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A B S T R A C T

2D nanoparticles, such as graphene or graphite nanoplatelets, are used as additives in polymer matrices to
improve their stiffness and electrical conductivity. In this paper, a finite element-based model for homogenized
macrolevel stiffness is developed to understand the increase in stiffness of the epoxy matrix induced by
graphene nanoplatelets. The model uses image segmentation of regular SEM micrographs to account for
the morphology of the graphene platelet network. Here, it is essential to include a fluctuation field in
computational homogenization to describe microstructural relaxation. Platelets of the microstructure are
modeled as embedded membranes, assuming perfect bonding to the polymer. To estimate the stiffness of
the membrane, we used molecular dynamics simulations from a related paper on layered graphene platelets.
A novel feature is the identified anisotropic and isotropic elastic surrogate models obtained by least-squares
fits of homogenized microstructural responses. Surrogate models serve as a basis for the evaluation of the
stiffness of the nanocomposites, and these models are validated through the Halpin–Tsai and Mori–Tanaka
models. According to the experimental investigation, the results show that the samples exhibit an increase in
stiffness of up to 10 % to 30 % for GNP contents ranging from 1 to 5 wt. %, respectively, obtained from the
morphological properties and the weight fraction of the carbon filler.
1. Introduction

The use of carbon fiber reinforced polymers (CFRPs) is continually
increasing in aeronautic applications in an attempt to reduce fuel
consumption. The use of carbon fiber reinforced polymers (CFRPs)
offers impressive weight savings potential for the aerospace industry,
and many CFRP components are in regular commercial use. These
components are typically based on composite laminates that suffer from
inherent challenges, such as delamination and brittle behavior, related
to their lack of through-thickness reinforcement. Graphene additives
exhibit high thermal and electrical conductivity, excellent barrier prop-
erties, and extraordinarily high strength, enabling the development
of multifunctional composites without adding significant weight to
the components. Review articles [1,2] highlight the evolving field of
graphene-related materials, in particular graphene-reinforced polymer-
based composites with enhanced multifunctional properties. In earlier
studies, inherently poor mechanical properties through the thickness
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of the laminate have been shown to be enhanced by aligned carbon
nanotubes at the interfaces of the ply [3]. 2D nanostructures, such as
graphite nanoplatelets (GNP), are now being explored as base resin
additives in epoxy to improve these properties for CFRP. In particu-
lar, a significant increase in fracture toughness has been reported for
GNP-enhanced unidirectional CFRP prepregs [4].

The mechanical response of graphene and related nanomaterials
in polymer nanocomposites has been extensively investigated from
the experimental perspective. For epoxy resins with well-dispersed
and functionalized samples using graphene oxide (GO), the stiffening
and strengthening effects are visible even at relatively low weight
fractions <1 wt.% [5–7]. We also note the related increase in fracture
toughness [8], while size effects are generally less pronounced in well-
dispersed systems [9]. This is typically assigned to a good interaction
between epoxy (as well as other thermoplastic matrices [6,10]) and
the functional groups present in GO. A better interaction between
vailable online 17 July 2024
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Fig. 1. SEM (a) and AFM (b) micrographs of representative GNP flakes.
nanoparticles and the matrix reduces the tendency to reagglomera-
tion and naturally leads to better dispersion, while at the same time
increasing the stiffening effect by improving the bonding with the
polymer chains [11]. However, for GNP-epoxy systems, the interaction
is weaker, leading to less pronounced stiffening and often harmful
effects on tensile strength [12]; nevertheless, both an increase and a de-
crease in this property have been reported [10,13]. Furthermore, higher
weight fractions tend to be considered for the GNP-epoxy system, typi-
cally 1−6 wt.%. For such large weight fractions, the increase in stiffness
is more visible at the expense of a lower fracture toughness [10,13,14].

The addition of graphene-related materials to polymer resin requires
optimized concentration and orientation to create material properties
that meet the stiffness and strength requirements of these composites.
For this, predictive modeling approaches are needed to assist in mate-
rial design, both for effective matrix behavior at the microlevel and for
the mesoscale of fiber-reinforced composites. The current mechanical
analysis methods for these nanocomposites use analytical methods for
the homogenization of the composite. Various approaches have been
adopted in the literature based on the rule of the mixture, the Halpin–
Tsai and Mori–Tanaka models, to estimate the effective elastic mechan-
ical properties, for example [10,15]. More recently, Meng et al. [16]
applied the Halpin–Tsai model for GNP-epoxy nanocomposites, noting
discrepancies between predicted and experimental elastic modulus val-
ues due to the assumption of a perfectly random distribution of GNP
flakes; however, surfactant modification improved accuracy by ensur-
ing a more uniform dispersion in epoxy. Another recent article used
finite element modeling of the micromechanics of a hybrid GNP-CNT-
epoxy nanocomposite, emphasizing the effect of particle alignment on
stiffness, in good correlation with predictions and experiments [17].
Haghighi et al. used multiscale modeling to determine the mechan-
ical properties of GNP-CNT-epoxy nanocomposites. They used two
distinct combinations of computational methods: molecular dynamics
(MD) paired with finite element analysis, and MD combined with mi-
cromechanical modeling. Both approaches overpredicted the modulus
improvements [18]. Difficulties arise with analytical homogenization
as a result of the inherent planar nature of graphene and graphite
nanoplatelet reinforcements. As can be seen in previous studies [13,
19,20], the stiffness tends to be over- or underestimated depending on
the application of the Halpin–Tsai or Mori–Tanaka methods. Various
approaches are proposed to adjust for the shape of platelet filler, for
example [13,21]. In the method presented by Young et al. [22] an
effective modulus is formulated in the reinforcement plane of graphene
nanoplatelets using shear lag theory for shear stress transfer between
the constituent surfaces [23]. Multiscale computational approaches
have also been considered at the molecular level [14] based on MD
modeling and continuum mechanics based on the microlevel [24].
2

In this paper, we exploit the formulations presented in [24] based
on computational homogenization [25,26] for the effective elastic prop-
erties of epoxy composites enhanced with GNP with various weight
fractions of the content of carbon nanoparticles. Dirichlet and periodic
boundary conditions in the weak sense [27] are used to describe
the crucial fluctuation of displacement in the microstructure. 2D-GNP
enhancements in the composite are treated as membranes embedded in
the bulk polymer [28]. These membranes have their own mechanical
balance relationship, which adds a stiffening membrane effect to the
composite. The properties of neat epoxy are taken from standard tensile
tests and a data sheet, while molecular dynamics simulations presented
in [14] of the layered graphene elements are used to estimate the
stiffness of the membrane. A representative area element (RAE) of
the reinforced polymer matrix is established on the basis of regular
SEM micrographs of the graphene nanoplatelet network. Unlike X-ray
computed tomography image data that identify 2D phases as volumes
[29], micrographs are used here to segment virtual representations of
the microstructure morphology in terms of the polymer matrix and
the membranes that represent the GNP network. A special duplication-
based segmentation procedure is developed to fit the microstructure
to the (given) weight fraction of the GNP. From the homogenization
analysis, the macroscopic stiffness properties are simulated in relation
to the isotropic elastic and anisotropic surrogate models fitted with
least squares. Compared with experimental results, it is necessary to
include a finite element-represented fluctuation field in computational
homogenization to describe proper microstructural relaxation. The re-
sults show that the samples exhibit an improved stiffness of up to
10%−30% due to the morphological properties and the weight frac-
tion of the GNP content. The anisotropic surrogate model reveals a
significant local variation of the stiffness parameters for increasing
volume concentrations and for different orientations and distributions
of the graphene. Estimates are generally slightly higher than those for
experimental tensile testing.

