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Abstract: An optimization formulation is presented for timed Petri nets, based on a recently developed
optimization solver where a satisfiability solver is integrated with constraint programming. The solver,
called CP-SAT, is a part of Google’s OR-Tools. The first optimization formulation includes an arbi-
trary number of concurrent sequences of operations, with shared, alternative, and local resources. A
benchmark shows how much faster CP-SAT is compared to both an alternative SAT optimization solver
and an A* implementation. The optimization formulation is then generalized to mixed alternative and
concurrent sequences. A comparison with a recent MILP formulation for timed Petri nets is presented,
showing the strength of the proposed optimization formulation. Finally, an evaluation of an industrial-
sized flexible manufacturing system, including uncontrollable events, demonstrates how efficient and
easy to implement the proposed strategy is compared to existing results.
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1. INTRODUCTION

Time-optimal control and synthesis of time-optimal supervi-
sors are often formulated based on time weighted automata,
including abstractions to reduce the computational complexity
Lennartson (2022). For Petri nets (PNs), such abstractions can
only be applied to safe nets, including maximum one token in
each place. The reason is that multiple tokens in a place, re-
quiring the same resource, results in a shared resource between
the tokens, and therefore a non-local behavior. Abstractions in-
volving shared resources in a timed framework gives very small
reductions, and the solution is instead to search for effective
global optimization strategies.

Optimization strategies for systems including discrete states
have been developed both in operation research (OR) and artifi-
cial intelligence, especially within the constraint programming
(CP) community. In Hooker (2012) it is observed that by com-
bining search, inference, and relaxation strategies from both OR
and CP, significant algorithmic improvements can be achieved.
Satisfiability solvers based on SAT and SMT have also been
extended towards optimization. This is possible since boolean
and linear constraints on integers can be formulated as pseudo-
boolean constraints, which can be translated to pure satisfiabil-
ity problems (Eén and Sörensson, 2006). A constraint on the op-
timization criterion is then introduced, where the constraint can
be decreased until the solution is unsatisfiable. The lowest value
that generates a satisfiable solution then generates the minimal
time-optimal solution. This strategy has been implemented in
the SMT solver Z3 and called Z3Opt (Bjørner and Phan, 2014).
Evaluations for typical scheduling problems in Roselli et al.
(2018) show that Z3Opt typically computes an optimal solution
10 times faster than a MILP solver in Gurobi (Gurobi, 2015).
A second SAT-based solver has followed Hooker’s recommen-
dation and combined the satisfiability strategy with specific CP
oriented functions to more efficiently handle both shared and
alternative resources in concurrent sequences. The solver is
called CP-SAT and is a part of Google’s OR-Tools (CP-SAT,
2024a,b).

⋆ This work was supported by SyTec – Systematic Testing of Cyber-Physical
Systems, a Swedish Science Foundation grant for strong research environment
and Wallenberg Artificial Intelligence, Autonomous Systems and Software
Program (WASP) funded by Knut and Alice Wallenberg Foundation. The
support is gratefully acknowledged.

Compared with Z3Opt, but also an A* implementation, the
improvement using CP-SAT is in this paper shown to be sig-
nificant. For the largest evaluated problem, CP-SAT runs about
50 times faster than Z3Opt, due to a number of important
built-in CP functions. Inspired by this strength, we show how
makespan optimization of timed PNs can be formulated and
solved in CP-SAT. It is also demonstrated how some specific
PN related constraints are critical when optimization of timed
PNs is performed and multiple tokens are involved. Compared
to a recent generic MILP formulation of TPNs (Marino et al.,
2020), no explicit global marking states are introduced. The
dynamic state information is symbolically and implicitly de-
termined by constraints on the local start and end times of the
involved tokens in each timed transition. Including the CP-SAT
based computation, this strategy drastically reduces memory
and computation requirements. A confirmation on an industrial-
sized example shows both how suitable the PN formulation is
compared to modular timed automata, and how much faster the
optimization is performed with CP-SAT, compared to a near
optimal evolutionary algorithm (Pena et al., 2022). It is also
demonstrated how uncontrollable events can be handled with
some easily implemented additional constraints.

2. TIMED PETRI NETS

In performance analysis and more generally time optimization,
operation and waiting times as well as time delays need to be
defined. Discrete event models are therefore augmented with
explicit timing information where duration is a central notion.
Duration is the amount of time that has elapsed between two
events, often called start and end events. The inclusion of
duration in Petri nets is therefore presented in this section.

Definition of Timed Petri Net A PN with explicit timing
information, called a Timed Petri Net (TPN), will now be
introduced (David and Alla, 2010). It is defined as a six-tuple

