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Abstract
We consider a model initial- and Dirichlet boundary–
value problem for a nonlinear Schrödinger equation in
two and three space dimensions. The solution to the
problem is approximated by a conservative numerical
method consisting of a standard conforming finite ele-
ment space discretization and a second-order, linearly
implicit time stepping, yielding approximations at the
nodes and at the midpoints of a nonuniform partition
of the time interval. We investigate the convergence of
the method by deriving optimal-order error estimates
in the 𝐿2 and the 𝐻1 norm, under certain assumptions
on the partition of the time interval and avoiding the
enforcement of a courant-friedrichs-lewy (CFL) condi-
tion between the space mesh size and the time step
sizes.
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1 9 9 1 MATH EMATICS SUBJECT
CLASS IF ICAT ION
65M12, 65M60 (primary), 35Q55, 35Q60 (secondary)

1 INTRODUCTION

1.1 Formulation of the problem

Let 𝑇 > 0 be a final time and 𝐷 ⊂ ℝ𝑑 be a bounded convex domain with smooth boundary 𝜕𝐷,
where 𝑑 ∈ {2, 3}. Then, we consider the following initial- and Dirichlet boundary–value problem
for a nonlinear Schrödinger (NLS) equation: Find a function 𝑢 ∶ [0, 𝑇] × 𝐷 → ℂ such that

𝑢𝑡 = i 𝛥𝑢 + i 𝑓
(|𝑢|2)𝑢 ∀ (𝑡, 𝑥) ∈ (0, 𝑇] × 𝐷, (1)

𝑢(𝑡, ⋅)|𝜕𝐷 = 0 ∀ 𝑡 ∈ (0, 𝑇], (2)

𝑢(0, 𝑥) = 𝑢0(𝑥) ∀ 𝑥 ∈ 𝐷, (3)

where 𝑓 ∶ [0, +∞) → ℝ is a real-valued smooth function and 𝑢0 ∶ 𝐷 → ℂ is a complex-valued
smooth function with 𝑢0|𝜕𝐷 = 0.
Equation (1) is a well-knownmathematical model in several areas of physics such as nonlinear

optics, nonlinear water waves, plasma physics, and Bose–Einstein condensates (see, e.g., Refs.
[11, 13, 16, 21, 25, 33–35, 38, 45]). The general formulation above includes the cubic and the cubic-
quintic (NLS) equation under the choice 𝑓(𝑥) = 𝛼 𝑥 + 𝛽 𝑥2, where 𝛼 and 𝛽 are real constants, and
the saturated focusing nonlinearity 𝑓(𝑥) = 𝑥

1+𝑥
. For a sample of mathematical results related to

the problem above, we refer the reader to Refs. [8, 12, 38] and [20], and the references therein.
Hereafter, we assume that the problem above has a unique solution, which is regular enough

on [0, 𝑇] × 𝐷 for our purposes, and hence the case of a solution that blows-up in finite time
is excluded.

1.2 Notation and preliminaries

Let 𝐿2(𝐷) be the space of all Lebesgue measurable complex-valued functions, which have the
second power of their absolute value integrable on 𝐷 with respect to Lebesgue’s measure 𝑑𝑥,
provided with the standard norm ‖𝑣‖ ∶= (∫

𝐷
|𝑣(𝑥)|2 𝑑𝑥)1∕2 for 𝑣 ∈ 𝐿2(𝐷), induced by the stan-

dard, nonsymmetric, inner product (𝑣, 𝑤) ∶= ∫
𝐷
𝑣(𝑥)𝑤(𝑥) 𝑑𝑥 for 𝑣, 𝑤 ∈ 𝐿2(𝐷). To simplify the

notation,we extend the norm ‖ ⋅ ‖ and the inner product (⋅, ⋅) on vectors of𝐿2(𝐷)-functions, by set-
ting ‖𝐹‖ ∶= ‖ |𝐹|ℂ𝑑 ‖ for 𝐹 ∈ (𝐿2(𝐷))𝑑, and (𝑉,𝑊) ∶=

∑𝑑

𝑗=1
(𝑉𝑗,𝑊𝑗) for𝑉,𝑊 ∈ (𝐿2(𝐷))𝑑, where| ⋅ |ℂ𝑑 is the usual Euclidean norm on ℂ𝑑.

