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A B S T R A C T

PROTACs are a promising therapeutic modality that harnesses the cell’s built-in degradation machinery
to degrade specific proteins. Despite their potential, developing new PROTACs is challenging and requires
significant domain expertise, time, and cost. Meanwhile, machine learning has transformed drug design and
development. In this work, we present a strategy for curating open-source PROTAC data and an open-source
deep learning tool for predicting the degradation activity of novel PROTAC molecules. The curated dataset
incorporates important information such as 𝑝𝐷𝐶50, 𝐷𝑚𝑎𝑥, E3 ligase type, POI amino acid sequence, and
experimental cell type. Our model architecture leverages learned embeddings from pretrained machine learning
models, in particular for encoding protein sequences and cell type information. We assessed the quality of
the curated data and the generalization ability of our model architecture against new PROTACs and targets
via three tailored studies, which we recommend other researchers to use in evaluating their degradation
activity models. In each study, three models predict protein degradation in a majority vote setting, reaching
a top test accuracy of 82.6% and 0.848 ROC AUC, and a test accuracy of 61% and 0.615 ROC AUC when
generalizing to novel protein targets. Our results are not only comparable to state-of-the-art models for protein
degradation prediction, but also part of an open-source implementation which is easily reproducible and less
computationally complex than existing approaches.
1. Introduction

Machine learning (ML) has transformed various scientific domains,
including drug design and discovery, by offering novel solutions to
complex, multi-objective optimization challenges [1]. In the context
of medicinal chemistry, ML techniques have revolutionized the process
of identifying and optimizing potential drug candidates. Traditionally,
drug discovery has relied heavily on trial-and-error experimentation,
which is not only time-consuming but also expensive. ML techniques
have the potential to significantly accelerate and improve this process
by predicting properties of molecules in silico, such as binding affinity,
solubility, and toxicity, with remarkable accuracy [2,3]. This in turn
saves time and money in early-stage drug discovery by focusing re-
sources on the most promising candidates. At the same time, AI models’
high performance can potentially lead to better designed drugs for
patients.

In order to develop ML models for chemistry, ML algorithms lever-
age vast datasets containing molecular structures, biological activities,
and chemical properties to learn intricate patterns and relationships,
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also called quantitative structure-activity relationships (QSAR). These
algorithms can discern subtle correlations and structure in molecular
data that are difficult for human experts to identify. Consequently, ML-
based approaches aid in predicting which molecules are likely to be
effective drug candidates, thereby narrowing down the search space
and saving resources [4].

PROTACs, or PROteolysis TArgeting Chimeras, represent an inno-
vative class of therapeutic agents with immense potential in challeng-
ing disease areas [5–7]. Unlike traditional small molecule inhibitors,
PROTACs operate by harnessing the cell’s natural protein degradation
machinery, the proteasome, to eliminate a protein of interest (POI), as
summarized in Fig. 1(a). This catalytic mechanism of action for targeted
protein degradation (TPD) offers several advantages over conventional
approaches, which frequently work by having a small molecule drug
bind tightly to and thus block a protein’s active site. In fact, by
leveraging their unique mechanism, PROTACs bypass the need for tight
binding to specific protein pockets, offering a novel strategy for target-
ing previously ‘‘undruggable’’ proteins. This approach is particularly
vailable online 14 July 2024
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Fig. 1. (a) Schematic representation of the PROTAC mechanism of action: the proteasome (violet) degrades the ubitiquitinated POI targeted by the PROTAC. After degradation,
the PROTAC becomes available again for new targets. (b) Example of a typical PROTAC dose–response curve, along with the activity thresholds used in this work.
relevant in cases where inhibiting the target’s activity might not be
sufficient; notable examples include certain neurodegenerative diseases
like Alzheimer’s, where misfolded proteins agglomerate and lead to
negative downstream effects in patients [8].

By catalytically degrading POIs, PROTACs have the potential to
offer more comprehensive therapeutic effects at lower doses relative
to traditional inhibitors. Their capacity for TPD highlights the ne-
cessity of thorough efficacy evaluations, typically conducted through
dose–response assessments (Fig. 1(b)) to determine critical parameters
such as 𝐷𝐶50 (the molar concentration of PROTAC at half maximum
degradation of the POI; the lower the better) and 𝐷𝑚𝑎𝑥 (the highest
percentage of degraded POI; the higher the better) [9]. However,
PROTAC development and evaluation face significant challenges due to
the limited availability of open-source tools and resources specifically
designed for this molecule class, a gap predominantly filled by tools
aimed at small molecule inhibitors [10].

