  response and
therefore  can be  applied  to  scenarios  with  demands  on real-time
characteristics.
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Fig. 2    Illustration of the effectiveness of sensor fusion.
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Fig. 3    DT’s application in uncertainty estimation and compensation.
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4    Event-triggered  schemes  for  vehicles  with
limited communication bandwidth
Although  breakthroughs  have  been  achieved  in  the  field  of
wireless  communication  to  allow  fast  transmission  of  large
volumes of data, it  is unreasonable to model ICVs as agents with
unlimited bandwidth due to the high number of vehicles in future
transportation  systems.  In  addition,  periodic  high-frequency
communication is unnecessary when the data sent out are highly
similar to those contained within the previous package. Therefore,
the  concept  of  event  trigger  communication  was  developed  to
minimize  the  communication  burden  without  compromising
system stability.

x ∈ Rn

x (τk) ∈ Rn τk k

Ex = x− x (τk)

This  technique  was  first  implemented  in  a  networked  control
structure  to  achieve  aperiodic  data  transmission  between  sensors
and  controllers  (Zhao  et  al.,  2021).  Suppose  the  real-time  system
state  is  and  the  accessible  triggered  system  state  is

,  where  indicates  the -th  event  when  the  state  is
updated. Then, the core component of the event-triggered scheme
is  to  analyze  how  much  the  measurement  error  of

 affects our design. As the onboard computational
power  was  enhanced,  the  networked  control  structure  was  then
replaced by a multiagent structure (Dimarogonas et al., 2011). The
stability  analysis  of  the  multiagent  distributed  trigger  scheme  is
more complex because the trigger scheme only affects neighboring
agents, meaning that an agent needs to evaluate how other agents
affect itself if they operate with outdated data.

Afterwards, the static trigger scheme is found to be insufficient
due  to  the  high  steady  error,  which  indicates  the  demand  of
adaptively  altering  the  trigger  threshold  according  to  the  state  of
an  agent.  In  other  words,  if  the  impact  of  the  interagent
communication error is relatively small, then we can have greater
tolerance  before  the  next  interagent  state  update  event,  and  vice
versa.  The  above  scheme  is  then  summarized  as  the  dynamic
trigger scheme (Girard, 2014).

Although  the  issue  of  high  steady-state  error  is  solved  by  the
dynamic  trigger  scheme,  such  a  design  requires  the  controller  to
perform real-time monitoring of the trigger thresholds, which may
lead  to  burdens  for  the  task  scheduling  process  of  embedded
microcontrollers  with  limited  computational  power.  Therefore,  a
new  self-triggered  algorithm  was  developed  to  estimate  the
expected  arrival  time  of  the  upcoming  task  (Fan  et  al.,  2015).
However,  the  accuracy  of  the  estimated  arrival  time  varies  from
one system to another.

Although fruitful results have been obtained for event-triggered
schemes  for  networked  single  agents  and  multiagent  systems,
most of them have focused only on motion control. This method
lacks  practicality  because  intervehicle  cooperation  is  usually
achieved  in  the  decision-making  or  trajectory  planning  phase
instead of low-level motion control.

In  particular,  many  countries  and  regions  are  focusing  on
constructing  the  internet  of  vehicles  to  achieve  optimal
coordination  of  urban  transportation  networks,  which  requires  a
large-scale  communication  network  among  sensors,  basic

infrastructures,  vehicles,  and  traffic  control  centers.  Massive
communication  burden  is  expected  for  conventional  time-
triggered data transmission even if the 5G technique is employed
due to the high number of nodes within the network. Hence, how
to  integrate  event-triggered  communication  into  collaborative
decision making and trajectory  planning are  problems worthy of
consideration for the development of ICVs.

Case study 3: The main idea of the event-triggered scheme is to
reach  a  balance  between  tracking  precision  and  communication
cost without compromising system stability.  This method mainly
targets  networked control  systems and multiagent systems (Kang
et al., 2023), and we choose a networked omnidirectional robot as
our control object.

x (t)
x (τk)

Ex

δx f (Ex, δx) =
f1 (Ex)− f2 (δx) f1 (·) f2(·)

f (Ex, δx) > γ > 0

In  the  networked  control  structure,  the  controller  relies  on
wireless  communication  to  obtain  measurements  from  sensors
(Fei et al.,  2023b). After applying the event-triggered mechanism,
there will be a mismatch between the actual system state  and
the  triggered  state  received  by  the  controller.  Hence,  it  is
necessary  to  reach  a  balance  between  the  measurement  error 
and  the  tracking  error  by  defining  the  function 

,  where  and  are  both  monotonically
increasing  functions.  When  is  satisfied,  the
measurement error is considered significant enough for an update.

γ
γ Ex

When  is a positive constant, the trigger scheme is classified as
statically triggered. If  is an adaptive term correlated with , the
scheme  is  categorized  as  dynamically  triggered.  By  applying  the
dynamic  trigger  scheme,  we  obtain  the  results  shown  in Fig.  5.
Without  compromising  the  tracking  precision,  the  dynamic
triggering  scheme  prolongs  the  interevent  time  from  8  to
approximately 110 ms. In terms of the application of ICVs, we can
reduce unnecessary wireless  communication events  during traffic
jams or when ICVs are working as expected.
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Fig. 5    Comparison  of  the  event-triggered  scheme  and  the  time-triggered
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5    Robust motion controller for vehicles
There are two main categories of low-level motion control: model-
based  approaches  and  model-free  approaches  (Xu  and  Peng,
2019).  It  is  quite  straightforward  that  model-based  approaches
require  prior  knowledge  of  the  system’s  dynamics,  such  as  the
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order  of  dynamics,  discrete-time,  or  continuous-time,  and  the
form  of  a  control  gain  matrix,  while  model-free  approaches  do
not.

