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Abstract

Techniques for predicting the trajectory of vulnerable road users are important to the development of perception systems for au-
tonomous vehicles to avoid accidents. The most effective trajectory prediction methods, such as Social-LSTM, are often used to
predict pedestrian trajectories in normal passage scenarios. However, they can produce unsatisfactory prediction results and data
redundancy, as well as difficulties in predicting trajectories using pixel-based coordinate systems in collision avoidance systems.
There is also a lack of validations using real vehicle-to-pedestrian collisions. To address these issues, some insightful approaches to
improve the trajectory prediction scheme of Social-LSTM were proposed, such methods included transforming pedestrian trajectory
coordinates and converting image coordinates to world coordinates. The YOLOvS detection model was introduced to reduce target
loss and improve prediction accuracy. The DeepSORT algorithm was employed to reduce the number of target transformations in
the tracking model. Image Perspective Transformation (IPT) and Direct Linear Transformation (DLT) theories were combined to trans-
form the coordinates to world coordinates, identifying the collision location where the accident could occur. The performance of the
proposed method was validated by training tests using MS COCO (Microsoft Common Objects in Context) and ETH/UCY datasets.
The results showed that the target detection accuracy was more than 90% and the prediction loss tends to decrease with increasing
training steps, with the final loss value less than 1%. The reliability and effectiveness of the improved method were demonstrated by
benchmarking system performance to two video recordings of real pedestrian accidents with different lighting conditions.

Keywords: vehicle-to-pedestrian collisions; pedestrian trajectory prediction; YOLOvS; DeepSORT; Social-LSTM

Highlights

persons with disabilities or reduced mobility and orientation. A

® Deep-learning algorithms based on YOLOv5, DeepSORT and
Social-LSTM can achieve real-time detection, tracking and
trajectory prediction of pedestrians in accident videos, and
the trajectory prediction results have small errors and
are consistent with pedestrian trajectories in real accident
videos.

® Based on the theory of perspective transformation and di-
rect linear transformation, the impact of video distortion on
pedestrian prediction trajectory can be reduced, and the con-
version between pixel coordinates and world coordinates of
pedestrian prediction trajectory can be realized.

® By combining the world of pedestrian prediction trajectory
and vehicle motion trajectory, the location of the pedestrian
collision point can be accurately predicted for vehicle colli-
sion, providing a reference basis for intelligent vehicle colli-
sion avoidance sensing and decision fusion.

1. Introduction

According to a report by the World Health Organization [1], more
than half of road traffic deaths are among vulnerable road users,
including pedestrians and cyclists as well as motorcyclists and

staggering estimated 1.35 million people die each year globally
due to road crashes, of which 23% are pedestrians. Improvements
in automotive active safety technologies have played an impor-
tant role in reducing pedestrian accidents. Refs. [2, 3] examined
the benefits of active safety systems in preventing accidents and
reducing injury severity. These systems consist of four main com-
ponents: environment sensing, crash risk assessment, decision-
making and evasive measures [4]. Therefore, achieving accurate
detection, tracking and trajectory prediction of vulnerable road
users (VRUs) is very important to avoid accidents in the research
of developing sensing, decision-making and control technologies
for advanced assisted-driving vehicles and self-driving vehicles.
Currently, pedestrian detection relies on two main approaches:
traditional machine-learning methods and deep-learning detec-
tion methods. Since the accuracy of the traditional target detec-
tion methods is not very high, the recognition effect is not very
good, and the overall transportation speed will be slow when
the computational volume is large. Nowadays, machine-learning
methods are maturing and, compared to traditional manual fea-
ture extraction methods, they are able to convert pixel infor-
mation in the input image into deeper, more abstract features.
Machine-learning-based target detection methods are also much
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better than traditional methods in terms of speed, accuracy and
robustness. Among the machine-learning methods, the most rep-
resentative ones are AdaBoost [5]; Log AdaBoost [6] and Support
Vector Machines (SVM) [7], which express the target through arti-
ficially designed features, such as classical Haar-like features [8],
histogram of oriented gradients (HOG) features [9, 10] and creativ-
ity support systems (CSS) features [11]. Felzenszwalb et al. [12, 13]
proposed a HOG-based deformable part model (DPM) algorithm,
and then improved the DPM algorithm, which was the most ef-
fective method in the field of traditional target detection. How-
ever, these traditional methods are unable to meet the demand
for pedestrian detection and cannot contribute to the develop-
ment of autonomous driving technologies. Deep-learning target
detection methods can obtain high-level abstract features, which
can be divided into one-stage and two-stage target detection algo-
rithms according to the diffident processing framework. The one-
stage detection algorithms include YOLO [14], Retina-Net [15] Sin-
gle Shot Detector (SSD) [16], among others. In particular, the algo-
rithms of the YOLO family have advantages regarding speed and
accuracy. Among them, YOLOVS is widely used because it is faster,
more accurate and lighter in weight among the YOLO series [17].