To address these challenges, our work introduces a comprehensive
machine learning toolkit and curated data specifically designed for
PROTAC research. We have developed predictive models that leverage
the curated data to effectively forecast the degradation activity of
PROTACs, achieving high predictive accuracy and ROC-AUC scores on
the test set (top 82.6% and 0.848, respectively). Our system, fully
open-source and easily accessible via a Python package, is designed
to streamline the predictive modeling of PROTAC degradation activity,
thus facilitating the rapid evaluation and optimization of new PROTAC
designs. Our contribution significantly expands the available public
resources for PROTAC development, setting a new baseline in the
application of ML techniques to this emerging therapeutic area.

2. Materials and methods

2.1. Data curation

For this work, we collected and curated data from PROTAC-DB [11]
and PROTAC-Pedia [12] that represent, to our knowledge, the two
largest open datasets for PROTAC data. PROTAC-DB contains experi-
mental data, scraped from the scientific literature, for 5388 PROTACs
(as of May 2024; version 2.0). While the PROTAC-DB allows users to
query, filter, and analyze PROTAC data via its online platform (e.g.,
comparing different compounds based on their 𝐷𝐶50 and 𝐷𝑚𝑎𝑥), its
data is not specifically structured for ML models, but rather for online
access through its web page. Wrangling the data for use in data-driven
models requires significant cleaning and curation. On the other hand,
PROTAC-Pedia provides 1190 crowd-sourced entries (as of May 2024),
with details on PROTACs and their degradation activity.

To prepare the data for our models, we extracted and standard-
ized the following features from the PROTAC-DB and PROTAC-Pedia
datasets, where a specific combination of the features corresponds to
2

one experiment: the PROTAC compound, cell line identifier, E3 ligase,
POI, and degradation metrics (𝐷𝐶50 and 𝐷𝑚𝑎𝑥).

Each dataset entry includes the SMILES representation of the PRO-
TAC, which was canonicalized using RDKit [13]. In PROTAC-DB, cell
line information was predominantly found in textual assay descrip-
tions, such as ‘‘degradation in LNCaP cells after 6 h at 0.1/1000/10000
nM’’, with ‘‘LNCaP’’ being the cell type in this statement. Cell type
information was extracted using regex parsing, with a few manually
cleaned entries. Afterward, cell line names were standardized using
Cellosaurus [14] to remove synonyms. The Uniprot IDs [15] of E3
ligases and POIs lacking that information were manually web searched
and added as text to each entry.

For PROTAC-DB, some of the 𝐷𝐶50 and 𝐷𝑚𝑎𝑥 values were obtained
by splitting entries containing information for the same PROTAC on
multiple assays. A data sample is labeled as active when both its 𝑝𝐷𝐶50
(i.e., the 𝐷𝐶50 value expressed in negative 𝑙𝑜𝑔10 units) and 𝐷𝑚𝑎𝑥 are
above their respective predefined threshold values; here we used 6 and
60%, respectively. Effectively, each data point is assigned a binary label
indicating degradation activity.

2.2. Data representation

Given the available data consisting of PROTACs, E3 ligases, POIs,
and cell lines, our goal is to encode the diverse information into effi-
cient numerical embeddings that an ML model can leverage. Because
our pool of curated data has a limited size (∼ 103 data samples),
we decided to focus on learning individual embeddings for each of
the following: the PROTAC, E3 ligase, POI, and cell type for each
experiment.

For PROTACs, their SMILES strings are converted, via RDKit [13],
to Morgan fingerprints of 256 bits with a radius 10 and stereochemistry
information included, with 256 being the smallest 2𝑛 vector length
not resulting in the overlap of any two fingerprints. The two pro-
teins corresponding to the E3 ligase and POI are converted into pre-
computed Uniprot embeddings of 1024 elements [15,16]. Cell line
information was extracted from the Cellosaurus database and includes
omics, genome ancestry, doubling time, and sequence variations [14].
These characteristics, all in text form, are then ranked by uniqueness
and filtered to form a concise single text description of a given cell
line. Finally, a pretrained sentence Transformer model [17] was used
to encode the text descriptions into numerical embedding vectors of
768 elements. More details on the cell line embedding process can be
found in Appendix B.

Once we collected all the embeddings representations, each POI, E3
ligase, and cell embedding was normalized independently by removing
the respective mean and by scaling to unit variance. The normalization
parameters are learned on the given training set and kept fixed for
validation and testing. Morgan fingerprints, being binary vectors, were
not normalized.
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Fig. 2. Data curation pipeline and proposed studies.
Fig. 3. Model pipeline and architecture. The normalization, softmax, and sigmoid functions are denoted as 𝑁 , 𝑆, and 𝜎, respectively. The pretrained bio-embedding model can
be found in [16], while the pretrained sentence Transformer is from [17].
2.3. Model architecture

An illustration of the model architecture is shown in Fig. 3. The
model includes a set of linear layers, each processing a separate input
vector, i.e., the Morgan fingerprints, and the normalized POI, E3 ligase,
and cell embeddings, respectively. The linear layer outputs are then
softmax-ed in order to make them of comparable magnitude, and finally
summed together. Lastly, they are forwarded to two additional linear
layers, interleaved by a ReLU activation function and a batch norm
layer. The model is trained to optimize a binary cross-entropy loss
(with logits). We set the batch size to 128 and reduce the learning
rate by a factor of 10× whenever the validation loss increases compared
to the previous training step. Finally, we apply a sigmoid function to
the output of the final linear layer before returning predictions about
PROTAC activity.

