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Abstract

Given a finite set S, i.i.d. random weights {Xi}i∈S, and a family
of subsets F ⊆ 2S , we consider the minimum weight of an F ∈ F :

M(F) := min
F∈F

∑

i∈F

Xi.

In particular, we investigate under what conditions this random vari-
able is sharply concentrated around its mean.

We define the patchability of a family F : essentially, how expen-
sive is it to finish an almost-complete F (that is, F is close to F in
Hamming distance) if the edge weights are re-randomized? Combin-
ing the patchability of F , applying the Talagrand inequality to a dual
problem, and a sprinkling-type argument, we prove a concentration
inequality for the random variable M(F).

1 Introduction

1.1 Combinatorial minimum weight problems

The class of optimization problems that we are interested in does not nec-
essarily involve graphs, but before giving the general definition we will first
discuss them in a graph setting. Suppose we have a finite graph K (typi-
cally Kn or Kn,n), a family G of subgraphs of K , and a collection of i.i.d.
non-negative random edge weights {Xe}e∈E(K). We are interested in the
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random variable M(G) := minG∈G

∑

e∈E(K)Xe, i.e. the lowest weight of a
G ∈ G.

Two famous examples are the random assignment problem and the ran-
dom minimum spanning tree problem. LetM be the set of perfect matchings
on the complete bipartite graph Kn,n, and T the set of spanning trees on
the complete graph Kn. When both graphs are equipped with i.i.d. U(0, 1)
edge weights, it has been shown that M(M) → ζ(2) = π2/6 in probability
as n → ∞ [1], and similarly M(T ) → ζ(3) [5].

The spanning tree problem will be a recurring example throughout this
paper, and we will prove a slight generalization of [5] as an application of
our concentration inequality.

A proof of convergence in probability of M(G) typically consists of two
parts: First, the convergence of the expected value E[M(G)], and then
sharply concentration of M(G) around its expected value. To answer the
first question one often needs a method tailored1 to the specific family G.

In this paper, we are concerned only with the second question: When
is M(G) sharply concentrated? That is, under what conditions is it true
that the random variable M(G) is close to its expected value (or median)
with high probability? Our aim in this paper is to provide a ‘user-friendly’
concentration inequality for M(G), with conditions that are easy to check.

Although we mainly have graph applications in mind, we will work in
a slightly more general setting. Instead of a graph K and a family G of
subgraphs of K, we will work with a finite ground set S and a family F ⊆ 2S

of subsets of S. We will assume |S| = N , and will frequently identify S with
[N ] = {1, 2, . . . , N}. To the elements i ∈ S, we associate i.i.d. random
weights Xi, and for each set G ⊆ S we let XG denote the total weight of the
elements in G. Then, analogously to M(G) in the graph setting, we define

M(F) := min
F∈F

XF .

Without loss of generality, we may assume that F contains only minimal
sets: that is, ifG ⊂ F ∈ F , then G /∈ F . We also define ℓ(F) := maxF∈F |F |.

1.2 Concentration inequalities

In probabilistic combinatorics, one often needs to show that the distribu-
tion of some random variable Z concentrates around some value c: that

1In [5] a greedy algorithm was analysed to show convergence of the expected value for
the minimum spanning tree problem, while in [10, 14] a local graph limit approach was
used for the random assignment problem.
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for any small ε > 0, Z lies in the interval [(1 − ε)c, (1 + ε)c] with high
probability.2 In particular, it is a common situation that one has a prod-
uct space Ω =

∏

i∈S Ωi, random variables Xi on the Ωi’s, and a function
g : Ω → R. One then wants to show concentration of the random variable
Z = g(X1,X2, . . . XN ). With some abuse of notation, we can also refer to
Z(ω) = g(X1(ω),X2(ω), . . . XN (ω)) by g(ω).

For many such functions g of interest, it turns out that while g does
depend on all N coordinates of its input, it only depends sensitively on a
smaller number of coordinates. Many concentration inequalities quantify
in different ways this intuitive sense of g not depending ‘too much’ on any
specific random variable Xi, or on any small set of these random variables.

The method of bounded differences considers the Lipschitz constant of
g: How much can g change, if only one of its inputs is changed? More
precisely, we say that g is K-Lipschitz if |g(ω)− g(ω′)| ≤ K whenever ω, ω′

differ in only one coordinate. The McDiarmid inequality (based on the
Azuma-Hoeffding martingale concentration inequality) bounds the size of
the fluctuations around the mean by O(K

√
N ). This Lipschitz condition

considers the worst-case change, which might very different from the typ-
ical change: |g(ω) − g(ω′)| could be significantly smaller than K for most
pairs ω, ω′. (This tends to be the case for the random variable M(F), for
families F that are not very small.) In a 2016 paper by Warnke [13], sev-
eral variations on the McDiarmid inequality can be found, involving various
typical-case Lipschitz conditions. While these can greatly improve upon the
inequalities based on worst-case Lipschitz constants for some functions g,
computing the average-case Lipschitz constants for minimum-weight type
problems is often not tractable.

