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Abstract
We propose a new machine learning formulation designed specifically for extrapolation. 
The textbook way to apply machine learning to drug design is to learn a univariate func-
tion that when a drug (structure) is input, the function outputs a real number (the activ-
ity): f(drug) → activity. However, experience in real-world drug design suggests that this 
formulation of the drug design problem is not quite correct. Specifically, what one is really 
interested in is extrapolation: predicting the activity of new drugs with higher activity than 
any existing ones. Our new formulation for extrapolation is based on learning a bivariate 
function that predicts the difference in activities of two drugs F(drug1, drug2) → differ-
ence in activity, followed by the use of ranking algorithms. This formulation is general 
and agnostic, suitable for finding samples with target values beyond the target value range 
of the training set. We applied the formulation to work with support vector machines , 
random forests , and Gradient Boosting Machines . We compared the formulation with 
standard regression on thousands of drug design datasets, gene expression datasets and 
material property datasets. The test set extrapolation metric was the identification of exam-
ples with greater values than the training set, and top-performing examples (within the top 
10% of the whole dataset). On this metric our pairwise formulation vastly outperformed 
standard regression. Its proposed variations also showed a consistent outperformance. Its 
application in the stock selection problem further confirmed the advantage of this pairwise 
formulation.
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1 Introduction

The original motivation for this work came from applying machine learning (ML) to 
drug design, specifically, quantitative structure activity relationship (QSAR) learning. 
The standard way to cast QSAR learning as ML is to learn a univariate function that 
when a drug (structure) is input, the function outputs a real number (activity): f(drug) → 
activity. The PubMed server lists around 20,000 papers doing this.

Experience in real-world drug discovery suggests that this formulation does not meet 
the real need in practice. Specifically, what one is really interested in is predicting the 
activity of new drugs with higher activity than any existing ones - extrapolation. N.B. 
extrapolation in QSAR learning has two related meanings: type one is the ability to 
make predictions for molecules with descriptor values ( x ) outside the applicability 
domain defined by the training set of the model (Fig  1a) (Kauwe et  al., 2020;   Tong 
et al., 2005; Nicolotti, 2018); type two is the identification of the “extrapolating mole-
cules” with activities (y) beyond the range of activity values in the training data (Fig 1b) 
(Kauwe et al., 2020; Korff & Sander, 2022). In drug discovery both types of extrapola-
tion are important. Extrapolating beyond the training set descriptor values enables new 
molecular types (maybe unpatented) to be proposed. Extrapolating beyond the highest 
observed y values is strongly desired to select more effective drugs. Here we focus on 
type two extrapolation.

Although many QSAR learning studies have reported advantageous ML methods 
based on their model prediction accuracy using metrics such as mean squared error, in 
practice the ability to produce accurate predictions is less valuable than the extrapola-
tion ability in this type of application (Korff & Sander, 2022; Cramer, 2012). Indeed, 
some ML methods cannot extrapolate beyond the training sets. For example, random 
forest (RF) is incapable of predicting target values (y) outside the range of the training 
set because it gives ensembled prediction by averaging over its leaf predictions (Korff 
& Sander, 2022; Xiong et al., 2020). Our study is therefore motivated by the purpose of 

Fig. 1  The illustration of the two types of extrapolation in drug discovery. a type one is extrapolation out-
side the applicability domain, b type two is extrapolation outside the range of drug activities
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improving ML methods to be better at finding extrapolating samples (Fig 1b). This will 
also be a tool that benefits many other applications, such as material sciences, dynamics 
modelling and system management.

Our extrapolation problem can be defined as follows. Consider a training set of Ntrain 
samples, its feature vectors of length Nf  is x ∈ R

(Nf×Ntrain) , and its target activity values 
are y ∈ R

Ntrain . Therefore, the range of the target values for the training set is between 
ytrain,min and ytrain,max . A ML model f is then obtained so that f (x) ≈ y . Suppose there exists 
a test set xtest of size Ntest covering a range of target values, some may be interpolating 
(i.e. ytrain,min < ytest < ytrain,max ), and some may be extrapolating (i.e. ytest < ytrain,min or 
ytest > ytrain,max ). The latter ones are recognised as "extrapolating samples" and the num-
ber of them Nextrap,true should be less than the total number of test samples Ntest . In our 
study, due to the extensive application on QSAR datasets, we will restrict the reference of 
"extrapolating samples" to those with ytest > ytrain,max . Therefore, the extrapolation problem 
will be whether the test samples with f (xtest) > ytrain,max are truly extrapolating, or whether 
the model f can rank extrapolating test samples above ytrain,max if f is a ranking method. In 
addition, we also defined test samples as "top-performing" if their ranks are within the top 
10% of the whole dataset. We would like to know if the model can rank those test samples 
as top 10% of the dataset of ( Ntrain + Ntest ) samples, once the model predicts ŷtest = f (xtest) 
and rank the training and test samples by ytrain and ŷtest together. Figure 2 shows an example 
of how the extrapolating and top-performing test samples are identified.

2  Related work

Many studies have already underscored the significance of ranking performance in drug 
screening. Some proposed optimising the ML method directly to enhance ranking coef-
ficients (Agarwal et  al., 2010; Rathke et  al., 2011), while others suggested boosting the 
ranking performance from non-ML perspectives (Al-Dabbagh et  al., 2017; Liu & Ning, 
2017). Agarwal et al. (2010) introduced RankSVM to minimise ranking loss to maximise 
correctly ordered pairs of molecules. Rathke et al. (2011) developed StructRank to solve 

Fig. 2  An example of how extrapolating examples and top-performing samples are identified in a standard 
train-test split. For a given dataset, first all the top-performing samples - in this case, the top 10% - are 
noted. The random 50/50 train-test split is then performed. Depending on the highest target value in the 
train set, ytrain,max , the true extrapolating test and the true top-performing test samples can be identified. 
After obtaining the model predictions, the training and test samples are ranked back together by ytrain and 
ŷtest . The italic values represent the test samples by their true ytest but positioned by their predicted target 
values, ŷtest . The predicted top 10% samples are identified from this ranking, and the predicted extrapolating 
samples are identified as the sample ranked above ytrain,max . The precision and recall metrics for each type of 
test samples are calculated respectively
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the ranking problem by focusing on the top-k-ranked molecules. Al-Dabbagh et al. utilized 
quantum interference analogy for their probability ranking approach (Al-Dabbagh et  al., 
2017). Liu and Ning (2017) improved the ranking performance of SVMrank by leveraging 
assistance bioassays and compounds.