N = ⟨P, T, Pre, Post,M0, f⟩
where P is a set of places and T is a set of transitions. For
arbitrary places p ∈ P and transitions t ∈ T , Pre and Post
are matrices, defining the graph structure of the net, where
Pre(p, t) = w means that there is an arc from place p to
transition t with weight w, while Post(p, t) = w means that
there is a corresponding arc from transition t to place p. A
marking is a vector M that assigns to each place p ∈ P a
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extended towards optimization. This is possible since boolean
and linear constraints on integers can be formulated as pseudo-
boolean constraints, which can be translated to pure satisfiabil-
ity problems (Eén and Sörensson, 2006). A constraint on the op-
timization criterion is then introduced, where the constraint can
be decreased until the solution is unsatisfiable. The lowest value
that generates a satisfiable solution then generates the minimal
time-optimal solution. This strategy has been implemented in
the SMT solver Z3 and called Z3Opt (Bjørner and Phan, 2014).
Evaluations for typical scheduling problems in Roselli et al.
(2018) show that Z3Opt typically computes an optimal solution
10 times faster than a MILP solver in Gurobi (Gurobi, 2015).
A second SAT-based solver has followed Hooker’s recommen-
dation and combined the satisfiability strategy with specific CP
oriented functions to more efficiently handle both shared and
alternative resources in concurrent sequences. The solver is
called CP-SAT and is a part of Google’s OR-Tools (CP-SAT,
2024a,b).
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Compared with Z3Opt, but also an A* implementation, the
improvement using CP-SAT is in this paper shown to be sig-
nificant. For the largest evaluated problem, CP-SAT runs about
50 times faster than Z3Opt, due to a number of important
built-in CP functions. Inspired by this strength, we show how
makespan optimization of timed PNs can be formulated and
solved in CP-SAT. It is also demonstrated how some specific
PN related constraints are critical when optimization of timed
PNs is performed and multiple tokens are involved. Compared
to a recent generic MILP formulation of TPNs (Marino et al.,
2020), no explicit global marking states are introduced. The
dynamic state information is symbolically and implicitly de-
termined by constraints on the local start and end times of the
involved tokens in each timed transition. Including the CP-SAT
based computation, this strategy drastically reduces memory
and computation requirements. A confirmation on an industrial-
sized example shows both how suitable the PN formulation is
compared to modular timed automata, and how much faster the
optimization is performed with CP-SAT, compared to a near
optimal evolutionary algorithm (Pena et al., 2022). It is also
demonstrated how uncontrollable events can be handled with
some easily implemented additional constraints.

2. TIMED PETRI NETS

In performance analysis and more generally time optimization,
operation and waiting times as well as time delays need to be
defined. Discrete event models are therefore augmented with
explicit timing information where duration is a central notion.
Duration is the amount of time that has elapsed between two
events, often called start and end events. The inclusion of
duration in Petri nets is therefore presented in this section.

Definition of Timed Petri Net A PN with explicit timing
information, called a Timed Petri Net (TPN), will now be
introduced (David and Alla, 2010). It is defined as a six-tuple

N = ⟨P, T, Pre, Post,M0, f⟩
where P is a set of places and T is a set of transitions. For
arbitrary places p ∈ P and transitions t ∈ T , Pre and Post
are matrices, defining the graph structure of the net, where
Pre(p, t) = w means that there is an arc from place p to
transition t with weight w, while Post(p, t) = w means that
there is a corresponding arc from transition t to place p. A
marking is a vector M that assigns to each place p ∈ P a

Copyright © 2024 The Authors. This is an open access article under the CC BY-NC-ND license  
(https://creativecommons.org/licenses/by-nc-nd/4.0/)



	 Bengt Lennartson  et al. / IFAC PapersOnLine 58-1 (2024) 90–95	 91

N1

m

R

∆

N2

m

∆

R

Figure 1. Two equivalent TPNs with m tokens in the initial
place and a shared resource R with capacity one. Each
token is assumed the have the same transition duration ∆.

non-negative integer number of tokens, and M0 is the initial
marking. Furthermore, f : T → R≥0 is a function that assigns
a non-negative duration ∆ = f(t) to each transition t ∈ T .

Shared resource and multiple tokens The TPN N1 in Fig. 1
includes m tokens in the initial place, waiting to be operated
by a single shared resource R. The timed transition has a
non-zero transition duration ∆, graphically shown as a non-
filled bar with transition label ∆. The duration ∆ means that
the time resource R requires to perform its operation on each
individual token is equal ∆. The least total time it takes to
handle m tokens is therefore m∆. A simplified equivalent
graphical description, which models the same behavior as N1,
is shown in the TPN N2.

Shared resource with individual durations The duration is
equal for all tokens in the TPNs N1 and N2. Individual dura-
tions, one unique for each token, are introduced in the TPNs
N3 and N4 in Fig. 2, where the more compact notation in N4 is
used in the flexible manufacturing system example in Section 4.
The shared resource is expressed in N4 by introducing the same
additional transition label R for the shared resource in all m
sequences. These sequences are extended in the next section
with a number of sequential operations, both with safe TPNs
and TPNs including multiple tokens.

N3

R

· · ·

· · ·

· · ·

∆1 ∆m

N4

· · ·

· · ·

· · ·

R ∆1 R ∆m

Figure 2. Two equivalent safe TPNs (maximum one token in
every place). Each model includes m concurrent opera-
tions, with individual durations ∆1, . . . ,∆m and a shared
resource R. Compared to the TPN N3, the equivalent
TPN N4 is simplified, by replacing the resource place R
with a corresponding transition label R in all m sequences.

3. TIME OPTIMIZATION

It will now be shown how time optimization of TPNs can
be performed by formulating a Constraint Programming (CP)
problem. This problem can be solved efficiently, especially by
solvers which combine strategies from both operation research
(OR), CP, and satisfiability (SAT) solvers. The integration be-
tween OR and CP is well known, and satisfiability solvers based
on SAT and SMT have also been extended with optimization
strategies; one example is Z3Opt (Bjørner and Phan, 2014).
Another example is Google’s OR-Tools introduction of a com-
bined CP and SAT solver, called CP-SAT (CP-SAT, 2024a,b).
We will in this section demonstrate how efficient the combined
CP-SAT solver is, and how different types of TPNs can be
modeled and optimized by this solver. First it is shown how

concurrent sequences, including multiple tokens and shared
resources, are modeled. Then follows a generalization to mixed
alternative and concurrent sequences.

3.1 Optimization formulation of concurrent sequences

Optimization problems including timing aspects are often based
on performance measures. Two of the most common criteria
are makespan, meaning the total time to perform a number of
concurrent operations, and tardiness, considering the deviation
between completion time and deadline for individual opera-
tions. In this paper we will focus on makespan, noting that the
proposed methods are easily reformulated to tardiness criteria.