2.4. Evaluation strategy

To fully assess the quality of the curated data and the potential per-
formance of DL models in predicting degradation activity, we designed
a set of three studies (Fig. 2). In the first study, we seek to identify
the potential upper bound of the model performance given the curated
data. To do so, we randomly pick 10% of the data as a test set, and
leave the remaining data for training with 5-fold cross validation (CV).
This leads to an ensemble of five trained models, one per CV fold. In
the next study, we explore model generalization against unseen POIs.
Similar to the previous study, we carefully select 10% of the available
data for testing, such that the POI does not appear in the remaining
90% of the data which is used for training (5-fold CV). Finally, we
evaluate the model generalization performance to new PROTACs. To
do so, we compute the average Tanimoto distance from all PROTAC
Morgan fingerprints to all other PROTAC fingerprints in the full data.
For generating the test set for this experiment, we isolated the data
entries starting from the ones where their PROTAC is mapped to a high
average Tanimoto distance, until reaching 10% of the total available
data, leaving the rest for CV training.

For each study, we used stratified group CV as implemented in
scikit-learn to ensure each fold has a balanced distribution of active
and inactive compounds.
3

Table 1
Parameters optimized by Optuna: the table reports the parameter name, its type, i.e.,
categorical (Cat) or continuous (Cont), and the range of values or options suggested in
each trial. We apply SMOTE oversampling [18] to the concatenated input data, when
suggested.

Parameter Type Options/Range

Hidden Dimension Cat [32, 64, 128, 256, 512]
Learning Rate Cont (log) [1𝑒−5, 1𝑒−3]
Use SMOTE Cat [True, False]
SMOTE 𝑘 Neighbors Cat [3, 4, . . . , 15]

2.5. Hyperparameter tuning and ablation studies

For hyperparameter tuning we leveraged the Optuna optimization
framework [19]. In each study, we let Optuna spawn 150 trials to
suggest a model architecture and hyperparameters to be used to train
the models in the CV folds (we used 5 folds). Each trial is instructed to
sample all the hyperparameters values listed in Table 1. Using Optuna,
the goal is to find the best set of hyperparameters that maximize the
average validation ROC-AUC score across the CV folds. The best hyper-
parameter configuration is then used to train three separate models per
study, each with randomly initialized weights (with different seeds), in
order to account for model variability. The best configuration models
in each study are trained on the combined study’s train and validation
sets and evaluated on the respective held-out test set.

Additionally, we conducted an ablation study in which we progres-
sively set input vectors to all zeros, and feed them to the three best
models trained during the random split study.

3. Results and discussion

3.1. Degradation activity thresholds

A data sample was labeled active if its 𝑝𝐷𝐶50 is ≥ 6.0 (equivalent to
1 μM) and 𝐷𝑚𝑎𝑥 ≥ 60%. The 𝑝𝐷𝐶50 threshold helps identify PROTACs
with therapeutic potential, as molecules above this threshold are likely
to show significant biological activity. Similarly, the 𝐷𝑚𝑎𝑥 threshold
helps identify PROTACs capable of achieving substantial degradation of
the target protein, indicative of efficacy. 𝑝𝐷𝐶50 is particularly relevant
for drug design, as it allows for the prioritization of compounds that not
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Fig. 4. (a) Histogram of 𝑝𝐷𝐶50 and 𝐷𝑚𝑎𝑥 in the full curated dataset. Note that the 𝑝𝐷𝐶50 values are scaled 10× to better display them along side 𝐷𝑚𝑎𝑥 values, although they are
not bounded by 0 and 100 as 𝐷𝑚𝑎𝑥 is. (b) The percentage of curated data associated with each E3 ligase and the active/inactive percentage of data points per E3 ligase.
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nly bind to the POI but also lead to its effective degradation at a rea-
onable concentration. By choosing the above thresholds, we aimed to
itigate model bias, ensuring our dataset includes a balanced represen-

ation of both active and inactive compounds, enhancing the model’s
eneralizability. Note that a PROTAC can be labeled active in one
ell type and inactive in another, such as DT2216, a Bcl-xL degrader,
hich is active in MOLT-4 cancer cells (𝑝𝐷𝐶50∕𝐷𝑚𝑎𝑥 = 7.20∕90.8%) and

nactive in 2T60 hybrid cells (𝑝𝐷𝐶50∕𝐷𝑚𝑎𝑥 = 5.52∕26.0%) [20].