In pedestrian tracking, there are traditional and deep-learning
approaches. The earliest algorithms to appear in the field of target
tracking were traditional target-tracking methods, and although
the method is difficult to apply to today’s changing environment,
these methods have laid a certain foundation for subsequent re-
search. Traditional multi-target tracking methods include near-
est neighbour criteria filtering (NNSF) [18], joint probability den-
sity data association (JPDA) [19, 20], network flow data associa-
tion (NFDA) [21] and multiple hypothesis tracking (MHT) [22, 23]).
Deep-learning-based multi-target tracking methods include the
SORT (Simple Online Realtime Tracking) algorithm proposed by
Bewley et al. [24]. Wojke et al. [25] designed the DeepSORT algo-
rithm based on SORT. The algorithm used a deep association met-
ric containing the target appearance features learned by a gener-
alized residual network instead of the original association met-
ric obtained by Kalman filtering frame data. The algorithm added
cascade matching to the matching module and introduced a state
update strategy to further improve the performance of the track-
ing algorithm [26].

In the realm of trajectory prediction, traditional methods often
utilize artificial features to model pedestrian behaviour. Among
these methods, the Social Force (SF) model [27], proposes that
human motion is shaped by social forces. Bera et al. [28] under-
stood global and local motion patterns from two-dimensional tra-
jectories for predicting pedestrian motion in crowds. There are
also Kalman filter-based methods [29] and dynamic Bayesian net-
works [30] methods for pedestrian motion prediction. Due to the
complexity and variability of the pedestrian’s motion, it is diffi-
cult to fully express it with manual rules, which can be well ad-
dressed by deep-learning-based methods. Therefore, Alahi et al.
[31] proposed a Social Long and Short-Term Memory Neural Net-
work (Social-LSTM), which considers that the trajectories gener-
ated by pedestrians are influenced by two constraints, namely ob-
stacles to be avoided and other pedestrians. Based on these two
conditions, the trajectory prediction problem was considered as
a sequence generation problem and a Social-LSTM model was
proposed. This data-driven approach achieved better results. Yagi
et al. [32] first proposed perspective-based trajectory prediction,
which combined three conditions of self-motion, target human
scale and target pose to improve the accuracy of predicted pedes-
trian trajectories. Zhou et al. [33] improved the LaneGCN algo-
rithm in several ways to obtain the trajectory prediction of ve-

hicles. Ref. [34] employed an enhanced perspective change tech-
nique for vehicle detection, 3D bounding box estimation, tracking
and subsequent velocity estimation. Meng et al. [35] used LSTM
to accomplish the prediction of transverse longitudinal trajecto-
ries and thus lane-change trajectories. Palsodkar et al. [36] used
perspective change to calculate human-to-human distance. Wang
et al. [37] used direct linear transformation to conduct pedestrian
velocity analysis. Wang et al. [38] researched trajectory data to de-
rive crash prediction and Li et al. [39] obtained prediction models
by conflicting trajectory data. Taken together, these studies of pre-
dictive modelling have shown that predicting pedestrian trajecto-
ries can help vehicles make decisions in traffic accidents, which
shows the relevance of trajectory prediction data for traffic acci-
dent research and the prospective nature of our work in proposing
trajectory prediction and collision prediction.