Another powerful tool is the Talagrand inequality [11], in particular the
‘certifiability’ corollary, as found in [2, Thm 7.7.1]. This inequality captures
the intuition of a function not depending ‘too much’ on any coordinates in
a different way, by considering the ‘certifiability’ of g: what is the smallest
number of random variables Xi that one can show to an observer to verify
that the event {g(X) ≤ s} has occured (for some s)? In the case of minimum
weight problems, M(F) is ℓ(F)-certifible: If {M(F) ≤ s}, then by definition
there exists an F ∈ F with XF = M(F) ≤ s, and it suffices to look at the
at most ℓ(F) weights of F to verify that XF ≤ s. A major benefit of the
Talagrand inequality is that it does not depend on the dimension N . For
M(F), it improves on the McDiarmid bound of O(K

√
N ), down to order

2If such concentration holds, the median has to be close to c, and it is usually easy to
show that the expected value is also close to c.
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O(K
√

ℓ(F) ). As far as we are aware, Talagrand-type inequalities have only
been established for worst-case Lipschitz constants.

Let’s consider a naive application of the bounded difference method and
the Talagrand inequality to the minimum spanning tree problem. Here
N =

(n
2

)
, ℓ(T ) = n − 1 and K = 1, so the bounded difference method

gives that M(T ) has a standard deviation of O(n), which the Talagrand
inequality lowers to O(

√
n ). However, E[M(T )] = O(1) as n → ∞ (since

it converges to ζ(3)), so neither bound is useful. Both of these inequalities
suffer from using the worst case Lipschitz constant K = 1, while the typical
change in M(T ) when changing one edge weight is of order3 1/n.

It is easy to apply our patchability inequality to the minimum span-
ning tree problem. This gives an upper bound of O(n−1/4), implying sharp
concentration (see section 3.1). The ‘patchability’ criterion (definition 2.1)
behaves more like the average case Lipschitz constant than the worst case.
However, this only meant as a comparison between these three concentra-
tion inequalities. Much stronger results have been obtained previously, for
instance a central limit theorem for M(T ) was established in [9], with a
standard deviation of order n−1/2. 4

1.3 Asymptotic notation

In addition to the commonly used asymptotic notation of O, o, ω,Ω, we will
also useOP, oP, ωP and ΩP to denote the probabilistic versions: For sequences
Xn, Yn of random variables, we say that Xn = oP(Yn) and Yn = ωP(Xn) if
Xn/Yn → 0 in probability as n → ∞. We say that Xn = OP(Yn) and
Yn = ΩP(Xn) if there for any ε > 0 exists a constant C > 0 such that Xn ≤
CYn with probability at least 1− ε for all sufficiently large n. Furthermore,
Xn = ΘP(Yn) iff Xn = OP(Yn) and Xn = ΩP(Yn).

Finally, we use f(n) ≪ g(n) to denote f(n) = o(g(n)). And unless
otherwise specified, the asymptotics will always be implicitly ‘as n → ∞’
(or ‘as N → ∞’).

2 Results

2.1 Patchability condition

Loosely speaking, our concentration inequality says that if any ‘almost-
complete’ member of F (missing on the order of

√

ℓ(F) elements) can be

3Follows from the proof of theorem 3.1 with r = 1.
4For instance, in [6] a log-Sobolev inequality is used
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completed at cost o(EM(F)) (whp), then the optimal cost M(F) has to
be sharply concentrated. Before stating the theorem, we need to make this
notion more precise.

As noted earlier, we can assume without loss of generality that F con-
tains only minimal sets. We will let 〈F〉 denote the upwards closure of F :
〈F〉 = {G ⊆ S : ∃F ∈ F : F ⊆ G}.

Since the weights are non-negative, M(F) = M(〈F〉).
For any G,P ⊆ S, we say that P is a G-patch if G∪P contains a member

of F , i.e. G ∪ P ∈ 〈F〉. Define the function ρ : 2S 7→ N by

ρ(G) := d(G, 〈F〉) = min{|P | : P is a G-patch}, (1)

where d denotes Hamming distance: d(G,F ) = |G∆F | and d(G,F) =
minF∈F |G∆F |.

Let Br = Br(〈F〉) be the r-neighbourhood of 〈F〉 in the Hamming metric,
i.e. the set of all G ⊆ S with ρ(G) ≤ r. For any set G ⊆ S, let the random
variable Patch(G) be the minimum weight of a G-patch:

Patch(G) := min{XP : P is a G-patch}.

Definition 2.1: We say that a G ⊆ S is (λ, ε)-patchable (with respect to
the random weights Xi) if G can be patched at cost at most λ with probability
at least 1− ε. That is,

P(Patch(G) ≤ λ) ≥ 1− ε.

The family F is said to be (r, λ, ε)-patchable if every G ∈ Br (that is, G ⊆ S
with ρ(G) ≤ r) is (λ, ε)-patchable.

Remark 2.2: Patch(G) can also be seen as a Hamming distance to 〈F〉: if
we define the randomly weighted Hamming distance by D(G,F ) := XG∆F ,
then Patch(G) = D(G, 〈F〉). In terms of these Hamming distances, F is
(r, λ, ε)-patchable if any G in the r-neighbourhood of 〈F〉 w.r.t. the metric
d lies in the λ-neighbourhood of 〈F〉 w.r.t. the metric D, with probability at
least 1− ε.