.2. Curated dataset

After data curation, we were able to extract a total of 2141 data
amples, out of which 812 (37.9%) report information about 𝐷𝑚𝑎𝑥, and
350 (63.1%) include a 𝐷𝐶50 value. When applying the aforementioned
efinition of degradation activity, we isolated 857 data samples, 437
50.99%) of which are labeled active and the remaining 420 (49.01%)
nactive. An overview of the distribution of 𝑝𝐷𝐶50 and 𝐷𝑚𝑎𝑥 values is
hown in Fig. 4(a). We can see that the majority of the data samples
re normally concentrated around the 𝑝𝐷𝐶50 threshold of 6.94, with a
ew outliers. 𝐷𝑚𝑎𝑥 values, on the other hand, are more spread out, with
oughly half of the samples showing a 𝐷𝑚𝑎𝑥 above 60%.

Fig. 4(b) shows the distribution of E3 ligases and their frequency
n the dataset, together with the percentage of active/inactive sam-
les associated with each of them. PROTACs are equally distributed
roughly) among the two main E3 ligases, cereblon (CRBN) and von
ippel–Lindau (VHL), with a small fraction of PROTACs being eval-
ated with other E3 ligases. We see that CRBN and VHL are indeed
he most common (53.4% and 40.1%, respectively), whereas 6% of
he data samples report less common E3 ligases: IAP (2.80%), MDM2
1.26%), cIAP1 (0.98%), XIAP (0.93%), FEM1B (0.37%), Ubr1 (0.09%),
NF114 (0.05%). Regarding the active samples distribution among
3 ligases, CRBN and VHL are quite balanced (49.5% and 56.1%,
espectively), and FEM1B and Ubr1 are mostly associated with active
amples. The less common MDM2, IAP, and cIAP1 are mostly associated
ith inactive samples.

.3. Model performance

Fig. 5(a) reports the performance of the different models across the
arious studies. For each study, named after either the standard, target,
r similarity split used, we show the mean validation accuracy and ROC-
UC scores of the five models trained during CV (one model per fold)
ith the best hyperparameters found. Additionally, the plots show the
erformance on the test set of three models trained per study with the
est hyperparameters found in CV and different initial weights. For
hose models, we also report the mean of the test accuracy and ROC-
UC scores, alongside the test accuracy and ROC-AUC scores calculated
4

sing majority voting. A dummy model is included as a baseline, which
lways predicts the majority class in the training set.

The performance metrics derived from the standard CV split offer
n upper bound for our model’s capability, with a validation aver-
ge/test average/test majority vote accuracy of 85.7%/79.1%/82.6%
nd a validation average/test average/test majority vote ROC AUC of
.922/0.841/0.848. These results suggest an optimal scenario where
he model has access to a diverse and representative sample of the data
uring training, maximizing its learning potential. The standard split
erves as an upper bound estimate for model performance, as real-life
cenarios generally require more constrained and specialized testing
onditions.

On the other hand, in the similarity CV split study, designed to eval-
ate the model’s generalizability to unseen PROTAC compounds that do
ot share structural similarities with the training set, our model reached
remarkable validation average/test average/test majority vote accu-

acy of 79.1%/74.9%/70.6% and a validation average/test average/test
ajority vote ROC AUC of 0.867/0.822/0.824. The high performance

n this study indicates the model’s robust ability to extrapolate from
nown PROTACs to predict the activities of novel molecules.

Finally, the target split study presents a significant challenge for our
odel, as evidenced by the lower validation average/test average/test
ajority vote accuracy of 70.5%/58.8%/61.2% and a validation av-

rage/test average/test majority vote ROC AUC of 0.746/0.604/0.615.
his study tests the model’s ability to generalize across different protein
argets, a critical factor for PROTAC design in novel disease mech-
nisms. The diminished performance suggests a need for improved
rotein representations or for embeddings that better capture more
etailed and relevant features of the target proteins. Moreover, it
nderscores the necessity for more extensive and diverse datasets that
nclude a broader array of PROTACs and targets.

Additional performance metrics are reported in Appendix A. Ap-
endix D includes instead the performance scores of an XGBoost model
valuated on the aforementioned studies [21].

.4. Ablation studies

The ablation study summarized in Fig. 5(b) highlights the contribu-
ions of various embeddings to model performance in PROTAC activity
rediction. We focus on the average test accuracy of the three models
rained with the best hyperparameters in the standard split study. With
ll embeddings enabled, the three models achieved an average test
ccuracy of 79.1%, serving as the baseline for full-feature utilization.
isabling cell, E3 ligase, and protein of interest (POI) embeddings indi-
idually led to varied decreases in performance, with test accuracies of
3.1%, 61.9%, and 60.2%, respectively. This highlights the importance
f each type of embedding in enhancing predictive accuracy.
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Notably, the model performance dropped below that of the dummy
odel when disabling compound information, emphasizing the impor-

ance of the PROTAC fingerprints. This is further highlighted by the test
ccuracy of the combination of disabled POI, E3, and cell embeddings
leaving the PROTAC information only), which reached 61.3%, close
o other setups in which only a single component was disabled. In
eneral, molecular fingerprints appear to be the most relevant input
eature to the model. However, the general trend of high accuracy drops
uggests that the contextual embeddings collectively contribute with
ignificant predictive value beyond the structural information provided
y molecular fingerprints alone.

