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Abstract 

Techniques for predicting the trajectory of vulnera b le r oad users are important to the development of perception systems for au- 
tonomous vehicles to avoid accidents. The most effective trajectory prediction methods, such as Social-LSTM, are often used to 
predict pedestrian trajectories in normal passage scenarios. Howe ver, the y can produce unsatisfactory prediction results and data 
redundancy, as well as difficulties in predicting trajectories using pixel-based coordinate systems in collision avoidance systems. 
There is also a lack of validations using real vehicle-to-pedestrian collisions. To address these issues, some insightful approaches to 
impr ov e the trajector y pr ediction scheme of Social-LSTM were proposed, such methods included transforming pedestrian trajectory 
coordinates and converting image coordinates to world coordinates. The YOLOv5 detection model was introduced to reduce target 
loss and impr ov e pr ediction accuracy. The Dee pSORT algorithm w as employed to r educe the n umber of target transformations in 

the tr ac king model. Ima ge Perspecti v e Transformation (IPT) and Dir ect Linear T ransformation (DL T) theories w ere combined to tr ans- 
form the coordinates to world coordinates, identifying the collision location where the accident could occur. The performance of the 
proposed method was validated by training tests using MS COCO (Microsoft Common Objects in Context) and ETH/UCY datasets. 
The results showed that the target detection accuracy was more than 90% and the prediction loss tends to decrease with increasing 
training steps, with the final loss value less than 1%. The r elia bility and effecti v eness of the impr ov ed method wer e demonstrated by 
benchmarking system performance to two video recordings of real pedestrian accidents with different lighting conditions. 

Ke yw ords: vehicle-to-pedestrian collisions; pedestrian trajectory prediction; YOLOv5; DeepSORT; Social-LSTM 
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Highlights 

� Deep-learning algorithms based on YOLOv5, DeepSORT and 

Social-LSTM can ac hie v e r eal-time detection, tr ac king and 

tr ajectory pr ediction of pedestrians in accident videos, and 

the trajectory prediction results have small errors and 

are consistent with pedestrian trajectories in real accident 
videos. 

� Based on the theory of perspective transformation and di- 
r ect linear tr ansformation, the impact of video distortion on 

pedestrian pr ediction tr ajectory can be r educed, and the con- 
version between pixel coordinates and world coordinates of 
pedestrian prediction trajectory can be realized. 

� By combining the world of pedestrian prediction trajectory 
and vehicle motion trajectory, the location of the pedestrian 

collision point can be accur atel y pr edicted for v ehicle colli- 
sion, providing a reference basis for intelligent vehicle colli- 
sion avoidance sensing and decision fusion. 

1. Introduction 

According to a report by the World Health Organization [ 1 ], more 
than half of road traffic deaths are among vulnerable road users,
including pedestrians and cyclists as well as motor c yclists and 
Recei v ed: August 2, 2023. Revised: October 18, 2023. Accepted: November 27, 2023 
© The Author(s) 2023. Published by Oxford Uni v ersity Pr ess on behalf of Central So
terms of the Cr eati v e Commons Attribution-NonCommercial License ( https://cr eat
re-use, distribution, and reproduction in any medium, provided the original work i
journals.permissions@oup.com 
ersons with disabilities or reduced mobility and orientation. A 

taggering estimated 1.35 million people die each year globally 
ue to road crashes, of which 23% are pedestrians . Impro vements

n automoti ve acti ve safety technologies have played an impor-
ant role in reducing pedestrian accidents . Refs . [ 2 , 3 ] examined
he benefits of active safety systems in pr e v enting accidents and

 educing injury se v erity. These systems consist of four main com-

onents: envir onment sensing, cr ash risk assessment, decision- 
aking and e v asiv e measur es [ 4 ]. Ther efor e, ac hie ving accur ate

etection, tr ac king and trajectory prediction of vulnerable road
sers (VRUs) is very important to avoid accidents in the r esearc h
f de v eloping sensing, decision-making and contr ol tec hnologies
or advanced assisted-driving vehicles and self-driving vehicles. 

Curr entl y, pedestrian detection relies on two main a ppr oac hes:

r aditional mac hine-learning methods and deep-learning detec- 
ion methods. Since the accuracy of the traditional target detec-
ion methods is not very high, the recognition effect is not very
ood, and the ov er all tr ansportation speed will be slow when
he computational volume is large . Nowada ys , machine-learning

ethods are maturing and, compared to traditional manual fea- 
ur e extr action methods, they ar e able to conv ert pixel infor-

ation in the input image into deeper, more abstract features.
ac hine-learning-based tar get detection methods ar e also m uc h
uth Uni v ersity Pr ess. This is an Open Access article distributed under the 
i v ecommons.org/licenses/by-nc/4.0/ ), which permits non-commercial 
s properly cited. For commercial re-use, please contact 
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etter than traditional methods in terms of speed, accuracy and
obustness. Among the machine-learning methods, the most rep-
 esentativ e ones ar e AdaBoost [ 5 ]; Log AdaBoost [ 6 ] and Support
ector Mac hines (SVM) [ 7 ], whic h expr ess the tar get thr ough arti-
ciall y designed featur es, suc h as classical Haar-like featur es [ 8 ],
istogram of oriented gradients (HOG) features [ 9 , 10 ] and creativ-