Letℕ0 be the set of all nonnegative integers. For 𝜅 ∈ ℕ0, we denote by𝐻𝜅(𝐷) the Sobolev space
of all complex-valued functions which belong, alongwith their generalized derivatives up to order
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ASADZADEH and ZOURARIS 3 of 34

𝜅, to 𝐿2(𝐷) (see, e.g., Ref. [1]). Then, we denote by ‖ ⋅ ‖𝜅 its usual norm, that is,
‖𝑣‖𝜅 ∶= ⎛⎜⎜⎝

∑
𝛼∈ℕ𝑑

0
, |𝛼|≤𝜅 ‖𝜕𝛼𝑣‖2

⎞⎟⎟⎠
1∕2

∀ 𝑣 ∈ 𝐻𝜅(𝐷),

and by | ⋅ |𝜅 the corresponding seminorm, that is,
|𝑣|𝜅 ∶= ⎛⎜⎜⎝

∑
𝛼∈ℕ𝑑

0
, |𝛼|=𝜅 ‖𝜕𝛼𝑣‖2

⎞⎟⎟⎠
1∕2

∀ 𝑣 ∈ 𝐻𝜅(𝐷),

where |𝛼| ∶= 𝛼1 +⋯+ 𝛼𝑑 for 𝛼 = (𝛼1, … , 𝛼𝑑)
𝑇 ∈ ℕ𝑑

0 . Thus, we have the identical notation ‖ ⋅‖0 = ‖ ⋅ ‖. Also, by𝐻1
0(𝐷), we denote the subspace of𝐻

1(𝐷) consisting of all functions that vanish
at the boundary 𝜕𝐷 of 𝐷 in the sense of trace. To simplify the notation, we setℍ𝜅(𝐷) ∶= 𝐻𝜅(𝐷) ∩

𝐻1
0(𝐷).
We denote by 𝐿∞(𝐷) the space of all Lebesguemeasurable functions, which have their essential

supremum bounded on 𝐷, equipped with the standard norm |𝑣|∞ ∶= ess sup𝐷|𝑣| for 𝑣 ∈ 𝐿∞(𝐷).
Further, for 𝜅 ∈ ℕ, we denote by𝑊𝜅,∞(𝐷) the Sobolev space of complex-valued functions, which
belong, along with their generalized derivatives up to order 𝜅, to 𝐿∞(𝐷), provided with the norm

‖𝑣‖𝜅,∞ ∶= max
𝛼∈ℕ𝑑

0
, |𝛼|≤𝜅 |𝜕𝛼𝑣|∞ ∀𝑣 ∈ 𝑊𝜅,∞(𝐷)

and hence we have the identical notation ‖ ⋅ ‖0,∞ ∶= | ⋅ |∞. Since 𝑑 ∈ {2, 3}, we recall (see, e.g.,
Ref. [1]) that𝐻𝜅(𝐷) ⊂ 𝐶𝜅−2(𝐷) for 𝜅 ≥ 2, and there exists a positive constant 𝖢𝚂𝚅,𝜅 such that

|𝑣|𝜅−2,∞ ≤ 𝖢𝚂𝚅,𝜅 ‖𝑣‖𝜅 ∀ 𝑣 ∈ 𝐻𝜅(𝐷). (4)

For 𝜅 ∈ ℕ0 with 𝜅 ≥ 2, let 𝖳 ∶ 𝐻𝜅−2(𝐷) → ℍ𝜅(𝐷) be the solution operator of the elliptic bound-
ary value problem, that is, for given 𝑤 ∈ 𝐻𝜅−2(𝐷) find 𝖳𝑤 ∈ ℍ𝜅(𝐷) such that 𝛥(𝖳𝑤) = 𝑤 on 𝐷