Overall, this ablation study demonstrates the synergistic effect of in-
egrating diverse embeddings, including compound structure (PROTAC
ingerprint) and biological context (cell type, E3 ligase, POI), to capture
he diverse determinants of biological activity in PROTACs.

. Related work

The studies most closely aligned with our work are those of Li et al.
22] and Nori et al. [1]. Li et al. [22] introduces DeepPROTACs, a deep
earning model for prognosticating PROTAC activity, whereas Nori
t al. [1] proposes instead a LightGBM model for predicting protein
egradation activity. LightGBM is a gradient boosting framework that
ses a histogram-based approach for efficient, high-performance ML
asks [23].

The DeepPROTACs architecture encompasses multiple branches em-
loying long short-term memory (LSTM) and graph neural network
GNN) components, all combined prior to a prediction head. Each
ranch processes distinct facets of the ternary complex, encompass-
ng elements like E3 ligase and POI binding pockets, along with the
ndividual components of the PROTAC: the warhead, linker, and E3
igand. The model’s performance culminates in an average prediction
ccuracy of 77.95% and a ROC-AUC score of 0.8470 on a validation set
rawn from the PROTAC-DB. The LightGBM model, on the other hand,
chieves a ROC-AUC of 0.877 on a PROTAC-DB test set with a much
impler model architecture and input representation.

Notwithstanding their achievements, the DeepPROTACs and Light-
BM models both exhibit certain limitations. In DeepPROTACs, there

s a potential risk of information loss as the PROTAC SMILES are
artitioned into their constituent E3 ligands, warheads, and linkers,
hich are then fed into separate branches of the model. Secondly,
hile the authors undertake advanced molecular docking of the entire
ROTAC-POI-E3 ligase complex, their subsequent focus on the 3D
5

inding pockets of the POI and E3 ligase renders it less amenable M
for experimental replication and practical use. Finally, and perhaps
most importantly, the potential for data leakage during hyperparameter
optimization and its effects on out-of-distribution (OOD) generalization
was not investigated. Data leakage between the different PROTAC
components in the training and test sets of the model may artificially
render a more accurate model that does not generalize well to new
real-word data, necessitating more rigorous testing procedures. Because
of that, generalization of the DeepPROTACs model would need to be
further investigated on a separate test set.

5. Conclusions

In this work, we curated open-source PROTAC data and introduced
a versatile toolkit for predicting PROTAC degradation effectiveness in
three different experimental scenarios, aiming to assess the quality of
our curated data and model generalizability. The performance of our
models, achieving a top 82.6% test accuracy and a 0.848 ROC-AUC test
score are competitive with, if not surpassing, existing methods for pro-
tein degradation prediction. Ours are also the first models to consider
both 𝐷𝐶50 and 𝐷𝑚𝑎𝑥 in predicting degradation activity for PROTACs, a
ignificant contribution as both properties are important to determining
ROTAC efficacy. We show that our models can generalize well to
nseen PROTACs, while struggling with unseen targets, highlighting
he need for more comprehensive protein representations and more ex-
ensive datasets. Finally, our approach offers open-source accessibility,
ase of reproducibility, and a less computationally complex alternative
o previous work, making it a valuable resource for researchers working
n data-driven approaches to PROTAC engineering.
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Appendix A. Prediction scores

This section provides a collection of all the validation and test scores
computed for the evaluated models on the three proposed studies,
always comparing to a dummy model that simply predicts the majority
class in the training set. Figs. 6(a), 6(b), 6(c), 6(d), and 6(e) report
validation and test accuracy, ROC-AUC, F1, precision, and recall scores,
respectively, of the evaluated deep learning models in this work.

Appendix B. Cell line embeddings

This section details the methods used to extract cell line embedding
vectors for our models. A basic approach is to assign a categorical (or
one-hot encoded) label to each cell line in the dataset. While practical,
this method ignores any inherent information about the cell lines and
their biological similarity. To address this, we utilized the Cellosaurus
database, which provides standardized information about common cell
lines used in research [14]. Our approach involves isolating relevant
biological information about each cell line into a text description. We
then encode this text into an embedding vector by using a sentence
Transformer model [17].