Zhang et al. successfully applied “Learning-to-rank” (LTR) from information retrieval 
to integrate heterogeneous data, identifying compounds by prioritising their relevance 
to different drug targets in a cross-target manner (Zhang et al., 2015). Although our new 
approach and the mentioned methods also emphasise ranking, they differ from LTR rank-
ing algorithms. LTR models are trained to rank a fixed set of instances, focusing on opti-
mising the relative positions of the same set of test samples for each query and extrapola-
tion on unseen data is not required. In contrast, our approach adapts standard ML methods 
to distinguish sample differences explicitly and achieve extrapolation over the training set.

Recent work has emphasised the importance of extrapolation and proposed special eval-
uation procedures for the extrapolation performance. Kauwe et al. (2020) tested the extrap-
olation ability of common ML methods using properties calculated from density functional 
theory by keeping the top 1% of the instances in the test sets. Korff and Sander (2022) 
proposed to use sorted and shuffled datasets to evaluate extrapolation and interpolation per-
formance. Xiong et al., Meredig et al. and Watson et al. have each proposed a new model 
validation technique to evaluate models’ extrapolation performance (Xiong et  al., 2020; 
Meredig et al., 2018; Watson et al., 2019). However, due to a lack of systematic reviews, 
it is unclear whether these methods are statistically meaningful. Therefore, we applied the 
standard k-fold cross-validation (Tong et al., 2005; Xiong et al., 2020; King et al., 2021).

This study proposes the “pairwise approach” (PA), a ML configuration approach aimed 
at enhancing the extrapolation ability of traditional regression methods. PA employs a pair-
wise model to predict differences in target values based on differences in feature vectors. 
In the QSAR learning context, that is to predict the differences in drugs’ activity values 
from the differences in drugs’ structural data. Extrapolation can be better achieved from the 
pairwise predictions.

In drug discovery, matched molecular pair analysis has been used widely to analyse 
the substructures that induces the key transformation in molecular properties (Tyrchan & 
Evertsson, 2017). As the popularity and novelty of neural networks rise, many researchers 
have deployed them in pairwise analyses. “Siamese” Neural Networks (SNNs), initially 
designed for signature verification, have found success in predicting pairwise differences, 
including predicting pairwise differences in drug discovery context (Fernández-Llaneza 
et al., 2021). This type of network has two inputs fed and processed separately before the 
pair of information is aggregated in the training layers (Fralish et al., 2023) (Fig. 7). Wet-
zel and co-workers (Wetzel et al., 2022) represented an SNN-based architecture to predict 
the differences in target values for pairs of samples, demonstrating its ability to compete 
or yield more accurate predictions for various datasets against other ML methods. Fralish 
et al. (2023) applied a deep SNN to predict the differences in molecular properties of pairs 
of drugs for ADMET drug prioritisation.

In lead optimisation, Jiménez-Luna et  al. (2019) built Siamese convolutional net-
works on binding free energy to rank congeneric series. McNutt and Koes (2022) sim-
ilarly applied Siamese convolutional networks to predict relative binding free energy 
( ΔΔG ) from ligand-protein binding free energies ( ΔG ) with increased regularisation 
in the latent space. (Yu et al., 2023) utilised an SNN as a part of their pairwise bind-
ing comparison network (PBCNet) for lead optimisation, which explored the conforma-
tional differences in pairs of structurally analogous small molecules against a specific 
target protein (McNutt & Koes, 2022). However, Tynes et al. (2021) noted the problem 



8209Machine Learning (2024) 113:8205–8232 

1 3

of pairwise separability in SNN architectures for pairwise difference learning, especially 
when yunseen is interpreted from the predicted pairwise differences and ytrain . If the pair-
wise model is separable, i.e. the pairwise difference is predicted by mimicking the pro-
cess of subtracting predictions from two individual models (e.g. two “legs” in an SNN), 
then it can lead to separable model loss. This problem can be represented through the 
training loss of the whole pairwise model being simplified as the loss of the separated 
models, hindering the full exploitation of the pairwise information (Tynes et al., 2021).

In Tynes et al’s proposed method, namely PADRE, instead of feeding a pair of feature 
vectors separately, a concatenation of feature vectors together with a vector describing 
differences is performed before model construction, enabling the use of any ML model 
during training (Fig 7). Hu et al. have successfully applied PADRE using convolutional 
neural networks to predict the critical casting diameter of metallic glass. This work also 
benefits from the data augmentation brought by the pairwise expansion of the training 
set (Fralish et al., 2023; Wetzel et al., 2022; Tynes et al., 2021; Bao et al., 2018). These 
studies highlight the significance of utilizing pairs of samples and pairwise information 
across various domains.

3  Method

The pairwise formulation highlights the learning from the differences in feature vectors 
to predict the differences in the target values. As the simplest illustration, it transforms 
a common univariate regression model fr in Eq. (1) to a bivariate equation in Eq. (2):

where X = g(xi, xj) , x is the feature vector, i and j are the ith and jth sample in the training 
set, y is the target value, X is the transformed pairwise feature vectors, Y is the pairwise 
differences in target values, and g is the feature transformation function that generates the 
pairwise feature vectors. PADRE used this methodology (Tynes et al., 2021). The detailed 
notations can be found in Appendix A.

3.1  Feature transformation function

The feature transformation function g varies depending on the data type of the original 
feature vectors. In our previous study (Wang & King, 2023), we explored the formula-
tion of pairwise features for Boolean inputs. For a Boolean feature, a pair of samples 
PAB is derived from sample A ( SA ) and sample B ( SB ). The difference in the ith feature 
for this pair can be presented in one of the following ways: present in both samples 
(xA,i = 1, xB,i = 1) , present in SA but not in SB (xA,i = 1, xB,i = 0) , present in SB but not in 
SA (xA,i = 0, xB,i = 1) , and absent from both samples (xA,i = 0, xB,i = 0) . To represent each 
type of difference in the substructure, a unique value is assigned to the ith feature of the 
pair. In this way, the original number of features will be preserved. The unique values 
used in our experiments are (see discussion in Section A.1):

(1)y ≈ ŷ =fr(x),

(2)Y ≈ Ŷ =Fr(X),
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For a regressive feature input with continuous values or multiple discrete values, it is dif-
ficult to assign unique pairwise feature values for every combination as above. Therefore, 
its corresponding pairwise feature will be the concatenation of the difference in two feature 
values, xA,i − xB,i , and the first minuend feature vector xA,i (see discussion in Section A.2),

3.2  Extrapolation strategy

We focused on the extrapolation results and gave a lower priority for numerical accuracy. We 
added the following modifications to the bivariant learning problem above so that the extrapo-
lation performance and the ranking performance near the top end can be enhanced.