2. Materials and methods

2.1. Experimental development of graphene–epoxy composites

Epoxy-GNP nanoplatelet composites were prepared to serve as a
model system to validate the stiffness homogenization model developed
herein. A two-component aeronautical grade epoxy system (Araldite LY
5052/Aradur 5052) was used as the matrix. The graphene nanoplatelets
used were exfoliated graphene/graphite nanoplatelets supplied by 2D
fab, without any modification. The flakes have an average thickness
of 5.57 ± 0.50 nm, as measured by atomic force microscopy (AFM,
Brucker Dimension Icon, Massachusetts, USA), which is equivalent
to approximately 17 layers [30]. The average lateral size is 0.88 ±
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Fig. 2. GNP volume fraction based on surface image analysis.
0.38 μm, measured by scanning electron microscopy (SEM, Jeol JCM-
6000 Plus, Tokyo, Japan) micrographs (Fig. 1). A suitable amount of
graphene nanoplatelets was first manually mixed with the liquid resin
in a beaker, and then the system was sonicated for 120 min in a
70 W 40 kHz ultrasonic bath (Sanders SoniClean 2PS, Minas Gerais,
Brazil), with manual stirring every 40 min to maintain homogeneity.
The acoustic power delivered to the samples was measured using the
calorimetric method [31] and was found to be ≈ 0.53 W. Previous
studies have shown that this dispersion method is able to disperse the
GNP flakes whilst maintaining their electrical and mechanical proper-
ties [32]. After the addition of hardener, the mixture was poured into
the appropriate silicone molds, cured at 25 ◦C for 24 h, and post-cured
at 100 ◦C for 4 h. The weight fraction of the graphene nanoplatelets in
the cured composite was 1, 3 and 5 wt.%. It is important to note that the
addition of GNP to the resin substantially increases its viscosity, which
may pose challenges in achieving a completely uniform mixture.

Scanning electron microscopy images of the cross section of the
composites were used as input for the finite element analysis. The
composite sample was initially cut with an Isomet cutter (Buehler,
Illiois, USA), and the exposed surface was sanded and polished with
nanosilica as the polishing medium. The sample was sputter coated
with a 15 nm thick gold layer, and microscopic observations were made
on the SEM with a voltage of 10 kV and a secondary electron detector.

2.2. Experimental tensile testing of the graphene–epoxy composites

Experimental tensile tests were carried out using an Instron uni-
versal testing machine (Massachusetts, USA) equipped with a 50 kN
load cell, following the ISO 527 standard guidelines. Dumbbell-shaped
specimens of 1BA type were prepared and the tests were carried out at
room temperature with a crosshead displacement rate of 1 mm min−1,
corresponding to a strain rate of 6.67 × 10−4 s−1. Five specimens for
each condition were tested and the results were averaged.

2.3. Image segmentation of GNP enhanced epoxy composite

Microscopic images of the GNP-epoxy composites collected exper-
imentally were then used to create virtual representations of the mi-
crostructure of the experimental material. Fig. 2(a) shows sections of
graphene nanoplatelets that appear as light gray lines, showing the 2D
morphology of GNPs in the composite in terms of different lengths and
3

Fig. 3. Digitized microstructure (red lines) over micrograph for a 3 wt.% GNP content.

thicknesses of GNPs in the darker epoxy matrix. Micrographs such as
the one in Fig. 2(a) were segmented using the Digitizer tool available
in the Origin graphing software (OriginLab Corporation, Northampton,
USA). The image segmentation process was carried out by picking the
coordinates of each beginning and end of the observed GNPs to digitize
the micrograph, approximating the visible GNP morphology as lines
between the beginning and end points. Aggregates of GNPs or non-
straight GNP morphologies have been approximated, discretizing them
into several lines (polyline). In segmentation, GNPs are assumed to be
membranes, identified through digitized polylines, embedded in the
polymer matrix. An example of a segmented microstructure is shown in
Fig. 3. It is emphasized that only the surface of the sample in Fig. 2(a) is
visible by SEM; in this case, with the internal surface of the GNP-epoxy
composite of 3 wt%.

Because only a portion of the GNPs is visible from the SEM, it is
necessary to combine the segmentation with the volume and weight
fractions of the GNP filler from the processing of the composite. To this
end, it is assumed that GNPs are randomly distributed on the surface
and in the volume of the statistically representative cube with the total
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volume 𝑉 as in Fig. 2(b). The schematic in Fig. 2(b) shows the enhanced
polymer by GNP, where the total volume of GNP can be represented by
𝑉 𝑔 = 𝑙 𝑡 ∫ 𝐿𝑡

0 𝑑𝑠. Note that 𝐿𝑡 is the total length of the dimension in the
plane of the 2D GNP elements, while 𝑙 is the depth of the GNP elements.

ith the average thickness 𝑡 for all GNPs, the volume fraction is

𝑔 = 𝑉 𝑔

𝑉
=

𝐿𝑡 𝑡
𝑎2

= 𝑛𝑑
𝐿 𝑡
𝑎2

with 𝐿 =
𝑛
∑

𝑖=1
∫𝐼𝑖

𝑑𝑠 (1)

here 𝐿 is the visible length of the GNPs from the SEM-analysis taken
s the sum of all sub-lengths of the GNP intervals 𝐼𝑖 of the digitized
icrostructure in Fig. 3. In (1) we also introduced the number of
uplicated 2D morphologies 𝑛𝑑 that are required to preserve the given
olume fraction of GNP from nanocomposite processing. Therefore,
e emphasize that 𝑛𝑑 is not the number of layers of GNP-flakes; it

s considered a representative value of the invisible flake morphology
rom the 2D SEM analysis. Furthermore, the intrinsic densities of the
NP and matrix are 𝜌𝑔 and 𝜌𝑚, respectively, so that the weight fraction
𝑔 of GNPs is

𝑔 =
𝜌𝑔𝑣𝑔

𝜌𝑚 (1 − 𝑣𝑔) + 𝜌𝑔𝑣𝑔
⇒ 𝑣𝑔 =

𝜌𝑚𝑤𝑔

𝜌𝑚𝑤𝑔 + 𝜌𝑔(1 −𝑤𝑔)
(2)

Upon combining (1) and (2) we finally arrive at

𝑛𝑑 = 𝑎2

𝐿 𝑡
𝑤𝑔𝜌𝑚

(1 −𝑤𝑔)𝜌𝑔 +𝑤𝑔𝜌𝑚
(3)

3. Computational homogenization and elastic surrogate modeling
of the nanocomposite

3.1. Homogenization procedure

To predict the increase in the stiffness of the nanocomposite, a finite
element-based homogenization procedure has been developed. In this
method, the effective elastic representation of the 2D nanoplatelet-
enhanced epoxy composite is homogenized using computational ho-
mogenization, where the 2D GNPs are modeled as membrane rein-
forcements embedded in the neat epoxy [28]. For homogenization,
embedded GNPs are resolved using the image analysis method pre-
sented in Section 2.3. Only a portion of the GNPs are visible from
the SEM; however, we let the orientation and discrete locations in 𝛺□
of the GNP elements obtained from the surface images represent the
morphology of the nanostructure. Taking into account a GNP element
in the schematic Fig. 4b, the natural coordinate 𝑠 runs along the
material points 𝒙[𝑠] of the GNP membranes. The tangent vector is
𝒏 = 𝒙′[𝑠]. As alluded to in Fig. 4b, the dimension of the GNP elements
in the depth dimension is 𝑙. The GNP stress response is governed by
the normal force of the membrane 𝑁 . In terms of interaction with the
olymer, full GNP-polymer bonding is assumed.

The planar region 𝛺□ is assumed to be a plane strain sheet with
hickness 𝑙 as shown in Fig. 4. In the present context with embedded
embranes in the polymer matrix, the Hill–Mandel condition [26]

ields the virtual work equivalence between macroscopic and micro-
copic fields as

�̄� ∶ 𝛿�̄� = ∫𝛺□

𝝈[𝝐] ∶ 𝛿𝝐𝑑𝛺 + ∫𝐿
𝑁[𝜖]𝛿𝜖𝑑𝑠 ∀𝛿𝝐 (4)

here 𝐴 = 𝑎2 is the area of the square region 𝛺□. As mentioned, it is
ssumed that the normal strain of the GNP membranes is affine with
he strain of the polymer, so that 𝜖 = (𝒏 ⊗ 𝒏) ∶ 𝝐. Furthermore, in
4) an overbar denotes quantities at the macrolevel, whereby �̄� is the
omogenized macrostress and 𝛿�̄� is the virtual strain at the macrolevel.
t the microlevel, 𝝈 is the polymer stress, 𝑁 [N/m] is the normal
embrane force of the resolved GNPs and 𝝐 is the engineering strain.