(see, e.g., Ref. [18]). According to the well-known elliptic regularity result (see, e.g., Ref. [18]),
there exists a positive constant 𝖢𝜅

𝙴𝚁
such that

‖𝖳𝑤‖𝜅 ≤ 𝖢𝜅
𝙴𝚁
‖𝑤‖𝜅−2 ∀𝑤 ∈ 𝐻𝜅−2(𝐷), (5)

and, hence, it follows that

‖𝖳(𝖳(𝑤))‖2𝜅 ≤ 𝖢2𝜅
𝙴𝚁
‖𝖳(𝑤)‖2𝜅−2 ≤ 𝖢2𝜅

𝙴𝚁
𝖢2𝜅−2
𝙴𝚁

‖𝑤‖2𝜅−4 ∀𝑤 ∈ 𝐻2𝜅−4(𝐷). (6)

Remark 1. Let 𝑣 ∈ ℍ𝜅(𝐷) and 𝑤 = 𝛥𝑣 ∈ 𝐻𝜅−2(𝐷) on 𝐷. Obviously, we have 𝖳(𝑤) = 𝑣 and (5)
yields ‖𝑣‖𝜅 ≤ 𝖢𝜅

𝙴𝚁
‖𝛥𝑣‖𝜅−2. Also, let 𝑣 ∈ ℍ2𝜅(𝐷)with 𝛥𝑣 ∈ ℍ2𝜅−2(𝐷), and 𝑤 = Δ2𝑣 ∈ 𝐻2𝜅−4(𝐷).

Then, 𝖳(𝑤) = 𝛥𝑣 and 𝖳(𝖳(𝑤)) = 𝑣 and, thus, (6) yields ‖𝑣‖2𝜅 ≤ 𝖢2𝜅
𝙴𝚁

𝖢2𝜅−2
𝙴𝚁

‖Δ2𝑣‖2𝜅−4.
1.3 The finite element spaces framework

Let 𝖲𝑟
ℎ
⊂ ℍ1(𝐷) ∩ 𝐶(𝐷) be a finite element space consisting of functions, which are continuous

on 𝐷 and piecewise polynomials of degree at most 𝑟 ≥ 1 over a shape regular partition of 𝐷 in
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4 of 34 ASADZADEH and ZOURARIS

triangles or polyhedrals with maximum diameter ℎ (see, e.g., Refs. [7, 14]). Then, we introduce a
discrete Laplace operator 𝛥ℎ ∶ 𝐻1(𝐷) → 𝖲𝑟

ℎ
by

(𝛥ℎ𝑤, 𝜒) = (∇𝑤,∇𝜒) ∀𝜒 ∈ 𝖲𝑟
ℎ
, ∀𝑤 ∈ 𝐻1(𝐷),

the 𝐿2(𝐷)-projection operator 𝖯ℎ ∶ 𝐿2(𝐷) → 𝖲𝑟
ℎ
by

(𝖯ℎ𝑤, 𝜒) = (𝑤, 𝜒) ∀𝜒 ∈ 𝖲𝑟
ℎ
, ∀𝑤 ∈ 𝐿2(𝐷),

and the elliptic projection operator 𝖱ℎ ∶ 𝐻1(𝐷) → 𝖲𝑟
ℎ
by

(∇𝖱ℎ𝑤,∇𝜒) = (∇𝑤,∇𝜒) ∀𝜒 ∈ 𝖲𝑟
ℎ
, ∀𝑤 ∈ 𝐻1(𝐷).