Sets and variables For analysis and optimization of TPNs
involving a number of concurrent sequences of operations with
multiple tokens and shared as well as alternative resources, it
is necessary to consider the timing for each individual token.
The makespan optimization problem below is therefore based
on the following sets and variables:

• Seq = {1, . . . , |Seq|} = index set for a set of sequences,
• Tok(i) = {1, . . . , |Tok(i)|} = index set for tokens in se-

quence i ∈ Seq,
• Op(i) = {1, . . . , |Op(i)|} = index set for operations in

sequence i ∈ Seq,
• R⊕(i, k) = {1, . . . , |R⊕(i, k)|} = index set for alterna-

tive resources in sequence i ∈ Seq and operation k ∈
Op(i),

• R = set of all system resources,
• Sys = set of tuples (Ri,k,ℓ,∆i,k,ℓ), where Ri,k,ℓ ∈ R

is one alternative resource with duration ∆i,k,ℓ ∈ N
in sequence i ∈ Seq and operation k ∈ Op(i) with
alternative resource index ℓ ∈ R⊕(i, k),

• si,j,k = starting time, ei,j,k = end time, and di,j,k =
duration for token j ∈ Tok(i) and operation k ∈ Op(i) in
sequence i ∈ Seq,

• MS = end time when all concurrent operations have been
executed = makespan.

To be precise, sequences, tokens, and operations are denoted
by their index i, j, and k, while resources are denoted by their
name in the resource set R. One exception is the alternative
resource index ℓ ∈ R⊕(i, k).

Makespan optimization formulation The following opti-
mization formulation of concurrent sequences, denoted Opt-
ConcurSeq, generates the minimal makespan when a number
of tokens are involved in each sequence of operations. Each
operation may also include a number of alternative resources,
each one with individual duration and capacity.

Optimization formulation OptConcurSeq
minMS subject to

∀i ∈ Seq, j ∈ Tok(i), k ∈ Op(i), ℓ ∈ R⊕(i, k) :

(Ri,k,ℓ,∆i,k,ℓ) ∈ Sys

bℓ = exactOne(b1, . . . , b|R⊕(i,k)|) (1)

bℓ → (ri,j,k = Ri,k,ℓ) ∧ (di,j,k = ∆i,k,ℓ) (2)

ei,j,k = si,j,k + di,j,k

si,j,k+1 ≥ ei,j,k , k < |Op(i)| (3)

si,j+c,k ≥ ei,j,k , c = capacity(ri,j,k) (4)

cumulative(i, j, k, ri,j,k) (5)

MS ≥ ei,j,k , k = |Op(i)|

Copyright © 2024 The Authors. This is an open access article under the CC BY-NC-ND license  
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Alternative resources The logical function exaktOne in (1),
which is executed for all ℓ ∈ R⊕(i, k), introduces the con-
straint that exactly one of the boolean variables included in the
exactOne(·) input list is true, and the rest are false. The optimal
combination of boolean variables for the different operations
will then be selected such that MS is minimized. For each
operation k in the different sequences i, the chosen resource and
related duration are assigned to the variables ri,j,k and di,j,k.
Thus, (1) and (2) are the only information that is required to im-
plement alternative resources. Both the function exactOne and
the conditional assignments in (2) are implemented by built-in
functions included in CP-SAT, where for instance the condi-
tional assignment Add(ri,j,k==Ri,k,ℓ, bℓ) is only performed
when bℓ = true. The alternative resources are removed by only
implementing unconditional assignments of ri,j,k and di,j,k.

Mutual exclusion The function cumulative (5) implements
mutual exclusion among the shared resources, with given ca-
pacity defined by the number of tokens in the resource places.
In Fig. 2 the capacity is equal one. This function generates the
constraint

cumulative(i, j, k, ri,j,k) =

∀i′ ∈ Seq, j′ ∈ Tok(i′), k′ ∈ Op(i′) : ri,j,k = ri′,j′,k′

∧
(
|{(i′, j′, k′) | [si,j,k, ei,j,k] ∩ [si′,j′,k′ , ei′,j′,k′ ] ̸= ∅}|

≤ capacity(ri,j,k)
)

(6)

where [si,j,k, ei,j,k] denotes the set of integers from the start
time si,j,k to the end time ei,j,k. This constraint is implemented
in an effective way in CP-SAT, where the timing data is deliv-
ered to this function by a dictionary with the resources as keys.

Sequential relations Constraint (3) specifies the sequential
relation between the operations in all sequences, and (4) adds
an additional ordering between the tokens. In Examples 2
and 3, this constraint will be shown to have a great impact on
execution performance.

3.2 Evaluation of OptConcurSeq

In the following two examples the optimization formulation
OptConcurSeq will be evaluated. In the first example the ef-
ficiency of the proposed CP-SAT solver is illustrated by a
benchmark test where this solver is compared with some other
powerful strategies.

Example 1. Three concurrent sequences of operations will now
be evaluated, where each sequence only includes one token,
and each resource has capacity one. Let n be the number of
operations in each sequence where n is an even number, and
let each second operation be performed by a resource that is
shared among all three sequences. A TPN for such a sequence
is shown in Fig. 3, where in this example the number of tokens
in the initial place m = 1. The duration for each resource is a
random integer number with equal distribution in the interval

m · · ·

∆1

R1

∆i2

Ri,2

∆3

R3

∆in

Ri,n

Figure 3. One sequence i in a TPN with an even number of
operations equal n in each sequence. The initial place in
each sequence has m tokens, and each second operation
has a resource R1, R3, . . . , Rn−1, respectively. These re-
sources are shared among all sequences, while the rest
of the operations have local resources Ri,2, Ri,4, . . . , Ri,n
for each individual sequence i.