To link macro- and micro-stress responses, the strain at the mi-
rolevel 𝝐 is subdivided into terms of a subscale strain 𝝐𝑠 defined as

̄ 𝑠 𝑠
4

= 𝝐 + 𝝐[𝒖 ], where 𝒖 is the subscale displacement field. Also, note
that �̄� is the given macroscopic strain and 𝒖𝑠 is the subscale displace-
ment field resolved by FE from the balance relation (6) below. The
corresponding homogenized macrostress of the GNP enhanced polymer
is then obtained as

�̄� = �̄�m + �̄�GNP with �̄�m = 1
𝐴 ∫𝛺□

𝝈𝑑𝛺 and �̄�GNP = 1
𝐴

𝑛
∑

𝑖=1
∫𝐼𝑖

𝑁𝒏⊗ 𝒏𝑑𝑠

(5)

where 𝑛 is the number of visible GNPs of the RAE. The second part
�̄�GNP of macrostress represents the additional contribution due to the
membrane action of the embedded GNPs. This results from the virtual
work done by the microstructure in the RAE considering the full
interaction between the embedded GNP-membranes and the matrix.
The structure tensor 𝒏 ⊗ 𝒏 specifies the orientation of the membrane
action. We emphasize that the membrane force 𝑁 (with unit N/m)
is a different quantity compared to the stress, while the homogenized
membrane stress �̄�GNP has unit MPa.

Fundamental to the homogenized response in (5) is that the micro-
stress 𝝈[𝝐] and membrane force 𝑁[𝜖] fields are self-balancing in the
ense that

∫𝛺□

𝝈 ∶ 𝝐
[

𝛿𝒖𝑠
]

𝑑𝐴 +
𝑛
∑

𝑖=1
∫𝐼𝑖

𝑁[𝜖]𝛿𝜖𝑑𝑠

= ∫𝛤□𝑚

(

𝒕 ⋅ 𝛿[[𝒖𝑠]]𝑚 + 𝛿𝒕 ⋅ [[𝒖𝑠]]𝑚
)

𝑑𝑠 ∀ 𝛿𝒖𝑠 , 𝛿𝒕 (6)

orresponding to the separate static equilibrium statements for the bulk
nd for the GNP-elements within the RAE

⋅ 𝛁 = 𝟎 ∀𝒙 ∈ 𝛺□ (7a)
𝑑𝑁
𝑑𝑠

= 0 ∀𝒙[𝑠] ∈ 𝐼𝑖=1,…,𝑛 (7b)

here 𝛁 is the gradient operator. In (6), full bonding is assumed for all
NPs, which is 𝜖 = (𝒏⊗ 𝒏) ∶ 𝝐 [𝒖𝑠]. To allow periodic boundary condi-

ions (PBC), the tractions are 𝒕𝑚+ 𝒕𝑏 = 𝟎 and the subscale displacements
re 𝒖𝑠𝑚 − 𝒖𝑠𝑏 = 𝟎 on the master (subindex m) and backsides (subindex b)
f the RAE boundaries, as shown in Fig. 4a. As an extension of [24],
his is formulated in a weak sense in (6) where we used the notation
[𝒖𝑠]]𝑚 = 𝒖𝑠𝑚 − 𝒖𝑠𝑏. More details are found in [27]. In the case of weak
irichlet boundary conditions (DBC), we simply let [[𝒖𝑠]]𝑚 → 𝒖𝑠 along

he entire 𝛤□ of the RAE.
The balance relation (6) is solved using finite elements, approxi-

ating the subscale field 𝒖𝑠[𝒙] so that the bulk polymer is discretized
sing standard 2D bilinear elements and the membrane structures are
onsidered consistent with the bulk polymer elements. Moreover, piece-
ise constant tractions 𝒕 are considered along 𝛤□𝑚. The membranes

are embedded within the common face between two adjacent bulk
FE elements. Here, elastic response of the bulk and the membranes is
assumed so that

𝝈 = 𝑬𝑚 ∶
(

�̄� + 𝝐
[

𝒖𝑠
])

with 𝑬𝑚 = 2𝐺𝑚𝑰𝑑 +𝐾𝑚𝟏⊗ 𝟏 (8a)

𝑁 ∶= 𝑛𝑑 𝐸
𝑓 (𝜖 + 𝜖[𝒖𝑠]) (8b)

where 𝐺𝑚 and 𝐾𝑚 are the elastic shear and bulk moduli for the isotropic
neat epoxy. We also introduce the fourth-order deviatoric projection
operator 𝑰𝑑 in terms of the fourth-order 𝑰 and second-order identity
tensor 𝟏 defined by 𝑰𝑑 = 𝑰 − 1

3𝟏 ⊗ 𝟏. The fourth order projection
perator projects any second-order tensor onto its deviatoric part; for
xample, the strain deviator is 𝝐𝑑 = 𝑰𝑑 ∶ 𝝐 = 𝝐 − 1

3 𝜖𝑣𝟏. Further
elaboration on this definition can be found in a prior publication [33].
Furthermore, in (8b), 𝐸𝑓 is the stiffness of the GNP membrane. The
membrane stiffness appears to depend on the number of layers of GNP

particles, as discussed in Section 4.
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Fig. 4. Representative area element, with side length 𝑎, of GNP elements embedded in neat epoxy. (a) Principal 2D image of GNPs embedded in the polymer matrix in the RAE
region 𝛺□. To handle periodic boundary conditions, the boundary consists of master boundaries 𝛤□𝑚 (on top and to the ‘‘right’’) alongside back boundaries 𝛤□𝑏. (b) Close-up of
GNP considered as a membrane with material points 𝒙[𝑠] in terms of natural coordinates along the interval 𝐼 . The unit tangent vector of the membrane is 𝒏 = 𝒙′[𝑠].
Fig. 5. Schematic of the equivalent transverse isotropic elastic representation of
the computationally homogenized nanoplatelet-reinforced composite. The preferred
orientation is 𝒏𝜃 .

3.2. Transverse isotropic elastic surrogate model

To investigate the stiffness variation in the composite as induced
by the morphology of the SEM images, a surrogate transverse isotropic
elastic model is introduced. The homogenized composite is assumed to
have a preferred orientation 𝒏𝜃 that rotates an angle 𝜃 with respect to
the vertical 𝑦 axis of the RAE, as shown in Fig. 5. We emphasize that the
investigation concerns the degree of elastic anisotropy and that there
is no connection to any other physical orientation of the sample.

The elastic stiffness is established from three independent deforma-
tions applied to the RAE, whereby we obtain the elastic stiffness for the
planar case in Voigt form as

𝑬 =

⎛

⎜

⎜

⎜

⎝

�̄�1𝑥 �̄�2𝑥 �̄�3𝑥
�̄�1𝑦 �̄�2𝑦 �̄�3𝑦
𝜏1xy 𝜏2xy 𝜏3xy

⎞

⎟

⎟

⎟

⎠

(9)

Here, each column is the homogenized stress response {�̄�𝑖 = (�̄�𝑥, �̄�𝑦,
𝜏𝑥𝑦)}𝑖=1,2,3 of the triad of unit deformations

{

�̄�𝑖 =
(

𝜖𝑥, 𝜖𝑦, �̄�xy
)}

𝑖=1,2,3
defined as
{

𝜖𝑥 = 1, 𝜖𝑦 = 0, �̄�xy = 0
}

𝑖=1 ,
{

𝜖𝑥 = 0, 𝜖𝑦 = 1, �̄�xy = 0
}

𝑖=2 ,
{

𝜖𝑥 = 0, 𝜖𝑦 = 0, �̄�xy = 1
}

𝑖=3 (10)
5

Following the developments in [33], transverse elastic isotropy may
be represented in tensor form as

𝑬 = 2𝐺𝑰𝑑 + 2𝐺𝑠𝑰𝑠 +𝐾𝟏⊗ 𝟏 + 𝐸𝒎𝜃 ⊗𝒎𝜃 with 𝒎𝜃 = 𝒏𝜃 ⊗ 𝒏𝜃 (11)