A sentence Transformer is designed to generate embedding repre-
sentations of input sentences such that similar sentences have high
cosine similarity. However, sentence Transformers have a fixed input
size, accepting a maximum number of tokens. To process longer texts,
we divide them into chunks of the maximum size, encode each chunk
into a vector, and average the vectors into a single representation.
To avoid diluting relevant information during this averaging process,
we aim to summarize each cell line’s information into concise, yet
informative, short text descriptions.

We manually isolated columns containing relevant biological in-
formation about cells from the available database columns, such as
their category (e.g., ‘‘hybridoma’’, ‘‘cancer cell line’’, ‘‘transformed cell
line’’), sex (male or female), and species of origin (e.g., ‘‘mus musculus’’,
‘homo sapiens’’, etc.). We discarded identification information, such as
atents, synonyms, or entry dates. Additionally, Cellosaurus provides
6

omments in various categories (e.g., ‘‘monoclonal antibody target’’,
‘sequence variation’’, etc.), which we also included. The list of selected
nformation is shown on the 𝑦-axis of Fig. 7(a).

Next, we ranked columns and comments based on the fraction of
unique entries relative to their total, as illustrated in Fig. 7(a). Our
intuition is that comments with a high number of unique entries help
identify specific cell lines, making it easier to distinguish cell types.
Following this principle and after reviewing examples, we selected the
following information in this order: genome ancestry, karyotypic infor-
mation, senescence, biotechnology, virology, caution, donor informa-
tion, sequence variation, characteristics, transfected with, monoclonal
antibody target, HLA typing, knockout cell, microsatellite instabil-
ity, hierarchy (HI), breed/subspecies, derived from site, population,
group, monoclonal antibody isotype, cell type, transformant, selected
for resistance to, and category (CA).

Finally, for each database entry, we concatenated the strings from
the selected information, removed PubMed references, and stripped
extra spaces. The average text description length (i.e., number of char-
acters) of the cell lines in our curated dataset was 181.1, below the
384-token input size limit of the selected sentence Transformer model.

B.1. Cosine similarity of cell line descriptions

Table 2 presents a cosine similarity matrix for three cell line de-
scriptions generated by following the above methodology. The cosine
similarity metric quantifies the similarity between the textual descrip-
tions of different cell lines, with values ranging from 0 to 1, where 1
indicates identical descriptions and 0 indicates no similarity.

For instance, the description of the cell line UKF-NB-2rDACARB4 is
highly similar to that of UKF-NB-2rDOCE10, with a cosine similarity of
0.8759. Both of these cell lines are cancer cell lines derived from the
same species (Homo sapiens) and are part of the resistant cancer cell
line (RCCL) collection. They differ primarily in their resistance to dif-
ferent chemotherapeutic agents: dacarbazine for UKF-NB-2rDACARB4
and docetaxel for UKF-NB-2rDOCE10.

In contrast, the description of FHS036i-sh18961C, an induced
pluripotent stem cell line, has a much lower similarity to the cancer
cell lines, with cosine similarities of 0.2832 and 0.3522 to UKF-NB-
rDACARB4 and UKF-NB-2rDOCE10, respectively. This lower similarity

is expected given the fundamental differences in cell type, collection
origin, and specific biological characteristics.

These examples illustrate how cosine similarity can effectively dif-
ferentiate between cell lines based on their detailed descriptions, re-
flecting both broad classifications and specific attributes.

B.2. UMAP visualization of cell line embeddings

Fig. 7(b) presents a uniform manifold approximation and projection
(UMAP) plot of the cell line embedding vectors. UMAP is a dimension-
ality reduction technique that helps visualize high-dimensional data by
projecting it into a lower-dimensional space, preserving both local and
global data structure [24].

The plot showcases the embedding vectors of cell lines, color-coded
according to their categories. Each point represents a cell line, and
its position reflects the similarity of its embedding vector to others.
Similar cell lines cluster together, indicating that the embedding vectors
effectively capture meaningful biological relationships. For instance,
induced pluripotent stem cells (light purple) and hybridoma cell lines
(light blue) form distinct, dense clusters, demonstrating the embed-
dings’ ability to reflect their biological differences. In contrast, some
categories, such as spontaneously immortalized cell lines (purple) and
cancer cell lines (yellow), exhibit partial overlap, suggesting shared
biological features while maintaining enough distinction to form iden-
tifiable subclusters. This visual validation underscores the embeddings’
capacity to encapsulate and differentiate between various cell line

categories, supporting the efficacy of our approach.
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Fig. 6. Performance metrics for the presented deep learning models: (a) accuracy, (b) ROC-AUC, (c) F1 score, (d) precision, and (e) recall.
Appendix C. Datasets characteristics