Table 1. Optimal makespan MS, makespan MSA∗
for A*, and execution times (sec) using CP-SAT,
CP-SAT-disjunctive, Z3Opt, and A* for different

number of operations n in Example 1.

n MS/MSA∗ CP-SAT CP-SAT-
disjunctive Z3Opt A*

100 1061/1079 0.06 0.14 0.40 1.90
200 2031/2065 0.12 0.32 4.15 11.2
300 3053/3076 0.20 0.53 10.9 78.8

[7, 13], and each shared resource Rk has the same duration ∆k,
k = 1, 3, . . . , n− 1 in the three sequences.

Since all resources have capacity one, the cumulative constraint
in (6) is simplified to a noOverlap condition, which for all
i, i′ ∈ {1, 2, 3} and k, k′ ∈ {1, . . . , n} can be expressed by
the disjunctive condition

(si,k ≥ ei′,k′ ∨ si′,k′ ≥ ei,k) ∧ i < i′ ∧ ri,k = ri′,k′ (7)

where the third token index j is excluded, since only one token
is involved in all three sequences, i.e. j = 1. In Table 1 the
makespan MS and execution times for three different imple-
mentations are compared, 1) CP-SAT with its built-in function
noOverlap, 2) CP-SAT with the disjunctive constraint (7) called
CP-SAT-disjunctive, 3) the alternative SAT/SMT based solver
Z3Opt (Bjørner and Phan, 2014) with the disjunctive constraint
(7), and 4) an A* implementation that is built on synchronized
timed automata models for the individual sequences (Lennart-
son, 2022), and a heuristic suggested by Abdeddaim and Maler
(2001).

The A* heuristic is very efficient in the sense that few states are
evaluated, but slightly suboptimal for larger systems. Despite
the few evaluated states, the A* algorithm is much less efficient
than the SAT based solvers. For the largest system, where
each of the three concurrent sequences includes 300 operations,
CP-SAT with the built-in noOverlap CP routine is 2.5 times
faster than the disjunctive formulation (7) and 50 times faster
than Z3Opt, while the A* implementation, with an efficient
but slightly suboptimal heuristics is 400 times slower than the
best CP-SAT implementation. It should also be mentioned that
for similar optimization problems, it has recently been shown
that, compared to classical MILP solvers, Z3Opt is typically 10
times faster than Gurobi’s MILP implementation (Roselli et al.,
2018). Furthermore, a related TPN optimization problem was
also shown to be solved about 10 times faster using a CP solver,
compared to a MILP solver in Lennartson et al. (2014).

Altogether, the results in Table 1 and earlier experiences show
that CP-SAT is very efficient, even compared to the SAT based
solver Z3Opt. One reason is that the built-in function noOverlap
in CP-SAT includes CP based improvements. Compared to pure
CP and MILP based solvers, it is the combination of CP and
SAT, but also basic features from MILP, which makes CP-SAT
extremely efficient for this type of problems. �

In the following examples only the CP-SAT solver is used, but
it is not only the choice of solver that is important, also the
problem formulation may be critical. In the next example, the
benefit of including constraint (4) is demonstrated.

Example 2. A number of tokens are now introduced (m > 1
in Fig. 3), while the number of sequences is reduced to two.
The resource capacity is still equal one, but is now also active
for the resources only involved in one of the sequences, due
to the multiple tokens, cf. Fig. 1. The individual starting times
for each token means that each token has an individual identity,
implemented by the index j ∈ nTok. Thus, the optimization
formulation OptConcurSeq, without constraint (4), can be in-
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Alternative resources The logical function exaktOne in (1),
which is executed for all ℓ ∈ R⊕(i, k), introduces the con-
straint that exactly one of the boolean variables included in the
exactOne(·) input list is true, and the rest are false. The optimal
combination of boolean variables for the different operations
will then be selected such that MS is minimized. For each
operation k in the different sequences i, the chosen resource and
related duration are assigned to the variables ri,j,k and di,j,k.
Thus, (1) and (2) are the only information that is required to im-
plement alternative resources. Both the function exactOne and
the conditional assignments in (2) are implemented by built-in
functions included in CP-SAT, where for instance the condi-
tional assignment Add(ri,j,k==Ri,k,ℓ, bℓ) is only performed
when bℓ = true. The alternative resources are removed by only
implementing unconditional assignments of ri,j,k and di,j,k.

Mutual exclusion The function cumulative (5) implements
mutual exclusion among the shared resources, with given ca-
pacity defined by the number of tokens in the resource places.
In Fig. 2 the capacity is equal one. This function generates the
constraint

cumulative(i, j, k, ri,j,k) =

∀i′ ∈ Seq, j′ ∈ Tok(i′), k′ ∈ Op(i′) : ri,j,k = ri′,j′,k′

∧
(
|{(i′, j′, k′) | [si,j,k, ei,j,k] ∩ [si′,j′,k′ , ei′,j′,k′ ] ̸= ∅}|

≤ capacity(ri,j,k)
)

(6)

where [si,j,k, ei,j,k] denotes the set of integers from the start
time si,j,k to the end time ei,j,k. This constraint is implemented
in an effective way in CP-SAT, where the timing data is deliv-
ered to this function by a dictionary with the resources as keys.

Sequential relations Constraint (3) specifies the sequential
relation between the operations in all sequences, and (4) adds
an additional ordering between the tokens. In Examples 2
and 3, this constraint will be shown to have a great impact on
execution performance.