The above methods are important for pedestrian motion tra-
jectory prediction. Through detection and tracking, the historical
trajectories of pedestrians are recorded, and based on their his-
torical trajectories, a prediction model predicts future trajectories.
However, the following problems still exist. According to the lim-
itations of pedestrian detection pointed out by Ref. [40], in real
traffic scenarios, the accuracy and speed of detection are not only
dependent on hardware devices but also highly disturbed by exter-
nal environmental factors. 1) In pedestrian detection, the current
popular pedestrian detection algorithms lack the speed and accu-
racy for the real-time processing required in real traffic scenarios
and cannot be achieved with the extremely complex algorithms
many researchers use to improve detection performance. 2) In
pedestrian tracking, the existing trajectory tracking algorithms ig-
nore the surface features of pedestrians and the targets are easily
lost during tracking, resulting in data redundancy, which greatly
reduces the effectiveness of tracking. 3) In trajectory prediction,
pedestrian trajectory prediction models are mostly developed in
simple situations and cannot be used to analyse transient be-
haviour in complex traffic accidents, which are still difficult to
incorporate in VRU collision avoidance control strategies.

In the current study, a trajectory prediction model based on
Social-LSTM was developed and assessed with actual traffic ac-
cidents. Fig. 1 shows the analysis flow of the pedestrian trajectory
prediction. The main objectives were:

1) To combine the deep-learning algorithms of YOLOv5 and
DeepSORT to achieve real-time detection and trac king of
pedestrians, improve the accuracy of the prediction model
and reduce data redundancy.

2) To establish pedestrian prediction trajectories from the first
viewpoint of the vehicle using perspective transformation
and direct linear transformation theory to identify possi-
ble collision points between the vehicle and pedestrians,
to provide a reference basis for the development of an ad-
vanced in-vehicle pedestrian sensing system, and to avoid
accidents.

2. Methods

2.1. Pedestrian detection model

The VRU detection algorithm model of YOLOvS comprises four
main parts in its structural diagram: input, backbone, neck layer
and output layer (refer to Fig. 2). For the input layer, three tech-
niques are employed: the Mosaic data enhancement method,
adaptive anchor frame calculation and adaptive image scaling.
The backbone layer consists of the Focus structure and
CSP (cross-stage local network) structure algorithms. The Focus
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Fig. 2. YOLOVS algorithm model structure.

structureis a slicing operation on an image structure with an orig-
inal resolution of 608x608x3, which was first converted into a
feature map with a resolution of 304x304x12. The 304x304x32
feature maps were obtained by convolution operation with 32
kernels.

Feature Pyramid Network (FPN) [41] and Path Aggregation Net-
work (PAN) [42] used different structures to extract informa-
tion from images. FPN used a top-down up-sampling approach
so that the bottom feature map carried important semantic in-
formation. On the other hand, PAN used a bottom-up down-
sampling approach so that the top features contained robust posi-
tional information. By fusing these two features, the resulting fea-
ture map contained robust semantic and positional information,
which enabled accurate prediction of images of different sizes.
In pedestrian detection, the extraction of language information
and location information of target pedestrians is especially im-
portant, while FPN can extract semantic information of pedestri-
ans and PAN can extract pedestrian location information to im-
prove detection accuracy. The neck layer adopted the FPN+PAN
structure to achieve the transmission of semantic and positional
information.

P
-
..J

|

FPN+PAN

structure

The output layer calculated the loss of the detected frame
by GIOU Loss. The loss consists of three components: bounding-
frame regression loss, target confidence prediction loss and cate-
gory prediction loss [34]. The minimum outer frame is introduced
based on the IoU (Intersection over Union) feature to solve the
problem of loss equal to 0 when there is no overlap between the
detection frame and the real frame.

The binary cross-entropy losses in category prediction were de-
fined as:

. . 1
yi = Sigmoid (x;) = Trex (1)
1 N
Laass = —17 2 ¥ilog (yi) + (1 - y)log (1 - ) 2
n=1

where, N was the total number of categories, x; was the predicted
value of the current category and y; was the probability of the
current category obtained after the resultant activation function.
The term y¥ indicated the true value of the current category (0
or 1) and L, indicated the category predicted loss.

The goal of image tracking was to define a bounding box around
the object of interest. Defining the predicted bounding box as B
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Fig. 3. DeepSORT algorithm model structure.

and By as the real bounding box, a loss can be determined by the
Intersection over Union defined in equation (3).
|B N Bg|
|BU By|

IoU (B, Byt) = (3)

2.2. Trajectory-tracking model

Fig. 3 shows the model structure of the DeepSORT algorithm,
which was centred on prediction, observation and updating infor-
mation describing the target being tracked. The Kalman filter was
utilized for position prediction, and the Hungarian algorithm was
employed to match the predicted trajectory with the real trajec-
tory. The matching methods included Cascade and IoU matching
[43].