In other words, F is (r, λ, ε)-patchable if any F ∈ F from which an
arbitrary r elements has been removed (giving us a G with ρ(G) = r), can
be patched at cost at most λ, with probability at least 1−ε. Patching G will
not necessarily restore the same F , as we only require that our ‘patched’ set
G∪P contains some member of F . It is important to note here that the set
G is not random, and in particular it is not chosen in a way that depends
on the weights Xi.
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When applying our inequality (theorem 2.5), the main effort will usually
be to show that this patchability condition is met, for some r, λ and ε. Note
that if Xi ≤ 1 with probability 1, then any family F is trivially (r, r, 0)-
patchable for any r – simply put back the r elements that were removed, at
cost at most r. However, it is only for families that are (r, λ, ε)-patchable for
some λ ≪ r that our inequality (theorem 2.5) improves upon a ‘standard’
application of the Talagrand inequality.

2.2 Probability distributions of the weights

Most commonly, the edge weights Xi are exponential or uniform U(0, 1).
But the proof of our inequality can easily be generalised to a larger class
of edge weight distributions, such as the positive powers of such random
variables. The only assumption we will make on the distribution of Xi is
the following.

Assumption 2.3: For q > 0 we say that the distribution of a random vari-
able X satisfies assumption A(q) if the following holds: For any s ∈ (0, 1),

X can be coupled to two copies Y
d
= Y ′ d

= X following the same distribution,
such that Y and Y ′ are independent and surely

X ≤ min

(
Y

(1− s)1/q
,
Y ′

s1/q

)

. (2)

For instance, the (1/q):th power of exponential or uniform random vari-
ables satisfies A(q). The assumption is also closely related to the so-called
pseudo-dimension of a random variable. We will discuss this in section 5.

Remark 2.4: Note also that eq. (2) can be iterated, so that for any {si}ki=1

with
∑k

i=1 si = 1 we have that i.i.d. random variables Y (i) d
= X can be

coupled to X in such a way that X ≤ mini∈[k]

(

Y (i)/s
1/q
i

)

. In particular,

for si = k−1, X ≤ k1/q mini∈[k]
(
Y (i)

)
.

2.3 A ‘patchability’ concentration inequality

We are now ready to state our concentration inequality.

Theorem 2.5: Assume the distribution of the Xi’s satisfies A(q) in as-
sumption (2.3). Given ε > 0, let L be such that P(M(F) > L) ≥ ε. If F
is (r, λ, ε)-patchable for some r ≥

√

8 log(ε−1) · ℓ(F) and λ > 0, then with

6



probability at least 1− 2ε,

M(F) ≤
(

L
q

q+1 + λ
q

q+1

) q+1
q

. (3)

In particular, if m is the median of M(F), ε < 1/4, and λ ≤ m, then for
some constant C = C(q), with probability at least 1− 3ε,

|M(F)−m|
m

≤ C

(
λ

m

) q

q+1

. (4)

The theorem gives sharp concentration if λ = o(m) as N → ∞.
Note also that r is an increasing function of ℓ(F), the largest size of a

member of F , and λ in turn is a non-decreasing function of r. One therefore
want to make ℓ(F) as small as possible.

A less general version of theorem 2.5, appeared in a previous paper [3]
by the author and L. Federico. There we studied a specific family F (the
family of H-factors in Kn, for some small graph H), for which a property
very similar to patchability holds trivially. We discuss this family in section
3.2.

Remark 2.6: Some families F have a large variation in the sizes of its
members, and while smaller sets F are more likely to have low weight XF ,
there might be a much larger number of bigger sets in F . If the F achieving
the optimal weight M(F) tends to be a small set, it can sometimes be helpful
to sort the members of F into two families: Fsmall with small sets and Fbig

with big sets. If one can (with high probability) upper bound M(Fsmall) < t
and lower bound M(Fbig) > t with the same t = t(n) (for instance by the
methods discussed in sections 6 and 7), then with high probability M(F) =
M(Fsmall) and it suffices to show concentration of M(Fsmall).

2.4 Proof strategy for theorem 2.5

This proof will follow a similar strategy to that in [3]. The main novel ideas
(here and in [3]) are (i) the patchability condition, and (ii) to apply the
Talagrand inequality to a dual problem: Setting a ‘budget’ L > 0, how close
(in Hamming distance) to a member of F can we get while staying within
budget? More precisely, we define

ZL := min{ρ(G) : G ⊆ S and XG ≤ L}.

Talagrand’s concentration inequality is much better suited to this random
variable, and we use it to show that ZL is typically ‘small’ (roughly of order

7



√

ℓ(F) ) for a suitable L. That is, that there exists a G ⊆ S with weight
XG ≤ L, and which can be turned into a member of F by adding at most a
small number of elements from S.

For the next step, given such a G, we would like to find a cheap ‘patch’
P ⊆ S such that G ∪ P ∈ F . However, here we run in to an obstacle: G
is now a random set, and the weights of the elements not in G will not be
independent from G, because G was chosen in a way that depends on the
weights Xi.

To get around this obstacle, we perform a trick originally due to Walkup [12],
which we call the red-green split. Split each element x ∈ S into two, a green
and a red copy. For some small s > 0, give these independent random
weights Yi/(1− s)1/q, Y ′

i /s
1/q, where Yi and Y ′

i follow the same distribution
as Xi, and couple them to Xi as in assumption A(q). With this coupling,
the green weights Yi are typically close to Xi, while the red weights Y ′

i tend
to be larger. Crucially, the red weights are independent from the green
weights.

