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Abstract: Bisimulation is a powerful abstraction method, which can be used to perform model reduction,
especially for modular transition systems. A unified formulation of strong, weak, stuttering, and
branching bisimulation is presented. An ambiguity in branching bisimulation is also highlighted, and
an equivalent reformulation is proposed where the ambiguity is avoided. A transitive and therefore an
equivalence relation is also shown for the alternative formulation. A block transition based description
that is more natural from a model reduction perspective is also shown to be equivalent to the original
relation based bisimulations. All bisimulation formulations are based on general transition system
models, which means that systems both including state and transition labels are handled in a unified
way.
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1. INTRODUCTION

The well known state space explosion in verification and syn-
thesis of discrete event systems can be handled in different
ways. One popular approach is to represent models by binary
decision diagrams (BDDs) (Bryant, 1992). More recently SAT
solvers have also shown to be very effective (Eén and Sörens-
son, 2004). An attractive alternative is to use abstractions such
that reduced models, which preserve critical properties, can be
used. One of the most well known abstractions is bisimulation,
cf. Milner (1989); Park (1981), which is a general technique to
determine if individual states of a transition system have the
same future behavior. States with such common behavior are
related and are said to be bisimilar. Bisimulation can therefore
be used to reduce the number of states for transition systems.

Two bisimulation relations that have a strong coupling to tem-
poral logic are 1) branching bisimulation for labeled transition
systems and process algebra with event/transition labels (au-
tomata), see Van Glabbeek and Weijland (1996); Nicola and
Vaandrager (1995), and 2) stuttering bisimulation for Kripke
structures including state labels, see Baier and Katoen (2008).
In Lennartson and Noori-Hosseini (2018), these two formula-
tions are unified in a bisimulation, where both state and event
labels are included. Two other similar formulations that unify
state and transition labels are presented in Gerth et al. (1999)
and Trčka (2007). They are, however, based on traditional rela-
tion based bisimulation formulations. Our alternative definition
is directly formulated as an equivalence relation. All earlier
bisimulation definitions are based on relations that are shown to
be equivalence relations, sometimes including complex proofs,
especially for branching bisimulation, cf. Van Glabbeek et al.
(2009).

In this paper the four most common bisimulations, strong,
weak, stuttering, and branching bisimulation are formulated in
a unified manner, by introducing a generic transition operator
followed by specific instances. Traditional relation formula-
tions are given, as well as our block transition formulations,
which by construction generate non-trivial equivalence rela-
tions. The branching bisimulation formulation is evaluated in
more detail and an ambiguity in the original formulation is
highlighted. Due to this ambiguity it was shown by a famous
⋆ This work was supported by SyTec – Systematic Testing of Cyber-Physical
Systems, a Swedish Science Foundation grant for strong research environment.
The support is gratefully acknowledged.

counter example in Basten (1996) that the original branch-
ing bisimulation is not transitive. The suggested solution was
then to reformulate the relation to a similar one called semi-
branching bisimulation.

Here we suggest instead a more natural solution (for those who
prefer the original definition), namely to avoid the ambiguity
by introducing an equivalent relation formulation, but also to
introduce a formulation that more naturally unify branching
and stuttering bisimulation. This bisimulation is proven to be
an equivalence relation. The equivalence between the relation
formulation and our block transition formulation is also shown.

The paper starts in Section 2 with a survey on the most im-
portant results for the basic bisimulation, also called strong
bisimulation. In Section 3 a deeper analysis of branching and
stuttering bisimulation is given, including the ambiguity men-
tioned above and an equivalence proof. In Section 4 weak
bisimulation is presented in the unified framework, including
both state and transition labels, followed by a unification in
Section 5 of strong, weak, and branching bisimulation, all three
also formulated in the alternative block transition formulation.
In this section it is also proven that the traditional relation based
bisimulation formulation and our block transition formulation
are equivalent. Finally, some conclusions are given where in-
teresting future investigations are added.

2. BISIMULATION

Bisimulation is a binary relation that determines which individ-
ual states in a transition system have the same future behavior.
States with such common behavior are said to be bisimilar. The
basic bisimulation relation, which is also called strong bisim-
ulation (Milner, 1989; Park, 1981), is defined and illustrated
in this section. It is also emphasized that strong bisimulation
becomes an equivalence relation when the maximum number
of pairs is included. The name of the relation is motivated by
the fact that it is the strongest and most detailed bisimulation
which is naturally formulated.

2.1 Strong bisimulation

Before the definition of strong bisimulation is given, a transi-
tion system G is defined as a six-tuple G = ⟨X,Σ, T, I, AP, λ⟩
where X is a set of states, Σ is a finite set of events, T ⊆ X ×
Σ×X is a transition relation, where t = (x, a, x′) ∈ T includes
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counter example in Basten (1996) that the original branch-
ing bisimulation is not transitive. The suggested solution was
then to reformulate the relation to a similar one called semi-
branching bisimulation.

Here we suggest instead a more natural solution (for those who
prefer the original definition), namely to avoid the ambiguity
by introducing an equivalent relation formulation, but also to
introduce a formulation that more naturally unify branching
and stuttering bisimulation. This bisimulation is proven to be
an equivalence relation. The equivalence between the relation
formulation and our block transition formulation is also shown.

The paper starts in Section 2 with a survey on the most im-
portant results for the basic bisimulation, also called strong
bisimulation. In Section 3 a deeper analysis of branching and
stuttering bisimulation is given, including the ambiguity men-
tioned above and an equivalence proof. In Section 4 weak
bisimulation is presented in the unified framework, including
both state and transition labels, followed by a unification in
Section 5 of strong, weak, and branching bisimulation, all three
also formulated in the alternative block transition formulation.
In this section it is also proven that the traditional relation based
bisimulation formulation and our block transition formulation
are equivalent. Finally, some conclusions are given where in-
teresting future investigations are added.

2. BISIMULATION

Bisimulation is a binary relation that determines which individ-
ual states in a transition system have the same future behavior.
States with such common behavior are said to be bisimilar. The
basic bisimulation relation, which is also called strong bisim-
ulation (Milner, 1989; Park, 1981), is defined and illustrated
in this section. It is also emphasized that strong bisimulation
becomes an equivalence relation when the maximum number
of pairs is included. The name of the relation is motivated by
the fact that it is the strongest and most detailed bisimulation
which is naturally formulated.

2.1 Strong bisimulation

Before the definition of strong bisimulation is given, a transi-
tion system G is defined as a six-tuple G = ⟨X,Σ, T, I, AP, λ⟩
where X is a set of states, Σ is a finite set of events, T ⊆ X ×
Σ×X is a transition relation, where t = (x, a, x′) ∈ T includes
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thesis of discrete event systems can be handled in different
ways. One popular approach is to represent models by binary
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solvers have also shown to be very effective (Eén and Sörens-
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cf. Milner (1989); Park (1981), which is a general technique to
determine if individual states of a transition system have the
same future behavior. States with such common behavior are
related and are said to be bisimilar. Bisimulation can therefore
be used to reduce the number of states for transition systems.