3.2.1  Variation 1 (PA‑V1)

We applied the ranking algorithm, Trueskill, on the predicted pairwise differences to rank the 
training and test samples together. Trueskill was originally developed to rank players in the 
game “Halo” (Herbrich et al., 2007). It can accommodate variations in performance and skill 
levels, allowing for handling potential conflicts in match outcomes. Each predicted difference 
is treated as a "game match" between two samples. If the difference between SA and SB is 
greater than 0, then SA wins SB . Trueskill updates a "league table of samples" to determine 
rankings, from which the predicted extrapolating or top-performing test samples are found.

Instead of learning a regression model fr for the pairwise differences Y, we trained a clas-
sification model fc to predict the signed differences in target values, sign(Y) . Since Trueskill 
ranks samples based on wins and losses, the accuracy of predicting wins ( YAB > 0 ) or losses 
( YAB < 0 ) is crucial compared to numerical accuracy. We have noticed that training the pair-
wise model via classification yields higher accuracy in predicted signs compared to extracting 
signs from numerical differences via regression. In other words, the accuracy of sign(Y)pred is 
higher than that of sign(Ypred) . This may be because some pairs have identical feature vector 
differences but distinct target value differences. Despite some loss of information when taking 
the signs, the training of the classification model may encounter less “noise” in pairwise target 
values than the regression model. For a generic ranking algorithm, correct results of win or 
loss are more important in deciding the rank of the samples than the more accurate numeri-
cal score differences with potentially wrong signs. Therefore, training the pairwise model via 
classification and a generic version of the rating algorithm was used, transforming the problem 
into:

xA,i = 1, xB,i = 1 → XAB,i = 2

xA,i = 1, xB,i = 0 → XAB,i = 1

xA,i = 0, xB,i = 1 → XAB,i = −1

xA,i = 0, xB,i = 0 → XAB,i = 0

(3)XAB,i = (xA,i − xB,i)⊕ xA,i

(4)sign(Y) ≈sign(Y)pred = fc(X),

(5)r ≈r̂ = R(sign(Y)pred),
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where X = g(xi, xj) , r is the rank of samples with respect to their corresponding target val-
ues y and R is the ranking algorithm which in this study is the Trueskill algorithm (Her-
brich et al., 2007), TrueSkill .

3.2.2  Variation 2 (PA‑V2)

In this variation, we utilise the previously discarded absolute differences as part of the 
ranking process. Guo et al. (2012) have proposed a new version of Trueskill which takes 
account of the absolute match scores for ranking, named “Score-based Trueskill”. Instead 
of feeding the ranking algorithm with only wins (sign(YAB) = 1) and losses (sign(YAB) = 
-1), we can feed continuous values to represent how much SA wins over SB . Despite some 
loss of accuracy in the signed differences, this algorithm allows us to utilise as much 
prediction information as possible to predict the ranking. Hence, we used a regression 
model to predict the Δy between samples. The predictions were then fed directly to the 
Score-based Trueskill to obtain a ranking of the datasets. The variation has the following 
transformation:

where X = g(xi, xj) , r is the rank of samples with respect to their corresponding target val-
ues y and Rs is the ranking algorithm which in this case is the Score-based Trueskill algo-
rithm (Guo et al., 2012).

3.3  Notations for variations of the pairwise approach

Suppose a dataset is split into a training set of size Ntrain and a test set of size Ntest . The 
training samples are paired via permutation, creating N2

train
 pairwise training pairs. This 

type of pair is referred to as a C1-type training pair in this study. The test pairs can be 
obtained in two ways: (1) C3-type test pairs: generated from a permutation of test mol-
ecules, giving N2

test
 test pairs; (2) C2-type test pairs: generated from pairing test molecules 

with training molecules, giving 2NtrainNtest test pairs. The naming of the pair types follows 

(6)Y ≈ Ŷ =fr(X),

(7)r ≈ r̂ =Rs(Ŷ),

Fig. 3  The example of partition-
ing the pair space using the pair 
notation (Park & Marcotte, 2012)
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the notation in the work by  Park and Marcotte (2012) which considers the amount of 
shared information between training and test data within a pair (see Fig. 3).

In an extrapolation task, the relationship between the test samples and the training sam-
ples is important for comparing the training and test data to find the extrapolating samples. 
So, despite the existence of C3-type test pairs, using them to rank alone can only tell the 
relative ranks within the test set. On the other hand, C2-type test pairs describe the relative 
differences between training and test samples. These are better suited for the extrapola-
tion task. Therefore, in the following experiments on extrapolation, C2-type test pairs or 
C2-type + C3-type test pairs will be primarily used to rank.

Due to the use of combinations of different extrapolation strategies and pairs for rank-
ing, we will letter-code each specific arrangement. For example, PA-V1-C2 means the pair-
wise approach that uses the standard Trueskill with C2-type test pairs as ranking inputs. 
PA-V2-C2C3 means the pairwise approach that uses the Score-based Trueskill with 
C2-type test pairs + C3-type test pairs as ranking inputs.

3.4  Machine learning methods & evaluation metrics

Our pairwise formulation is potentially ML method agnostic. We, therefore, utilised the 
most common ML methods applied to QSAR learning: support vector machines (SVMs), 
random forests (RFs), Gradient Boosting Machine (XGBs) and k-nearest neighbours 
(KNN). We did not evaluate the pairwise approach using deep learning algorithms, this 
was because neural networks are not particularly well suited to traditional QSAR problems 
(Olier et al., 2018), and because the amount of chemoinformatic data is generally too small 
for deep learning methods to be effective. The ML methods used in this study are all based 
on the open-source ML python library, scikit-learn (Pedregosa et al., 2011). When a ML 
method is used to compare the standard and pairwise models, it is used with the default 
parameter setting from scikit-learn.

Before training any ML model, a basic feature selection is performed to reduce the fea-
ture space and accelerate the learning. For a given dataset, the features were removed if 
they had the same feature value assigned to every sample in a dataset. The features that 
repeat to have the same pattern for all the samples were also removed.

To evaluate the extrapolation ability of a ML method, metrics other than the traditional 
evaluation metrics, such as mean squared error and R-squared, are required. This is because 
these metrics are designed to cover predicted results over the whole test set, resulting in an 
averaged performance evaluation for both interpolation and extrapolation. In a random split 
in cross-validation, the test set usually contains more interpolating samples than extrapolat-
ing samples. Therefore, these metrics are good for evaluating the interpolation power of a 
model, but not very informative in terms of its extrapolation power (Xiong et al., 2020). In 
this study, we decided to adopt the classification metrics of precision, recall and f1 score to 
count the identification of extrapolating and top-performing samples (Kauwe et al., 2020; 
Xiong et al., 2020). This will give a more direct view of how useful a ML method is in an 
application where identifying such samples is highly desired.