We then study the dual problem on the green weights, and use Tala-
grand’s inequality as described above to show that there probably exists a
green G ⊆ S with ρ(G) ≤ r and YG ≤ L, with r of order roughly

√

ℓ(F) .
Next we use that F is (r, λ, ε)-patchable to find a redG-patch P with Y ′

P ≤ λ.
Since G ∪ P ∈ 〈F〉, we have that

M(F) ≤ XG +XP ≤ YG

(1− s)1/q
+

Y ′
P

s1/q
. (5)

Using that YG ≤ L and Y ′
P ≤ λ (with high probability), and optimizing over

s gives us the upper bound (3) in theorem 2.5.

3 Applications

3.1 Minimum spanning tree

Theorem 3.1: Let T be the family of spanning trees on Kn. For some
q > 0, equip Kn with i.i.d. edge weights following the distribution of the
(1/q):th power of a uniform U(0, 1) random variable. Then there exists a
constant cq such that for L := cqn

1−1/q,

|M(T )− L|
L

= OP

(

n
−

q

2(q+1)

)

= oP(1).

In particular, for q = 1, it is known that E[M(T )] → ζ(3) ≈ 1.202, and
Var[M(T )] = Θ(1/n), so that the fluctuations of M(T ) around its expected

8



value is of order n−1/2. Our theorem gives a weaker upper bound, of order
n−1/4.

For q ≥ 1 the theorem follows from [6, Section 5], but it seems to be
novel for q < 1.

Proof. In [5] it is shown that E[M(T )] → ζ(3) when q = 1. Assuming
that the edge weights are such that Xq

i ∼ U(0, 1), it is easy to adapt this
argument to show that E[M(T )]/n1−1/q converges to a constant as n → ∞.

We will prove that Patch(G) = OP(rn
−1/q) for any G with ρ(G) = r.

The theorem then follows by plugging this into theorem 2.5, by noting that
(i) since a spanning tree has n− 1 edges, r = Θ(

√
n ) (for ε fixed), and (ii)

sharp concentration of M(T ) around its median implies that the expected
value is close to the median.

Pick any G with ρ(G) = r = Θ(
√
n ). A graph with ρ(G) = r has r + 1

connected components, as r edges must be added to it in order to connect it.
Let C1, . . . , Cr+1 be these connected components, sorted in increasing order
by their number of vertices, and with ties broken arbitrarily. For each edge
in E(Kn)−E(G) that goes between two components, orient it according to
the order of the components above: from Ci to Cj when i < j. We will find
a G-patch P by, for each 1 ≤ i ≤ r, picking the cheapest outgoing edge from
Ci. Note that such a P is indeed a G-patch, because 〈T 〉 is the family of
connected graphs, and there is a path in G∪P from any Ci (i ≤ r) to Cr+1.

Claim 1: For 1 ≤ i ≤ r, Ci has at least s := min(n/2, n2/4r2) = Θ(n)
outgoing edges.

Proof. Consider a component Ci with k vertices. If k ≤ n/2r, then
C1, . . . , Ci all have at most k vertices each, for a total of at most rk ≤ n/2
vertices. Hence there are at least n/2 total vertices in Ci+1 ∪ . . . ∪ Cr+1,
and every vertex in Ci has at least this many outgoing edges. If instead
k > n/2r, Ci+1 also has at least k vertices, so there are at least k2 > n2/4r2

edges from Ci to Ci+1. �

Let Wi be the minimum weight of an outgoing edge from Ci. The Wi’s
are independent. The minimum of m i.i.d. edge weights Xi such that Xq

i ∼
U(0, 1) has expected value and standard deviation of order Θ(m−1/q). Hence
the Wi’s have expected value and standard deviation uniformly bounded
by some O(n−1/q), and there exists a constant c > 0 such that with high
probability

Patch(G) ≤
r∑

i=1

Wi ≤ crn−1/q.
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Hence T is (λ, r, ε)-patchable with λ = crn−1/q and r = Θ(
√
n ). By

theorem 2.5 we have that |M(T ) − m|/m ≤ OP((λ/m)
q

q+1 ). Here m =

Θ(n1−1/q) and λ = O(n
1
2
−1/q), so that λ/m = O(r/n) = O(n− 1

2 ). Hence

|M(T )−m|/m ≤ OP(n
−

q

2(q+1) ) = oP(1). �

3.2 Minimum H-factor

Given a fixed graph H, an H-factor (or tiling) on Kn is a collection of
vertex-disjoint copies of H, which together cover all vertices of Kn. For
H = K2, this is the random assignment (also known as minimum perfect
matching) problem which we discuss in the next subsection. In a paper by
the author and L. Federico [3], an earlier version of theorem 2.5 was used to
show sharp concentration of the minimum weight of an H-factor for graphs
H containing at least one cycle.

In the minimum H-factor problem, patches have a particularly nice
structure: They are essentially H-factors on smaller vertex sets. If F is
an H-factor and we remove r edges, we may as well remove the (at most) r
copies of H these edges belonged to. This leaves a partial H-factor G, and
any H-factor on the at most r · v(H) uncovered vertices forms a G-patch.