C.1. PROTAC-DB and PROTAC-Pedia

Table 3 provides an overview of the two datasets used in our
study: PROTAC-DB and PROTAC-Pedia. PROTAC-DB contains a total
of 5,388 entries, whereas PROTAC-Pedia comprises 1,203 entries. The
number of unique SMILES in PROTAC-DB is 3,270, compared to 1,178
in PROTAC-Pedia. Unique targets in PROTAC-DB and PROTAC-Pedia
are 323 and 79, respectively. A notable proportion of SMILES entries
are shared between the datasets. Specifically, there are 1,222 SMILES
entries that are found in both PROTAC-DB and PROTAC-Pedia. These
shared SMILES are present in 22.7% of the total SMILES entries in
7

PROTAC-DB and in 69.2% of the total SMILES entries in PROTAC-
Pedia. The datasets also feature entries with SMILES that appear only
once, i.e., ‘‘single’’ SMILES, with 45.5% (2,451) of PROTAC-DB and
95.8% (1,153) of PROTAC-Pedia consisting of single SMILES. Single
targets are relatively low in both datasets, at 1.4% (78) for PROTAC-
DB and 1.2% (15) for PROTAC-Pedia, which is unsurprising as multiple
PROTACs are generally investigated for a given target.

C.2. Cross-validation folds and test sets

Table 4 presents detailed statistics for the datasets used in the three
studies proposed in our evaluation strategy.

For the standard split, each fold consists of approximately 616 train-
ing entries, 154 validation entries, and 86 test entries. The proportion

of active data samples in these splits is consistent and balanced across
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Fig. 7. (a) Cell line information (database columns) from Cellosaurus, ranked by their percentage of unique entries over the total number of entries in that column. (b) UMAP
visualization of the generated cell line embedding vectors, color-coded by cell line categories.
Table 2
Example of cosine similarity matrix for three cell line descriptions.

Cell line text description UKF-NB-2rDACARB4 UKF-NB-2rDOCE10 FHS036i-sh18961C

𝚄𝙺𝙵− 𝙽𝙱− 𝟸𝚛𝙳𝙰𝙲𝙰𝚁𝙱𝟺: CVCL_RT02, Cancer cell line,
NCBI_TaxID=9606; ! Homo sapiens (Human), Part of:
Resistant Cancer Cell Line (RCCL) collection, Selected
for resistance to: ChEBI; CHEBI:4305; Dacarbazine (DTIC;
(5-(3,3-dimethyl-1-triazeno)imidazole-4-carboxamide)),
Derived from site: Metastatic; Bone marrow;
UBERON=UBERON_0002371, NCIt; C3270; Neuroblastoma,
ORDO; Orphanet_635; Neuroblastoma, CVCL_9902 ! UKF-NB-2

1.0000 0.8759 0.2832

𝚄𝙺𝙵− 𝙽𝙱− 𝟸𝚛𝙳𝙾𝙲𝙴𝟷𝟶: CVCL_RR83, Cancer cell line,
NCBI_TaxID=9606; ! Homo sapiens (Human), Part of:
Resistant Cancer Cell Line (RCCL) collection, Selected
for resistance to: ChEBI; CHEBI:4672; Docetaxel
anhydrous (Taxotere), Derived from site: Metastatic;
Bone marrow; UBERON=UBERON_0002371, NCIt; C3270;
Neuroblastoma, ORDO; Orphanet_635; Neuroblastoma,
CVCL_9902 ! UKF-NB-2, Cancer cell line

0.8759 1.0000 0.3522

𝙵𝙷𝚂𝟶𝟹𝟼𝚒− 𝚜𝚑𝟷𝟾𝟿𝟼𝟷𝙲: CVCL_YY67, Induced pluripotent stem
cell, NCBI_TaxID=9606; ! Homo sapiens (Human), Part of:
Framingham Heart Study (FHS) collection, Part of: Next
Generation Genetic Association studies (Next Gen)
program cell lines, Population: Caucasian, Sequence
variation: Mutation; HGNC; 3231; CELSR2; Simple;
c.*919G; dbSNP=rs12740374; Zygosity=Homozygous;
Note=Major haplotype (PubMed=28388431), Omics:
Transcriptome analysis by RNAseq, Derived from site: In
situ; Peripheral blood; UBERON=UBERON_0000178,
CVCL_YY66 ! FHS035i-sh18961A

0.2832 0.3522 1.0000
folds, with the training and validation sets containing around 51.4%
active samples, and the test set 46.5%. Notably, a significant percentage
of entries have leaking Uniprot identifiers (around 83%) and a smaller
proportion have leaking SMILES (around 10%). The average Tanimoto
distance between PROTACs in the test set is 0.381, indicating moderate
structural similarity.

The target split aims to evaluate model generalization to unseen
POIs. The training set sizes vary between 546 and 693, with the
validation set sizes ranging from 79 to 226, and the test set consistently
containing 85 entries. Because of stratified folds, the active data pro-
portions in the training, validation, and test sets vary more widely than
in the standard split. In fact, there are no leaking Uniprot identifiers in
this split, and the proportion of leaking SMILES is below 1.5%. The
average Tanimoto distance between PROTACs in the test set is slightly
higher at 0.395.