ty support systems (CSS) features [ 11 ]. Felzenszwalb et al. [ 12 , 13 ]
roposed a HOG-based deformable part model (DPM) algorithm,
nd then impr ov ed the DPM algorithm, whic h was the most ef-
ective method in the field of traditional target detection. How-
 v er, these tr aditional methods are unable to meet the demand
or pedestrian detection and cannot contribute to the de v elop-

ent of autonomous driving technologies. Deep-learning target
etection methods can obtain high-le v el abstr act featur es, whic h
an be divided into one-stage and two-stage target detection algo-
ithms according to the diffident processing framework. The one-
tage detection algorithms include YOLO [ 14 ], Retina-Net [ 15 ] Sin-
le Shot Detector (SSD) [ 16 ], among others. In particular, the algo-
ithms of the YOLO famil y hav e adv anta ges r egarding speed and
ccuracy. Among them, YOLOv5 is widely used because it is faster,
or e accur ate and lighter in weight among the YOLO series [ 17 ]. 
In pedestrian tr ac king, ther e ar e tr aditional and deep-learning

 ppr oac hes . T he earliest algorithms to appear in the field of target
r ac king wer e tr aditional tar get-tr ac king methods, and although
he method is difficult to a ppl y to today’s changing environment,
hese methods have laid a certain foundation for subsequent re-
earc h. Tr aditional m ulti-tar get tr ac king methods include near-
st neighbour criteria filtering (NNSF) [ 18 ], joint probability den-
ity data association (JPDA) [ 19 , 20 ], network flow data associa-
ion (NFDA) [ 21 ] and multiple hypothesis tracking (MHT) [ 22 , 23 ]).
eep-learning-based m ulti-tar get tr ac king methods include the
ORT (Simple Online Realtime Tr ac king) algorithm proposed by
ewley et al. [ 24 ]. Wojke et al. [ 25 ] designed the DeepSORT algo-
ithm based on SORT. The algorithm used a deep association met-
ic containing the target appearance features learned by a gener-
lized residual network instead of the original association met-
ic obtained by Kalman filtering frame data. The algorithm added
ascade matching to the matching module and introduced a state
pdate strategy to further impr ov e the performance of the tr ac k-

ng algorithm [ 26 ]. 
In the realm of trajectory prediction, traditional methods often

tilize artificial features to model pedestrian behaviour. Among
hese methods, the Social Force (SF) model [ 27 ], proposes that
uman motion is shaped by social forces. Bera et al. [ 28 ] under-
tood global and local motion patterns from two-dimensional tra-
ectories for predicting pedestrian motion in crowds . T here are
lso Kalman filter-based methods [ 29 ] and dynamic Bayesian net-
orks [ 30 ] methods for pedestrian motion prediction. Due to the

omplexity and variability of the pedestrian’s motion, it is diffi-
ult to fully express it with manual rules, which can be well ad-
ressed by deep-learning-based methods . T herefore , Alahi et al.
 31 ] proposed a Social Long and Short-Term Memory Neural Net-
ork (Social-LSTM), which considers that the trajectories gener-
ted by pedestrians are influenced by two constr aints, namel y ob-
tacles to be avoided and other pedestrians. Based on these two
onditions, the tr ajectory pr ediction pr oblem was consider ed as
 sequence generation problem and a Social-LSTM model was
r oposed. This data-driv en a ppr oac h ac hie v ed better r esults. Ya gi
t al. [ 32 ] first proposed perspective-based trajectory prediction,
hic h combined thr ee conditions of self-motion, tar get human

cale and target pose to improve the accuracy of predicted pedes-
rian trajectories. Zhou et al. [ 33 ] impr ov ed the LaneGCN algo-
ithm in se v er al ways to obtain the tr ajectory pr ediction of ve-
icles. Ref. [ 34 ] emplo y ed an enhanced perspectiv e c hange tec h-
ique for vehicle detection, 3D bounding box estimation, tr ac king
nd subsequent velocity estimation. Meng et al. [ 35 ] used LSTM
o accomplish the prediction of tr ansv erse longitudinal tr ajecto-
ies and thus lane-change trajectories. Palsodkar et al. [ 36 ] used
erspectiv e c hange to calculate human-to-human distance. Wang
t al. [ 37 ] used direct linear transformation to conduct pedestrian
 elocity anal ysis. Wang et al. [ 38 ] r esearc hed tr ajectory data to de-
iv e cr ash pr ediction and Li et al. [ 39 ] obtained prediction models
y conflicting trajectory data. Taken together, these studies of pre-
ictive modelling have shown that predicting pedestrian trajecto-
ies can help vehicles make decisions in traffic accidents, which
hows the r ele v ance of tr ajectory pr ediction data for tr affic acci-
ent r esearc h and the pr ospectiv e natur e of our work in pr oposing
r ajectory pr ediction and collision pr ediction. 