The fourth order shear tensor 𝑰𝑠 projects an arbitrary strain into pure
shear associated with 𝒏𝜃 defined as

𝑰𝑠 =
1
2
(

𝟏⊗̄𝒎𝜃 +𝒎𝜃⊗̄𝟏
)

−𝒎𝜃 ⊗𝒎𝜃 (12)

In (11), 𝐺 and 𝐾 are the isotropic shear and bulk moduli for the
nanocomposite, while the anisotropy parameters 𝐺𝑠 and 𝐸 are the con-
tributions of shear and normal stiffness associated with the preferred
orientation 𝒏𝜃 induced by the platelet mixture. It appears that the
elastic parameters

{

𝐺,𝐺𝑠, 𝐾, 𝐸
}

are related to the classical parameters
of elastic transverse isotropy

{

𝐸1, 𝐸2, 𝐺23, 𝐺12, 𝜈12
}

(‘‘1’’ denotes the
longitudinal ‘‘fiber’’ direction), cf. [33], as

𝐸2 =
4𝐺(𝐸(𝐺 + 3𝐾) + 9𝐺𝐾)

𝐸(4𝐺 + 3𝐾) + 4𝐺(𝐺 + 3𝐾)
, 𝐺23 = 𝐺 ,

𝐸1 = 𝐸 + 9𝐺𝐾
𝐺 + 3𝐾

, 𝐺12 = 𝐺 +
𝐺𝑠
2

, 𝜈12 =
9𝐾

2(𝐺 + 3𝐾)
− 1

(13)

Here, the sensitivity to the orientation of the ‘‘fiber’’ (or anisotropy)
is reflected in the ratio 𝐸1∕𝐸2. Note that the ratio 𝐸1∕𝐸2 → 1 as
the ‘‘fiber’’ stiffness 𝐸 → 0 and the shear stiffness 𝐺12 → 𝐺 when
𝐺𝑠 → 0. Furthermore, to obtain the equivalent transverse isotropic
elastic representation of the computationally homogenized nanoplatelet
reinforced composite in (9), a least squares fit is defined from the
minimization problem

{𝐺,𝐺𝑠, 𝐾, 𝐸, 𝜃} = arg
(

min ||
|

𝑬 − 𝑬|

|

|

2
)

⇝
{

𝐸2, 𝐺23, 𝐸1, 𝐺12, 𝜈12, 𝜃
}

(14)

where 𝑬 is the Voigt matrix representation of the tensor in (11). The
output from the least-squares fit includes the parameters {𝐺,𝐺𝑠, 𝐾, 𝐸,
𝜃}, which define the macrolevel stiffness 𝑬, leading to the classical
transverse anisotropy parameters in (13). Note that the orientation
vector of the preferred GNP orientation vector 𝒏𝜃 is identified from the
orientation angle 𝜃 in the planar case as 𝒏𝜃 = {sin 𝜃, cos 𝜃, 0}, cf. Fig. 5.
In practice, it turns out to be very difficult to evaluate the best fit with
respect to angle 𝜃. Instead, a search algorithm was adopted, varying the
angle in the range 0 ≤ 𝜃 ≤ 180◦, to obtain the global minimum in (14).
As alluded to in (14), we make use of (13) to convert the identified
model parameters to the corresponding classical ones.
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Fig. 6. Schematic figure of an RUC for MD simulation of the homogenized lateral stiffness modulus �̄�𝑅𝑈𝐶 and volume fraction 𝑣𝐺𝑁𝑃 considered in [14].
Fig. 7. Tensile test curves for neat epoxy and GNP-reinforced nanocomposites (left); averaged elastic modulus as a function of GNP weight content (right).
3.3. Isotropic elastic surrogate model

We also consider isotropic elasticity to act as a surrogate model for
the homogenized response of the nanocomposite. Then it is assumed
from the outset that there is no preferred orientation of the stiffness
properties. This property is anticipated for well-dispersed specimens in
processing, although local anisotropy may be present without affecting
the overall behavior at the macrolevel. The procedure is completely
analogous to the one described in 3.2 for the assumed anisotropic
response, where the isotropic elasticity stiffness tensor is defined as

𝑬 = 2𝐺𝑖𝑠𝑜 𝑰𝑑 +𝐾𝑖𝑠𝑜 𝟏⊗ 𝟏 (15)

The minimization problem for the best fit is then redefined for the
isotropic elasticity parameters

{

𝐾𝑖𝑠𝑜, 𝐺𝑖𝑠𝑜
}

as

{

𝐾𝑖𝑠𝑜, 𝐺𝑖𝑠𝑜
}

= arg
(

min ||
|

𝑬 − 𝑬|

|

|

2
)

⇝
{

𝐸𝑖𝑠𝑜, 𝜈𝑖𝑠𝑜
}

(16)

The elastic constants {𝐸𝑖𝑠𝑜, 𝜈𝑖𝑠𝑜} are related to the output fitting param-
eters from (16) through

𝐸𝑖𝑠𝑜 =
9𝐾𝑖𝑠𝑜𝐺𝑖𝑠𝑜

3𝐾𝑖𝑠𝑜 + 𝐺𝑖𝑠𝑜
, 𝜈𝑖𝑠𝑜 =

𝐸𝑖𝑠𝑜
2𝐺𝑖𝑠𝑜

− 1 (17)

4. Experimental results and data preparation

To estimate the stiffness of the GNP membrane 𝐸𝑓 in (8b) the
results of [14] on the GNP-reinforcement of epoxy are exploited. Here,
the homogenized stiffness modulus in the lateral direction �̄�𝑅𝑈𝐶 is
obtained from MD simulations of a representative unit cell (RUC) as
in Fig. 6. Different results are reported for a number of polymer-
graphene functionalized layers. Upon assuming the rule of mixtures for
6

Table 1
Material parameters for elastic isotropy of the neat epoxy and mechanical properties
of a GNP layer.
𝐸𝑚 𝜈𝑚 𝐺𝑚 𝐾𝑚 𝐸𝑓 = 𝑛𝑙 𝑡𝑔 𝐸𝑔
MPa – MPa MPa N/m

2674 0.36 983 3183 297.82 𝑛𝑙

the 1D lateral response of the RUC, we find that the contribution of the
intrinsic graphene stiffness is

𝐸𝑔 =
�̄�𝑅𝑈𝐶 − (1 − 𝑣𝐺𝑁𝑃 )𝐸𝑚

𝑣𝐺𝑁𝑃 with 𝑣𝐺𝑁𝑃 = 𝑡
𝑡𝐺𝑁𝑃

(18)

where 𝑣𝐺𝑁𝑃 is the volume fraction GNP in the RUC and �̄�𝑅𝑈𝐶 is
the homogenized lateral stiffness from the MD-simulations in ref [14].
Here, the stiffness contribution of the polymer is included, even when it
is relatively small. From the data in [14] for 𝑣𝐺𝑁𝑃 and �̄�𝑅𝑈𝐶 based on
the cross-link density of the polymer 80%, we find that the intrinsic
stiffness is fairly insensitive to the number of layers. The average
value is 𝐸𝑔 ≈ 876 ⋅ 103 MPa, taking into account the stiffness of the
matrix 𝐸𝑚 =2674 MPa. The stiffness of the GNP membrane in the
RAE representation (8b) is then 𝐸𝑓 = 𝑛𝑙 𝑡𝑔 𝐸𝑔 , with 𝑡𝑔 = 3.4 Å as
shown in Table 1. Here, it can be observed that 𝐸𝑓 (with 𝑛𝑙 = 1) is
slightly reduced compared to the experimentally determined values of
the linear part of a graphene monolayer [34].

The neat epoxy was tested as specified in Section 2.2. The results are
shown in Fig. 7, where the linear regime is used to obtain the modulus
of elasticity. The Poisson ratio is 𝜈𝑚 = 0.36, which leads to the elastic
isotropy properties in (8a) of the epoxy. The corresponding shear and
bulk stiffnesses are shown in Table 1. Tensile tests of nanocomposite
samples were performed for the different weight fractions considered.
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w

Fig. 8. Resulting image segmentation into matrix and membranes of different regions of the nanocomposite: (a) first material point at 1 wt.%, (b) second material point at 1

t.%, (c) first material point at 3 wt.%, (d) second material point at 3 wt.%, (e) first material point at 5 wt.%, (f) second material point 5 wt.%.
Table 2
Elastic modulus from experimental test of the GNP-epoxy composites.