2.3. Trajectory-prediction model

Tracking objects and predicting their future position requires
knowledge of their previous state and determining the charac-
teristics of the motion patterns. Recurrent Neural Network (RNN)
has been found to have insufficient long-term dependence due to
recurrence disappearance [44]. Long Short-Term Memory (LSTM)
could not obtain the interaction information between different
pedestrians in the same scene [45]. However, Social-LSTM has
been successfully used to predict the future trajectory of pedestri-
ans in real time [46]. Fig. 4 shows the structure of LSTM [47]. The
algorithm created information sharing between different pedes-
trians in a video scene by adding a pooling layer for each LSTM
on the adjacent space. LSTM had three types of gate composition:
forgetting gate f;, input gate i; and output gate o;, where the role
of the forgetting gate f; was to determine the size of the previous
moment cell state into the current moment, and was defined as:

ft = sigmoid (W¢ x [he_1, %] 4 by) (4)

where Wy denoted the weight of the forgetting gate, hy, was the
input value at the previous moment, x; was the input value at the
current moment and b denoted the deviation term of the forget-
ting gate.

The role of the input gate i; was to determine the size of the
network output into the cell state at the current moment and was
defined by:

It = sigmoid (w; x [he—1, X¢] + b;) (5)

where w; was the weight value of the input gate and b; was the
deviation term of the input gate.

The role of the output gate o; was to determine the size of the
unit state into the current output value, whose expression was

or = sigmoid (W x [hi—1, Xt] + bo) (6)

where w, was the weight value of the output gate and b, was the
deviation term of the output gate.

According to the forgetting gate f;, the input gate i;, and the
output gate o, the output of the LSTM of a certain layer could be
obtained

Ct:ftXCt—l“r itXE (7)

he = o; x tanh () (8)

where c¢;_1 denoted the state value at the previous moment, and ¢
denoted the current input cell and was defined by

¢ =tanh (we x [he—1, %] + be) 9)

where w. was the weight of the state value and b. was the devia-
tion term of the state value.

The main task of the Social-Pooling layer was to collect the hid-
den state information of neighbouring targets through spatial in-
formation. As shown in Fig. 5, the black dots and their surrounding
parts represented the domain of the tracking target. The hidden
state of the tracking target was gathered around a certain spatial
distance, and the hidden state of the tracking target was calcu-
lated according to equation (10).

Himon)= 3 1w [x = Xyl =yi] W, (10)

JeN;
where hg;l denoted the hidden state of the jth target in the LSTM
at moment t-1, 1,,[x — y] denoted whether (x, y) was within the
grid (m, n) and N; denoted the neighbour of the ith tracking target.

As shown in Fig. 6, where LSTM denoted LSTM neural network,
the LSTM network used unsupervised learning, and the motion
trajectory of the target in the video may be affected by the motion
of the neighbouring targets. For this reason, the S-Pooling layer
connected the LSTM network of the target to be detected with the
LSTM networks of its neighbouring targets to form a new network
called Social-LSTM, which was then used to predict the target’s
motion trajectory. Based on Social-LSTM to predict the future tra-
jectory of pedestrians, we analyse the future motion trajectory of
target pedestrians in traffic accidents, and then derive the loca-
tion of the pedestrian—vehicle collision point, which improves the
reference basis for the research of vehicle collision avoidance for
pedestrians.

2.4. Coordinate mapping model

To achieve real-time matching of the predicted future trajectory
of the pedestrian with the perceived position information in the
vehicle collision avoidance system, a new coordinate mapping
model was developed based on Direct Linear Transform (DLT) and
Perspective Transformation (PT). The model is shown in Fig. 7. The
mapping process consists of two parts: perspective transforma-
tion and direct linear transformation. The perspective transfor-
mation used the condition that the three points of the perspective
centre, image point and target point were co-linear to the perspec-
tive from one plane to another plane, which could still keep the
shadow-bearing surface unchanged (Kocur et al. [34]). The direct
linear transformation was a processing method of images that de-
fined a relationship between the image coordinates and their cor-
responding object space coordinates [37]. Video images for pedes-
trian trajectory prediction were mostly collected by road surveil-
lance cameras, and the height and viewing angle caused a per-
spective distortion of the captured scene. To solve the problem of
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image distortion based on the surveillance camera viewpoint, it
was transformed into a top view.