T he abo v e methods ar e important for pedestrian motion tr a-
ectory pr ediction. Thr ough detection and tr ac king, the historical
rajectories of pedestrians are recorded, and based on their his-
orical trajectories, a prediction model predicts future trajectories.
o w e v er, the following pr oblems still exist. According to the lim-

tations of pedestrian detection pointed out by Ref. [ 40 ], in real
r affic scenarios, the accur acy and speed of detection ar e not onl y
ependent on har dw ar e de vices but also highly disturbed by exter-
al environmental factors. 1) In pedestrian detection, the current
opular pedestrian detection algorithms lack the speed and accu-
acy for the real-time processing required in real traffic scenarios
nd cannot be ac hie v ed with the extr emel y complex algorithms
an y r esearc hers use to impr ov e detection performance. 2) In

edestrian tr ac king, the existing tr ajectory tr ac king algorithms ig-
ore the surface features of pedestrians and the targets are easily

ost during tr ac king, r esulting in data r edundancy, whic h gr eatl y
 educes the effectiv eness of tr ac king. 3) In tr ajectory pr ediction,
edestrian tr ajectory pr ediction models ar e mostl y de v eloped in
imple situations and cannot be used to anal yse tr ansient be-
aviour in complex traffic accidents, which are still difficult to

ncor por ate in VRU collision avoidance control strategies. 
In the current study, a trajectory prediction model based on

ocial-LSTM was de v eloped and assessed with actual traffic ac-
idents. Fig. 1 shows the analysis flow of the pedestrian trajectory
rediction. The main objectives were: 

1) To combine the deep-learning algorithms of YOLOv5 and
DeepSORT to ac hie v e r eal-time detection and tr ac king of
pedestrians , impro ve the accuracy of the prediction model
and reduce data redundancy. 

2) To establish pedestrian prediction trajectories from the first
viewpoint of the vehicle using perspective transformation
and direct linear transformation theory to identify possi-
ble collision points between the vehicle and pedestrians,
to provide a reference basis for the de v elopment of an ad-
v anced in-v ehicle pedestrian sensing system, and to avoid
accidents. 

. Methods 

.1. Pedestrian detection model 
 he VR U detection algorithm model of YOLOv5 comprises four
ain parts in its structural diagram: input, backbone, neck layer

nd output layer (refer to Fig. 2 ). For the input layer, three tech-
iques are emplo y ed: the Mosaic data enhancement method,
da ptiv e anc hor fr ame calculation and ada ptiv e ima ge scaling. 

The backbone layer consists of the Focus structure and
SP (cr oss-sta ge local network) structure algorithms . T he Focus
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Fig. 1. Pedestrian trajectory prediction technology analysis flow. 

Fig. 2. YOLOv5 algorithm model structure. 
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structure is a slicing operation on an ima ge structur e with an orig- 
inal resolution of 608 ×608 ×3, which was first converted into a 
featur e ma p with a r esolution of 304 ×304 ×12. The 304 ×304 ×32 
featur e ma ps wer e obtained b y conv olution operation with 32 
kernels. 

Featur e Pyr amid Network (FPN) [ 41 ] and P ath Aggr egation Net- 
work (PAN) [ 42 ] used different structures to extract informa- 
tion from images. FPN used a top-down up-sampling approach 

so that the bottom featur e ma p carried important semantic in- 
formation. On the other hand, PAN used a bottom-up down- 
sampling a ppr oac h so that the top features contained robust posi- 
tional information. By fusing these two features, the resulting fea- 
tur e ma p contained r obust semantic and positional information,
which enabled accurate prediction of images of different sizes.
In pedestrian detection, the extraction of language information 

and location information of target pedestrians is especially im- 
portant, while FPN can extract semantic information of pedestri- 
ans and PAN can extract pedestrian location information to im- 
pr ov e detection accuracy. The neck layer adopted the FPN + PAN 

structur e to ac hie v e the tr ansmission of semantic and positional 

information. 
The output layer calculated the loss of the detected frame
y GIOU Loss . T he loss consists of three components: bounding-
r ame r egr ession loss, tar get confidence pr ediction loss and cate-
ory prediction loss [ 34 ]. The minimum outer frame is introduced
ased on the IoU (Intersection over Union) feature to solve the
roblem of loss equal to 0 when there is no ov erla p between the
etection frame and the real frame. 

The binary cr oss-entr opy losses in category pr ediction wer e de-
ned as: 

y i = Sigmoid ( x i ) = 

1 
1 + e −xi 

(1) 

L class = − 1 
N 

N ∑ 

n =1 

y ∗i log ( y i ) + ( 1 − y ∗i ) log ( 1 − y i ) (2) 

here, N was the total number of categories, x i was the predicted
alue of the current category and y i was the probability of the
urrent category obtained after the resultant activation function.
he term y ∗i indicated the true value of the current category (0
r 1) and L class indicated the category predicted loss. 

The goal of ima ge tr ac king was to define a bounding box around
he object of interest. Defining the predicted bounding box as B
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Fig. 3. DeepSORT algorithm model structure. 
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nd B gt as the real bounding box, a loss can be determined by the
ntersection over Union defined in equation ( 3 ). 