Sample 𝐸 Stiffness increase
MPa %

GNP 1 wt.% 2941 ± 55 10
GNP 3 wt.% 3193 ± 85 18
GNP 5 wt.% 3366 ± 113 26
7

The results are collected in Table 2 and are included in Fig. 7 along
with the observed scatter. According to [13], the experimental elastic
stiffness is increasing, while the tensile strength decreases with increas-
ing weight fraction of the present GNP-filler. It is also noted that the
neat epoxy exhibits slightly less brittle behavior compared to that of
the GNP-enhanced epoxy.

To study the effect of GNP enhancement on the polymer, two images
of each fraction of GNP weight were used to develop the discretized

GNP enhanced polymer using the image segmentation described in
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Section 2.3. The weight fractions considered are 𝑤𝑔 = 1, 3, and 5 wt.%.
Three discretizations are developed based on the three different weight
fractions, resulting in morphologies of the GNP distribution, as shown
in Fig. 8. For each weight fraction, two different local material regions
presenting different microstructures are considered.

5. Surrogate model identification

To identify the surrogate models, elastic finite element plane strain
analyzes are carried out following the sequel (5)–(14). The sample is
discretized using standard 2D bilinear elements, and the GNP mem-
branes are embedded along the boundaries between the elements.
Our experience is that the details of the mesh design and the size
of the RAE are minor for the analysis in the present examples. As
mentioned in Section 3.2, the elastic stiffness is obtained from homog-
enized stresses based on the application of normal macroscopic units
and shear strains to the RAE. To relate the homogenized response to
the model parameters for the anisotropic elastic response, the least
squares fit in (14) was adopted based on a search for each angle 0 ≤
𝜃 ≤ 180◦. Fig. 9 shows the resulting microscopic stress distribution
for von Mises stress and membrane forces due to the unit shear load
considered in computational homogenization. The results are shown for
the microstructure in Fig. 8(c) at 3 wt.%. Here, the GNP distribution
stiffens the polymer through the membrane stress response of the GNP
membranes. As shown in Fig. 9, the Taylor assumption is reflected
in the too high membrane forces in the GNPs, corresponding to an
overstiff response of the RAE. When the FE-resolved fluctuation field is
considered, a more relaxed response is obtained in the GNP-membranes
of the RAE. The PBC in Fig. 9 produces a slightly more relaxed RAE
compared to the DBC.

Table 3 shows the results of the identified transverse elastic isotropy
parameters. In general, an increase in the weight fraction of GNP leads
to significant stiffening of the composite. Taking 𝐸2 as a representative
parameter, we find that for the lowest weight fraction of GNP, the
increase in stiffness (compared to the isotropic neat epoxy parameters
in Table 1) is approximately 10%. A greater increase in stiffness is
obtained in the biased 𝐸1 direction (20−50%) compared to the increase
in the orthogonal 2-direction (up to 10−30%). Taylor’s assumption (T),
𝒖𝑠 = 𝟎, is included in Table 3. As expected, unrealistic overstiffening is
obtained compared to the more relaxed RAEs. Therefore, the fluctua-
tion field 𝒖𝑠 governed by the static momentum balance of the RAE plays
an essential role in relaxing the stresses of the RAE.

For comparison, we consider the predicted isotropic elastic response
of computational homogenization along the lines set out in Section 3.3.
Table 4 shows the parameters identified for all microstructures shown
in Fig. 8. In this case, the increase in the weight fraction of GNP yields a
stiffness increase of up to ≈ 13−50%, depending on the weight fraction.
Moreover, this increase is about the same for both the elastic moduli
and the shear moduli for all microstructures. As expected, 𝐸𝑖𝑠𝑜 gives an
intermediate value between 𝐸1 and 𝐸2 of the transverse isotropic elastic
model. Again, it is observed that the sensitivity to the choice of DBC
or PBC is minor. Hence, we may conclude that the realizations of the
individual microstructures are representative of the elastic properties
of the nanocomposite.

6. Halpin–Tsai and Mori–Tanaka models

In order to validate the elastic stiffness predicted by the surro-
gate models, we follow the developments in [13,19,20] and apply
the Halpin–Tsai (HT) equations to the case of randomly distributed
GNPs. In the articles, the semi-empirical homogenized elastic stiffness
modulus 𝐸HT for 3D randomly oriented flakes is composed of a 4/5
contribution from GNPs oriented off-axis to the loading direction and a
1/5 contribution from flakes aligned with the loading direction. The HT
8

Fig. 9. von Mises stress distribution in polymer and membrane forces 𝑁 of GNP
membranes from FE analysis for a unit shear load applied to the sample at 3 wt.% in
Fig. 8(c). Different boundary conditions for the fluctuation field are considered: Taylor
assumption (top), Dirichlet boundary conditions for 𝒖𝑠 (center), and periodic boundary
conditions for 𝒖𝑠 (bottom).

stiffness is summarized in terms of matrix stiffness 𝐸𝑚 and the standard
HT ‘‘fiber’’ stiffening function 𝑓 , defined as

𝐸HT = 𝐸𝑚

(

4
5
𝑓 [2] + 1

5
𝑓 [

𝜉
3
]
)

with 𝑓 [𝜉] =
1 + 𝜉𝜂[𝜉]𝑣𝑔

1 − 𝜂[𝜉]𝑣𝑔
and

𝜂[𝜉] =
𝐸𝑔∕𝐸𝑚 − 1
𝐸𝑔∕𝐸𝑚 + 𝜉

(19)

where 𝜉 = 2𝑙flake∕𝑡flake is the length and the thickness of the GNP flakes
and 𝑣𝑔 is the volume fraction of GNPs considered in (2). In view of
the measured lateral flake size and flake thickness in Section 2.1, we
estimate 𝜉 = 2(8.8 × 10−4)∕(5.5 × 10−6) = 320. Moreover, assuming
that the GNP-stiffness is isotropic with respect to the longitudinal flake
orientation, the ratio 𝐸𝑔∕𝐸𝑚 is 876 × 103∕2674 = 328. Here, it may be
observed that 𝑓 [𝜉 → ∞] corresponds to the Voigt bound (or isostrain
condition) for GNPs continuous in the loading direction, while 𝑓 [𝜉 →

0] corresponds to the Reuss bound (or isostatic condition) for GNPs
continuous transverse to the loading.

We also consider the Mori–Tanaka (MT) method [35], applied to
a spherical inclusion in the epoxy matrix. Therefore, GNP flakes are
approximated as an embedded GNP sphere in the matrix with volume
fraction 𝑣𝑔 . The homogenized strain �̄� of the continuum is obtained in
terms of the homogenized matrix strain 𝝐 and the strain in the GNP
𝑚
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Table 3
Identified transverse elastic isotropy parameters from least-squares fits to the computational homogenization for the
microstructures depicted in Fig. 8 analyzed based on the Taylor assumption (T), Dirichlet boundary conditions (DBC), and
periodic boundary conditions (PBC).