Two bisimulation relations that have a strong coupling to tem-
poral logic are 1) branching bisimulation for labeled transition
systems and process algebra with event/transition labels (au-
tomata), see Van Glabbeek and Weijland (1996); Nicola and
Vaandrager (1995), and 2) stuttering bisimulation for Kripke
structures including state labels, see Baier and Katoen (2008).
In Lennartson and Noori-Hosseini (2018), these two formula-
tions are unified in a bisimulation, where both state and event
labels are included. Two other similar formulations that unify
state and transition labels are presented in Gerth et al. (1999)
and Trčka (2007). They are, however, based on traditional rela-
tion based bisimulation formulations. Our alternative definition
is directly formulated as an equivalence relation. All earlier
bisimulation definitions are based on relations that are shown to
be equivalence relations, sometimes including complex proofs,
especially for branching bisimulation, cf. Van Glabbeek et al.
(2009).

In this paper the four most common bisimulations, strong,
weak, stuttering, and branching bisimulation are formulated in
a unified manner, by introducing a generic transition operator
followed by specific instances. Traditional relation formula-
tions are given, as well as our block transition formulations,
which by construction generate non-trivial equivalence rela-
tions. The branching bisimulation formulation is evaluated in
more detail and an ambiguity in the original formulation is
highlighted. Due to this ambiguity it was shown by a famous
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and Trčka (2007). They are, however, based on traditional rela-
tion based bisimulation formulations. Our alternative definition
is directly formulated as an equivalence relation. All earlier
bisimulation definitions are based on relations that are shown to
be equivalence relations, sometimes including complex proofs,
especially for branching bisimulation, cf. Van Glabbeek et al.
(2009).

In this paper the four most common bisimulations, strong,
weak, stuttering, and branching bisimulation are formulated in
a unified manner, by introducing a generic transition operator
followed by specific instances. Traditional relation formula-
tions are given, as well as our block transition formulations,
which by construction generate non-trivial equivalence rela-
tions. The branching bisimulation formulation is evaluated in
more detail and an ambiguity in the original formulation is
highlighted. Due to this ambiguity it was shown by a famous
⋆ This work was supported by SyTec – Systematic Testing of Cyber-Physical
Systems, a Swedish Science Foundation grant for strong research environment.
The support is gratefully acknowledged.

counter example in Basten (1996) that the original branch-
ing bisimulation is not transitive. The suggested solution was
then to reformulate the relation to a similar one called semi-
branching bisimulation.

Here we suggest instead a more natural solution (for those who
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counter example in Basten (1996) that the original branch-
ing bisimulation is not transitive. The suggested solution was
then to reformulate the relation to a similar one called semi-
branching bisimulation.

Here we suggest instead a more natural solution (for those who
prefer the original definition), namely to avoid the ambiguity
by introducing an equivalent relation formulation, but also to
introduce a formulation that more naturally unify branching
and stuttering bisimulation. This bisimulation is proven to be
an equivalence relation. The equivalence between the relation
formulation and our block transition formulation is also shown.

The paper starts in Section 2 with a survey on the most im-
portant results for the basic bisimulation, also called strong
bisimulation. In Section 3 a deeper analysis of branching and
stuttering bisimulation is given, including the ambiguity men-
tioned above and an equivalence proof. In Section 4 weak
bisimulation is presented in the unified framework, including
both state and transition labels, followed by a unification in
Section 5 of strong, weak, and branching bisimulation, all three
also formulated in the alternative block transition formulation.
In this section it is also proven that the traditional relation based
bisimulation formulation and our block transition formulation
are equivalent. Finally, some conclusions are given where in-
teresting future investigations are added.

2. BISIMULATION

Bisimulation is a binary relation that determines which individ-
ual states in a transition system have the same future behavior.
States with such common behavior are said to be bisimilar. The
basic bisimulation relation, which is also called strong bisim-
ulation (Milner, 1989; Park, 1981), is defined and illustrated
in this section. It is also emphasized that strong bisimulation
becomes an equivalence relation when the maximum number
of pairs is included. The name of the relation is motivated by
the fact that it is the strongest and most detailed bisimulation
which is naturally formulated.

2.1 Strong bisimulation

Before the definition of strong bisimulation is given, a transi-
tion system G is defined as a six-tuple G = ⟨X,Σ, T, I, AP, λ⟩
where X is a set of states, Σ is a finite set of events, T ⊆ X ×
Σ×X is a transition relation, where t = (x, a, x′) ∈ T includes

the source state x, the event label a, and the target state x′ of
the transition t, I ⊆ X is a set of possible initial states, AP
is a set of atomic propositions, and λ : X → 2AP is a state
labeling function. A transition (x, a, x′) is also denoted x →a x′.
A transition system without state labels is called an automaton
or a labeled transition system (LTS), and a transition system
without transition labels (events) is called a Kripke structure
(Baier and Katoen, 2008).

Definition 1. (Strong bisimulation). Given a transition system
G = ⟨X,Σ, T, I, AP, λ⟩, a binary relation R ⊆ X × X is a
strong bisimulation (SB) if, for any states x, y ∈ X and event
a ∈ Σ, xRy ⇒ λ(x) = λ(y) ∧ pSB

R (x, y) ∧ pSB
R (y, x), where

the transfer predicate
pSB
R (x, y) := ∀x′, a : x →a x′ ⇒ ∃y′ : y →a y′ ∧ x′Ry′.

Related states (x, y) ∈ R are said to be strongly bisimilar,
denoted x∼s y. Furthermore, if both x and y are terminal states
and λ(x) = λ(y), then x∼s y. �

The transfer predicate pSB
R (x, y) holds if, for the two source

states x and y, every transition x →a x′, for all existing target
states x′ ∈ X and events a ∈ Σ, is matched by at least
one transition y →a y′, and the target states are also related,
i.e. x′Ry′. Since the symmetric transfer predicate pSB

R (y, x)
is also included, the bisimulation relation xRy only holds if
furthermore every transition y →a y′ is matched by at least
one transition x →a x′ and y′Rx′. This symmetric condition
is further illustrated in Example 1.

Both state and transition labels Bisimulation is normally
defined either for Kripke structures, only including state labels,
or alternatively for labeled transition systems or process algebra
(Milner, 1989), only including transition labels. In this paper
both state and transition labels are accepted in bisimulation
relations. Indeed, state labels are simply introduced by adding
the equality condition λ(x) = λ(y). Thus, a prerequisite for
two states to be bisimilar is that they have the same state label.

G
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{p}

3

4

{p}

a

b

b

a

a

b

Figure 1. Transition system G with no state label in state 0
and 3, and state label {p} in the remaining states.

Example 1. Consider the transition system G in Fig. 1. Based
on Def. 1, the relation R={(1, 4), (4, 1), (0, 0)} is a strong bi-
simulation. The first pair (1, 4) ∈ R, since λ(1) = λ(4) = {p},
1 →b 0 is matched by 4 →b 0 and (0, 0) ∈ R, and symmetrically
4 →b 0 is matched by 1 →b 0 and (0, 0) ∈ R. By the same
argument also the second pair (4, 1) ∈ R, and (0, 0) ∈ R since
each state has the same future as itself. This is the most common
and obvious strong bisimulation, where generally two source
states with the same state and transition label, reaching the same
target state, are bisimilar; they have the same future behavior.
In Example 2 it will be shown that G includes a number of
additional strongly related states. �

2.2 Equivalence relation and quotient transition system

Based on the strong bisimulation relation in Def. 1, an equiva-
lence relation can be achieved. It is obtained by taking the union

of all possible strong bisimulations, also called the maximal
strong bisimulation. The following proposition states that this
relation is an equivalence relation. A minor extension of the
proof of Lemma 7.4 in Baier and Katoen (2008) proves this
statement.