IoU 

(
B, B gt 

) = 

∣∣B ∩ B gt 
∣∣∣∣B ∪ B gt 
∣∣ (3) 

.2. Tr ajectory-tr acking model 
ig. 3 shows the model structure of the DeepSORT algorithm,
hich was centred on prediction, observation and updating infor-
ation describing the target being tr ac ked. The Kalman filter was

tilized for position prediction, and the Hungarian algorithm was
mplo y ed to match the predicted trajectory with the real trajec-
ory. The matching methods included Cascade and IoU matching
 43 ]. 

.3. Trajectory-prediction model 
r ac king objects and predicting their future position requires
nowledge of their pr e vious state and determining the c har ac-
eristics of the motion patterns. Recurrent Neural Network (RNN)
as been found to have insufficient long-term dependence due to
 ecurr ence disa ppear ance [ 44 ]. Long Short-Term Memory (LSTM)
ould not obtain the interaction information between different
edestrians in the same scene [ 45 ]. Ho w e v er, Social-LSTM has
een successfully used to predict the future trajectory of pedestri-
ns in real time [ 46 ]. Fig. 4 shows the structure of LSTM [ 47 ]. The
lgorithm created information sharing between different pedes-
rians in a video scene by adding a pooling layer for each LSTM
n the adjacent space. LSTM had three types of gate composition:
orgetting gate f t , input gate i t and output gate o t , where the role
f the forgetting gate f t was to determine the size of the previous
oment cell state into the current moment, and was defined as: 

f t = sigmoid 

(
W f × [ h t−1 , x t ] + b f 

)
(4) 

here W f denoted the weight of the forgetting gate, h t-1 was the
nput value at the previous moment, x t was the input value at the
urrent moment and b f denoted the deviation term of the forget-
ing gate. 

The role of the input gate i t was to determine the size of the
etwork output into the cell state at the current moment and was
efined by: 

i t = sigmoid ( w i × [ h t−1 , x t ] + b i ) (5) 

here w i was the weight value of the input gate and b i was the
eviation term of the input gate. 
The role of the output gate o t was to determine the size of the
nit state into the current output value, whose expression was 

o t = sigmoid ( w o × [ h t−1 , x t ] + b o ) (6)

here w o was the weight value of the output gate and b o was the
eviation term of the output gate. 

According to the forgetting gate f t , the input gate i t , and the
utput gate o t , the output of the LSTM of a certain layer could be
btained 

c t = f t × c t−1 + i t × ˜ c (7)

h t = o t × tanh ( c t ) (8)

here c t−1 denoted the state value at the pr e vious moment, and c̃
enoted the current input cell and was defined by 

˜ c = tanh ( w c × [ h t−1 , x t ] + b c ) (9)

here w c was the weight of the state value and b c was the devia-
ion term of the state value. 

The main task of the Social-P ooling la y er w as to collect the hid-
en state information of neighbouring targets through spatial in-
ormation. As shown in Fig. 5 , the black dots and their surrounding
arts r epr esented the domain of the tr ac king tar get. The hidden
tate of the tr ac king tar get was gather ed ar ound a certain spatial
istance, and the hidden state of the tr ac king tar get was calcu-

ated according to equation ( 10 ). 

H 

i 
t ( m, n, : ) = 

∑ 

jεN i 

1 mn 

[ 
x j t − x i t , y 

j 
t − y i t 

] 
h j t−1 (10)

here h j t−1 denoted the hidden state of the j th target in the LSTM
t moment t -1, 1 mn [ x − y ] denoted whether ( x , y ) was within the
rid ( m , n ) and N i denoted the neighbour of the i th tr ac king tar get.

As shown in Fig. 6 , where LSTM denoted LSTM neural network,
he LSTM network used unsupervised learning, and the motion
rajectory of the target in the video may be affected by the motion
f the neighbouring targets. For this reason, the S-Pooling layer
onnected the LSTM network of the target to be detected with the
STM networks of its neighbouring targets to form a new network
alled Social-LSTM, which was then used to predict the target’s
otion trajectory. Based on Social-LSTM to predict the future tra-

ectory of pedestrians, we analyse the future motion trajectory of
arget pedestrians in traffic accidents, and then derive the loca-
ion of the pedestrian–vehicle collision point, which improves the
 efer ence basis for the r esearc h of v ehicle collision avoidance for
edestrians. 

.4. Coordinate mapping model 
o ac hie v e r eal-time matc hing of the pr edicted futur e tr ajectory
f the pedestrian with the perceived position information in the
ehicle collision avoidance system, a new coordinate mapping
odel was de v eloped based on Dir ect Linear Tr ansform (DLT) and

erspectiv e Tr ansformation (PT). The model is shown in Fig. 7 . The
a pping pr ocess consists of two parts: perspectiv e tr ansforma-

ion and direct linear transformation. The perspective transfor-
ation used the condition that the three points of the perspective

entr e, ima ge point and target point were co-linear to the perspec-
iv e fr om one plane to another plane, which could still k ee p the
hadow-bearing surface unchanged (Kocur et al. [ 34 ]). The direct
inear transformation was a processing method of images that de-
ned a relationship between the image coordinates and their cor-
esponding object space coordinates [ 37 ]. Video images for pedes-
rian tr ajectory pr ediction wer e mostl y collected by r oad surv eil-
ance cameras, and the height and viewing angle caused a per-
pective distortion of the captured scene. To solve the problem of
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Fig. 4. LSTM structure. 