The precision (p), recall (r) and f1 score (f1) are calculated for two different types of 
identification, extrapolating samples and top 10% samples. The number of extrapolating 
samples depends on the split of training and test sets. A test sample will be classified as 
"extrapolating" (subscripted as extrap) if its true target value is greater than the maximum 
target value in the training set. After ranking the whole datasets by their true target values, 
a test sample will be classified as "top-performing" (subscripted as top10%) if it is ranked 
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as one of the top 10%. The model-predicted extrapolating and top-performing samples will 
be obtained in the same way, except for the ranking positions of the test sample determined 
by their predicted target values, ŷtest . The true list and the predicted list of each type of 
samples will be compared in every run to evaluate the corresponding metrics (see Fig. 2 for 
the example calculation). When comparing the two lists, the true positives (TP), false posi-
tives (FP), and false negatives (FN) can be identified, from which the precision, recall and 
f1 score are calculated:

4  Results

4.1  Application of the pairwise approach on Boolean datasets

Our extrapolation experiments on 1436 Boolean ChEMBL datasets (see Appendix B.4.1) 
showed a clear advantage of the pairwise approach over the standard approach (Table 1(a) 
and Fig. 4). The ChEMBL datasets were sorted by size and experimented sequentially via 
10-fold cross validation. When comparing the two approaches, the standard approach uses 
the regression version of a ML method to predict target values y and rank the test samples 
with training samples by predicted target values, while the pairwise approach uses the clas-
sification version of that ML method to predict sign(YC2) to rank the whole dataset. The 
pairwise approach used PA-V1-C2 variation, the very first proposal on the pairwise formu-
lation for ranking purposes.

It was found that the pairwise approach was much better at recognising the extrapolating 
and top-performing molecules than the standard approach. For all the three ML methods 
(RF, SVM and XGB) tested, the pairwise approach almost always found equally or more 

precision =
TP

TP + FP
, recall =

TP

TP + FN
, f1 score = 2

pr

p + r
.

Fig. 4  The six metrics of the pairwise approach (PA-V1-C2) and of the standard approach on ChEMBL 
datasets using SVM. Each sub-figure represents one of the metrics evaluated over 1436 datasets. For 
each metric in each subfigure, the metric of the pairwise approach is plotted against that of the standard 
approach. The line of equal performance is plotted as the grey line. The markers above the line of equal per-
formance indicate those datasets of outperformance by the pairwise approach
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extrapolating molecules than the standard approach (Table  1(a)(i)). It can also identify 
more test molecules ranked within the top 10% of the dataset most of the time, as shown 
by a high percentage for rtop10% . Its outperformance in ptop10% is not as good as that in 
rtop10% , but is still overall better than the standard approach. It was also noted that this out-
performance is less outstanding for XGB or larger datasets. This suggests that the ratio of 
false positives in the top-performing molecules using the pairwise approach can sometimes 
be similar to that of the standard approach. At the same time, the pairwise approach often 
caused a greater increase in recall, which means it proposed more true positives. Hence, 
despite an outperformance in ptop10% , the pairwise approach could propose slightly more 
false positives together with more true positives.

As extrapolating molecules do not necessarily exist in every train-test split, many data-
sets were showing pextrap = rextrap = f1extrap = 0 or non-existing. Therefore, to illustrate 
outperformance, the datasets showing equal performance were removed. The percentage 
of datasets suggesting the pairwise approach outperformed the standard approach was re-
calculated for the rest of the datasets (Table 1(ii)). Across three ML methods tested, the 
pairwise approach indeed outperformed the standard approach in finding both the extrapo-
lating and top-performing molecules. The results also suggested that RF or XGB had less 
outperformance than SVM. Through further investigation, we found that the difference 
among ML methods was due to the variation in extrapolation performance by the standard 
approach. All three methods performed equally badly on extrapolating samples, which indi-
cates their incapability to extrapolate beyond the range of the training target values. How-
ever, for top-performing samples the standard approach using RF or XGB can evidently 
produce higher extrapolation metrics than SVM. At the same time, the pairwise approach 
performed similarly via both ML methods. This gives rise to the higher percentage of data-
sets showing the pairwise approach was better with SVM in Table 1(a) and Fig. 4. Despite 
the SVM having been shown to be a good-performing ML method for QSAR learning, we 
considered the following reasons to account for its bad performance in our experiments. 
The poor performance might come from the relatively small dataset sizes, where the curse 
of high dimensionality can show up due to the length of the fingerprint, leading to poten-
tial overfitting. Despite applying feature pre-processing to reduce the number of features, 
the remaining feature size is still much larger than the sample size. Tree-based methods 
certainly might suffer from the same issue. The randomness in sub-trees could mitigate 
the effect slightly. After the pairwise formulation is carried out, the data size is augmented 
while keeping the same number of features, and the performance of SVM becomes com-
parable to RF and XGB. The second reason might be the use of the radial basis function 
kernel, which calculates the Euclidean distances between points. During standard learning 
especially for small datasets, the Boolean features might give rise to less informative dis-
tance similarity measurement, leading to a poor performance. The outperformance of the 
RF is also supported by the comprehensive comparison studies applied to the same QSAR 
data by Olier et al. (2018).

Apart from a statistical overview of the extrapolation power of the pairwise approach, 
we examined its performance versus the size of the datasets. Fig. 5 shows an example of 
the increase in f1top10% versus dataset size for the experiments with RF. The plots for other 
metrics showed a similar trend, that is the pairwise approach is more advantageous on 
smaller datasets, indicated by more data points above the line of Δf1top10% = 0 when the 
dataset size is less than 200. This is mainly due to the standard approach learning better 
when the dataset was larger, reducing the difference between the two approaches.

We also applied the PA-V2 pairwise approach on the same set of datasets to compare 
with the PA-V1 version, where the difference is the use of regressive pairwise predictions 
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and the Score-based Trueskill to obtain the samples’ ranking. Comparing the results in 
Table 1(a) and (e), the two variations are very similar in terms of their performance over 
the standard approach. PA-V2-C2 had slightly higher extrapolation metrics than PA-V1-C2 
in terms of the number of datasets showing an outperformance of our approach. Compar-
ing Table 1(e)(i) and (e)(ii), we can see that PA-V2-C2C3 can marginally increase the per-
centage of outperforming datasets thanks to the addition of extra pairwise prediction infor-
mation from C3-type test pairs.