𝑤𝑔 Mic. 𝐸2 𝐺23 𝐸1 𝐺12 𝜈12 𝜃
(MPa) (MPa) (MPa) (MPa) ◦

T 1% 8(a) 5309 (99%) 1983 (102%) 5591 (109%) 2320 (136%) 0.33 99.9
8(b) 4589 (72%) 1625 (65%) 8988 (236%) 1625 (65%) 0.33 62.1

T 3% 8(c) 9139 (242%) 3310 (237%) 15 919 (495%) 4655 (374%) 0.31 28.8
8(d) 10 606 (297%) 3985 (306%) 14 505 (443%) 4397 (347%) 0.29 18.9

T 5% 8(e) 13 322 (398%) 4820 (390%) 22 815 (753%) 6931 (605%) 0.32 5.4
8(f) 14 473 (441%) 5340 (443%) 20 445 (664%) 7377 (650%) 0.31 2.7

DBC 1% 8(a) 2973 (11%) 1084 (10%) 3279 (22%) 1084 (10%) 0.35 67.50
8(b) 2879 (8%) 1033 (5%) 3495 (30%) 1033 (5%) 0.36 61.2

DBC 3% 8(c) 3012 (12%) 1075 (9%) 3715 (39%) 1236 (26%) 0.36 20.7
8(d) 3371 (26%) 1216 (24%) 3980 (49%) 1315 (34%) 0.35 18.0

DBC 5% 8(e) 3443 (29%) 1238 (26%) 4150 (55%) 1370 (39%) 0.36 10.8
8(f) 3701 (38%) 1347 (37%) 4187 (57%) 1502 (53%) 0.35 180.0

PBC 1% 8(a) 2953 (11%) 1080 (10%) 3177 (19%) 1080 (10%) 0.35 67.5
8(b) 2858 (7%) 1030 (5%) 3352 (25%) 1030 (5%) 0.36 62.1

PBC 3% 8(c) 2990 (12%) 1071 (9%) 3590 (34%) 1213 (23%) 0.36 20.7
8(d) 3324 (24%) 1204 (23%) 3820 (43%) 1285 (31%) 0.35 17.1

PBC 5% 8(e) 3424 (28%) 1236 (26%) 4013 (50%) 1505 (53%) 0.36 4.5
8(f) 3656 (37%) 1331 (35%) 4141 (55%) 1429 (45%) 0.35 171.0
e
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Table 4
Identified elastic isotropy parameters from least squares fits to the computational
homogenization for the microstructures depicted in Fig. 8 analyzed based on the Taylor
assumption (T), Dirichlet boundary conditions (DBC), and periodic boundary conditions
(PBC).

𝑤𝑔 Mic. 𝐸𝑖𝑠𝑜 𝐺𝑖𝑠𝑜 𝜈𝑖𝑠𝑜
(MPa) (MPa)

T 1% 8(a) 5714 (114%) 2165 (120%) 0.32
8(b) 6346 (137%) 2421 (146%) 0.31

T 3% 8(c) 11 572 (333%) 4497 (358%) 0.29
8(d) 11 533 (331%) 4481 (356%) 0.29

T 5% 8(e) 17 712 (563%) 6946 (607%) 0.28
8(f) 18 782 (603%) 7373 (650%) 0.27

DBC 1% 8(a) 3022 (13%) 1118 (14%) 0.35
8(b) 3122 (17%) 1156 (18%) 0.35

DBC 3% 8(c) 3253 (22%) 1204 (23%) 0.35
8(d) 3407 (27%) 1259 (28%) 0.35

DBC 5% 8(e) 4118 (54%) 1544 (57%) 0.33
8(f) 4024 (51%) 1502 (53%) 0.34

PBC 1% 8(a) 3005 (12%) 1111 (13%) 0.35
8(b) 3033 (13%) 1121 (14%) 0.35

PBC 3% 8(c) 3207 (20%) 1187 (21%) 0.35
8(d) 3357 (26%) 1241 (26%) 0.35

PBC 5% 8(e) 4011 (50%) 1502 (53%) 0.33
8(f) 3957 (48%) 1477 (50%) 0.34

inclusion 𝝐𝑔 as

̄ = 𝑣𝑚𝝐𝑚 + 𝑣𝑔𝝐𝑔 with 𝝐𝑔 = 𝑨𝑔 ∶ 𝝐𝑚 and

𝑨𝑔 =
(

𝑰 + 𝑺𝑚 ∶
(

𝑬𝑔 ∶ 𝑬−1
𝑚 − 𝑰

)) −1 (20)

here 𝑨𝑔 is the local partitioning tensor obtained from Eshelby’s
nclusion method [36]. The constitutive stress–strain relations in the
onstituents are given by

𝑚 = 𝑬𝑚 ∶ 𝝐𝑚 with 𝑬𝑚 = 2𝐺𝑚𝑰𝑑 +𝐾𝑚𝟏⊗ 𝟏
𝝈𝑔 = 𝑬𝑔 ∶ 𝝐𝑔 with 𝑬𝑔 = 2𝐺𝑔𝑰𝑑 +𝐾𝑔𝟏⊗ 𝟏

(21)

here 𝑬𝑚 and 𝑬𝑔 are the isotropic elastic stiffness tensors of the matrix
nd the GNP particles when confined to the sphere. The homogeneous
tress is �̄� = 𝑣𝑚𝝈𝑚 + 𝑣𝑔𝝈𝑔 , which combined with (20) and (21) yields
he homogenized 𝑬MT-stiffness as

̄ = 𝑬MT ∶ �̄� ⇝ 𝑬MT =
(

𝑬𝑚 + 𝑣𝑔
(

𝑬𝑔 ∶ 𝑨𝑔 − 𝑬𝑚
))

∶
(

𝑰 + 𝑣𝑔
(

𝑨𝑔 − 𝑰
)) −1

(22)
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It appears that MT-homogenized stiffness 𝑬MT is isotropic for the
mbedded sphere with the Eshelby tensor 𝑺𝑚 = 𝛼1𝑰+𝛼2𝟏⊗𝟏; the explicit
esult is

MT = 2𝐺MT𝑰𝑑 +𝐾MT𝟏⊗ 𝟏 (23)

here

𝐺MT = 𝐺𝑚

1 + 𝛼1
( 𝐺𝑔
𝐺𝑚

− 1
)

+ 𝑣𝑔(1 − 𝛼1)
( 𝐺𝑔
𝐺𝑚

− 1
)

1 + 𝛼1
( 𝐺𝑔
𝐺𝑚

− 1
)

− 𝑣𝑔𝛼1(
𝐺𝑔
𝐺𝑚

− 1)

𝐾MT = 𝐾𝑚

1 + 𝛼3
( 𝐾𝑔
𝐾𝑚

− 1
)

+ 𝑣𝑔(1 − 𝛼3)
( 𝐾𝑔
𝐾𝑚

− 1
)

1 + 𝛼3
( 𝐾𝑔
𝐾𝑚

− 1
)

− 𝑣𝑔𝛼3
( 𝐾𝑔
𝐾𝑚

− 1
)

(24)

and the coefficients are obtained in terms of the Poisson’s ratio 𝜈𝑚 of
he matrix defined as

3 = 𝛼1 + 3𝛼2 with 𝛼1 =
2
15

4 − 5𝜈𝑚
1 − 𝜈𝑚

and 𝛼2 =
1
15

5𝜈𝑚 − 1
1 − 𝜈𝑚

(25)

For comparison, the isotropic parameters of the MT model are cal-
culated in terms of the homogenized modulus of elasticity 𝐸MT and
Poisson’s ratio 𝜈MT as

𝐺MT =
𝐸MT

2(1 + 𝜈MT)
, 𝐾MT =

𝐸MT
3(1 − 2𝜈MT)

⇝ 𝐸MT , 𝜈MT (26)

. Discussion

In Fig. 10 the parameters of the identified surrogate models consid-
ring PBC in Section 5, experimental tensile tests 𝐸𝑒𝑥𝑝 in Table 2 are
isplayed together to facilitate interpretation. For validation, predic-
ions of the nanocomposite’s elastic stiffness based on the HT and MT
ethods are also included. The morphology of GNPs is considered by

pplying weights to the HT stiffening function 𝑓 in (19). In applying
he MT model, we limit our focus to the isotropic response of the
anocomposite from (26), considering the GNP filler as an embedded
phere within the matrix with a volume fraction 𝑣𝑔 , and not taking into
ccount the two-dimensional morphology of the flakes.