Fig. 5. Social-P ooling structure . 

Fig. 6. Social-LSTM structure. 

Fig. 7. Coordinate mapping model. 
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mage distortion based on the surveillance camera viewpoint, it 
as transformed into a top view. 
The perspective transformation model consists of the following 

erspectiv e tr ansformation matrix A . 

A = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

a 11 a 12 a 13 

a 21 a 22 a 23 

a 31 a 32 a 33 

⎤ 

⎥ ⎥ ⎥ ⎦ 

(11) 

here 
[ a 11 a 12 

a 21 a 22 

] 
denoted linear transformations, such as scaling,

taggering and flipping, [ a 31 a 32 ] denoted translation and [ 
a 13 

a 23 
] de-

oted the resulting perspective transformation. The perspective 
ransformation model in the following equation was formed from 

he transformation matrix. [ 
x ′ y ′ w 

′ 
] 

= 

[ 
u v w 

] 
A (12) 

here u and v were the pixel coordinates of the original image,
 

′ and y ′ were the pixel coordinates after perspective transforma- 
ion, w was the coordinate in three dimensions and, since the im-
ge was two-dimensional, w is 1. 

x = 

x ′ 

w 

′ = 

a 11 u + a 21 v + a 31 

a 13 u + a 23 v + a 33 
(13) 

y = 

y ′ 

w 

′ = 

a 12 u + a 22 v + a 32 

a 13 u + a 23 v + a 33 
(14) 

The direct linear transformation theory was used to trans- 
orm pixel coordinates of the predicted future motion trajectory of
edestrians to world coordinates. First, the relationship between 

he pixel coordinate system and the world coordinate system was
nalysed and the transformation matrix was obtained based on 

he linear transformation expression (11) and the selected con- 
rol point coordinates . T he transformation from pixel coordinates
o the world coordinate system was completed by the transforma- 
ion matrix. 

U and V w ere pixel coor dinates corresponding to w orld coor di-
ates ( X , Y ), L was the transformation matrix and equation ( 11 )
as the direct linear transformation model between pixel coordi- 
ates and world coordinates. [ 

U 

V 

] 

= L 

[ 

X 

Y 

] 

(15) 
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Fig. 8. YOLOv5 loss parameter variation: (a) training loss parameter variation diagram and (b) validation loss parameter variation dia- 
gram. 

Table 1. YOLOv5 training and validation results. 

COCO128 box_loss obj_loss cls_loss 

Train 0.023 0.026 0.003 
Test 0.017 0.013 0.002 
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here the transformation matrix L was: 

L = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

l 1 l 2 l 3 

l 4 l 5 l 6 

l 7 l 8 1 

⎤ 

⎥ ⎥ ⎥ ⎦ 

(16) 

Combining equations ( 11 ) and ( 12 ) yields the following equa-
ion ⎧ ⎨ 

⎩ 

U − l 1 X+ l 2 Y+ l 3 
l 7 X+ l 8 Y+1 = 0 

V − l 4 X+ l 5 Y+ l 6 
l 7 X+ l 8 Y+1 = 0 

(17) 

.5. Training and evaluation of the algorithm 

he algorithm was trained using the COCO128 dataset [ 48 ]. This
atabase has a small tutorial dataset consisting of the first 128

mages of the entire COCO dataset. The COCO dataset could be
sed for image detection, semantic segmentation and image cap-
ioning. It contained 1.5 million tar gets, 80 tar get classes, 91 ma-
erial classes and 250,000 pedestrians with k e y point annotation.
he parameters of the training process were set: the learning rate
as 0.01 for the initial learning rate and 0.2 for the cycle learn-

ng rate . T he image size was 640 ×640 ×3. The training iteration
eriod was 700 times. After the training, the algorithm was vali-
ated with another database, the ETH/UCY pedestrian trajectory
ataset [ 49 ]. This database contained five subsets, namely eth,
cy, hotel, zara1 and zara2, which represent five scenes and 2206
uman motion tr ajectories. Eac h subset includes an aerial view
nd the two-dimensional location of each individual. These sub-
ets contain a variety of challenging scenarios, including human
ollision a voidance , humans cr ossing eac h other and gr oup be-
a viour. T he effectiveness of the procedure in dealing with real ac-
idents under different lighting conditions was e v aluated thr ough
ases in VRU-TRAVi ([ 50–52 ]; [ 40 ]). The videos wer e pr e viousl y pr o-
essed to derive the ‘true’ trajectories of the pedestrians and vehi-
les . T he videos were then processed with the pr e viousl y v alidated
r ac king and pr ediction algorithm to deriv e the pedestrian motion
rediction data that would be available in a future pedestrian de-
ection system. The two accident cases are described below. 
Case 1 (Da ytime): T he pedestrian w as w alking on a pedestrian
r ossing. The pedestrian cr ossed without looking at the black SUV
 ppr oac hing fr om the left, and the driver of the black SUV did not
ee the pedestrian. The driver did not slow down or brake until
fter hitting the pedestrian. 