To test the generality of the paired formulation, we applied the same comparison experi-
ment to a set of human gene expression datasets (see Appendix B.4.2). The datasets were 
used by Olier et al. in a transformational ML study (Olier et al., 2021). Because each data-
set contains 118050 rows of experimental conditions (samples), if the pairwise approach is 
applied for this size, the pairwise training set will be too large to train given any reasonable 
computational resources. We therefore decided to randomly sample a size 100 or 200 from 
each of the 978 gene datasets to compare the extrapolation performance. The extrapola-
tion metrics were evaluated for the standard and the pairwise approach across four ML 
methods, random forest (RF), support vector machine (SVM), k-nearest neighbour (KNN) 
and gradient boosting machine (XGB). PA-V1-C2 pairwise strategy was used in this set of 
experiments and 10-fold cross validation was used in the evaluations.

It can be seen in Table 1(b) that for the gene expression datasets, the pairwise approach 
followed a similar trend as seen in the Boolean ChEMBL experiments to outperform the 
standard approach. When the size of the datasets increased from 100 to 200, some of the 
extrapolation metrics decreased. This is also because the standard approach improved its 
learning through the additional data at a rate slightly greater than the pairwise approach, 
resulting in a decrease in the percentage of datasets showing outperformance. This is con-
sistent with observations from Fig. 5.

We have shown that pairwise learning and Trueskill work well together to improve the 
extrapolation. To further testify that pairwise learning of the sample differences plays an 

Fig. 5  The increase in f1 score for top-performing molecules by the pairwise approach (PA-
V1-C2)  versus the size of datasets with RF for 1436 Boolean ChEMBL datasets. On y-axis, 
Δf1top10% = f1top10%(pairwise) − f1top10%(standard)
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important part in the overall improvement, we additionally tested the performance with a 
simpler rating algorithm, Elo’s rating system. It is an algorithm developed by Arpad Elo 
originally for chess competitions (Lehmann & Wohlrabe, 2017). The ranking of the play-
ers is according to the actual win or loss and the expected probability of win or loss, which 
is calculated via a logistic curve. Even with Elo’s rating algorithm, we still observed a 
clear outperformance by the pairwise approach over the standard approach (see Appen-
dix Table 2). Trueskill and Elo’s rating differs mainly in the balance between precision and 
recall. Compared to Trueskill, Elo’s rating showed a lower winning percentage of datasets 
on precision, but a higher winning percentage on recall. Therefore, the choice of an appro-
priate rating algorithm should also match the objective of the application. For example, 
when discovering potential high-activity drugs from an untested dataset, if the false posi-
tives would heavily burden the experiments, then a ranking algorithm that gives better pre-
cision metrics should be chosen.

4.2  Application of the pairwise approach on regressive datasets

We compared the pairwise approach with the standard approach on the regressive 
ChEMBL datasets with molecular descriptors generated by Olier et al. (2018). The molec-
ular descriptors are extracted by Dragon Version 6, a commercially available software 
library that can potentially calculate up to 4885 molecular descriptors (Mauri et al., 2006). 
We used two sets of regressive features to represent the ChEMBL datasets: "AllMolProp" 
comprising a maximum of 1447 molecular descriptors using all permitted molecular 
descriptors for 2D molecular structures, and "BasicMolProp", a subset of AllMolProp with 
a size of 43.

Similar to previous experiments, for each type of feature representation the ChEMBL 
datasets were sorted by size and experimented in order. We used default RF with a 10-fold 
cross validation to validate the result per dataset. We obtained the results from 1526 
ChEMBL-BasicMolProp datasets of size from 30 to 240 (Table 1(c)) and 1362 ChEMBL-
AllMolProp datasets of size from 30 to 175 (Table  1(d)). We consistently observed the 
pairwise approach outperforming the standard approach (see Appendix, Fig.  8). Results 
using SVM and XGB are also available in Table  1(c, d). Again, the pairwise approach 
discovered equally or more extrapolating samples in almost all the datasets. The pairwise 
approach PA-V1-C2C3 outperformed PA-V1-C2 on slightly more datasets. A similar con-
clusion from these experiments indicated the feasibility of our pairwise feature transforma-
tion for regressive features.

To extend the evaluation on other discovery problems, we assessed the model perfor-
mance on two datasets of material property prediction for formation energy and band gap, 
which were processed and used in Xiong et al.’s study (Xiong et al., 2020) (see Appendix 
B.4.3). Given the large dataset size, we investigated the extrapolation behaviour of the pair-
wise approach on smaller subsets considering its exhibited advantage in small datasets in 
previous experiments. For each dataset of size 10042, we randomly sampled various sizes 
from 50 to 500 ten times and compared the standard approach and pairwise approach using 
RF with the default setting and 10-fold cross validation.

The results showed consistent outperformance by the pairwise approach as before, 
achieving higher extrapolation metrics for extrapolating samples for all the datasets, and 
higher metrics for top-performing samples for most of the datasets (see Table 1(f, g)). The 
analysis against dataset size showed that the pairwise approach is particularly outstanding 
for datasets of sizes less than 200 (Fig. 9). With increasing dataset size the rapid decrease 
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in precision caused the smaller outperformance margin of the pairwise approach. While 
it maintained its strength with high recall, the drop in precision means that it also falsely 
identified many non-top-performing samples. Introducing additional information from 
C3-type test pairs into the ranking step can slightly mitigate precision drop (Table 1(f)). 
Again, we confirmed the problem of the false positives in identifying the top-performing 
samples in this set of experiments. The differences between PA-V1 and PA-V2 methods 
were also revealed. For top-performing samples, the PA-V2 method can notably improve 
all three extrapolation metrics, especially for datasets of size under 200. In contrast, for 
extrapolating samples, the PA-V2 method kept a similar performance for datasets of size 
under 200, but showed a reduction in all three metrics for larger datasets (Fig. 10).

Furthermore, we also confirmed the improvement in MSE in ŷtest using the pairwise dif-
ferences and target value of the training samples, as mentioned in several studies (Wetzel 
et al., 2022; Tynes et al., 2021). After training a regression model on the pairwise differ-
ences directly using Equation 6 for C2-type test pairs, we can then obtain multiple esti-
mates for ŷtest , the number of which equals twice the size of the training set:

By averaging these estimations, we can compare the pairwise approach and the standard 
approach via their ŷtest . Averaging these estimations using predictions from the regressive 
pairwise model resulted in decreased MSE across datasets (see Fig. 11).