Proposition 1. (Strong bisimulation equivalence). The maximal
strong bisimulation relation

R = {(x, y) |λ(x) = λ(y) ∧ pSB
R (x, y) ∧ pSB

R (y, x)},
where the transfer predicate pSB

R (x, y) is defined in Def. 1, is re-
flexive, symmetric, and transitive, and therefore an equivalence
relation. �

Quotient transition system G/∼ To obtain reduced tran-
sition systems, equivalent states for any equivalence relation
are merged into equivalence classes [x ] = {y ∈ X |x ∼ y},
also called blocks. These blocks, which are non-overlapping
subsets of X , divide the state space into the quotient set X/∼,
also called a partition Π of X . The block/equivalence class
including state x is denoted Π(x) = [x ]. A partition Π1 that
is finer than a partition Π2 means that Π1(x) ⊆ Π2(x) for all
x ∈ X . It is denoted Π1 ⪯ Π2.

Blocks are the states in reduced transition systems, and the no-
tion partition Π is used in the computation of this model, while
the resulting reduced model takes the equivalence perspective.
For a transition system G, the reduced model is therefore called
quotient transition system, denoted G/∼, and for partition Π

the state space of G/∼ is the quotient set X/∼ = {[x ] | [x ] =
Π(x)}.

Relation between G and G/∼s By generating an extended
model, including both G and the quotient transition system
G/∼s based on Def. 1, it can also be shown (Baier and Katoen,
2008) that every state x ∈ X in G is strongly bisimilar to
the corresponding block state [x ] ∈ X/∼s in G/∼s, that is
[x ] ∼s x. The equivalence between every state x in G and
corresponding block state [x ] in G/∼s also means that the
complete transition systems G and G/∼d are said to be strongly
bisimulation equivalent, denoted G ∼s G/∼s.
Example 2. For the transition system G in Fig. 1 the maximal
strong bisimulation relation is

R =
{(0, 0), (0, 3),
(3, 0), (3, 3)} ∪

{(1, 1), (1, 2), (1, 4),
(2, 1), (2, 2), (2, 4),

(4, 1), (4, 2), (4, 4)},
which clearly shows the reflexive, symmetric, and transitive
properties of this relation. The partition Π = {{0, 3}, {1, 2, 4}}
generates the reduced quotient transition system G/∼s in
Fig. 2. The repeated ab string means that G/∼s only includes
the block state {0, 3} followed by the event a, and the block
state {1, 2, 4} followed by the event b. Note that the individual
states in G are followed by the same event as the related block
state in G/∼s. �

G/∼s

{0, 3} {1, 2, 4} {p}

a

b

Figure 2. Quotient transition system G/∼s of the transition
system G in Fig. 1.

3. BRANCHING AND STUTTERING BISIMULATION

Events that are not synchronized with other subsystems are said
to be local, and they can be hidden by replacing them with the
transition label τ . Such τ events are also called internal or
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the source state x, the event label a, and the target state x′ of
the transition t, I ⊆ X is a set of possible initial states, AP
is a set of atomic propositions, and λ : X → 2AP is a state
labeling function. A transition (x, a, x′) is also denoted x →a x′.
A transition system without state labels is called an automaton
or a labeled transition system (LTS), and a transition system
without transition labels (events) is called a Kripke structure
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Blocks are the states in reduced transition systems, and the no-
tion partition Π is used in the computation of this model, while
the resulting reduced model takes the equivalence perspective.
For a transition system G, the reduced model is therefore called
quotient transition system, denoted G/∼, and for partition Π

the state space of G/∼ is the quotient set X/∼ = {[x ] | [x ] =
Π(x)}.

Relation between G and G/∼s By generating an extended
model, including both G and the quotient transition system
G/∼s based on Def. 1, it can also be shown (Baier and Katoen,
2008) that every state x ∈ X in G is strongly bisimilar to
the corresponding block state [x ] ∈ X/∼s in G/∼s, that is
[x ] ∼s x. The equivalence between every state x in G and
corresponding block state [x ] in G/∼s also means that the
complete transition systems G and G/∼d are said to be strongly
bisimulation equivalent, denoted G ∼s G/∼s.
Example 2. For the transition system G in Fig. 1 the maximal
strong bisimulation relation is

R =
{(0, 0), (0, 3),
(3, 0), (3, 3)} ∪

{(1, 1), (1, 2), (1, 4),
(2, 1), (2, 2), (2, 4),

(4, 1), (4, 2), (4, 4)},
which clearly shows the reflexive, symmetric, and transitive
properties of this relation. The partition Π = {{0, 3}, {1, 2, 4}}
generates the reduced quotient transition system G/∼s in
Fig. 2. The repeated ab string means that G/∼s only includes
the block state {0, 3} followed by the event a, and the block
state {1, 2, 4} followed by the event b. Note that the individual
states in G are followed by the same event as the related block
state in G/∼s. �

G/∼s

{0, 3} {1, 2, 4} {p}

a

b

Figure 2. Quotient transition system G/∼s of the transition
system G in Fig. 1.

3. BRANCHING AND STUTTERING BISIMULATION

Events that are not synchronized with other subsystems are said
to be local, and they can be hidden by replacing them with the
transition label τ . Such τ events are also called internal or

Copyright © 2024 The Authors. This is an open access article under the CC BY-NC-ND license  
(https://creativecommons.org/licenses/by-nc-nd/4.0/)
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silent events. Some τ transitions x →τ x′ can be removed by
joining the source and target states into a block state {x, x′},
but not all of them.

Both in weak bisimulation (WB) and branching bisimulation
(BB) some τ transitions are removed. WB is less restrictive than
BB, which implies that the block states in a WB equivalence
are often somewhat larger, resulting in less block states and
a courser state partition. See further details in Section 4. On
the other hand, more details are preserved in BB, where the
name expresses that the branching structure is preserved. More
specifically this implies that most temporal logic properties are
preserved when abstraction is based on BB, while some relevant
temporal properties are lost when WB is applied.

Normally, BB does not consider any state labels, but in this pa-
per this is generalized to include both transition and state labels.
BB for this type of general transition systems, without any label
restrictions, is not common but has been formulated under the
names visible bisimulation Gerth et al. (1999); Lennartson and
Noori-Hosseini (2018) and silent bisimulation Trčka (2007).
Since the only difference between these bisimulations and BB
is that state labels are also included in a straightforward way, we
keep the BB name used for labeled transition systems also for
general transition systems, including both state and transition
labels. This means that stuttering bisimulation is a special case,
where no transition labels are involved. This can be interpreted
as all transitions being labelled by τ , and the transition system
is reduced to a Kripke structure.