Case 2 (Nighttime): The pedestrian was running on the pedes-
rian crossing. The driver of the vehicle had overtaken another ve-
icle when a ppr oac hing the intersection, and failed to slow down
s it entered the crosswalk, and struck the pedestrian. 

. Results 

.1. Detection and tracking algorithm validation 

ig. 8 shows the results of the training process of the YOLOv5 and
eepSORT systems . Figs . 8 (a) and (b) show the trends of training

oss and validation loss with increasing training steps (times), re-
pectiv el y. After 700 training steps, the loss gener all y tended to
ecrease and, according to Table 1 , the final loss of the bounding
ox r egr ession (box_loss) was 0.023, the loss of the tar get confi-
ence prediction (obj_loss) was 0.026 and the loss of the category
rediction (cls_loss) was 0.003. The loss functions of the training
nd validation sets remain low. 

Fig. 9 shows the trend of each accuracy metric with the in-
rease in step length, where the horizontal coordinate indicated
he training step length and the vertical coordinate indicated the
ccur acy v alue. 

Precision is calculated by the formula: 

precision = 

T P 
T P + F P 

(18)

Recall is calculated by the formula: 

recall = 

T P 
T P + F N 

(19)

here TP , FP , FN and TN are the actual categories in the binary
onfusion matrix, TP (True Positive) means actual positive sam-
les and pr edicted positiv e samples, FP (False Positive) means ac-
ual negative samples and predicted positive samples, FN (False
egative) means actual positive samples and predicted negative

amples and TN (True Negative) means actual negative samples
nd predicted negative samples . T he mAP is the area enclosed af-
er plotting with Precision and Recall as the two axes, m denotes
he av er a ge and 0.5 denotes that the IoU thr eshold for determin-
ng positive and negative samples is taken as 0.5. 

The figure shows that for the first 50 epochs, the indicators in-
r eased shar pl y, and with incr easing tr aining, the indicators gr ad-
ally tended to be stable, in which the accuracy, recall and average
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Fig. 9. Precision index change. 

Fig. 10. Dataset training and validation results: (a) training results 
for each subset and (b) testing results for each subset. 
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Table 2. Compar ativ e anal ysis of indicators for the assessment of pr ed

Metric Datasets Social-LSTM 

ADE eth 0.50 
hotel 0.11 
zara1 0.22 
zara2 0.25 
ucy 0.27 

Av er a ge 0.27 

FDE eth 1.07 
hotel 0.23 
zara1 0.48 
zara2 0.50 
ucy 0.77 

Av er a ge 0.61 
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ccuracy tended to 91.9%, 96.0% and 97.5% of the av er a ge v alue,
 espectiv el y, and the ov er all accur ac y w as higher than 90%, which
ndicated that the model had a good detection effect. 

.2. Trajectory prediction algorithm validation 

he validation results of the Social-LSTM trajectory prediction al- 
orithm are shown in Fig. 10 (a). After 20 training steps, the ov er all
oss sho w ed a decr easing tr end, wher e the loss of eac h of the sub-
ets decreased to values less than 0.011 (ucy). The losses in the
raining and validation sets level off after five steps. 

Fig. 10 (b) shows that the training algorithm was tested using
ifferent subsets, four of which achieved good results. Ho w ever,
he subset hotels had a loss of 0.29 at the time of testing and re-
uir ed mor e iter ations , but this tended to con v er ge . T his is due
o the impr ov ed pr ediction model being more lightweight and the
act that this dataset was larger, with some subsets having larger
rrors in subsequent tests. 

The prediction model is e v aluated by e v aluating the met-
ics av er a ge displacement err or (ADE) and final displacement
rror (FDE), and it can be obtained that the av er a ge displace-
ent error is 0.087 and the final displacement error is 0.092 (see

able 2 ), whic h ar e lo w er than the original mode prediction model,
n which the average displacement error is reduced by 18.3% and
he final displacement error is reduced by 51.9%. T herefore , using
OLOv5 and DeepSORT to detect and tr ac k pedestrians, combined
ith the historical trajectory of pedestrians, can reduce the error 
f the prediction model. 

.3. Non-collision scenarios track alignment 
wo video examples of people tr av ersing a pedestrian crossing
n a road section in Xiamen, China were randomly captured us-
ng different monitoring perspectives, and the detection, tracking,
rediction and perspective transformations of pedestrians in the 
ideo were performed. As can be seen in Fig. 11 , the historical and
r edicted tr ajectories of pedestrians can be r ender ed, and the pic-
ure distortion due to the problem of the shooting angle is reduced
fter the perspective transformation. 

.4. Real accident video track alignment 
he YOLOv5-DeepSOR T model w as used to detect and tr ac k the
edestrians (day and night) crossing the street in the two typi-
al accidents from VR U-TRAVi. T he trajectories of the pedestri-
ns in the accident videos were then predicted by Social-LSTM 

nd the results of detection tr ac king and pr edicted tr ajectories ar e
isualized. 
ictiv e models. 