4.3  Application of the pairwise approach on stock selection

The pairwise approach was tested against a real-world problem beyond the scientific dis-
covery domain. We extracted the S&P 500 stock information from Macrotrends. It com-
prises 503 common stocks issued by 500 large-cap companies traded on American stock 
exchanges, including about 80% of the American equity market by capitalisation. We 
assessed the model’s predictive performance with two tuned ML models, RF and SVM, 
to conduct stock picking (see Appendix Table 4 for the hyperparameters), using 14 stock 
ratios proposed by Huang as features (Huang, 2012) (see Appendix Table 3). The target 
value was the percentage increase in the stock price over a year. The ratios and the price 
percentage increases were extracted from Macrotrend since 2010. Because the pairwise 
approach is not specifically tailored to handle the unpredictable nature of stock markets, we 
limited our study to years of relative stability before the pandemic in 2020.

For each Year i between 2011 and 2018, we trained a tuned regression model using the 
stock ratios from Year (i − 1) to predict the price percentage increase in Year i. Then we 
input the trained model with the stock ratios from Year i to predict the percentage increase 
in stock price in Year (i + 1) . We selected the top 10 or 50 stocks from each set of pre-
dictions, ranked by the standard approach or the pairwise approach, to evaluate the mean 
annual stock return. When using RF, the entire profile over the years of interest was aver-
aged over three repeated runs. In each repeat, a different set of random states was used in 
the RF models to alleviate the stochastic effect of RF as all the trees in one RF model are 
built on randomly bootstrapped subsets of the training set. The cumulative stock return in 
terms of capital growth percentage from 2011 until 2019 was plotted as shown in Fig. 6.

In three out of four experiments, each involving a different combination of ML methods 
and the number of selected stocks, the pairwise approach showed a clear outperformance 

ŷtest,j = ytrain,i − ŶC2,ij

ŷtest,j = ŶC2,ji + ytrain,i
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over the standard approach. Notably, in the experiments with SVM models selecting the 
top 10 (SVM-top10), the pairwise approach can generate up to almost 460% more cumula-
tive stock return than the standard approach by the end of the period. For RF models select-
ing top 10 stocks (RF-top10), the pairwise approach also achieved enhanced performance, 
although the improvement compared to SVM models was less pronounced due to the 
improvement in the prediction by the standard approach. Nevertheless, by the end of 2019, 
the capital increase using the pairwise approach exceeded that of the standard approach by 
at least 70%. Despite the better performance of the standard approach with RF, the pair-
wise approach still obtained an improved performance to go beyond.

In experiments selecting the top 50 stocks, overall the capital growth by the end of the 
investigated period was generally less than in experiments selecting the top 10. By picking 
more stocks, the same amount of capital was equally distributed among a larger number of 
stocks, resulting in less funds to spend on each stock. As a result, each year for the rising 
or falling stock, the earning return or capital loss was smaller, respectively. Additionally, 
more underperforming stocks were included in the portfolio, assuming the ratio of rising 
stocks to falling stocks was lower compared to when only selecting the top 10. Therefore, 
the average return per stock was lowered, and the total return converged towards the stock 
return from a random portfolio. This underscores the importance of correct extrapolation in 
such applications.

Fig. 6  The percentage growth of capital by the selection of top stocks suggested by the standard approach 
(dashed line) versus by the pairwise approach (solid line) with different ranking input choices using a tuned 
RF, b tuned SVM
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Although all the ranking strategies performed better than the standard approach, we 
have noticed that the four ranking strategies performed differently, which varied the capi-
tal return. In the SVM-top10 experiment, PA-V1-C2 achieved the highest capital return 
of 894%. However, in the SVM-top50 experiment, PA-V1-C2 was the weakest among the 
four. We believe that compared to PA-C2C3, using solely C2-type test pairs (PA-C2) gave 
less information about the ranking of the test samples. The relative positions of the test 
samples are slightly more random and uncertain, resulting in a more vigorous variation 
in the final performance. Therefore, for more stable and reliable performance, it is rec-
ommended to apply PA-C2C3 for any relevant applications. This conclusion is consistent 
with our findings in our previous experiments. Due to the small number of datasets and 
runs in this experiment, it was difficult to demonstrate the statistical significance in this 
experiment.

5  Discussion

The pairwise formulation represents a methodology that combines model reconfiguration, 
feature preprocessing, and post-learning refinement techniques rather than introducing a 
new ML algorithm. It can be fitted with multiple types of ML methods. The new formula-
tion shifts the ML learning objective to the relationship between training and test samples. 
As a crucial step, the utilisation of the ranking algorithm significantly advances the fulfil-
ment of the extrapolation purpose. Our previous work already showed that the sole use 
of Trueskill on the standard approach can enhance the extrapolation performance (Wang 
& King, 2023). Nevertheless, the pairwise approach surpassed it by incorporating better 
pairwise learning using a dedicated pairwise model. In standard regression, when ML 
algorithms learn from seen examples and try to predict unseen examples from their “expe-
rience”, it can be difficult to extrapolate out of its “experience” domain. In contrast, the 
pairwise approach learns from feature differences, which are sometimes more generalisable 
than the feature values. It learns to predict the difference between training and test samples, 
directly aiming to determine if a test sample could win over the training samples. This 
transformed objective enhances the extrapolation performance of the pairwise formulation.

While using ranking algorithms like Score-based Trueskill (PA-V2), which utilises the 
“match scores” in the ranking process, yields a slight increase in performance, we believe 
that the emphasis on the correct prediction of win or loss outweighs the addition of score 
differences, as explained in Sect.  3.2.1 and B.3. With a slight loss in the prediction of 
signed differences and the extra information about absolute differences, the advantage of 
PA-V2 is somewhat balanced out. Overall, it is slightly better than the original Trueskill. 
Another advantage of PA-V2 is the convenient estimations of the ytest from the regressive 
pairwise predictions. With the material discovery datasets, we observed the reduction in 
MSE with PA-V2, as reported by Tynes et al. (2021).

We believe that the extrapolation ability of the pairwise approach could be employed 
directly to fulfil the exploitation duty in active learning (AL) tasks for top-performing 
samples. Tynes et al. have also revealed the advantage of a pairwise approach for uncer-
tainty-driven AL tasks, which encourages the exploration of the wider domain by selecting 
samples with less confident predictions (Tynes et al., 2021). We believe it is possible to 
develop pairwise-approach-based AL, combining both the exploration and extrapolation 
traits found by their study and ours. Although their study and ours adopted two different 
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ways of generating pairwise features, the core intention is always to describe the difference 
between pairs of samples. Therefore, this diversity will make a small impact on pairwise 
learning, as it arises from the choice of data-preprocessing techniques (e.g. they used the 
one-hot encoding whereas we used the ordinal encoding).