The perspective transformation model consists of the following
perspective transformation matrix A.

A= a1 Ao a3 (11)

a11 12

where [ ]denoted linear transformations, such as scaling,

dp1 022

staggering and flipping, [ as; as, | denoted translation and [ZB] de-
23

noted the resulting perspective transformation. The perspective
transformation model in the following equation was formed from
the transformation matrix.

[x’y’ w’]= [uuw}A (12)

where u and v were the pixel coordinates of the original image,
X" and y’ were the pixel coordinates after perspective transforma-
tion, w was the coordinate in three dimensions and, since the im-
age was two-dimensional, w is 1.

X' ai1Uu+ anV+ a

x= X = 11 21 31 (13)
w a13U + a3V + ds3
y appU + AU+ ds

y=—-= ——— (14)
w a13U + a3V + adss3

The direct linear transformation theory was used to trans-
form pixel coordinates of the predicted future motion trajectory of
pedestrians to world coordinates. First, the relationship between
the pixel coordinate system and the world coordinate system was
analysed and the transformation matrix was obtained based on
the linear transformation expression (11) and the selected con-
trol point coordinates. The transformation from pixel coordinates
to the world coordinate system was completed by the transforma-
tion matrix.

U and V were pixel coordinates corresponding to world coordi-
nates (X, Y), L was the transformation matrix and equation (11)
was the direct linear transformation model between pixel coordi-
nates and world coordinates.

- +f] &
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Table 1. YOLOVS training and validation results.

COCO0128 box_loss obj_loss cls_loss
Train 0.023 0.026 0.003
Test 0.017 0.013 0.002
where the transformation matrix L was:
b L 15
L= |l Is I (16)
L g 1

Combining equations (11) and (12) yields the following equa-
tion
LX+LY+Hs _
B @
V- I;XI%threl =0

2.5. Training and evaluation of the algorithm

The algorithm was trained using the COCO128 dataset [48]. This
database has a small tutorial dataset consisting of the first 128
images of the entire COCO dataset. The COCO dataset could be
used for image detection, semantic segmentation and image cap-
tioning. It contained 1.5 million targets, 80 target classes, 91 ma-
terial classes and 250,000 pedestrians with key point annotation.
The parameters of the training process were set: the learning rate
was 0.01 for the initial learning rate and 0.2 for the cycle learn-
ing rate. The image size was 640x640x3. The training iteration
period was 700 times. After the training, the algorithm was vali-
dated with another database, the ETH/UCY pedestrian trajectory
dataset [49]. This database contained five subsets, namely eth,
ucy, hotel, zaral and zara2, which represent five scenes and 2206
human motion trajectories. Each subset includes an aerial view
and the two-dimensional location of each individual. These sub-
sets contain a variety of challenging scenarios, including human
collision avoidance, humans crossing each other and group be-
haviour. The effectiveness of the procedure in dealing with real ac-
cidents under different lighting conditions was evaluated through
cases in VRU-TRAVI ([50-52]; [40]). The videos were previously pro-
cessed to derive the ‘true’ trajectories of the pedestrians and vehi-
cles. The videos were then processed with the previously validated
tracking and prediction algorithm to derive the pedestrian motion
prediction data that would be available in a future pedestrian de-
tection system. The two accident cases are described below.

Case 1 (Daytime): The pedestrian was walking on a pedestrian
crossing. The pedestrian crossed without looking at the black SUV
approaching from the left, and the driver of the black SUV did not
see the pedestrian. The driver did not slow down or brake until
after hitting the pedestrian.

Case 2 (Nighttime): The pedestrian was running on the pedes-
trian crossing. The driver of the vehicle had overtaken another ve-
hicle when approaching the intersection, and failed to slow down
as it entered the crosswalk, and struck the pedestrian.

3. Results

3.1. Detection and tracking algorithm validation

Fig. 8 shows the results of the training process of the YOLOVS and
DeepSORT systems. Figs. 8(a) and (b) show the trends of training
loss and validation loss with increasing training steps (times), re-
spectively. After 700 training steps, the loss generally tended to
decrease and, according to Table 1, the final loss of the bounding
box regression (box_loss) was 0.023, the loss of the target confi-
dence prediction (obj_loss) was 0.026 and the loss of the category
prediction (cls_loss) was 0.003. The loss functions of the training
and validation sets remain low.