For graphs H containing at least one cycle (and random weights sat-
isfying A(1), such as U(0, 1)), we showed that the minimum weight M of
an H-factor is of order ΘP(n

β) w.h.p., for some β = β(H) ∈ (0, 1) . This
immediately implies that H-factors are (r, λ, ε)-patchable where λ = O(rβ).
When applying theorem 2.5, r is of order

√
n , so that λ is of order nβ/2.

Since the median m of M is of order m = Θ(nβ), the theorem gives us that

|M − m| ≤ OP(
√
λm ) = OP(m

3
4 ). In other words, M is sharply concen-

trated.

3.3 Random assignment

In the random assignment problem, F is the set of perfect matchings on
the complete bipartite graph Kn,n. This problem has been studied when
the edge weights satisfy condition A(q) in (2), for q = 1 [1], q > 1 [14] and
by the present author for q < 1 [10]. In all cases it has been shown that
M(F)/n1−1/q converge in probability to a constant depending only on q.

However, a straight-forward application of theorem 2.5 only gives sharp
concentration in the case q > 1. Although a perfect matching is also an
H-factor (with H = K2), the minimum weight scales like n1−1/q, and a
similar argument to that in section 3.2 only leads to sharp concentration if
the exponent is positive.
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3.4 Minimum spanning d-sphere

A combinatorial d-sphere is a (d + 1)-regular hypergraph, which – when
viewed as the set of maximal faces of an abstract simplicial complex – is
homeomorphic to a d-sphere. In an upcoming paper joint with A. Geor-
gakopoulos and J. Haslegrave, we study the minimum weight of a span-
ning d-sphere in a randomly-weighted complete (d+1)-uniform hypergraph

K
(d+1)
n [8], again with weights satisfying A(1). We show concentration of

this minimum weight for d = 2 and 3, and the proof for d = 2 uses theorem
2.5.

4 Proofs

To prove theorem 2.5 we will need the following lemma, which is where
the ‘red-green split trick’ is used. Recall that for any r ≥ 0, Br is the set
of G ⊂ S within Hamming distance r of 〈F〉, i.e. such that there exists a
P ⊆ S with |P | ≤ r and G ∪ P ∈ 〈F〉.

Lemma 4.1: Assume a, b > 0 and pick c such that c
q

q+1 = a
q

q+1 + b
q

q+1 . Let
G∗ be the (random) set in Br with minimal cost, i.e. WG∗ = M(Br). Then

P
(
M(F) > c

)
≤ P

(
M(Br) > a

)
+ P

(
Patch(G∗) > b

)

≤ P
(
M(Br) > a

)
+ max

G∈Br

P
(
Patch(G) > b

)
. (6)

We will also need the following claim.

Claim 2: Let f(s) := a
(1−s)p + b

sp , with a ≥ b > 0 and p ≥ 0. Then f has a

unique minimum s0 on (0, 1), with

f(s0) = (a
1

p+1 + b
1

p+1 )p+1 ≤ a ·
(
1 + C · (b/a)

1
p+1

)
,

for some constant C = C(p). In particular if a ≫ b, f(t) = a · (1 + o(1)).

We postpone the proofs of lemma 4.1 and claim 2 until the end of this
section. Now, let’s instead proceed with the proof of our main theorem.
Proof of theorem 2.5. We want to upper bound the probability that
M(F) is large. To do this, we will use lemma 4.1 with a = L, b = λ.

P
(
M(F) > c

)
≤ P

(
M(Br) > L

)

︸ ︷︷ ︸

Upper bound by Talagrand’s inequality

+ max
G∈Br

P
(
Patch(G) > λ

)

︸ ︷︷ ︸

Upper bound by using patchability

(7)
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For the second term of the right-hand side of (7), we use the patchabil-
ity condition: By assumption, F is (r, λ, ε)-patchable, or in other words
Patch(G) > λ with probability at most ε for all G ∈ Br.

Recall that ZL := min{ρ(G) : XG ≤ L}, and note that M(Br) > L if
and only if ZL > r.

We now want to apply the Talagrand inequality to the first term on the
right-hand side of (7). The way this inequality is stated in [2], we would
need to apply it to the random variable −ZL. However, for the sake of
clarity and to avoid a clutter of minus signs, we reformulate the inequality
and the definition of certifiability so that they apply directly to ZL. The
random variable ZL has the following two properties:

ZL is 1-Lipschitz: Suppose ω, ω′ ∈ Ω are such that Xi(ω) = Xi(ω
′), for

all i except some i0. Consider G ⊆ S such that XG(ω) ≤ L and ρ(G)
attains the minimum ZL(ω). Then G′ := G− {i0} satisfies XG′(ω′) =
XG′(ω) ≤ L, and ρ(G′) is at most ρ(G)+1, so that ZL(ω

′) ≤ ZL(ω)+1.
By interchanging ω and ω′, |ZL(ω

′)− ZL(ω)| ≤ 1.

ZL is ℓ(F)-certifiable: If ω is such that ZL(ω) ≤ s, there exists a G with
XG(ω) ≤ L and ρ(G) ≤ s. Assuming WLOG that G is a minimal such
set, it has at most ℓ(F) elements. These are a certificate that ZL ≤ s:
any ω′ which agrees with ω on the set G has XG(ω

′) = XG(ω) ≤ L,
and hence ZL(ω

′) ≤ s too.