Our-Social-LSTM Error reduction r a te/% 

0 .0742 42 .48 
0 .0969 1 .31 
0 .0826 13 .74 
0 .0994 15 .06 
0 .0820 18 .80 
0 .0870 18 .30 

0 .0886 98 .14 
0 .0986 13 .14 
0 .0877 39 .23 
0 .0973 40 .27 
0 .0889 68 .11 
0 .0920 51 .90 

er on 30 July 2024
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Fig. 11. Detection and tr ac king displayed on non-collision scenarios (a) ∼(f). 

Fig. 12. Case 1. Detection and tr ac king displayed on accident video (a) ∼(e). 
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Fig. 12 shows the tr ac king effect of the pr e-cr ash pedestrian
rajectory in Accident Case 1. As can be seen from the first three
mages, after the red SUV occlusion the struck pedestrian was
till r epr esented by the pink detection fr ame, and ther e was no
D reassignment due to the occlusion. The algorithm’s identi-
cation number of the struck pedestrian remained unchanged
hroughout the pre-crash phase (the colour of the detection frame
 emained unc hanged). This shows that the YOLOv5-DeepSORT
odel was effective in detecting and tr ac king pedestrians in acci-

ent videos, e v en in the pr esence of occlusions. 
The pedestrian trajectory prediction in the Case 1 video based
n Social-LSTM is shown in Fig. 13 . The y ello w line w as the real
rajectory and the blue line was the predicted trajectory of the
edestrian. The blue line was consistent with the y ello w line, indi-
ating that the prediction model successfully predicted the future
rajectory of the pedestrian. 

Figs. 14 (a) and (b) show the r eal-time tr ac king r esults for Case 2.
he tr ac ked tr ajectory was consistent with the real trajectory of
he pedestrians . Figs . 14 (c) and (d) show the results of pedestrian
r ajectory pr ediction, and the blue line was consistent with the
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Fig. 13. Case1. Pr edicted tr ajectory befor e cr ashing (a) ∼(c). 
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y ello w line, indicating that the prediction model predicted the fu- 
tur e tr ajectory of pedestrians better. 

3.5. Coordinate mapping of predicted pedestrian 

trajectories 

Figs. 15 (a) and (b) show the comparisons of pedestrian trajec- 
tory pr ediction befor e and after perspectiv e tr ansformation, r e- 
spectiv el y. Fr om Figs. 14 (c) and (d), it can be seen that the over- 
all length and width distortion of the pedestrian crossing was 
significantl y r educed after the perspectiv e tr ansformation of the 
video ima ge, whic h indicated that the perspectiv e tr ansforma- 
tion was mor e effectiv e, and the pixel coordinates of the pedes- 
trian trajectories predicted using the perspective transformation 

could be dir ectl y conv erted to w orld coor dinates . T he perspective- 
tr ansformed ima ge was used to establish a two-dimensional 
w orld coor dinate system based on the pedestrian crossing, as 
shown in Fig. 15 (c). The world coordinates of the future tra- 
jectories of the pedestrians could be known by a direct linear 
transformation. 

Fig. 16 shows the results of fitting the pedestrian’s predicted tra- 
jectory to the vehicle’s motion trajectory in the world coordinate 
system. It can be observed that the transformation between the 
pixel coordinates of the pedestrian pr edicted tr ajectories and the 
Fig. 14. Case 2. Detection tr ac king and pr edicted tr ajectory: (a) and (b
trajectory of the pedestrian. 
 orld coor dinates could be ac hie v ed by a dir ect linear tr ansfor-
ation. The predicted pedestrian and vehicle motion trajectories 

nd collision points were consistent with the real accident col-
ision points, indicating that the pedestrian predicted trajectory 
oordinate mapping model was effective. 

The same operation was performed for Case 2. After the per-
pectiv e tr ansformation of the original ima ge , the o v er all distor-
ion of the pedestrian crossing was reduced and the trajectory of
he pedestrians from the top view was more suitable for the coor-
inate transformation (see Fig. 17 (b)). Four control points (E, F, G
nd H) were distributed on the pedestrian crossing, and the pixel
oordinates of the pedestrians in the figure could be transformed
nto world coordinates using the DLT (see Fig. 17 (c)). 

Fig. 18 shows the results of the pedestrian tr ac king, pr ediction
nd transformation process . T he pedestrian’s trajectory was pre-
icted from the start of detection until the pedestrian was struck,
nd when combined with the vehicle’s trajectory, the resulting 
ollision point matched the location of the collision point in the
riginal accident. 