3.1 Invisible transitions and stuttering paths

Before BB is presented, some basic results on invisible and
visible transitions are presented. Some τ transitions are visible
and some are invisible, while all transitions with label a ̸= τ
are visible.

Definition 2. (Invisible relation and invisible/visible transition).
Given a transition system with state space X , a symmetric
binary relation R ⊆ X × X is called an invisible relation if,
for any states x, y ∈X , xRy ⇒ λ(x) = λ(y), and the transfer
property

∀x′ : x →τ x′ ∧ xRy ⇒ x′Ry
holds. A τ transition that satisfies this transfer property is said
to be an invisible transition, and consequently it is said to
be a visible transition when it does not satisfy this transfer
property. A transition x →a x′ where a ̸= τ is always visible.

�

A path only including τ -transitions is now defined, followed by
a transfer property for this path.

Definition 3. (Stuttering path). Consider a transition system
with a path x = x0 →τ x1 →τ · · · →τ xn = x′, n ≥ 0, also
denoted x →τ

∗

x′. When all the individual τ transitions in this
path are invisible based on the invisible relation R in Def. 2,
this path is called a stuttering path, denoted x →τ

∗

R
x′. �

Proposition 2. (Transfer property for stuttering path). Given a
transition system with state space X , for any state x∈X with a
stuttering path x →τ

∗

R
x′ where x = x0 →τ x1 →τ · · · →τ xn = x′,

n ≥ 0, all individual states are related to each other, i.e. xiRxj ,
i, j ∈ Nn. Furthermore, for any state y ∈ X , the transfer
property for this stuttering path is

∀x′ : x →τ
∗

R
x′ ∧ xRy ⇒ x′Ry

Proof: Given an invisible relation R with transfer property
according to Def. 2, this relation is transitive. It follows since
∀x′ : x →τ x′ ∧ xRy ∧ yRz ⇒ x′Ry ∧ yRz means that

∀x′ : x →τ x′∧xR◦Rz ⇒ x′R◦Rz. Hence, the relation R◦R
is also an invisible relation.

Since every individual transition xj →
τ

xj+1, 0 ≤ j < n, in the
stuttering path is invisible, i.e. ∀xj+1 : xj →τ xj+1 ∧ xjRy ⇒
xj+1Ry, the corresponding invisible transfer property for the
specific choice y = xj implies that xj+1Rxj . Repeating the
transitive property of this relation i−j−1 times (i > j) implies
due to the symmetry of R that xiRxj , i, j ∈ Nn, and more
specifically we find that x′Rx. Finally, the transfer property
∀x′ : x →τ

∗

R
x′ ∧ xRy ⇒ x′Ry is trivially satisfied for n = 0,

and for n > 0 it follows, since x′Rx ∧ xRy implies that x′Ry.
�

3.2 Branching Bisimulation

Branching bisimulation, as introduced in Van Glabbeek and
Weijland (1996), is now defined for transition systems also
including state labels.

Definition 4. (Branching bisimulation). Given a transition sys-
tem G = ⟨X,Σ, T, I, AP, λ⟩, a binary relation R ⊆ X ×X is
a branching bisimulation (BB) if, for any states x, y ∈ X and
event a ∈Σ, xRy ⇒ λ(x) = λ(y) ∧ pBB

R (x, y) ∧ pBB
R (y, x).

The transfer predicate

pBB
R (x, y) := ∀x′, a : x →a x′ ⇒ pivR (x′, y) ∨ pa

R(x, x
′, y),

where

pivR (x′, y) := a = τ ∧ x′Ry (1)

pa
R(x, x

′, y) := ∃y′, y′′ : y →τ
∗

y′′ →a y′∧ xRy′′∧ x′Ry′ . (2)
see Fig. 3. If both x and y′ are terminal states, λ(x) = λ(y),
and y →τ

∗

R
y′, then xRy′. Related states (x, y) ∈ R are said to

be branching bisimilar, denoted x ∼b y. �

x x′

y

τ

∨
x x′

y y′′ y′

a

τ∗ a

Figure 3. Transfer diagrams for the two disjunctive relations in
branching bisimulation.

Example 3. Consider the transition system G in Fig. 4. Based
on Def. 4 the relation R = {(0, 4), (4, 0), (1, 3), (3, 1), (1, 4),
(4, 1), (2, 3), (3, 2), (2, 4), (4, 2), (5, 5)} is a (non-maximal)
BB. The pair (1, 3) ∈ R, since according to predicate pivR
in (1), 1 →τ 2 and (2, 3) ∈ R, and due to symmetry 3 →τ 4
and (4, 1) ∈ R. However, according to predicate pa

R in (2),
(1, 3) ∈ R also because

1 →τ 2 is matched by 3 →τ 4 and (2, 4) ∈ R,

3 →τ 4 is matched by 1 →τ 2 and (4, 2) ∈ R.
�

This example illustrates that the predicate pivR (1) (correspond-
ing to Def. 2), but sometimes also the predicate pa

R (2), hold
for branching bisimilar invisible transitions. On the other hand,
pivR never holds for any visible transitions, only for branching
bisimilar invisible transitions. Indeed, this ambiguity creates a
problem, showing that BB is a transitive relation and therefore
an equivalence relation.

By a famous counter example in Basten (1996) it was shown
that the BB relation R in Def. 4 is not transitive. The suggested
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silent events. Some τ transitions x →τ x′ can be removed by
joining the source and target states into a block state {x, x′},
but not all of them.

Both in weak bisimulation (WB) and branching bisimulation
(BB) some τ transitions are removed. WB is less restrictive than
BB, which implies that the block states in a WB equivalence
are often somewhat larger, resulting in less block states and
a courser state partition. See further details in Section 4. On
the other hand, more details are preserved in BB, where the
name expresses that the branching structure is preserved. More
specifically this implies that most temporal logic properties are
preserved when abstraction is based on BB, while some relevant
temporal properties are lost when WB is applied.

Normally, BB does not consider any state labels, but in this pa-
per this is generalized to include both transition and state labels.
BB for this type of general transition systems, without any label
restrictions, is not common but has been formulated under the
names visible bisimulation Gerth et al. (1999); Lennartson and
Noori-Hosseini (2018) and silent bisimulation Trčka (2007).
Since the only difference between these bisimulations and BB
is that state labels are also included in a straightforward way, we
keep the BB name used for labeled transition systems also for
general transition systems, including both state and transition
labels. This means that stuttering bisimulation is a special case,
where no transition labels are involved. This can be interpreted
as all transitions being labelled by τ , and the transition system
is reduced to a Kripke structure.

3.1 Invisible transitions and stuttering paths

Before BB is presented, some basic results on invisible and
visible transitions are presented. Some τ transitions are visible
and some are invisible, while all transitions with label a ̸= τ
are visible.

Definition 2. (Invisible relation and invisible/visible transition).
Given a transition system with state space X , a symmetric
binary relation R ⊆ X × X is called an invisible relation if,
for any states x, y ∈X , xRy ⇒ λ(x) = λ(y), and the transfer
property

∀x′ : x →τ x′ ∧ xRy ⇒ x′Ry
holds. A τ transition that satisfies this transfer property is said
to be an invisible transition, and consequently it is said to
be a visible transition when it does not satisfy this transfer
property. A transition x →a x′ where a ̸= τ is always visible.