3.2 Evaluation of OptConcurSeq

In the following two examples the optimization formulation
OptConcurSeq will be evaluated. In the first example the ef-
ficiency of the proposed CP-SAT solver is illustrated by a
benchmark test where this solver is compared with some other
powerful strategies.

Example 1. Three concurrent sequences of operations will now
be evaluated, where each sequence only includes one token,
and each resource has capacity one. Let n be the number of
operations in each sequence where n is an even number, and
let each second operation be performed by a resource that is
shared among all three sequences. A TPN for such a sequence
is shown in Fig. 3, where in this example the number of tokens
in the initial place m = 1. The duration for each resource is a
random integer number with equal distribution in the interval

m · · ·
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∆i2
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Figure 3. One sequence i in a TPN with an even number of
operations equal n in each sequence. The initial place in
each sequence has m tokens, and each second operation
has a resource R1, R3, . . . , Rn−1, respectively. These re-
sources are shared among all sequences, while the rest
of the operations have local resources Ri,2, Ri,4, . . . , Ri,n
for each individual sequence i.

Table 1. Optimal makespan MS, makespan MSA∗
for A*, and execution times (sec) using CP-SAT,
CP-SAT-disjunctive, Z3Opt, and A* for different

number of operations n in Example 1.

n MS/MSA∗ CP-SAT CP-SAT-
disjunctive Z3Opt A*

100 1061/1079 0.06 0.14 0.40 1.90
200 2031/2065 0.12 0.32 4.15 11.2
300 3053/3076 0.20 0.53 10.9 78.8

[7, 13], and each shared resource Rk has the same duration ∆k,
k = 1, 3, . . . , n− 1 in the three sequences.

Since all resources have capacity one, the cumulative constraint
in (6) is simplified to a noOverlap condition, which for all
i, i′ ∈ {1, 2, 3} and k, k′ ∈ {1, . . . , n} can be expressed by
the disjunctive condition

(si,k ≥ ei′,k′ ∨ si′,k′ ≥ ei,k) ∧ i < i′ ∧ ri,k = ri′,k′ (7)

where the third token index j is excluded, since only one token
is involved in all three sequences, i.e. j = 1. In Table 1 the
makespan MS and execution times for three different imple-
mentations are compared, 1) CP-SAT with its built-in function
noOverlap, 2) CP-SAT with the disjunctive constraint (7) called
CP-SAT-disjunctive, 3) the alternative SAT/SMT based solver
Z3Opt (Bjørner and Phan, 2014) with the disjunctive constraint
(7), and 4) an A* implementation that is built on synchronized
timed automata models for the individual sequences (Lennart-
son, 2022), and a heuristic suggested by Abdeddaim and Maler
(2001).

The A* heuristic is very efficient in the sense that few states are
evaluated, but slightly suboptimal for larger systems. Despite
the few evaluated states, the A* algorithm is much less efficient
than the SAT based solvers. For the largest system, where
each of the three concurrent sequences includes 300 operations,
CP-SAT with the built-in noOverlap CP routine is 2.5 times
faster than the disjunctive formulation (7) and 50 times faster
than Z3Opt, while the A* implementation, with an efficient
but slightly suboptimal heuristics is 400 times slower than the
best CP-SAT implementation. It should also be mentioned that
for similar optimization problems, it has recently been shown
that, compared to classical MILP solvers, Z3Opt is typically 10
times faster than Gurobi’s MILP implementation (Roselli et al.,
2018). Furthermore, a related TPN optimization problem was
also shown to be solved about 10 times faster using a CP solver,
compared to a MILP solver in Lennartson et al. (2014).

Altogether, the results in Table 1 and earlier experiences show
that CP-SAT is very efficient, even compared to the SAT based
solver Z3Opt. One reason is that the built-in function noOverlap
in CP-SAT includes CP based improvements. Compared to pure
CP and MILP based solvers, it is the combination of CP and
SAT, but also basic features from MILP, which makes CP-SAT
extremely efficient for this type of problems. �

In the following examples only the CP-SAT solver is used, but
it is not only the choice of solver that is important, also the
problem formulation may be critical. In the next example, the
benefit of including constraint (4) is demonstrated.

Example 2. A number of tokens are now introduced (m > 1
in Fig. 3), while the number of sequences is reduced to two.
The resource capacity is still equal one, but is now also active
for the resources only involved in one of the sequences, due
to the multiple tokens, cf. Fig. 1. The individual starting times
for each token means that each token has an individual identity,
implemented by the index j ∈ nTok. Thus, the optimization
formulation OptConcurSeq, without constraint (4), can be in-

Table 2. Optimal makespan MS and execution
times (sec) using CP-SAT, including and not in-
cluding constraint (4) for different number of to-
kens m in Example 2. Time out (T.O.) is 200 sec.

m MS Incl. (4) Not incl. (4)

3 107 0.01 0.01

5 131 0.04 1.2

6 143 0.21 57.9

7 155 0.44 T.O.
10 191 6.41 T.O.
15 251 81.6 T.O.

terpreted as a colored TPN where the identity (color) of each
token is traced. Adding (4) as constraint reduces the freedom
and complexity of the solution by introducing an order be-
tween the tokens. With capacity c = 1, constraint (4) becomes
si,j+1,k ≥ ei,j,k, specifying that token j + 1 is not allowed to
start before the end time of token j. For pure non-colored TPNs,
this restriction does not matter, since it is then only the number
of tokens that counts, not in which order the specific tokens are
starting each operation.