First,  the  most  commonly  known  proportional-integral-
derivative (PID) control can be either model-based or model-free
depending on how the parameter values of P, I, and D are chosen.
For  instance,  if  the  optimal  parameter  values  are  obtained  by
solving  linear  matrix  inequalities  that  are  determined  by  the
specific  system  model,  then  the  algorithm  is  model-based.  In
contrast,  if  you  decide  to  tune  the  parameter  values  solely
according to the system output, your method is model-free.

Model-based  approaches  are  widely  used  for  industrial
purposes  due to  their  low demand for  computational  power and
low  storage  capability.  Well-known  examples  include  active
disturbance  rejection  control,  backstepping  control,  feedback
linearization control, H-infinity control, sliding mode control, and
model predictive control (MPC). Among them, MPC is the most
popular  due  to  its  implementation  of  a  receding  horizon  for
rolling  optimization  (Mayne  et  al.,  2000).  To  date,  MPC  has
demonstrated great advantages in the control of nonlinear systems
with  various  constraints,  including  quadcopters  and  legged
robotics.

ẋ = f(x, t)

On  the  other  hand,  model-free  approaches  require  no  prior
knowledge of the system, meaning that we treat the actual system
dynamics  as  a  black  box  by  setting .  Therefore,  each
model-free  algorithm  has  a  distinctive  module  for  model
estimation,  and  the  major  difference  is  how  to  perform  model
estimation. Methods such as data-driven control (Hou and Wang,
2013),  dynamic  programming  control  (Liu  et  al.,  2020),  and
adaptive neural-based control (Fei et al., 2023a) choose to perform
online  system model  approximation,  meaning  that  the  estimated
system  model  changes  along  with  real-time  feedback.  However,
some  researchers  tend  to  complete  system  identification  offline
with datasets and employ fixed models for control.

Regardless  of  the  specific  control  structure,  it  is  almost
impossible to guarantee a success rate of one hundred percent for
all  practical  scenarios,  leading  to  a  lack  of  trust  in  the  public.
Therefore, although autonomous vehicles have been implemented
in closed areas such as ports and mines, we believe that the close
future for intelligent vehicles is to develop computer-aided driving
technologies,  which  involves  the  investigation  of  human-in-the-
loop systems. As a result, control algorithms need to be modified
to  be  sensitive  to  human  factors  to  further  achieve  personalized
optimal driving experiences for ICVs.

Case study 4: Before applying one specific control technique, it
is essential for us to understand its merits and shortcomings. First,
we  will  offer  a  comparative  analysis  of  the  model-based
approaches and the model-free approaches.

Model-based approaches:
(1)  Merits:  This  approach  has  lower  demand  for  onboard

computational  power  and  makes  full  use  of  prior  model
knowledge.

(2) Drawbacks: These drawbacks cannot be applied to systems
that  are  too  complex  to  model;  they  are  less  robust  when  the
system is subjected to unmodeled uncertain factors.

Model-free approaches:
(1)  Merits  can  be  applied  to  every  plant,  can  be  applied  for

system identification, and possess high robustness.
(2)  Drawbacks:  This  requires  a  dataset  for  offline  training,

which can easily lead to state oscillation at the beginning of online
training.

Therefore, combining model-based techniques with model-free

techniques  can result  in  a  model-adaptive  scheme,  which further
leads to intermethod compensation. For example, we can employ
neural  networks  to  estimate  modeling  errors  by  treating  system
states as network inputs and implementing observers to adaptively
track external disturbances (stochastic wind, uneven ground, etc.).
To  offer  a  direct  illustration,  a  comparative  study  regarding  the
trajectory tracking control of a networked omnidirectional robot is
provided in Fig. 6.
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δx ≤ 0.2
Because of model uncertainties, the model-based approach has

a significant  constant  error  that  satisfies ,  indicating low
robustness. Although the tracking error of the model-free method
achieves ultimate convergence, the system experiences remarkable
state oscillation in the first 8 s. In comparison, the model-adaptive
scheme  has  the  least  amount  of  state  chattering,  the  fastest
convergence  speed,  and  the  highest  estimation  precision.
Therefore,  model-adaptive  methods  are  more  suitable  for
industrial scenarios.

In  addition  to  system  robustness,  optimality  is  also  an
important  factor.  Apart  from  examining  the  optimality  of  the
current  decision  or  control  command,  it  is  also  essential  to  look
into  the  future.  The  method  of  MPC  is  developed  by  constantly
predicting  system performance  through a  dynamic  time  window
that includes the next several seconds or time steps (Fig. 7). Model
predictive  control  is  now widely  employed in trajectory planning
modules  and  motion  control  modules  for  ICVs.  By  combining
adaptive control theory and model predictive control theory, ICVs
can simultaneously possess robustness, optimality and safety.

6    Conclusions
This paper aims to provide a brief introduction of the state-of-the-
art  control  techniques  for  sensing,  communication  and  control
and  offers  insights  into  how  they  can  change  the  future  of
autonomous  and  connected  vehicles.  Specifically,  the  Kalman
filtering  method  offers  a  potential  direction  for  achieving  the
optimal  weighted  average  among  sensors.  Observers  and
estimators  can  offer  insights  for  developing  digital  twins,  event-
triggered  mechanisms  can  be  embedded  into  high-level
collaborative operations within multivehicle systems, and human-
in-the-loop  control  algorithms  are  needed  for  computer-aided
intelligent driving. In summary, control engineering not only plays
a  critical  role  in  the  development  of  autonomous  and  connected
vehicles  but  also  points  out  promising  directions  for  future
development and research.
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