From Fig. 10, surrogate models generally overestimate the stiffness
f the nanocomposite, with a higher overprediction for the highest GNP
ontent (5 wt.%). The transverse isotropic surrogate model suggests
variation in stiffness ranging from 𝐸2 to 𝐸1, where the stiffness 𝐸2

s more in line with the tensile tests, while the stiffness 𝐸1 overpre-
icts the experimental observation. We also note that the stiffness for

sotropic behavior, 𝐸𝑖𝑠𝑜 and 𝐺𝑖𝑠𝑜, takes intermediate values between
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Fig. 10. Comparison between the experimental stiffness (Eexp) and the stiffness values
obtained with the Halpin–Tsai (EHT), Mori–Tanaka (𝐸MT) and the proposed isotropic
(Eiso,PBC) and anisotropic homogenization method (𝐸1,PBC and 𝐸2,PBC).

those of the transverse isotropic, {𝐸1, 𝐸2} or {𝐺12, 𝐺23}, for almost
all cases. The adopted HT model yields slightly higher estimates of
the elastic modulus compared to the surrogate model, thus supporting
the results from computational homogenization. However, predictions
from the HT model are very sensitive to the adopted weighting of the
standard HT fiber stiffening function. The present application of the MT
model with the assumption of spherical particles does not account for
the GNP morphology. As a result, a lower bound to elastic properties is
obtained corresponding to a significant underestimate of stiffness. We
also observe the Voigt bound for continuous GNPs transverse to the
loading, that is, when the flake aspect ratio 𝜉 approaches infinity. In this
case, we obtain the increase in stiffness 𝑓 − 1 = {182% , 552% , 928%}
for the volume fractions corresponding to 𝑤𝑔 = {1% , 3% , 5%}, which,
as expected, exceed the increases predicted by the Taylor assumption
for the RAE in Tables 3 and 4.

The limitations of the homogenization method presented here in-
clude the variation of the image throughout the material and the
correlation between the 2D and the true 3D properties. The variation
in image across the material can be seen by averaging several samples.
However, if the nanocomposite has a significant amount of inhomo-
geneity, then more samples or larger volumes may be required in the
homogenization procedure. It is emphasized that the method uses a
2D representation, which artificially creates infinite plate structures (of
the 1D GNPs) that run out of plane, possibly leading to overprediction
of the stiffness. Furthermore, a perfect bond is assumed between the
GNP membranes and the matrix. This also contributes to overstiffening,
especially for higher weight fractions, because a larger GNP content
increases the surface/length of the interface.

8. Concluding remarks

In this paper, the homogenized macrolevel stiffness of the GNP/
polymer microstructure satisfactorily describes the increase in the stiff-
ness of the epoxy matrix as a result of the GNP-reinforcement. To
account for the morphology of the graphene platelet network in ho-
mogenization, a surface image segmentation analysis of regular SEM
micrographs was developed. Detail analysis includes digitization of
SEM-visible particles, FE-discretization, and duplication analysis of the
morphology to account for the given GNP-weight fraction. The GNPs of
the microstructure are modeled as embedded membranes with perfect
bonding to the polymer. Here, MD simulations of Hadden et al. [14] on
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a functionalized layered graphene element were used to estimate the
stiffness of the membrane. In computational homogenization, the fluc-
tuation field of momentum balance plays an essential role in describing
microstructural relaxation. Both PBC and DBC were considered for the
fluctuation field. As expected, the PBC yields a slightly lower estimate
of the surrogate stiffness properties. Anisotropic and isotropic elastic
surrogate models for microstructural behavior have been identified
through least-squares fits of homogenized responses. From the stiffness
assessment obtained via the surrogate models, the observed increase
in stiffness with respect to the weight fraction of GNPs is verified.
From the anisotropic model, there is a ‘‘directional’’ variation in the
stiffness, depending on the pointwise morphology of the GNP network.
Conservative consideration of the results shows an increase in stiffness
of up to 10% to 30% for samples reinforced with 1 to 5 wt.% of
GNP, respectively, obtained from the morphological properties and the
weight fraction of the carbon content. These findings from the surro-
gate models are also supported by validation against the HT and MT
models. In this context, the anisotropic surrogate reveals a significant
local variation in stiffness (even up to 50% increase). Estimates are
generally slightly higher than those for experimental tensile testing.
This may be explained by ideal perfect GNP bonding to the polymer,
the unseen out-of-plane morphology of the GNPs, and local variations
in the dispersion state.

CRediT authorship contribution statement

Ragnar Larsson: Supervision, Software, Methodology, Funding ac-
quisition, Formal analysis, Conceptualization. Danilo J. Carastan: Val-
idation, Supervision, Funding acquisition, Data curation. Matheus M.
de Oliveira: Writing – review & editing, Visualization, Validation,
Methodology, Data curation. Linnéa Selegård: Validation, Funding
acquisition. Mario Martínez: Writing – review & editing, Visualization,
Software, Methodology, Data curation.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

This work was supported by Vinnova: Multifunctional Composite
Structures through Graphene (MULTIGRAPH), Sweden Project number:
2017-02234.

References

[1] A. Ferrari, F. Bonaccorso, V. Fal’ko, K. Novoselov, S. Roche, P. Bøggild, S. Borini,
F. Koppens, V. Palermo, N. Pugno, J. Garrido, R. Sordan, A. Bianco, A. Ballerini,
M. Prato, E. Lidorikis, Science and technology roadmap for graphene, related
two-dimensional crystals and hybrid systems, Nanoscale 7 (2015) 4598–4810.

[2] H. Kim, A. Abdala, C. MacOsko, Graphene/polymer nanocomposites, Macro-
molecules 43 (16) (2010) 6515–6530.

[3] R. Guzman de Villoria, P. Hallander, L. Ydrefors, P. Nordin, B. Wardle, In-plane
strength enhancement of laminated composites via aligned carbon nanotube
interlaminar reinforcement, Compos. Sci. Technol. 133 (14) (2016) 33–39.

[4] C. Kostagiannakopoulou, T. Loutas, G. Sotiriadis, A. Markou, V. Kostopoulos, On
the interlaminar fracture toughness of carbon fiber composites enhanced with
graphene nano-species, Compos. Sci. Technol. 118 (2016) 217–225.

[5] M. Rafiee, J. Rafiee, Z. Wang, H. Song, Z. Yu, N. Koratkar, Enhanced mechanical
properties of nanocomposites at low graphene content, ACS Nano 3 (12) (2009)
3884–3890.

[6] A.K. Pathak, M. Borah, A. Gupta, T. Yokozeki, S.R. Dhakatea, Improved mechani-
cal properties of carbon fiber/graphene oxide-epoxy hybrid composites, Compos.
Sci. Technol. 135 (27) (2016) 28–38.

http://refhub.elsevier.com/S0266-3538(24)00331-2/sb1
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb1
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb1
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb1
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb1
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb1
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb1
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb2
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb2
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb2
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb3
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb3
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb3
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb3
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb3
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb4
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb4
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb4
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb4
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb4
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb5
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb5
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb5
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb5
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb5
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb6
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb6
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb6
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb6
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb6


Composites Science and Technology 256 (2024) 110761R. Larsson et al.
[7] L. Tang, Y. Wan, D. Yan, L. Pei, Y. Li, The effect of graphene dispersion on the
mechanical properties of graphene/epoxy composites, Carbon 60 (2013) 16–27.

[8] S. Chandrasekaran, N. Sato, F. Tölle, R. Mülhaupt, B. Fiedler, K. Schulte, Fracture
toughness and failure mechanism of graphene based epoxy composites, Compos.
Sci. Technol. 97 (2014) 90–99.

[9] C. Leopold, W. Liebig, H. Wittich, B. Fiedler, Size effect of graphene nanoparticle
modified epoxy matrix, Compos. Sci. Technol. 134 (2016) 217–225.

[10] D. Papageorgiou, I. Kinloch, R. Young, Mechanical properties of graphene and
graphene-based nanocomposites, Prog. Mater. Sci. 90 (2017) 75–127.

[11] Z.P. Xiaodong She, L. Kong, Molecular-level dispersion of graphene into
epoxidized natural rubber: Morphology, interfacial interaction and mechanical
reinforcement, Polymer 61 (2014) 206–214.

[12] S. Prolongo, R. Moriche, A. Jiménez-Suárez, M. Sánchez, A. Ureña, Advantages
and disadvantages of the addition of graphene nanoplatelets to epoxy resins, Eur.
Polym. J. 61 (2014) 206–214.

[13] J. King, D. Klimek, I. Miskioglu, G. Odegard, Mechanical properties of graphene
nanoplatelet/epoxy composites, J. Appl. Polym. Sci. 128 (6) (2013) 4217–4223.