The results in Table 2 show that keeping the order between the
individual tokens by constraint (4), which does not change the
makespan, reduces the execution time dramatically when the
number of tokens increases. This is indeed a significant benefit
of using TPNs instead of modular timed automata, one for each
individual token, when tracing the identity of each part (token)
is not required. �

3.3 Mixed alternative and concurrent sequences

So far, TPNs including a set of concurrent sequences have
been considered where shared and alternative resources may be
involved. It is also necessary to handle alternative complete se-
quences, not only alternative resources in individual operations.
In CP-SAT this can be easily achieved in a similar way as for
alternative resources. By using the exactOne function, cf. (1),
and assigning di,j,k = 0 to all operations in the alternative
sequence(s), not selected by the exactOne function, only one of
the alternative sequences at a time is included in the makespan
evaluation. In the final minimization, all possible alternative
sequences are evaluated, and the one with the shortest duration
is chosen.

In the next optimization formulation, called OptConcurAltSeq,
both concurrent and a set of alternative sequences Seq⊕ ⊆
Seq are included. The sequence i ∈ Seq⊕, which together
with the other concurrent sequences Seq \Seq⊕ minimizes the
makespan MS, will be chosen.

Optimization formulation OptConcurAltSeq
Same as OptConcurSeq with (2) replaced by the constraints

i∈ Seq⊕ → βi,j = exactOne([βι,j ]ι∈Seq⊕) (8)

i∈ Seq⊕∧βi,j ∧ bℓ → (ri,j,k =Ri,k,ℓ)∧ (di,j,k =∆i,k,ℓ) (9)

i∈ Seq⊕∧¬βi,j → di,j,k =0 (10)

i /∈ Seq⊕∧ bℓ → (ri,j,k =Ri,k,ℓ)∧ (di,j,k =∆i,k,ℓ) (11)

In (8), [βι,j ]ι∈Seq⊕ is a list of booleans where each βι,j

corresponds to one of the alternative sequences in Seq⊕,
i.e. different sequences may be chosen for each individual to-
ken j. Among the alternative sequences, only one sequence
i ∈ Seq⊕ will be chosen, implying that βi,j = true, and the
corresponding operation durations and resources are assigned
in (9). The rest of the booleans βι,j = false, ι ∈ Seq⊕ \{i},
due to the exactOne function in (8), and the corresponding

m

1

1

1

1

2

5

Figure 4. A TPN with two alternative sequences and resource
allocations, each one involving two operation durations.

durations are all assigned to zero in (10). The remaining se-
quences Seq \ Seq⊕ are assigned in (11) in the same way
as (2) in OptConcurSeq. This optimization formulation is easily
generalized to multiple sets of alternative sequences.

Example 3. Consider the two alternative sequences in Fig. 4
where the resource capacity tokens return after one additional
timed transition. This means that the end time in the interval
[si,j,k, ei,j,k] in the cumulative constraint function (6) needs
to be extended to ei,j,k+1, and a corresponding extension in
the primed intervals for all other extended time intervals. In
(4) ei,j,k is also replaced by ei,j,k+1. Resulting makespan MS
and execution times are shown in Table 3 with and without
constraint (4), which also here confirms the importance of
including this constraint.

This TPN is closely related to a flexible manufacturing example
in Marino et al. (2020), where in one of the evaluations the
durations are ∆1,k = ∆2,k = k (the alternative resource index
is here excluded), which for an arbitrary number of tokens
m gives MS = 3(m+ 1). In Marino et al. (2020), a MILP
problem is formulated including explicit marking states. The
execution times in Example 1 together with the evaluation in
Roselli et al. (2018) indicate a potential improvement up to
500 times going from MILP solvers to CP-SAT for TPNs. This
drastic computational improvement is confirmed by comparing
the execution times reported in Marino et al. (2020) with the
results achieved by the proposed OptConcurAltSeq formulation
based on CP-SAT. �

Table 3. Optimal makespan MS and execution
times (sec) using CP-SAT including and not in-
cluding constraint (4) for different number of to-
kens m in Example 3. Time out (T.O.) is 200 sec.

m MS Incl. (4) Not incl. (4)

2 7 0.01 0.01

5 14 0.02 0.02

10 25 0.05 88.3

15 37 0.74 T.O.
20 49 13.5 T.O.
25 60 135 T.O.

3.4 Start and completion of local sequences

Alternative and concurrent sequences do not always start from
the beginning and terminate before all sequences have been
completed. Such local sequences are still modeled as ordinary
sequences and included in the total set of sequences Seq, but an
additional start constraint is added to each local sequence.
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Local alternative sequences Assume that a sequence i1 ∈
Seq is followed by a set Seq⊕ ⊆ Seq of local alternative
sequences. When the optimal sequence in Seq⊕ has been
completed, another sequence i2 ∈ Seq is assumed to follow.
This behavior is achieved by adding the constraints

∨
ι∈Seq⊕

sι,j,1 ≥ ei1,j,ni1
and

∨
ι∈Seq⊕

si2,j,1 ≥ eι,j,nι

(12)
to OptConcurAltSeq. Note that the choice of the optimal alter-
native sequence in Seq⊕ is obtained by (8)-(10).

Local concurrent sequences Replace the set Seq⊕ in (12)
with a set of local concurrent sequences Seq∥ ⊆ Seq. Lo-
cal concurrent sequences are then obtained by replacing the
disjunction operator in (12) with a conjunction over all se-
quences in S∥ . Both local alternative and concurrent sequences
can also be generalized to corresponding multiple sets of local
sequences.

Local alternative sequences will be illustrated in the following
manufacturing example, where also some additional modeling
features are discussed, such as weighted arcs and uncontrollable
events.