For the similarity split, designed to test generalization to new PRO-
TACs, the training set sizes range from 589 to 660, validation sets from
112 to 183, and the test set again consistently contains 85 entries. The
active sample proportion in the training sets average around 51.5%,
8

with the validation set showing slightly more variation. The leaking
Uniprot identifiers are around 57%, and there are no leaking SMILES,
by construction. The average Tanimoto distance between PROTACs in
the test set is the highest among the splits at 0.420, reflecting the
structural novelty of the test PROTACs in this specific study.

Appendix D. XGBoost performance

Given the experimental setup and evaluation strategy described in
Section 2.4, we first trained different XGBoost models in a CV setting
via Optuna. We then trained, with the best hyperparameters found,
three models and evaluated them on the held-out test sets. As with
the deep learning models, we evaluated the XGBoost models both
individually by computing their average performance, and together
via majority voting. Fig. 8 compares the performance metrics for the
trained XGBoost models on the different studies.

The comparison of test performances between the trained XGBoost
models and the proposed deep learning models highlights some key
differences across the various studies. In the standard random split,
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Fig. 8. Performance metrics for the XGBoost models: (a) accuracy, (b) ROC-AUC, (c) F1 score, (d) precision, and (e) recall.
Table 3
Characteristics of PROTAC-DB and PROTAC-Pedia datasets. The term single here indicates entries for which the SMILES or target appears only once in the corresponding dataset.

Dataset Total entries Unique SMILES Unique targets Shared SMILES Shared SMILES % Single SMILES Single SMILES % Single targets Single targets %

PROTAC-DB 5388 3270 323 1222 22.7% 2451 45.5% 78 1.4%
PROTAC-Pedia 1203 1178 79 832 69.2% 1153 95.8% 15 1.2%
deep learning models achieve slightly higher test accuracies (up to
82.56%) compared to XGBoost (up to 79.07%). For the target split,
deep learning models outperform XGBoost with test accuracies ranging
from 55.29% to 63.53%, while XGBoost’s performance is significantly
lower and more variable, ranging from 41.18% to 51.76%. In the
similarity split, deep learning models again show better performance
with accuracies reaching up to 78.82% compared to XGBoost’s 76.47%.

Regarding ROC-AUC scores, in the standard split, both models
9

perform robustly, but XGBoost has slightly higher scores (up to 0.884)
compared to deep learning’s 0.848. In the target split, deep learning
models have a clear advantage with ROC-AUC scores up to 0.633,
while XGBoost’s scores hover around 0.5, indicating poor performance.
In the similarity split, deep learning models again demonstrate better
performance with ROC-AUC scores up to 0.850, compared to XG-
Boost’s 0.836. Overall, deep learning models generally show superior
or comparable test performance, especially in the target and similarity
splits.
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Table 4
Statistics of datasets used in different studies. The term leaking indicates the percentage of entries in the training set with either a SMILES or target that also appears in the test
set data samples. The avg Tanimoto distance refers to the average Tanimoto distance between PROTACs in the test set.

Fold Study split Train size Val size Test size Train active % Val active % Test active % Leaking Uniprot % Leaking SMILES % Avg Tanimoto distance

0 Standard 616 155 86 51.5% 51.6% 46.5% 82.5% 11.2% 0.381
1 Standard 617 154 86 51.4% 51.9% 46.5% 84.0% 10.2% 0.381
2 Standard 617 154 86 51.5% 51.3% 46.5% 83.8% 9.4% 0.381
3 Standard 617 154 86 51.5% 51.3% 46.5% 82.3% 10.4% 0.381
4 Standard 617 154 86 51.5% 51.3% 46.5% 83.8% 10.0% 0.381

0 Target 560 212 85 54.5% 40.6% 54.1% 0.0% 1.1% 0.395
1 Target 627 145 85 51.7% 46.2% 54.1% 0.0% 0.8% 0.395
2 Target 662 110 85 50.6% 50.9% 54.1% 0.0% 1.2% 0.395
3 Target 546 226 85 48.4% 56.2% 54.1% 0.0% 1.5% 0.395
4 Target 693 79 85 48.5% 69.6% 54.1% 0.0% 1.3% 0.395

0 Similarity 660 112 85 51.5% 53.6% 43.5% 57.7% 0.0% 0.420
1 Similarity 589 183 85 49.7% 58.5% 43.5% 56.4% 0.0% 0.420
2 Similarity 616 156 85 54.2% 42.3% 43.5% 57.3% 0.0% 0.420
3 Similarity 598 174 85 52.8% 48.3% 43.5% 56.5% 0.0% 0.420
4 Similarity 625 147 85 50.7% 56.5% 43.5% 57.0% 0.0% 0.420
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