[14] C. Hadden, D. Klimek-McDonald, E. Pineda, J. King, A. Reichanadter, I.
Miskioglu, S. Gowtham, G. Odegard, Mechanical properties of graphene
nanoplatelet/carbon fiber/epoxy hybrid composites: Multiscale modeling and
experiments, Carbon 95 (2015) 100–112.

[15] M. Liu, D. Papageorgiou, S. Li, K. Lin, I. Kinloch, R. Young, Micromechanics
of reinforcement of a graphene-based thermoplastic elastomer nanocomposite,
Composites A 110 (2018) 84–92.

[16] Q. Meng, Y. Feng, S. Han, F. Yang, M. Demiral, F. Meng, S. Araby, Developing
functional epoxy/graphene composites using facile in-situ mechanochemical
approach, J. Appl. Polym. Sci. 140 (13) (2023) e53681.

[17] A. Moradi, R. Ansari, M.K. Hassanzadeh-Aghdam, Synergistic effect of carbon
nanotube/graphene nanoplatelet hybrids on the elastic and viscoelastic properties
of polymer nanocomposites: finite element micromechanical modeling, Acta
Mech. 235 (2024) 1887–1909.

[18] M. Haghighi, H. Golestanian, F. Aghadavoudi, Determination of mechanical
properties of two-phase and hybrid nanocomposites: experimental determination
and multiscale modeling, J. Polym. Eng. 41 (5) (2021) 356–364.

[19] X. Zhao, Q. Zhang, D. Chen, P. Lu, Enhanced mechanical properties of graphene-
based poly(vinyl alcohol) composites, Macromolecules 43 (5) (2010) 2357–2363,
http://dx.doi.org/10.1021/ma902862u.

[20] T. Zhou, F. Chen, C. Tang, H. Bai, Q. Zhang, H. Deng, Q. Fu, The preparation of
high performance and conductive poly (vinyl alcohol)/graphene nanocomposite
via reducing graphite oxide with sodium hydrosulfite, Compos. Sci. Technol. 71
(9) (2011) 1266–1270.

[21] J. Guest, I.A. Kinloch, R.J. Young, The role of filler aspect ratio in the
reinforcement of an epoxy resin with graphene nanoplatelets, J. Mater. Sci. 58
(2023) 9473–9485, http://dx.doi.org/10.1007/s10853-023-08603-3.
11
[22] R. Young, M. Liu, I.A.J. Kinloch, S. Li, X. Zhao, C. Vallés, D. Papageorgiou, The
mechanics of reinforcement of polymers by graphene nanoplatelets, Compos. Sci.
Technol. 154 (18) (2018) 110–116.

[23] M. Liu, D.G. Papageorgiou, S. Li, K. Lin, I.A.J. Kinloch, R. Young, Micromechanics
of reinforcement of a graphene-based thermoplastic elastomer nanocomposite,
Composites A 110 (2018) 84–92.

[24] B. Blinzler, R. Larsson, K. Gaska, R. Kádár, A mechanics based surface im-
age interpretation method for multifunctional nanocomposites. Nanomaterials,
Nanomaterials 9 (2019) 1578, http://dx.doi.org/10.3390/nano9111578.

[25] M. Geers, V. Kouznetsova, W. Brekelmans, Multi-scale computational homog-
enization: Trends and challenges, J. Comput. Appl. Math. 234 (7) (2010)
2175–2182.

[26] P. Suquet, in: A. Sawczuk, G. Bianchi (Eds.), Local and Global Aspects in the
Mathematical Theory of Plasticity, in: Plasticity Today: Modelling, Methods and
Applications, Elsevier Applied Science Publishers, London, 1985, pp. 279–310.

[27] F. Larsson, K. Runesson, S. Saroukhani, R. Vafadari, Computational homogeniza-
tion based on a weak format of micro-periodicity for RVE-problems, Comput.
Methods Appl. Mech. Engrg. 200 (2011) 11–26.

[28] A. Javili, P. Steinmann, On thermomechanical solids with boundary structures,
Int. J. Solids Struct. 47 (24) (2010) 3245–3253.

[29] R. Auenhammer, N. Jeppesen, L. Mikkelsen, V. Dahl, B. Blinzler, L. Asp, Robust
numerical analysis of fibrous composites from X-ray computed tomography image
data enabling low resolutions, Compos. Sci. Technol. 224 (16) (2022).

[30] A.K. Kesarwani, O.S. Panwar, S.R. Dhakate, V.N. Singh, R.K. Rakshit, A. Bisht,
A. Kumar, Determining the number of layers in graphene films synthesized by
filtered cathodic vacuum arc technique, Fullerenes Nanotubes Carbon Nanostruct.
24 (11) (2016) 725–731.

[31] J. Taurozzi, V. Hackley, M. Wiesner, Ultrasonic dispersion of nanoparticles
for environmental, health and safety assessment issues and recommendations,
Nanotoxicology 5 (2011) 711–729.

[32] M. de Oliveira, S. Forsberg, L. Seleg˚ ard, D. Carastan, The influence of sonication
processing conditions on electrical and mechanical properties of single and
hybrid epoxy nanocomposites filled with carbon nanoparticles, Polymers 13 (23)
(2021).

[33] R. Larsson, R. Gutkin, M. Rouhi, Damage growth and strain localization in
compressive loaded fiber reinforced composites, Mech. Mater. 127 (2018) 77–90.

[34] C. Lee, X. Wei, J. Kysar, J. Hone, Measurement of the elastic properties and
intrinsic strength of monolayer graphene, Science 321 (5887) (2008) 385–388.

[35] T. Mori, K. Tanaka, Average stress in matrix and average elastic energy of
materials with misfitting inclusions, Acta Metall. 21 (5) (1973) 571–574.

[36] J.D. Eshelby, The determination of the elastic field of an ellipsoidal inclusion,
and related problems, Proc. R. Soc. Lond. Ser. A 241 (1226) (1957) 376–396.

http://refhub.elsevier.com/S0266-3538(24)00331-2/sb7
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb7
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb7
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb8
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb8
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb8
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb8
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb8
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb9
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb9
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb9
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb10
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb10
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb10
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb11
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb11
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb11
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb11
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb11
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb12
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb12
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb12
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb12
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb12
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb13
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb13
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb13
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb14
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb14
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb14
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb14
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb14
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb14
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb14
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb15
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb15
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb15
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb15
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb15
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb16
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb16
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb16
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb16
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb16
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb17
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb17
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb17
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb17
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb17
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb17
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb17
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb18
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb18
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb18
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb18
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb18
http://dx.doi.org/10.1021/ma902862u
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb20
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb20
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb20
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb20
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb20
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb20
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb20
http://dx.doi.org/10.1007/s10853-023-08603-3
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb22
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb22
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb22
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb22
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb22
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb23
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb23
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb23
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb23
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb23
http://dx.doi.org/10.3390/nano9111578
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb25
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb25
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb25
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb25
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb25
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb26
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb26
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb26
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb26
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb26
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb27
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb27
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb27
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb27
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb27
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb28
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb28
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb28
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb29
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb29
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb29
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb29
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb29
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb30
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb30
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb30
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb30
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb30
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb30
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb30
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb31
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb31
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb31
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb31
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb31
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb32
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb32
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb32
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb32
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb32
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb32
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb32
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb33
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb33
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb33
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb34
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb34
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb34
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb35
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb35
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb35
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb36
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb36
http://refhub.elsevier.com/S0266-3538(24)00331-2/sb36

	Elastic surrogate modeling of graphene nanoplatelet-reinforced epoxy using computational homogenization
	Introduction
	Materials and Methods
	Experimental Development of Graphene–Epoxy Composites
	Experimental Tensile Testing of the Graphene–Epoxy Composites
	Image Segmentation of GNP Enhanced Epoxy Composite

	Computational homogenization and elastic surrogate modeling of the nanocomposite
	Homogenization procedure
	Transverse isotropic elastic surrogate model
	Isotropic elastic surrogate model

	Experimental results and data preparation
	Surrogate model identification
	Halpin–Tsai and Mori–Tanaka models
	Discussion
	Concluding remarks
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