2mp1 2mp2

pA

pB

m m

C1 c1 : 25

R r1 : 21

M m1 : 30

R r3 : 16

AM a1 : 15

C2 c2 : 25

R r2 : 19

L l1 : 38

R r4 : 24

AM a2 : 25

L l2 : 32

R r5 : 20

C3 c3 : 25

PD p1 : 24

C3 c4 : 25A a3 : 25e

Figure 5. A TPN for a flexible production system where m
products of type pA and pB are produced based on 2m
input parts of type p1 and p2.

4. OPTIMIZATION OF A MANUFACTURING SYSTEM

The OptConcurAltSeq optimization formulation will now be
evaluated on a realistic manufacturing application, including
flows of multiple tokens in concurrent as well as alternative
sequences. The application is a flexible manufacturing system
(FMS), presented in de Queiroz et al. (2005) as a set of modular
automata. In Pena et al. (2022) this model is extended with op-
eration durations, and an efficient near-optimal time optimiza-
tion procedure is proposed to compute the optimal makespan
for the modular timed automata model. A corresponding TPN is
shown in Fig. 5 where each timed transition has a resource label
with capital letter and a duration, but also a unique small letter
transition label used as operation name. The shared resources
are a robot R, a lathe L, a conveyor C3, and an assembly
machine AM , while the local resources only used by one op-
eration are two conveyors C1 and C2, a mill M , and a painting
device PD.

Concurrent and alternative sequences To handle the con-
currency and the alternative sequences in Fig. 5, the system
model Sys is divided into four sequences, i = 1 including the
operations c1, r1, m1, r3, and a1, i = 2 including c2 and r2,
i = 3 including l1, r4, and a2, and i = 4 including l2, r5,
c3, p1, c4, and a3. The two local alternative sequences i = 3
and i = 4 follow after the completion of sequence i = 2, and
all three are executed concurrently with the first sequence. The
alternative between i = 3 and i = 4 also decides the choice
between operation a2 for i = 3 and a3 for i = 4, after the
completion of sequence i = 1.

Production goal specified by weighted transitions Two types
of products pA and pB are produced in this FMS, based on
input parts of type p1 and p2. The number of input parts are 2m
and m products of both types are produced. Thus, the input
places p1 and p2 in Fig. 5 have 2m initial tokens, and the goal
is to generate m tokens in both place pA and place pB . When
this goal is achieved, the last non-timed transition with label e
can be fired, resulting in only one token in the double circle
place. In a similar way as for automata, this demonstrates the
possibility to graphically specify not only the initial state but
also the final goal state in a PN, a single double circle place
that receives one token when the final marking vector has been
reached.

Weighted transitions in CP-SAT Weighted transitions are
normally added to specify logical conditions, such as the goal
specification on equal number of tokens in the places pA and
pB . In CP-SAT, this specification is simply formulated as the
constraint, cf. (8), (9)

2m∑
j=1

β3,j = m. (13)

The boolean β3,j , where 3 specifies the third sequence that
produces product pA, is interpreted as a 1/0 integer when it
is used in summations.

Uncontrollable events In both de Queiroz et al. (2005) and
(Pena et al., 2022) it is assumed that the event related to the start
of an operation is controllable, while the corresponding event
related to the completion of an operation is uncontrollable,
a very common assumption in Supervisory control examples.
This means that the constraint on the end time has to be moved
to the more conservative constraint on the corresponding start
time, which results in the following uncontrollability constraint

si,j+1,k ≥ si,j,k+1 (14)

Optimal solution comparison Adding the constraints (12)-
(14) to OptConcurAltSeq, together with the resource and dura-
tion information in Fig. 5, implies that the optimization for-
mulation can be solved by CP-SAT. The resulting optimal
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Seq is followed by a set Seq⊕ ⊆ Seq of local alternative
sequences. When the optimal sequence in Seq⊕ has been
completed, another sequence i2 ∈ Seq is assumed to follow.
This behavior is achieved by adding the constraints

∨
ι∈Seq⊕

sι,j,1 ≥ ei1,j,ni1
and

∨
ι∈Seq⊕

si2,j,1 ≥ eι,j,nι

(12)
to OptConcurAltSeq. Note that the choice of the optimal alter-
native sequence in Seq⊕ is obtained by (8)-(10).

Local concurrent sequences Replace the set Seq⊕ in (12)
with a set of local concurrent sequences Seq∥ ⊆ Seq. Lo-
cal concurrent sequences are then obtained by replacing the
disjunction operator in (12) with a conjunction over all se-
quences in S∥ . Both local alternative and concurrent sequences
can also be generalized to corresponding multiple sets of local
sequences.

Local alternative sequences will be illustrated in the following
manufacturing example, where also some additional modeling
features are discussed, such as weighted arcs and uncontrollable
events.
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Figure 5. A TPN for a flexible production system where m
products of type pA and pB are produced based on 2m
input parts of type p1 and p2.

4. OPTIMIZATION OF A MANUFACTURING SYSTEM

The OptConcurAltSeq optimization formulation will now be
evaluated on a realistic manufacturing application, including
flows of multiple tokens in concurrent as well as alternative
sequences. The application is a flexible manufacturing system
(FMS), presented in de Queiroz et al. (2005) as a set of modular
automata. In Pena et al. (2022) this model is extended with op-
eration durations, and an efficient near-optimal time optimiza-
tion procedure is proposed to compute the optimal makespan
for the modular timed automata model. A corresponding TPN is
shown in Fig. 5 where each timed transition has a resource label
with capital letter and a duration, but also a unique small letter
transition label used as operation name. The shared resources
are a robot R, a lathe L, a conveyor C3, and an assembly
machine AM , while the local resources only used by one op-
eration are two conveyors C1 and C2, a mill M , and a painting
device PD.