Fig. 9 shows the trend of each accuracy metric with the in-
crease in step length, where the horizontal coordinate indicated
the training step length and the vertical coordinate indicated the
accuracy value.

Precision is calculated by the formula:

.. TP
precision = TPrFP (18)
Recall is calculated by the formula:
TP
recall = TPrEN (19)

where TP, FP, FN and TN are the actual categories in the binary
confusion matrix, TP (True Positive) means actual positive sam-
ples and predicted positive samples, FP (False Positive) means ac-
tual negative samples and predicted positive samples, FN (False
Negative) means actual positive samples and predicted negative
samples and TN (True Negative) means actual negative samples
and predicted negative samples. The mAP is the area enclosed af-
ter plotting with Precision and Recall as the two axes, m denotes
the average and 0.5 denotes that the IoU threshold for determin-
ing positive and negative samples is taken as 0.5.

The figure shows that for the first 50 epochs, the indicators in-
creased sharply, and with increasing training, the indicators grad-
ually tended to be stable, in which the accuracy, recall and average
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accuracy tended to 91.9%, 96.0% and 97.5% of the average value,
respectively, and the overall accuracy was higher than 90%, which
indicated that the model had a good detection effect.

3.2. Trajectory prediction algorithm validation
The validation results of the Social-LSTM trajectory prediction al-
gorithm are shown in Fig. 10(a). After 20 training steps, the overall
loss showed a decreasing trend, where the loss of each of the sub-
sets decreased to values less than 0.011 (ucy). The losses in the
training and validation sets level off after five steps.

Fig. 10(b) shows that the training algorithm was tested using
different subsets, four of which achieved good results. However,
the subset hotels had a loss of 0.29 at the time of testing and re-
quired more iterations, but this tended to converge. This is due
to the improved prediction model being more lightweight and the
fact that this dataset was larger, with some subsets having larger
errors in subsequent tests.

The prediction model is evaluated by evaluating the met-
rics average displacement error (ADE) and final displacement
error (FDE), and it can be obtained that the average displace-
ment error is 0.087 and the final displacement error is 0.092 (see
Table 2), which are lower than the original mode prediction model,
in which the average displacement error is reduced by 18.3% and
the final displacement error is reduced by 51.9%. Therefore, using
YOLOVS and DeepSORT to detect and track pedestrians, combined
with the historical trajectory of pedestrians, can reduce the error
of the prediction model.

3.3. Non-collision scenarios track alignment

Two video examples of people traversing a pedestrian crossing
in a road section in Xiamen, China were randomly captured us-
ing different monitoring perspectives, and the detection, tracking,
prediction and perspective transformations of pedestrians in the
video were performed. As can be seen in Fig. 11, the historical and
predicted trajectories of pedestrians can be rendered, and the pic-
ture distortion due to the problem of the shooting angle is reduced
after the perspective transformation.

3.4. Real accident video track alignment

The YOLOV5-DeepSORT model was used to detect and track the
pedestrians (day and night) crossing the street in the two typi-
cal accidents from VRU-TRAVi. The trajectories of the pedestri-
ans in the accident videos were then predicted by Social-LSTM
and the results of detection tracking and predicted trajectories are
visualized.

Table 2. Comparative analysis of indicators for the assessment of predictive models.

Metric Datasets Social-LSTM Our-Social-LSTM Error reduction rate/%
ADE eth 0.50 0.0742 42.48
hotel 0.11 0.0969 1.31
zaral 0.22 0.0826 13.74
zara?2 0.25 0.0994 15.06
ucy 0.27 0.0820 18.80
Average 0.27 0.0870 18.30
FDE eth 1.07 0.0886 98.14
hotel 0.23 0.0986 13.14
zaral 0.48 0.0877 39.23
zara?2 0.50 0.0973 40.27
ucy 0.77 0.0889 68.11
Average 0.61 0.0920 51.90
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Fig. 12 shows the tracking effect of the pre-crash pedestrian
trajectory in Accident Case 1. As can be seen from the first three
images, after the red SUV occlusion the struck pedestrian was
still represented by the pink detection frame, and there was no
ID reassignment due to the occlusion. The algorithm’s identi-
fication number of the struck pedestrian remained unchanged
throughout the pre-crash phase (the colour of the detection frame
remained unchanged). This shows that the YOLOv5-DeepSORT
model was effective in detecting and tracking pedestrians in acci-
dent videos, even in the presence of occlusions.