�

A path only including τ -transitions is now defined, followed by
a transfer property for this path.

Definition 3. (Stuttering path). Consider a transition system
with a path x = x0 →τ x1 →τ · · · →τ xn = x′, n ≥ 0, also
denoted x →τ

∗

x′. When all the individual τ transitions in this
path are invisible based on the invisible relation R in Def. 2,
this path is called a stuttering path, denoted x →τ

∗

R
x′. �

Proposition 2. (Transfer property for stuttering path). Given a
transition system with state space X , for any state x∈X with a
stuttering path x →τ

∗

R
x′ where x = x0 →τ x1 →τ · · · →τ xn = x′,

n ≥ 0, all individual states are related to each other, i.e. xiRxj ,
i, j ∈ Nn. Furthermore, for any state y ∈ X , the transfer
property for this stuttering path is

∀x′ : x →τ
∗

R
x′ ∧ xRy ⇒ x′Ry

Proof: Given an invisible relation R with transfer property
according to Def. 2, this relation is transitive. It follows since
∀x′ : x →τ x′ ∧ xRy ∧ yRz ⇒ x′Ry ∧ yRz means that

∀x′ : x →τ x′∧xR◦Rz ⇒ x′R◦Rz. Hence, the relation R◦R
is also an invisible relation.

Since every individual transition xj →
τ

xj+1, 0 ≤ j < n, in the
stuttering path is invisible, i.e. ∀xj+1 : xj →τ xj+1 ∧ xjRy ⇒
xj+1Ry, the corresponding invisible transfer property for the
specific choice y = xj implies that xj+1Rxj . Repeating the
transitive property of this relation i−j−1 times (i > j) implies
due to the symmetry of R that xiRxj , i, j ∈ Nn, and more
specifically we find that x′Rx. Finally, the transfer property
∀x′ : x →τ

∗

R
x′ ∧ xRy ⇒ x′Ry is trivially satisfied for n = 0,

and for n > 0 it follows, since x′Rx ∧ xRy implies that x′Ry.
�

3.2 Branching Bisimulation

Branching bisimulation, as introduced in Van Glabbeek and
Weijland (1996), is now defined for transition systems also
including state labels.

Definition 4. (Branching bisimulation). Given a transition sys-
tem G = ⟨X,Σ, T, I, AP, λ⟩, a binary relation R ⊆ X ×X is
a branching bisimulation (BB) if, for any states x, y ∈ X and
event a ∈Σ, xRy ⇒ λ(x) = λ(y) ∧ pBB

R (x, y) ∧ pBB
R (y, x).

The transfer predicate

pBB
R (x, y) := ∀x′, a : x →a x′ ⇒ pivR (x′, y) ∨ pa

R(x, x
′, y),

where

pivR (x′, y) := a = τ ∧ x′Ry (1)

pa
R(x, x

′, y) := ∃y′, y′′ : y →τ
∗

y′′ →a y′∧ xRy′′∧ x′Ry′ . (2)
see Fig. 3. If both x and y′ are terminal states, λ(x) = λ(y),
and y →τ

∗

R
y′, then xRy′. Related states (x, y) ∈ R are said to

be branching bisimilar, denoted x ∼b y. �

x x′

y

τ

∨
x x′

y y′′ y′

a

τ∗ a

Figure 3. Transfer diagrams for the two disjunctive relations in
branching bisimulation.

Example 3. Consider the transition system G in Fig. 4. Based
on Def. 4 the relation R = {(0, 4), (4, 0), (1, 3), (3, 1), (1, 4),
(4, 1), (2, 3), (3, 2), (2, 4), (4, 2), (5, 5)} is a (non-maximal)
BB. The pair (1, 3) ∈ R, since according to predicate pivR
in (1), 1 →τ 2 and (2, 3) ∈ R, and due to symmetry 3 →τ 4
and (4, 1) ∈ R. However, according to predicate pa

R in (2),
(1, 3) ∈ R also because

1 →τ 2 is matched by 3 →τ 4 and (2, 4) ∈ R,

3 →τ 4 is matched by 1 →τ 2 and (4, 2) ∈ R.
�

This example illustrates that the predicate pivR (1) (correspond-
ing to Def. 2), but sometimes also the predicate pa

R (2), hold
for branching bisimilar invisible transitions. On the other hand,
pivR never holds for any visible transitions, only for branching
bisimilar invisible transitions. Indeed, this ambiguity creates a
problem, showing that BB is a transitive relation and therefore
an equivalence relation.

By a famous counter example in Basten (1996) it was shown
that the BB relation R in Def. 4 is not transitive. The suggested

G

0 1 2

3 4 5

{q}

τ

τ

τ

τ

τ τ
a

Figure 4. Transition system G, where related branching bisimi-
lar states are connected by dashed lines.

solution was then to reformulate BB to a similar relation called
semi-BB. Here we suggest instead a more natural solution
(for those who prefer the original BB definition), namely to
exclude the second predicate pa

R to be involved in any invisible
transitions.

3.3 Visible invisible separated branching bisimulation

Since p∨ q ≡ p∨ (¬p∧q), the transfer predicate pBB
R in Def. 4

can equivalently be formulated as

pBB
R (x, y) := ∀x′, a : x →a x′ ⇒
(a = τ ∧ x′Ry) ∨

(
¬ (a = τ ∧ x′Ry) ∧ pa

R(x, x
′, y)

)
. (3)

The fact that this predicate is equivalent to pBB
R in Def. 4 does

not mean that the individual expressions in these two predicates
have the same meaning. The second part in the two disjunctions
is obviously different. This implies that in the end of Example 3,
the matching transitions, due to the predicate pa

R, are removed
in the determination of the BB relation pair (1, 3).

This reformulation of pBB
R also means that the predicate pa

R can
be sharpened to include a stuttering path y →τ

∗

R
y′′, according to

Def. 3. The result is presented in the following proposition.

Proposition 3. (Branching bisimulation). Given a transi-
tion system G = ⟨X,Σ, T, I, AP, λ⟩, a binary relation R ⊆
X × X is a branching bisimulation (BB) if, for any states
x, y ∈X and event a∈Σ,

xRy ⇒ λ(x) = λ(y) ∧ pBB
R (x, y) ∧ pBB

R (y, x).

The transfer predicate

pBB
R (x, y) := ∀x′, a : x →a x′ ⇒ pivR (x′, y) ∨ pv

R(x, y),

where the predicate for invisible transitions pivR (x′, y) is given
in Def. 4, while the predicate for visible transitions

pv
R(x, y) := ¬pivR (x′, y) ∧ pa

R(x, x
′, y),

and, compared to (2), pa
R is reformulated as

pa
R(x, x

′, y) := ∃y′, y′′ : y →τ
∗

R
y′′ →a y′∧ xRy′′∧ x′Ry′ .