. Discussion 

eep-learning based trajectory prediction drives the development 
f autonomous driving safety teleology. Machine vision predic- 
ion methods can minimize the probability of an accident by ex-
r acting mor e pedestrian featur es as well as other factors such as
edestrians’ postur e, surr oundings and human–v ehicle distance.
his paper introduced the concepts of detection, tracking and pre-
iction algorithms as a basis for solving the problem of pedes-
rian trajectory prediction in traffic accidents. A pedestrian tra- 
ectory prediction model for vehicle collision accident scenarios 
as proposed. Among them, considering the distortion caused by 

he shooting angle of the accident video and the limitation of the
ixel coordinates, a perspectiv e tr ansformation was added to the
r ajectory pr ediction to corr ect the distortion of the pedestrian
rossing in the accident as the benchmark of the direct linear
ransformation, and then the pixel coordinates of the pedestri- 
ns wer e conv erted to the w orld coor dinates and the validity of
he tr ajectory pr ediction was v erified, and the pedestrian tr ajec-
ory was fitted to the v ehicle tr ajectory under the world coordinate
ystem to predict the location of the pedestrian–vehicle collision 

oint. 
The target detection (YOLOv5) and m ulti-tar get tr ac king al-

orithm (DeepSOR T) w ere utilized to obtain better historical
) detection tr ac king of the pedestrian, (c) and (d) the predicted 

user on 30 July 2024
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Fig. 15. Case1. Pr edicted tr ajectory befor e cr ashing: (a) no perspec- 
tiv e tr ansformation, (b) perspectiv e tr ansformation and (c) coordi- 
nate system r efer ences. 

Fig. 16. Case 1. Pedestrian and v ehicle tr ajectory ma pping. 

Fig. 17. Case 2. Pr edicted tr ajectory befor e cr ashing: (a) no per- 
spectiv e tr ansformation befor e touc hing, (b) perspectiv e tr ansfor- 
mation before touching and (c) coordinate system reference. 
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Fig. 18. Case 2. Pedestrian and v ehicle tr ajectory ma pping. 
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edestrian trajectories . T he results show that the accuracy of
edestrian detection was 93.9%. The error was reduced by 1.83%
ompared to the original Social-LSTM prediction model proposed
y Alahi et al. [ 31 ]. In the trajectory prediction problem, Social-
STM was utilized to predict the trajectories of pedestrians be-
ore the collision in the video, and the results show that most
f its losses could be reduced to less than 1% after training.
he pr edicted tr ajectories wer e tr ansformed b y tw o mathemati-
al methods (Perspective Transformation and Direct Linear Trans-
ormation), and the predictions are more effective in improving
he effective data of the vehicle collision avoidance systems by
omparing with the trajectory prediction model of Yagi et al.
 32 ]. 

Finally, based on a real accident scene, the practical effects of
OLOv5, DeepSOR T and Social-LSTM w er e v erified. After tr ac k-

ng and predicting the pedestrian trajectories in two accident
ideos with different light scenes, the results show that the tra-
ectories of the pedestrians before hitting in both accidents could
e predicted, and the predicted trajectories were the same as
he real trajectories. Combining pedestrian prediction and ve-
icle motion trajectory, the location of pedestrian–vehicle col-

ision could be accur atel y pr edicted to provide a basis for the
erception and decision-making of vehicle intelligent collision
 voidance . 

The curr ent r esearc h method was still immatur e, and some
hortcomings need to be further impr ov ed, suc h as that in Fig. 11 ,
 part fr om the tr ajectory of the pedestrian hit (whic h was tr ac ked
ontinuousl y), ther e wer e individual tr ajectories that wer e not
r ac k ed effecti v el y. The algorithm encounter ed difficulties with
he lack of colour contrast between the pedestrian and the road
urface, resulting in intermittent tracking of their trajectories.
her efor e, the tr ac king model, or camer a r esolution, needs to be

mpr ov ed in further study. In addition, the posture of the pedes-
rian and the surrounding environmental factors could affect the

ov ement tr end of the pedestrian, and this pa per has not yet ad-
ressed these factors . T he algorithm models should impr ov e in
urther study, considering more influential factors . T his paper is
urr entl y using a single model; in subsequent r esearc h m ultiple
odels will be used, which will then be compared and analysed

o enhance the credibility of this paper. 

. Conclusions 

his pa per pr esents a pedestrian tr ajectory pr ediction model for
ehicle collision accident scenarios by a ppl ying a combination of
etection, tr ac king and pr ediction algorithms to tr ac k and pr edict
he trajectories of pedestrians in real traffic accidents . T he follow-
ng conclusions were obtained: 

1) The historical pedestrian trajectories could be obtained us-
ing target detection (YOLOv5) and m ulti-objectiv e tr ac king
algorithms (DeepSORT), and the accuracy of pedestrian de-
tection was higher than 90%. 

2) The pr e-cr ash tr ajectory of pedestrians in the video was pre-
dicted using a Social-LSTM, which could be trained to reduce
most of the loss to less than 1%. 

3) The effectiveness of the pedestrian trajectory prediction
model was verified by using videos of vehicle-pedestrian col-
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lision accidents with different illumination le v els . T he pre- 
dicted pr e-cr ash and futur e tr ajectories of pedestrians, and 

collision locations in both accidents, were generally consis- 
tent with the real accidents . T he pedestrian trajectory pre- 
diction model could provide a r efer ence for the de v elopment 
of sensing and decision-making technologies for intelligent 
vehicle collision a voidance . 

4) Future work should further impr ov e the accur acy of pr edic- 
tions and consider the impact of multiple factors on pedes- 
trian tr ajectories, suc h as pedestrian postur e and surr ound- 
ing en vironmental conditions . Also, more different accident 
scenarios can be analysed in conjunction with each other to 
make the trajectory prediction model widely applicable in 

avoiding pedestrian accidents. 
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