The main limitation of the pairwise approach is the additional time and memory require-
ment to train a pairwise model, also as pointed out by Tynes et  al. (2021), because the 
training set size needs to be squared for the pairwise approach. Some techniques such as 
batch training and sub-sampling could potentially mitigate this. More generally, improve-
ments in computer hardware will increasingly remove this limitation. Nevertheless, the 
pairwise approach can be useful in novel discovery projects with a limited budget or where 
data is scarce to better explore the surrounding space. It was also noted that our pairwise 
approach can suggest some false positives when the dataset is large. How to tackle this 
issue will be one of the topics for our future research.

6  Conclusion

This study revealed the general applicability of the pairwise approach over thousands of 
datasets. We proposed a new pairwise configuration by first learning a bivariate function, 
F(sample 1, sample 2) → Δy , then ranking the samples through ranking algorithms. We 
applied the pairwise approach to a variety of problems and datasets to receive a consist-
ent conclusion that it is very advantageous in helping to extrapolate the target value space 
which can be limited by solely regression training. The pairwise approach strongly pro-
motes the identification of extrapolating samples by almost always finding more extrapo-
lating test samples than the standard approach. It is also better at finding top-performing 
test samples, by outperforming the standard approach in identifying equally or more top-
performing samples on more than 70% of the datasets. The use of a score-based ranking 
algorithm or C3-type test pairs in ranking can slightly further boost the outperformance. 
It was also observed that the pairwise approach is more effective when applied to smaller 
datasets. The pairwise approach was applied successfully in a practical problem, the stock 
selection, to enable greater capital growth.

Appendix 1: Notations

Symbol Description

f A general supervised ML model.
fr A general supervised regression model.
fc A general supervised classification model.
F A general supervised ML model that requires two samples’ input for pairwise learning.
Fr A general supervised regression model that requires two samples’ input for pairwise learning.
f1extrap F1 score of a ML method to retrieve extrapolating samples
f1top10% F1 score of a ML method to retrieve top 10% samples
g The feature transformation function that generates the pairwise feature vectors.
Nf  The number of features in a dataset.
Ntrain The number of training samples.
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Symbol Description

Ntest The number of test samples
pextrap Precision of a ML method to retrieve extrapolating samples
ptop10% Precision of a ML method to retrieve top 10% samples
r The ranking positions of a dataset.
rextrap Recall of a ML method to retrieve extrapolating samples
r̂ The predicted ranking positions of a dataset.
rtop10% Recall of a ML method to retrieve top 10% samples
R A ranking algorithm that ranks based on absolute wins or losses.
Rs A ranking algorithm that ranks based on match score differences.
SA Sample A.
x The feature vectors of a dataset.
xi The feature vector of the ith sample in a dataset.
x The feature vector of a single sample.
xA,i The ith feature of the sample A.
xtest The feature vectors of a test set.
X The pairwise-formulated feature vectors of a dataset.
XAB,i The ith pairwise feature of the pair between sample A and sample B.
y The target values of a dataset.
yi The target value of the ith sample in a dataset.
ytrain The target values of a train set.
ytrain,i The ith target value of a train set.
ytest The target values of a test set.
ŷtest The predicted target values of a test set.
ŷ The predicted target values of a dataset via a ML method.
ŷtest The predicted target values of a test set via a ML method.
ŷtest,i The ith target value of a test set.
Y The pairwise differences of the target values of a dataset.
YC2 The pairwise differences of the target values of C2-type pairs.
YC2,ij The pairwise differences of the target values of C2-type pair between sample i and sample j.
Ŷ  The predicted pairwise differences of the target values of a dataset via a ML method.
YAB The pairwise difference in target values between sample A and sample B.

Appendix 2: Additional discussion on the methods

See Figs. 7, 8, 9,10, 11 and Tables 2, 3, 4.
Pairwise Boolean features

For Boolean features, the proposed way of generating pairwise features is called ordinal 
encoding. It is often used for categorical features and each category value is assigned an 
integer value. Another popular way to encode machine-readable numerical values for cat-
egorical features is one-hot encoding. It assigns Boolean bits to describe the absence or 
presence of each category. Therefore, it needs to at least double the size of the feature 
space. In the pairwise case, one-hot encoding is equivalent to the concatenation of features 



8224 Machine Learning (2024) 113:8205–8232

1 3

Fig. 7  Comparison between using SNN or PADRE for pairwise difference learning

Fig. 8  The f1 score for top-performing drugs obtained by the pairwise approach versus those metrics 
obtained by the standard approach over a 1526 ChEMBL-BasicMolProp datasets, b 1362 ChEMBL-All-
MolProp datasets, using RF
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of two samples to generate the pairwise features. Considering the large expansion of train-
ing set by permutation, the further expansion in the feature size can greatly increase train-
ing time. Furthermore, our experiments on ChEMBL datasets have shown that one-hot 
encoding made little difference in the training accuracy. Therefore, we decided to use ordi-
nal encoding for the pairwise features. In ordinal encoding, the choice of the integer value 
for each category is not restricted. Despite potential doubts regarding the effect of their 
relative magnitudes under numeric transformations, it has been demonstrated not to affect 

Fig. 9  The increase in precision, recall and f1 score for top-performing samples versus the size of subsets of 
band gap and formation energy datasets with default RF
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Fig. 10  The increase in precision, recall and f1 score for extrapolating samples versus the size of subsets of 
band gap and formation energy datasets with default RF

Fig. 11  MSE of the predicted 
ytest using the estimations from 
the regressive pairwise predic-
tions of the pairwise approach 
(PA-V2-C2) versus the direct 
predictions of the standard 
approach
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Table 2  The percentage 
of datasets showing the 
pairwise approach with Elo’s 
rating algorithm and other 
arrangements: (i) had an 
equal or better performance 
than the standard approach, 
i.e., metric(pairwise)>=
metric(standard), (ii) was better 
than the standard approach, 
i.e., metric(pairwise) > metric 
(standard), excluding datasets 
showing equal performance

All the values have a binomial p value < 0.05 

Datasets Boolean ChEMBL 1436 datasets

Percentage type (i) (ii)

PA arrangement Elo-C2 Elo-C2C3 Elo-C2 Elo-C2C3

ML Methods RF

pextrap 100.0% 100.0% 100.0% 100.0%
rextrap 100.0% 100.0% 100.0% 100.0%
f1extrap 100.0% 100.0% 100.0% 100.0%
ptop10% 71.8% 70.1% 70.0% 68.5%
rtop10% 97.9% 98.0% 97.8% 97.9%
f1top10% 84.0% 83.1% 83.2% 82.3%