The Talagrand inequality then states that for any t > 0 and b,

P (ZL ≤ b) · P
(

ZL ≥ b+ t
√

ℓ(F)
)

≤ e−t2/4. (8)

Let t :=
√

8 log(ε−1) , so that e−t2/4 = ε2 and r ≥ t
√

ℓ(F) , and let b := 0.
The first probability on the left-hand side of (8) is P(ZL = 0) = P(M(F) ≤
L), which is at least ε by assumption. Hence the second probability is
P(ZL ≥ r) ≤ ε.

The first term on the right-hand side of (7) is then P(M(Br) > L) =
P(ZL > r) ≤ ε, and hence P(M(F) > c) ≤ 2ε.

The ‘in particular’-statement follows from the second part of claim 2 with

p = q−1, a = L, and b = λ: For some constant C, c = (L
q

q+1 + λ
q

q+1 )
q+1
q ≤

L · (1 + C · (λ/L)
q

q+1 ). Then M(F) > c with probability at most 2ε, and
M(F) < L with probability at most ε by assumption. Hence M(F) lies

within an interval of length LC · (λ/L)
q

q+1 with probability 1 − 3ε, and in
particular the median also lies in this interval. �
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Proof of lemma 4.1. For convenience, set p = q−1. For a small
s > 0 to be chosen later, use assumption A(1) in assumption 2.3 to couple

the weights Xi to a pair of independent random variables Yi, Y
′
i

d
= Xi such

that Xi ≤ Yi/(1− s)p + Y ′
i /s

p. We think of the Yi as ‘green’ weights and
the Y ′

i as ‘red’ weights. Using the coupling of Yi, Y
′
i in (2) gives that for any

F = G ∪ P ∈ 〈F〉, surely

M(F) ≤ XF ≤ XG +XP ≤ YG

(1− s)p
+

Y ′
P

sp
.

Our strategy is now to find a cheap green G with ρ(G) ≤ r, and then find
a cheap red G-patch P . Let W be the cost of the cheapest such G w.r.t.
the weights Yi, or in other words W := min{YG : G ∈ Br}, and let G∗ be
the random set G which achieves this minimum. Similarly, for any G ∈ Br,
let the random variable W ′(G) be the minimum of Y ′

P over all G-patches P .
Then

M(F) ≤ W

(1− s)p
+

W ′(G∗)

sp
. (9)

Now, (9) is at most a
(1−s)p + b

sp , unless W > a or W ′(G∗) > b. Note that

since Yi, Y
′
i follow the same distrubition as Xi, W

d
= M(Br) and W ′(G)

d
=

Patch(G). Hence the right-hand side of (6) is α+ β, with

α :=P(M(Br) > a) = P(W > a),

β := max
G∈Br

P(Patch(G) > b) = max
G∈Br

P(W ′(G) > b).

For the second termof the right-hand side of (9), by the choice of β, P (W ′(G) > b) ≤
β for any G. By averaging, it also holds for G picked according to a any prob-
ability distribution on Br which is independent from the red weights. In par-
ticular, it holds if G∗ is the G that achieves the minimum W = minG∈Br

YG,
since G∗ only depends on the green weights. Hence P (W ′(G∗) > b) ≤ β. So
by a union bound on the right-hand side of (9),

P

(

M(F) >
a

(1− s)p
+

b

sp

)

≤ α+ β. (10)

But since s ∈ (0, 1) was arbitrary, we can minimize a
(1−s)p + b

sp over s.

Noting that (a
1

p+1 +b
1

p+1 )p+1 = (a
q

q+1 +b
q

q+1 )
q+1
q = c, the lemma follows.

�

Proof of claim 2. Since f is smooth and strictly convex on (0, 1),
there exists a unique local minimum s0, which is also the global minimum.
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Let u := a
1

p+1 , v := b
1

p+1 . Then f ′(s) = −p
(

up+1

(1−s)p+1 − vp+1

sp+1

)
, which is zero

iff u
1−s = v

s . Solving for s gives s0 :=
v

u+v , so that f(s0) = (u+ v)p+1.

The function ϕ(x) = (1 + x)p+1 is convex, and hence it lies below the
secant line with intersections at x = 0 and x = 1. This secant line has slope
C := ϕ(1) − ϕ(0) = 2p+1 − 1. In other words, (1 + x)p+1 ≤ 1 + Cx for any
x ∈ [0, 1]. With x := v/u ≤ 1, we get (u+ v)p+1 ≤ up+1(1 + Cv/u). �

5 Other weight distributions

Assumption 2.3 is closely related to the so-called pseudo-dimension of a
distribution. If the cdf F of X is such that, for some d > 0, F (x)/xd

converges to some c ∈ (0,∞) as x → 0, then X is said to be of pseudo-
dimension d. The motivation behind the name is that if d is a positive integer
and two points are chosen uniformly at random from the d-dimensional unit
box, the distribution of the Euclidean distance between these points is of
pseudo-dimension d.