Concurrent and alternative sequences To handle the con-
currency and the alternative sequences in Fig. 5, the system
model Sys is divided into four sequences, i = 1 including the
operations c1, r1, m1, r3, and a1, i = 2 including c2 and r2,
i = 3 including l1, r4, and a2, and i = 4 including l2, r5,
c3, p1, c4, and a3. The two local alternative sequences i = 3
and i = 4 follow after the completion of sequence i = 2, and
all three are executed concurrently with the first sequence. The
alternative between i = 3 and i = 4 also decides the choice
between operation a2 for i = 3 and a3 for i = 4, after the
completion of sequence i = 1.

Production goal specified by weighted transitions Two types
of products pA and pB are produced in this FMS, based on
input parts of type p1 and p2. The number of input parts are 2m
and m products of both types are produced. Thus, the input
places p1 and p2 in Fig. 5 have 2m initial tokens, and the goal
is to generate m tokens in both place pA and place pB . When
this goal is achieved, the last non-timed transition with label e
can be fired, resulting in only one token in the double circle
place. In a similar way as for automata, this demonstrates the
possibility to graphically specify not only the initial state but
also the final goal state in a PN, a single double circle place
that receives one token when the final marking vector has been
reached.

Weighted transitions in CP-SAT Weighted transitions are
normally added to specify logical conditions, such as the goal
specification on equal number of tokens in the places pA and
pB . In CP-SAT, this specification is simply formulated as the
constraint, cf. (8), (9)

2m∑
j=1

β3,j = m. (13)

The boolean β3,j , where 3 specifies the third sequence that
produces product pA, is interpreted as a 1/0 integer when it
is used in summations.

Uncontrollable events In both de Queiroz et al. (2005) and
(Pena et al., 2022) it is assumed that the event related to the start
of an operation is controllable, while the corresponding event
related to the completion of an operation is uncontrollable,
a very common assumption in Supervisory control examples.
This means that the constraint on the end time has to be moved
to the more conservative constraint on the corresponding start
time, which results in the following uncontrollability constraint

si,j+1,k ≥ si,j,k+1 (14)

Optimal solution comparison Adding the constraints (12)-
(14) to OptConcurAltSeq, together with the resource and dura-
tion information in Fig. 5, implies that the optimization for-
mulation can be solved by CP-SAT. The resulting optimal

Table 4. Optimal makespan MS for the TPN in
Fig. 5 and execution times (sec) using CP-SAT
(T.O. = 200 sec.) and execution times (min) using

CSA-DS for different number of tokens m.

m MS
CP-SAT
Optimal

CP-SAT
Feasible CSA-DS

3 518 0.07 0.06 1.7 min
5 830 0.31 0.21 3.5 min
7 1142 2.70 0.28 5.8 min
10 1610 147 0.64 9.5 min
13 2078 T.O. 1.05 7.4 min
15 2390 T.O. 1.92 8.5 min
20 3170 T.O. 9.94 14.4 min

makespan MS and computation time for different values of
m are shown in Table 4. These results are compared with the
solution generated by an evolutionary clonal selection algo-
rithm (de Castro and Zuben, 2002) with DS mutation, evaluated
for the FMS in Pena et al. (2022) and then called CSA-DS.
Ones again the CP-SAT solver shows its strength, being able
to generate the optimal solution in a much shorter time than
in Pena et al. (2022) when the feasible but not proven optimal
solution, as motivated below, is also taken into account.

Feasible but not proven optimal solution In Table 4, the
proven optimal solution is possible to compute for m ≤ 10.
For higher m values the computation time suddenly increases
very quickly, a typical behavior of all SAT based solvers when
the system complexity becomes too large. The question is only
when this computational limitation occurs, and for CP-SAT
it occurs for much higher system complexity than for Z3Opt.
Using CP-SAT, we find for 2 ≤ m ≤ 10 a simple pattern on the
optimal makespan where

MS = 156m+ 50 (15)
Note the importance of obtaining the exact optimal solution to
get this optimal pattern, which is not the case for the CSA-
DS strategy. Fortunately, CP-SAT can also be asked to run
for a limited time, delivering a feasible solution, which fulfills
all constraints but does not necessarily generate an optimal
solution. Since the most costly part of the computation is
the proof of optimality, a feasible solution where MS has
converged to a constant value, can be achieved much more
quickly than to prove the optimality of the delivered solution.
As expected, MS also converges in this example to a constant
value which for each m fulfills the optimal formula (15). Thus,
we can trust this as the optimal MS value, also supported by
the structure of the FMS system, which is shown to converge to
a cyclic behavior.

In the column CP-SAT Feasible in Table 4 the computation
time is shown when the feasible solution has reached the
expected optimal value (15). Unfortunately, this optimal MS
value is not what we are searching for. We are asking for
the optimal sequence of operations which will generate the
optimal makespan, i.e. the optimal control law. However, since
every feasible solution generates an executable sequence of
operations, and we have a feasible solution that satisfies the
optimal MS value, the obtained sequence is also the optimal
sequence of operations and therefore the optimal control law.

5. CONCLUDING REMARKS

An optimization formulation for TPNs has been introduced
in this paper. Compared to earlier MILP formulations, no
explicit global marking states are introduced. The dynamic
state information is implicitly determined by constraints on the
local start and end times of the involved tokens in each timed
transition. This results in an easy and general optimization

formulation, and by including specific constraints valid only
for Petri nets, the computation time is drastically reduced. It
is also shown how typical examples of uncontrollable events,
which can be abstracted for modular automata but not for Petri
nets with multiple tokens, can be handled in the optimization
formulation. A topic for further studies is how this formulation
can be generalized to arbitrary uncontrollable event scenarios.
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