Proof: Repeat the transfer property for invisible relations in
Def. 2. For i ∈ Nn = {0, . . . , n} this implies that yi →

τ
yi+1 ∧

yiRx ⇒ yi+1Rx. Thus, yiRx for i ∈ Nn, and according to
Def. 3, y →τ

∗

y′′, where y = y0 and y′′ = yn, is a stuttering path
denoted y →τ

∗

R
y′′. �

The BB formulated in this proposition clearly shows the sepa-
ration between invisible and visible transitions, handled by the
corresponding predicates pivR and pv

R, respectively. This sepa-
ration simplifies the following relatively short lemma, which
shows that the BB formulated in Prop. 3 is transitive.

Lemma 4. (Branching bisimulation is transitive). Based on the
BB relation R in Prop. 3, it follows that

xR◦Rz ⇒ pBB
R◦R(x, z).

Proof: According to (1) and Prop. 3,

xR◦Rz ∧ ∀x′, a : x →a x′ ≡
∃y : xRy ∧ yRz ∧ ∀x′, a : x →a x′ ⇒
∃y ∀x′, a : x →a x′ ∧ yRz ⇒
(a = τ ∧ x′Ry ∧ yRz)∨(
¬ (a = τ ∧ x′Ry) ∧ pa

R(x, x
′, y) ∧ yRz

)

Since pivR (x′, y)∧yRz ≡ (a = τ∧x′Ry∧ yRz) ≡ p iv
R◦R(x

′, z)
and ¬pivR (x′, y) ∧ yRz ≡ ¬ (pivR (x′, y) ∧ yRz) ∧ yRz ≡
¬p iv

R◦R(x
′, z) ∧ yRz, the expression xR◦Rz ∧ ∀x′, a : x →a x′

implies that

∀x′, a : p iv
R◦R(x

′, z) ∨
(
¬p iv

R◦R(x
′, z)∧∃y : pa

R(x, x
′, y)∧ yRz

)
(4)

According to Prop. 2, y →τ
∗

R
y′′ ∧ yRz ⇒ y′′Rz. Furthermore,

pivR (y′, z) ∧ x′Ry′ ≡ p iv
R◦R(x

′, z), and ¬pivR (y′, z) ∧ x′Ry′ ≡
¬p iv

R◦R(x
′, z) ∧ x′Ry′. Therefore,

∃y : pa
R(x, x

′, y) ∧ yRz

⇒ ∃y, y′, y′′ : y →τ
∗

R
y′′∧ yRz ∧ y′′ →a y′∧ xRy′′∧ x′Ry′

⇒ ∃y′, y′′ : y′′Rz ∧ y′′ →a y′∧ xRy′′∧ x′Ry′

⇒ ∃y′, y′′ : (p iv
R◦R(x

′, z) ∧ xRy′′) ∨
(
¬p iv

R◦R(x
′, z) ∧ x′Ry′

∧ xRy′′ ∧ ∃z′, z′′ : z →τ
∗

R
z′′ →a z′∧ y′′Rz′′ ∧ y′Rz′

)

Inserting this result in (4) gives

xR◦Rz ⇒ ∀x′, a : x →a x′ ⇒ p iv
R◦R(x

′, z) ∨
(
¬p iv

R◦R(x
′, z)∧

∃z′, z′′ : z →τ
∗

R
z′′ →a z′∧ xR◦Rz′′ ∧ x′R◦Rz′

)

which finally can be expressed as

xR◦Rz ⇒ pBB
R◦R(x, z)

�

Theorem 5. (Branching bisimulation equivalence). Given a
transition system G = ⟨X,Σ, T, I, AP, λ⟩, the BB relation R
formulated in Prop. 3 is an equivalence relation.
Proof: The BB formulation in Prop. 3 is by definition symmet-
ric, and Lemma 4 shows that if xRy and yRz are BB relations,
then xR◦Rz is also a BB relation. Finally, by replacing y with x
in Prop. 3, xRx is also a BB relation. Thus, the BB formulation
in Prop. 3 is an equivalence relation. �

Proposition 6. (Extended branching bisimulation). By introduc-
ing the notation

x →→
a

R
x′ := ∃x′′ : x→τ

∗

R
x′′ →a x′

where it is also assumed that a ̸= τ ∨ ¬x′Ry, the transfer
predicate for the BB relation in Prop. 3 can equivalently be
expressed as

pBB
R (x, y) := ∀x′, a : x →→

a

R
x′ ⇒ ∃y′ : y →→

a

R
y′ ∧ x′Ry′.

Proof: The condition a ̸= τ ∨ ¬x′Ry comes from the visible
predicate in Prop. 3. The rest follows by combining the transfer
property for the stuttering path in Prop. 2, where x′ is replaced
by x′′, with the transfer property for the BB in Prop. 3, with x
replaced by x′′. �

This transfer predicate has the same form as the transfer pred-
icate for the SB relation in Def. 1. In the next section a corre-
sponding formulation will be given for WS.
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4. WEAK BISIMULATION

As already mentioned, WB is less restrictive than BB, which
results in less block states and a courser state partition. Before
this is illustrated by a small example, a definition of WB on the
same form as SB is introduced (Milner, 1989).

Definition 5. (Weak bisimulation). Given a transition system
G = ⟨X,Σ, T, I, AP, λ⟩, a binary relation R ⊆ X × X is
a weak bisimulation (WB) if, for any states x, y ∈X and event
a ∈ Σ, xRy ⇒ λ(x) = λ(y) ∧ pWB

R (x, y) ∧ pWB
R (y, x), and

using the notation

x →→→
a

x′ := ∃x′′, x′′′ : x→τ
∗

x′′ →a x′′′ →τ
∗

x′

the transfer predicate

pWB
R (x, y) := ∀x′, a : x →→→

a
x′ ⇒ ∃y′ : y →→→

a
y′ ∧ x′Ry′.

If both x and y are terminal states and λ(x) = λ(y), y →τ
∗

y′,
then xRy′. Related states (x, y) ∈ R are said to be weakly
bisimilar, denoted x ∼w y. �

Example 4. For the transition system G in Fig. 5, branching
bisimulation does not give any reduction, while the first two
states are joined in the weak bisimular quotient transition
system G/∼w. The reason is that WB does not differentiate
between the direct path to the final state 0 →a 3 and the path
via state 1 which also has an alternative b transition to the final
state. This reduction is not accepted by BB that preserves the
branching information. �

G = G/∼b

0 1 2 3
τ

a

τ

b

a

G/∼w

{0, 1} {2} {3}
τ

b

a

Figure 5. Transition system G that is equal to the branching
bisimalar quotient transition system G/∼b and the coarser
weak bisimalar quotient transition system G/∼w.

5. UNIFIED BISIMULATION RELATION AND
EQUIVALENCE

The three bisimulations we have presented in this paper, where
stuttering bisimulation has been incorporated in BB, can all
three be formulated in the same way by introducing, for a
transition label a, a generic transition operator →a . This results
in the following generic bisimulation relation.