Since pseudo-dimension is only a condition on the behavior of F (x) near
0, we cannot guarantee that assumption A(q) will hold. It is, however, often
the case that the distribution of M(F) is (asymptotically) the same for any
weights of pseudo-dimension q, up to a global rescaling. If one has weights
Xi of pseudo-dimension q but not satisfying A(q), it is usually easiest to
first show that one can approximate these with e.g. the (1/q):th power of
U(0, 1)-distributed random variables, and then apply theorem 2.5.

We will now briefly outline one potential strategy to do this, using a
variant of the patchability condition. Start with the F achieving optimality
(XF = M(F)). Remove expensive elements (weight ≥ δ for some δ > 0)
from F , resulting in some G with ρ(G) fairly small. Rerandomize the edge
weights, and search for a G-patch which is both cheap, and uses no edge
of cost above δ. If (whp) such a patch can be found, then one can show
that there is an F ′ ∈ F using only cheap elements, and with XF ′ very close
to M(F). Since F ′ only uses cheap elements, we can couple the weights of
pseudo-dimension q to, for instance, the (1/q):th power of U(0, 1)-weights,
and thereby show that M(F) with pseudo-dimension q weights can be well
approximated by M(F) with weights satisfying A(q).

For an example of a proof following this strategy, see theorem 5.1 in [3].
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6 Bounds on M(F)

As noted in section 2.3, M(F) is sharply concentrated if F is (r, λ, ε)-
patchable with ε small, r at least of order

√

ℓ(F) , and λ = o(m) as N → ∞
(where m is the median of M(F)). To verify that λ = o(m), one typically
needs a lower bound on m. In section 6.2 we provide a generic first moment
method bound, which in practice often turns out to be within a constant
factor of the true m.

6.1 Upper bound

While not strictly necessary to prove sharp concentration, one is usually
also interested in finding a matching upper bound on m (or M(F)). These
tend to require an approach tailored to the specific family F one is studying.
Here are some examples of approaches that have been successful in the past.

1. For all F ∈ F , M(F) ≤ XF . Any algorithm for finding an F with
low weight will give an upper bound on M(F), and even fairly naive
algorithms (e.g. greedy algorithms) can often be within a constant
factor of optimal. Or, in the case of minimum spanning tree, actually
optimal.

2. For any F ⊆ F , M(F) ≤ M(F ′). Sometimes one can find such a
F ′ which is significantly easier to analyse, but which still has M(F ′)
fairly close to M(F). For instance, see remark 2.6.

3. In a recent breakthrough paper, Frankston, Kahn, Narayanan and
Park [4] gives an upper bound onM(F) (and the corresponding thresh-
old problem) in terms of the so-called spread of F . A family F is said
to be κ-spread if no r-set G ⊂ S occur as a subset in a more than a
fraction κ−r of the members of 〈F〉.5

4. If one has shown that F is (r, λ, ε)-patchable for some not too large r
and λ, then it suffices to upper bound M(Br) (the minimal cost of a G
within Hamming distance r of 〈F〉). In the case of H-factors which we
discuss in section 3.2, M(Br) was essentially already known for r = δn
for any fixed δ > 0.

5This is similar to the intuition that a function should not depend ‘too much’ on any
small set of coordinates. It would be interesting to see if there are any connections between
the spread and the patchability of a family F .
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6.2 Lower bound on M(F)

In this section we provide a general lemma that gives a lower bound on
M(F) given some bound on the size of F and the sizes of members of F .
For brevity, we do this only for weights Xi with distribution given by the
1/q:th power of a U(0, 1)-random variable.

Lemma 6.1: Let F be a family of subsets of S such that each set F ∈ F has
ℓ0 ≤ |F | ≤ ℓ1 elements for some ℓ0, ℓ1 > 0. Assume |{F ∈ F : |F | = m}| ≤
cmmβm for some constants c, β > 0 and all m.

Then for any t > 0 there exists a constant c′ > 0 such that M(F)
(with respect to i.i.d. weigths Xi satisfying Xq

i ∼ U(0, 1)) is at least c′ ·
min(ℓ

1−β/q
0 , ℓ

1−β/q
1 ) with probability at least 1− exp(−ℓ0t).

For a set with m elements, the probability that their total cost is below
some given value L ≪ N := |S| decays superexponentially fast as a function
of m (see claim 3). On the other hand, the number of sets in F with
m elements, might increase superexponentially fast. If β < q, then the
former decay rate beats the latter growth rate, so that sets with few elements

dominate the expected number of ‘cheap’ sets. In this case, ℓ
1−β/q
0 ≪ ℓ

1−β/q
1 ,

so that M(F) = ΩP(ℓ
1−β/q
0 ). If instead β ≥ q, the large sets dominate, and

M(F) = ΩP(ℓ
1−β/q
1 ).

Proof. We will apply the first moment method to the number of ‘cheap’
sets in F . For some L to be determined later, let Rm be the (random)
number of F ∈ F with precisely m elements and with XF ≤ L. (For m < ℓ0
or m > ℓ1, Rm = 0.)

Then R :=
∑

mRm is the total number of sufficiently cheap sets, and by
Markov’s inequality P(M(F) ≤ L) ≤ ER. Now, E[Rm] ≤ cmmβm · P(XF ≤ L),
where F is any set with m elements.