Acc1dent car

I I\i\

3"“"’ —vl:'

'/{!l Am:dentcar

Fig. 12. Case 1. Detection and tracking displayed on accident video (a)~(e).

The pedestrian trajectory prediction in the Case 1 video based
on Social-LSTM is shown in Fig. 13. The yellow line was the real
trajectory and the blue line was the predicted trajectory of the
pedestrian. The blue line was consistent with the yellow line, indi-
cating that the prediction model successfully predicted the future
trajectory of the pedestrian.

Figs. 14(a) and (b) show the real-time tracking results for Case 2.
The tracked trajectory was consistent with the real trajectory of
the pedestrians. Figs. 14(c) and (d) show the results of pedestrian
trajectory prediction, and the blue line was consistent with the
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Fig. 13. Casel. Predicted trajectory before crashing (a)~(c).

yellow line, indicating that the prediction model predicted the fu-
ture trajectory of pedestrians better.

3.5. Coordinate mapping of predicted pedestrian
trajectories

Figs. 15(a) and (b) show the comparisons of pedestrian trajec-
tory prediction before and after perspective transformation, re-
spectively. From Figs. 14(c) and (d), it can be seen that the over-
all length and width distortion of the pedestrian crossing was
significantly reduced after the perspective transformation of the
video image, which indicated that the perspective transforma-
tion was more effective, and the pixel coordinates of the pedes-
trian trajectories predicted using the perspective transformation
could be directly converted to world coordinates. The perspective-
transformed image was used to establish a two-dimensional
world coordinate system based on the pedestrian crossing, as
shown in Fig. 15(c). The world coordinates of the future tra-
jectories of the pedestrians could be known by a direct linear
transformation.

Fig. 16 shows the results of fitting the pedestrian’s predicted tra-
jectory to the vehicle’'s motion trajectory in the world coordinate
system. It can be observed that the transformation between the
pixel coordinates of the pedestrian predicted trajectories and the

-

7
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world coordinates could be achieved by a direct linear transfor-
mation. The predicted pedestrian and vehicle motion trajectories
and collision points were consistent with the real accident col-
lision points, indicating that the pedestrian predicted trajectory
coordinate mapping model was effective.

The same operation was performed for Case 2. After the per-
spective transformation of the original image, the overall distor-
tion of the pedestrian crossing was reduced and the trajectory of
the pedestrians from the top view was more suitable for the coor-
dinate transformation (see Fig. 17(b)). Four control points (E, F, G
and H) were distributed on the pedestrian crossing, and the pixel
coordinates of the pedestrians in the figure could be transformed
into world coordinates using the DLT (see Fig. 17(c)).

Fig. 18 shows the results of the pedestrian tracking, prediction
and transformation process. The pedestrian’s trajectory was pre-
dicted from the start of detection until the pedestrian was struck,
and when combined with the vehicle’s trajectory, the resulting
collision point matched the location of the collision point in the
original accident.

4, Discussion

Deep-learning based trajectory prediction drives the development
of autonomous driving safety teleology. Machine vision predic-
tion methods can minimize the probability of an accident by ex-
tracting more pedestrian features as well as other factors such as
pedestrians’ posture, surroundings and human-vehicle distance.
This paper introduced the concepts of detection, tracking and pre-
diction algorithms as a basis for solving the problem of pedes-
trian trajectory prediction in traffic accidents. A pedestrian tra-
jectory prediction model for vehicle collision accident scenarios
was proposed. Among them, considering the distortion caused by
the shooting angle of the accident video and the limitation of the
pixel coordinates, a perspective transformation was added to the
trajectory prediction to correct the distortion of the pedestrian
crossing in the accident as the benchmark of the direct linear
transformation, and then the pixel coordinates of the pedestri-
ans were converted to the world coordinates and the validity of
the trajectory prediction was verified, and the pedestrian trajec-
tory was fitted to the vehicle trajectory under the world coordinate
system to predict the location of the pedestrian-vehicle collision
point.