Definition 6. (Generic bisimulation relation). Given a transition
system G = ⟨X,Σ, T, I, AP, λ⟩, a binary relation R ⊆ X ×X
is a generic bisimulation if, for any states x, y ∈ X and event
a∈Σ, the implication

xRy ⇒ λ(x) = λ(y) ∧ pR(x, y) ∧ pR(y, x)

holds, where the transfer predicate

pR(x, y) := ∀x′, a : x →a x′ ⇒ ∃y′ : y →a y′ ∧ x′Ry′

Related states (x, y) ∈ R are said to be bisimilar, denoted
x ∼ y. �

In the same way as in Section 2, a maximal bisimulation
relation can be formulated based on the generic bisimulation

in Def. 6, resulting in an equivalence relation, see Prop. 1. For
BB, a detailed equivalence proof was presented in Section 3.

An alternative formulation of BB was presented in Lennartson
and Noori-Hosseini (2018), directly based on a state partition,
and therefore directly generating an equivalence formulation.
This formulation is here called bisimulation equivalence, and
will in this section be proved to be equivalent to the maximal
generic bisimulation relation, but also coupled to the specific
bisimulation relations presented in this paper.
Definition 7. (Bisimulation equivalences). Given a transition
system G = ⟨X, Σ, T, I, AP, λ⟩, a partition Π , which for any
state x ∈ X satisfies the greatest fixpoint

Π(x) = {y ∈ X |λ(y) = λ(x) ∧ TΠ(x) = TΠ(y)}, (5)
is a bisimulation equivalence where the set of block transitions

TΠ(x) = {Π(x) →a Π(x′) | ∃x′, a : x →a x′}. (6)

(i) It is a strong bisimulation equivalence when the generic
transition operator →a is replaced by →a , and states x, y ∈
Π(x) are strongly bisimilar, denoted x ∼s y.

(ii) It is a weak bisimulation equivalence when the generic
transition operator →a is replaced by →→→

a
, and states x, y ∈

Π(x) are weakly bisimilar, denoted x ∼w y.
(iii) It is a branching bisimulation equivalence when the

generic transition operator →a is replaced by →→
a

Π
, and

states x, y ∈ Π(x) are branching bisimilar, denoted
x ∼b y. �

The equivalence between these bisimulation equivalences and
corresponding maximal relations will now proved.

Theorem 7. (Bisimulation equivalences and maximal relations).
The bisimulation equivalence given by the fixpoint (5) in Def. 7
is equivalent to the maximal relation

R = {(x, y) |λ(x) = λ(y) ∧ pR(x, y) ∧ pR(y, x)} (7)
where the transfer predicate pR(x, y) is defined in Def. 6.
Strong, weak, and branching bisimulation are obtained by re-
placing the generic transition operator →a with →a , →→→

a
, and →→

a

R
,

respectively.

Proof: For an equivalence relation R, the relation predicate
xRy ≡ y ∈ Π(x). The equality TΠ(x) = TΠ(y) in (5)
means that Π(x) = Π(y) and Π(x′) = Π(y′), and therefore
y ∈ Π(x) and y′ ∈ Π(x′). Furthermore, TΠ(x) = TΠ(y) can
equivalently be formulated as

(
TΠ(x) ⊆ TΠ(y)

)
∧
(
TΠ(y) ⊆

TΠ(x)
)
. The definition of subsets applied to TΠ(x) ⊆ TΠ(y)

then gives the equivalent formulation
∀x′, a : Π(x) →a Π(x′) ∈ TΠ(x) ⇒ Π(x) →a Π(x′) ∈ TΠ(y)

Furthermore, the fact that y ∈ Π(x) = Π(y) and y′ ∈ Π(x′) =
Π(y′) results in one more equivalent expression

∀x′, a : Π(x) →a Π(x′) ∈ TΠ(x) ⇒
∃y′ : Π(y) →a Π(y′) ∈ TΠ(y) ∧ y′ ∈ Π(x′)

Finally, the definition of TΠ(x) (6) in Def. 7 gives the equiva-
lent implication

∀x′, a : x →a x′ ⇒ ∃y′ : y →a y′ ∧ y′ ∈ Π(x′)

This corresponds to the predicate pR(x, y) in Def. 6, with y′ ∈
Π(x′) replaced by the equivalent predicate x′Ry′ and more
specifically for BB →→

a

Π
replaced by the equivalent transition

operator →→
a

R
. Hence, the fixpoint for Π(x) can be expressed

as
Π(x) = {y ∈ X |λ(x) = λ(y) ∧ pR(x, y) ∧ pR(y, x)},
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4. WEAK BISIMULATION

As already mentioned, WB is less restrictive than BB, which
results in less block states and a courser state partition. Before
this is illustrated by a small example, a definition of WB on the
same form as SB is introduced (Milner, 1989).

Definition 5. (Weak bisimulation). Given a transition system
G = ⟨X,Σ, T, I, AP, λ⟩, a binary relation R ⊆ X × X is
a weak bisimulation (WB) if, for any states x, y ∈X and event
a ∈ Σ, xRy ⇒ λ(x) = λ(y) ∧ pWB

R (x, y) ∧ pWB
R (y, x), and

using the notation

x →→→
a

x′ := ∃x′′, x′′′ : x→τ
∗

x′′ →a x′′′ →τ
∗

x′

the transfer predicate

pWB
R (x, y) := ∀x′, a : x →→→

a
x′ ⇒ ∃y′ : y →→→

a
y′ ∧ x′Ry′.

If both x and y are terminal states and λ(x) = λ(y), y →τ
∗

y′,
then xRy′. Related states (x, y) ∈ R are said to be weakly
bisimilar, denoted x ∼w y. �

Example 4. For the transition system G in Fig. 5, branching
bisimulation does not give any reduction, while the first two
states are joined in the weak bisimular quotient transition
system G/∼w. The reason is that WB does not differentiate
between the direct path to the final state 0 →a 3 and the path
via state 1 which also has an alternative b transition to the final
state. This reduction is not accepted by BB that preserves the
branching information. �

G = G/∼b

0 1 2 3
τ

a

τ

b

a

G/∼w

{0, 1} {2} {3}
τ

b

a

Figure 5. Transition system G that is equal to the branching
bisimalar quotient transition system G/∼b and the coarser
weak bisimalar quotient transition system G/∼w.

5. UNIFIED BISIMULATION RELATION AND
EQUIVALENCE

The three bisimulations we have presented in this paper, where
stuttering bisimulation has been incorporated in BB, can all
three be formulated in the same way by introducing, for a
transition label a, a generic transition operator →a . This results
in the following generic bisimulation relation.

Definition 6. (Generic bisimulation relation). Given a transition
system G = ⟨X,Σ, T, I, AP, λ⟩, a binary relation R ⊆ X ×X
is a generic bisimulation if, for any states x, y ∈ X and event
a∈Σ, the implication

xRy ⇒ λ(x) = λ(y) ∧ pR(x, y) ∧ pR(y, x)

holds, where the transfer predicate

pR(x, y) := ∀x′, a : x →a x′ ⇒ ∃y′ : y →a y′ ∧ x′Ry′

Related states (x, y) ∈ R are said to be bisimilar, denoted
x ∼ y. �

In the same way as in Section 2, a maximal bisimulation
relation can be formulated based on the generic bisimulation

in Def. 6, resulting in an equivalence relation, see Prop. 1. For
BB, a detailed equivalence proof was presented in Section 3.