Claim 3: If Ui are i.i.d. uniform [0, 1] random variables and q > 0 is a

constant, then P(
∑m

i=1 U
1/q
i ≤ L) ≤ Γ(1+q)m

Γ(1+qm)L
m = 2O(m) (L/m)qm.

Proof of claim. Let A := {x ∈ R
m
+ :

∑m
i=1 |xi|1/q ≤ L} be the

positive orthant of the (1/q)-norm ball with radius L, and let B := [0, 1]m

be the unit box. The probability of the event {∑m
i=1 U

1/q
i ≤ L} equals the

m-dimensional volume µ(A ∩ B) ≤ µ(A). The volume of A is known to be

µ(A) = Γ(1+q)m

Γ(1+qm)L
qm (see [7] for a concise derivation). The asymptotic ex-

pression comes from noting that the numerator is 2O(m), and using Stirling’s
approximation on the denominator. �
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From the claim we have that P(XF ≤ L) ≤ 2O(m)(L/m)qm (for F with
|F | = m) and hence E[Rm] ≤ (c0L/m

1−β/q)qm for some c0. If we pick L :=

c1c
−1
0 ·min(ℓ

1−β/q
0 , ℓ

1−β/q
1 ) for some c1 > 0, we get that c0L/m

1−β/q ≤ c1 for

all m, and hence E[Rm] ≤ cqm1 . Thus E[X] =
∑ℓ1

m=ℓ0
E[Rm] < cqℓ01 /(1− cq1),

which is less than exp(−λℓ0) if c1 is sufficiently small. �

7 Upper tail bound

To apply Theorem 2.5 it is sometimes helpful to first have rougher bounds
on the tails of M(F). Here we provide a simple bound on the upper tail.

Proposition 7.1: If µ is the median of M(F), then for any t ≥ 0,

P(M(F) > tµ) ≤ 21−tq . (11)

Furthermore, EM(F) ≤ Cqµ for some constant Cq only depending on q, and
thus eq. (11) holds with µ replaced with EM(F) and the 2 in the right-hand
side replaced with some r > 1.

Proof. Let k := ⌊tq⌋, and assume WLOG that k ≥ 2: If tq ≤ 1, then
21−tq ≥ 1 and there is nothing to prove, and if 1 < tq < 2, then tµ > µ and

hence P(M(F) > tµ) ≤ 1/2 < 21−tq . For each i ∈ S, and j ∈ [k], let X
(j)
i

be i.i.d random variables following the same distribution as Xi. As noted

in remark 2.4, we can couple these random variables X
(j)
i to Xi such that

surely Xi ≤ k1/q ·minj∈[k](X
(j)
i ).

Let M (j) be defined as M(F) but with edge weights X
(j)
i . Now, if

M (j) = x for some j, x, by definition there exists an F ∈ F with X
(j)
F = x,

and this F then has weight XF =
∑

i∈F Xi ≤ ∑

i∈F k · X(j)
i = kx. This

implies that surely

M(F) ≤ XF ≤ k1/q · min
j∈[k]

(M (j)),

and k1/q ≤ t by the choice of k. Noting that P(minj∈[k](M
(j)) > µ) ≤ 2−k ≤

21−tq , the first part of the claim follows.
For the ‘furthermore’ part, we will use EM(F) =

∫∞

0 P(M(F) > x)dx.

From the first part the integrand is at most 21−(x/µ)q . After a change of vari-
ables z = ln(2)(x/µ)q , its integral becomes

∫∞

0 21−(x/µ)qdx = 2ln(2)−1/qΓ(1+
1/q) · µ. �

17



References

[1] David J. Aldous. The ζ(2) limit in the random assignment problem.
Random Structures Algorithms, 18(4):381–418, 2001.

[2] Noga Alon and Joel H Spencer. The probabilistic method. John Wiley
& Sons, third edition, 2016.

[3] Lorenzo Federico and Joel Larsson Danielsson. Minimal h-factors and
covers. arXiv preprint arXiv:2302.12184, 2023.

[4] Keith Frankston, Jeff Kahn, Bhargav Narayanan, and Jinyoung Park.
Thresholds versus fractional expectation-thresholds. Annals of Mathe-
matics, 194(2):475–495, 2021.

[5] A. M. Frieze. On the value of a random minimum spanning tree prob-
lem. Discrete Appl. Math., 10(1):47–56, 1985.

[6] Alan Frieze and Tomasz Tkocz. A randomly weighted minimum span-
ning tree with a random cost constraint. In Proceedings of the Four-
teenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
670–689. SIAM, 2020.

[7] Fuchang Gao. Volumes of generalized balls. The American Mathemat-
ical Monthly, 120(2):130–130, 2013.

[8] Agelos Georgakopoulos, John Haslegrave, and Joel Larsson Danielsson.
Minimum weight spanning d-spheres. arXiv preprint, 2024.

[9] Svante Janson. The minimal spanning tree in a complete graph and a
functional limit theorem for trees in a random graph. Random Struc-
tures & Algorithms, 7(4):337–355, 1995.

[10] Joel Larsson. The minimum perfect matching in pseudo-dimension 0 <
q < 1. Combin. Probab. Comput., 30(3):374–397, 2021.

[11] Michel Talagrand. Concentration of measure and isoperimetric inequal-
ities in product spaces. Publications Mathématiques de l’Institut des
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