The target detection (YOLOVS) and multi-target tracking al-
gorithm (DeepSORT) were utilized to obtain better historical

4

Z//

o
7/

Fig. 14. Case 2. Detection tracking and predicted trajectory: (a) and (b) detection tracking of the pedestrian, (c) and (d) the predicted
trajectory of the pedestrian.
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Fig. 15. Casel. Predicted trajectory before crashing: (a) no perspec-
tive transformation, (b) perspective transformation and (c) coordi-
nate system references.
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Fig. 16. Case 1. Pedestrian and vehicle trajectory mapping.
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Fig. 17. Case 2. Predicted trajectory before crashing: (a) no per-
spective transformation before touching, (b) perspective transfor-
mation before touching and (c) coordinate system reference.

pedestrian trajectories. The results show that the accuracy of
pedestrian detection was 93.9%. The error was reduced by 1.83%
compared to the original Social-LSTM prediction model proposed
by Alahi et al. [31]. In the trajectory prediction problem, Social-
LSTM was utilized to predict the trajectories of pedestrians be-
fore the collision in the video, and the results show that most
of its losses could be reduced to less than 1% after training.
The predicted trajectories were transformed by two mathemati-

: W
5F -.o-h'o..c"‘.--'"'0-"'.
af TGl
el ]
o .
2 ¢ * e Pedestrians .
1l eessee(Car :
.
0 L 1 L 3 f®
=3 =1 1 3 5 7 9
X/m

Fig. 18. Case 2. Pedestrian and vehicle trajectory mapping.

cal methods (Perspective Transformation and Direct Linear Trans-
formation), and the predictions are more effective in improving
the effective data of the vehicle collision avoidance systems by
comparing with the trajectory prediction model of Yagi et al.
[32].

Finally, based on a real accident scene, the practical effects of
YOLOVS, DeepSORT and Social-LSTM were verified. After track-
ing and predicting the pedestrian trajectories in two accident
videos with different light scenes, the results show that the tra-
jectories of the pedestrians before hitting in both accidents could
be predicted, and the predicted trajectories were the same as
the real trajectories. Combining pedestrian prediction and ve-
hicle motion trajectory, the location of pedestrian—vehicle col-
lision could be accurately predicted to provide a basis for the
perception and decision-making of vehicle intelligent collision
avoidance.

The current research method was still immature, and some
shortcomings need to be further improved, such as that in Fig. 11,
apart from the trajectory of the pedestrian hit (which was tracked
continuously), there were individual trajectories that were not
tracked effectively. The algorithm encountered difficulties with
the lack of colour contrast between the pedestrian and the road
surface, resulting in intermittent tracking of their trajectories.
Therefore, the tracking model, or camera resolution, needs to be
improved in further study. In addition, the posture of the pedes-
trian and the surrounding environmental factors could affect the
movement trend of the pedestrian, and this paper has not yet ad-
dressed these factors. The algorithm models should improve in
further study, considering more influential factors. This paper is
currently using a single model; in subsequent research multiple
models will be used, which will then be compared and analysed
to enhance the credibility of this paper.

5. Conclusions

This paper presents a pedestrian trajectory prediction model for
vehicle collision accident scenarios by applying a combination of
detection, tracking and prediction algorithms to track and predict
the trajectories of pedestrians in real traffic accidents. The follow-
ing conclusions were obtained:

1) The historical pedestrian trajectories could be obtained us-
ing target detection (YOLOVS) and multi-objective tracking
algorithms (DeepSORT), and the accuracy of pedestrian de-
tection was higher than 90%.

2) The pre-crash trajectory of pedestrians in the video was pre-
dicted using a Social-LSTM, which could be trained to reduce
most of the loss to less than 1%.

3) The effectiveness of the pedestrian trajectory prediction
model was verified by using videos of vehicle-pedestrian col-
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lision accidents with different illumination levels. The pre-
dicted pre-crash and future trajectories of pedestrians, and
collision locations in both accidents, were generally consis-
tent with the real accidents. The pedestrian trajectory pre-
diction model could provide a reference for the development
of sensing and decision-making technologies for intelligent
vehicle collision avoidance.

Future work should further improve the accuracy of predic-
tions and consider the impact of multiple factors on pedes-
trian trajectories, such as pedestrian posture and surround-
ing environmental conditions. Also, more different accident
scenarios can be analysed in conjunction with each other to
make the trajectory prediction model widely applicable in
avoiding pedestrian accidents.
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