An alternative formulation of BB was presented in Lennartson
and Noori-Hosseini (2018), directly based on a state partition,
and therefore directly generating an equivalence formulation.
This formulation is here called bisimulation equivalence, and
will in this section be proved to be equivalent to the maximal
generic bisimulation relation, but also coupled to the specific
bisimulation relations presented in this paper.
Definition 7. (Bisimulation equivalences). Given a transition
system G = ⟨X, Σ, T, I, AP, λ⟩, a partition Π , which for any
state x ∈ X satisfies the greatest fixpoint

Π(x) = {y ∈ X |λ(y) = λ(x) ∧ TΠ(x) = TΠ(y)}, (5)
is a bisimulation equivalence where the set of block transitions

TΠ(x) = {Π(x) →a Π(x′) | ∃x′, a : x →a x′}. (6)

(i) It is a strong bisimulation equivalence when the generic
transition operator →a is replaced by →a , and states x, y ∈
Π(x) are strongly bisimilar, denoted x ∼s y.

(ii) It is a weak bisimulation equivalence when the generic
transition operator →a is replaced by →→→

a
, and states x, y ∈

Π(x) are weakly bisimilar, denoted x ∼w y.
(iii) It is a branching bisimulation equivalence when the

generic transition operator →a is replaced by →→
a

Π
, and

states x, y ∈ Π(x) are branching bisimilar, denoted
x ∼b y. �

The equivalence between these bisimulation equivalences and
corresponding maximal relations will now proved.

Theorem 7. (Bisimulation equivalences and maximal relations).
The bisimulation equivalence given by the fixpoint (5) in Def. 7
is equivalent to the maximal relation

R = {(x, y) |λ(x) = λ(y) ∧ pR(x, y) ∧ pR(y, x)} (7)
where the transfer predicate pR(x, y) is defined in Def. 6.
Strong, weak, and branching bisimulation are obtained by re-
placing the generic transition operator →a with →a , →→→

a
, and →→

a

R
,

respectively.

Proof: For an equivalence relation R, the relation predicate
xRy ≡ y ∈ Π(x). The equality TΠ(x) = TΠ(y) in (5)
means that Π(x) = Π(y) and Π(x′) = Π(y′), and therefore
y ∈ Π(x) and y′ ∈ Π(x′). Furthermore, TΠ(x) = TΠ(y) can
equivalently be formulated as

(
TΠ(x) ⊆ TΠ(y)

)
∧
(
TΠ(y) ⊆

TΠ(x)
)
. The definition of subsets applied to TΠ(x) ⊆ TΠ(y)

then gives the equivalent formulation
∀x′, a : Π(x) →a Π(x′) ∈ TΠ(x) ⇒ Π(x) →a Π(x′) ∈ TΠ(y)

Furthermore, the fact that y ∈ Π(x) = Π(y) and y′ ∈ Π(x′) =
Π(y′) results in one more equivalent expression

∀x′, a : Π(x) →a Π(x′) ∈ TΠ(x) ⇒
∃y′ : Π(y) →a Π(y′) ∈ TΠ(y) ∧ y′ ∈ Π(x′)

Finally, the definition of TΠ(x) (6) in Def. 7 gives the equiva-
lent implication

∀x′, a : x →a x′ ⇒ ∃y′ : y →a y′ ∧ y′ ∈ Π(x′)

This corresponds to the predicate pR(x, y) in Def. 6, with y′ ∈
Π(x′) replaced by the equivalent predicate x′Ry′ and more
specifically for BB →→

a

Π
replaced by the equivalent transition

operator →→
a

R
. Hence, the fixpoint for Π(x) can be expressed

as
Π(x) = {y ∈ X |λ(x) = λ(y) ∧ pR(x, y) ∧ pR(y, x)},

G

0

1

2

3

4

5
a

b

τ

c

d

c
d

G/∼b

0 {1, 2, 3} {4, 5}

a

b

c

d

Figure 6. Transition system G and its branching bisimilar
quotient transition system G/∼b.

which corresponds to the maximal relation (7). The results
for the strong and weak bisimulations follows in the same
way, where the only difference is the transition operator that
is changed to the actual bisimulation. �

What we have achieved is an alternative bisimulation formula-
tion, which more directly focuses on the model reduction appli-
cation, where the partition and the block states in the reduced
model are directly expressed in the bisimulation. Furthermore,
this formulation directly results in a fixed point algorithm that
can be used both for hand calculations and as an efficient
computational algorithm, which is easily formulated for par-
allel computations. This result is not surprising, since the idea
behind this alternative formulation is the signature algorithm,
proposed in Blom and Orzan (2003), where our block states
are closely related to their signatures. Our formulation includes
state labels, and can therefore also be applied to stuttering
bisimulation. The proofs in this paper are also more simple
compared to the signature formulation. The fixed point iteration
is presented in the following proposition, and is then illustrated
by an example.

Proposition 8. (Bisimulation greatest fixpoint). The greatest
fixpoint of (5) in Def. 7 is obtained by iterating

Πk+1(x) = {y ∈ X |TΠk
(x) = TΠk

(y)} (8)

until Πk+1(x) = Πk(x), with the initial partition Π0(x) =

{y |λ(x) = λ(y)}.

Proof: The block Πk+1(x) = {y ∈ X |TΠk
(x) = TΠk

(y)},
and therefore Πk+1(x) ⪯ Πk(x) for all states x ∈ X and
k ≥ 0. This holds since

Πk+1(x) = {y ∈X | ∃x′, y′, a :

(Πk(x), a,Πk(x
′)) = (Πk(y), a,Πk(y

′))} ⪯ Πk(x)

Obviously, Πk+1(x) is further restricted compared to Πk(x) by
also requiring the next block states to be equal, i.e. Πk(x

′) =
Πk(y

′). Thus, the iteration in (8) generates a monotonically de-
creasing partition Πk as k increases, until the greatest fixpoint
Πk+1 = Πk is reached, according to Knaster–Tarski’s famous
fixed point theorem (Tarski, 1955). �

Example 5. For the transition system G in Fig. 6, the first fixed
point iteration of (8) gives for Π0 = X = {0, 1, 2, 3, 4, 5}

TΠ0
(0) = {X →a X,X →b X},

TΠ0(1) = TΠ0(2) = TΠ0(3) = {X →c X},

TΠ0(4) = TΠ0(5) = {X →d X},

resulting in Π1 = {{0}, B1, B2}, where B1 = {1, 2, 3} and
B2 = {4, 5}. The second iteration gives

TΠ1
(0) = {{0} →a B1, {0} →b B1},

TΠ1(1) = TΠ1(2) = TΠ1(3) = {B1 →c B2},

TΠ1(4) = TΠ1(5) = {B2 →d B2},
which results in the fixed point Π2 = Π1. The obtained
branching bisimilar quotient transition system G/∼b is also
shown in Fig. 6. �

6. CONCLUSIONS

A unified formulation of strong, weak, stuttering, and branching
bisimulation has been presented in this paper. An alternative
block transition based formulation that is more natural from a
model reduction and computational perspective is also shown
to be equivalent to the original relation based bisimulation for-
mulations. Future steps is to generalize the unified formulation
to also include transitions with weights, typically representing
time or energy cost.
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