Table 3  Stock ratios used as attributes in the stock selection model

Ratios Description

PE-ratio Price-to-earnings ratio = share priceearnings per share
PB-ratio Price-to-book ratio = share price/book value per share
PS-ratio Price-to-sales ratio = share price/sales per share
ROE Return on equity (after tax) = net income after tax/shareholders’ equity
ROA Return on asset (after tax) = net income after tax/total assets
OPM Operating profit margin = operating income/net sales
NPM Net profit margin = net income after tax/net sales
DE-ratio Debt-to-equity ratio = total liabilities/shareholders’ equity
CR Current ratio = current assets/current liabilities
QR Quick ratio = quick assets/current liabilities
ITR Inventory turnover rate = cost of goods sold/average inventory
RTR Receivables turnover rate = net credit sales/average accounts receivable
OIG Operating income growth rate = (operating income at the current year 

- operating income at the previous year ) / operating income at the 
previous year

NIG Net income growth rate = (net income after tax at the current year - net 
income after tax at the previous year ) / net income after tax at the 
previous year

Table 4  The hyperparameters 
tuned in the stock selection 
experiments

Model Hyperparameters

SVM (Gaussian 
radial basis func-
tion)

C, regularisation parameter

gamma, kernel coefficient
RF max_features, the maximum number of features

max_samples, the maximum number of samples
n_estimators, the maximum number of estimators
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our study through simple tests. We endeavoured to assign each combination listed above 
with a different value (e.g., xA,i = 1, xB,i = 1 → XAB,i = −1 ; xA,i = 0, xB,i = 1 → XAB,i = 0 ). 
We have also tried a different set of ordinal values, for example, using 1, 2, 3, 4 instead of 
-1, 0, 1, 2. In both tests, the results were hardly varied by the choice of ordinal values.

Pairwise regressive features

For regressive feature vectors, instead of concatenating xA,i , xB,i and (xA,i − xB,i) all together 
as used in PADRE, we only concatenated the difference vector and one of the constitu-
tive vector. We believe that the information in Pair AB (xA,i − xB,i)⊕ xA,i ⊕ xB,i) is some-
what repetitive to Pair BA (xB,i − xA,i)⊕ xB,i ⊕ xA,i) , and that the simplified version, 
(xA,i − xB,i)⊕ xA,i , is sufficient to represent the Pair AB and distinguish it from Pair BA. 
Most importantly, the expansion in the feature dimension can be minimised by a third com-
pared to PADRE, which can be significant for datasets with a large number of features.

We investigated the choice of ranking algorithm. We experimentally examined several 
generic ranking algorithms and found that the choice of the generic ranking algorithm 
can affect the ranking accuracy given the same sets of sign(Y)pred , usually by about 1%. 
It is believed that the main contribution to accurate ranking should come from the accu-
racy in sign(Y)pred rather than the rating algorithm. Therefore, Trueskill was selected and 
used to rank the samples from the predicted signs. Trueskill was originally designed to 
rank players in the game “Halo” (Herbrich et  al., 2007). Because it assumes variances 
both in players’ performance and skill levels, it can deal with potential conflicts in match 
outcomes, in our case, conflicts in sign(Y)pred due to learning errors. For example, when 
sign(YAB)

pred = −1 and sign(YBC)pred = −1 , it implies that sample A < sample B < sample 
C. But if sign(YAC)pred = 1 , which implies sample A > sample C, then these predictions 
suggest opposite opinions. This situation is similar to game tournaments, in which a strong 
player does not necessarily win every time.

Trueskill vs. score‑based trueskill

With the use of ranking algorithms such as Score-based Trueskill (PA-V2) where the 
“match scores” participate as a part of the ranking process, we only observed a small 
increase in performance, despite the extra information about how much two samples dif-
fer in a pairwise comparison. One explanation is that if we only train on the classification 
model on the signed differences of pairs, we can obtain better accuracy of the predicted 
signs which is better for ranking. Note that the effect of predicting win or loss is more 
important for correct ranking compared to the effect of the score differences. Considering 
a pairwise comparison between Sample A and Sample B which has a small difference in 
y between them, say YAB = 0.10. For a regression model, the loss function is based on the 
mean squared error (MSE). So predictions of YAB = 0.31 and YAB = −0.11 are treated in 
the same way. However, this change in sign can make a greater impact on the ranking of 
these two samples. A wrong sign prediction will penalise more ranking scores of Sample 
A compared to an off prediction on the absolute difference. So the ranking update using 
YAB = 0.31 is closer to the true ranking compared to the ranking update using YAB = −0.01 
where the sign is wrong but the absolute difference is better predicted. We have seen in 
experiments that the accuracy of the signed difference predicted by a regression model is 
poorer compared to a classification model. Combining this with the effect of more accurate 
ranking with absolute differences (when the sign is predicted correctly), the advantage of 
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PA-V2 is slightly balanced out. But overall, we can still see a slight increase in perfor-
mance with PA-V2.

Datasets

ChEMBL

ChEMBL is a chemical database of bioactive molecules (Mendez et al., 2019; Olier et al., 
2021). It contains a large number of molecules and their measured activities against a vari-
ety of targets. Due to their size and scope, these datasets are suitable for benchmarking ML 
applications in the realm of QSAR. ChEMBL features a number of different activities, in 
this study we are employing pXC50 as our target values, i.e. -log(measured activity). The 
structure of drug molecules is represented by the commonly employed Morgan fingerprint 
(1024 bits, radius=2) encoding the molecular substructures by Boolean values.

Gene expression datasets

The human gene expression datasets (accession code GSE70138) from the Library of Inte-
grated Network-based Cellular Signatures data (LINCS) (Koleti et al., 2018). This set of 
datasets contains the measured gene expression level across different tissue types and drug 
treatments in cancer cell lines. There are a total of 978 human genes, each of which was 
measured under 118,050 experimental conditions. Each dataset is the expression levels of 
a gene, measured and processed as level 5 differential gene expression signatures, under 
a series of conditions. The conditions are featured into 1,154 Boolean values describing 
drugs’ fingerprints (1024 bits) and experimental settings, which include 83 dosages, 14 cell 
types and 3 time points.

Material discovery datasets

Formation energy and band gap were selected as the properties to be studied here for their 
large amount of available data since they have been widely studied. They collected the 
data from the Materials Project database which contains 83,989 compounds. The dataset 
was condensed into a representative set of 10042 after data filtering removed duplicated 
composition, single-element composition, ill-converged samples, and uncommon elements. 
Regarding the compound representation, we concatenated the two 1D representations used 
in Xiong et al.’s study, Magpie (Materials Agnostic Platform for Informatics and Explora-
tion) and element one-hot composition representation. The former computes continuous 
feature values for a given material including elemental property statistics of 22 different 
elemental properties. The latter describes the presence and absence of the 52 elements in a 
compound, weighted by the composition ratio per element.
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