It is well known (see, e.g., Ref. [7]) that for the usual Lagrange interpolant ℎ ∶ 𝐶(𝐷) → 𝖲𝑟
ℎ
,

there exist positive constants 𝖢𝙸𝙿𝟷 and 𝖢𝙸𝙿𝟸, independent of the partition of 𝐷, such that

|ℎ𝑤 − 𝑤|∞ ≤ 𝖢𝙸𝙿𝟷 ℎ
𝑠−

𝑑

2 ‖𝑤‖𝑠 ∀𝑤 ∈ ℍ𝑠(𝐷), 𝑠 = 2, … , 𝑟 + 1, (7)

and

‖ℎ𝑤 − 𝑤‖ + ℎ ‖ℎ𝑤 − 𝑤‖1 ≤ 𝖢𝙸𝙿𝟸 ℎ
𝑠 ‖𝑤‖𝑠 ∀𝑤 ∈ ℍ𝑠(𝐷), 𝑠 = 2, … , 𝑟 + 1. (8)

Following Ref. [40] and using (8), we conclude that there exists a positive constant 𝖢𝙴𝙿𝟷,
independent of the partition of 𝐷, such that

‖𝖱ℎ𝑤 − 𝑤‖ + ℎ ‖𝖱ℎ𝑤 − 𝑤‖1 ≤ 𝖢𝙴𝙿𝟷 ℎ
𝑠 ‖𝑤‖𝑠 ∀𝑤 ∈ ℍ𝑠(𝐷), 𝑠 = 2, … , 𝑟 + 1. (9)

Also, we assume that the triangulation of𝐷 is quasiuniform and thus (see, e.g., Ref. [7]) there exist
positive constants 𝖢𝙸𝙽𝚅𝟷 and 𝖢𝙸𝙽𝚅𝟸, independent of the partition of 𝐷, such that

|𝜒|∞ ≤ 𝖢𝙸𝙽𝚅𝟷 ℎ
−

𝑑

2 ‖𝜒‖ ∀𝜒 ∈ 𝖲𝑟
ℎ

(10)

and

‖𝜒‖1 ≤ 𝖢𝙸𝙽𝚅𝟸 ℎ
−1 ‖𝜒‖ ∀𝜒 ∈ 𝖲𝑟

ℎ
. (11)

Finally, we combine the estimates above to conclude the followingmaximumnorm error estimate
for the elliptic projection (see, e.g., Ref. [23]).

Lemma 1. Assuming that the triangulation of 𝐷 is quasiuniform, there exists a positive constant
𝖢𝙴𝙿𝟸, independent of the partition of 𝐷, such that

|𝖱ℎ𝑣 − 𝑣|∞ ≤ 𝖢𝙴𝙿𝟸 ℎ
2−

𝑑

2 ‖𝑣‖2 ∀ 𝑣 ∈ ℍ2(𝐷). (12)
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ASADZADEH and ZOURARIS 5 of 34

Proof. Let 𝑣 ∈ ℍ2(𝐷). Using (10), (7), (9), and (8), we obtain

|𝖱ℎ𝑣 − 𝑣|∞ ≤ |𝖱ℎ𝑣 − ℎ𝑣|∞ + |ℎ𝑣 − 𝑣|∞
≤𝖢𝙸𝙽𝚅𝟷 ℎ

−
𝑑

2 ‖𝖱ℎ𝑣 − ℎ𝑣‖ + 𝖢𝙸𝙿𝟷 ℎ
2−

𝑑

2 ‖𝑣‖2
≤𝐶

[
ℎ
−

𝑑

2 (‖𝖱ℎ𝑣 − 𝑣‖ + ‖𝑣 − ℎ𝑣‖) + ℎ
2−

𝑑

2 ‖𝑣‖2]
≤𝐶 ℎ

2−
𝑑

2 ‖𝑣‖2.
□

1.4 Fully discrete approximations

Let 𝑁 ∈ ℕ and  be a partition of the time interval [0, 𝑇] in subintervals with nodes (𝑡𝑛)𝑁𝑛=0, that
is, 𝑡0 = 0, 𝑡𝑁 = 𝑇, and 𝑡𝑛 < 𝑡𝑛+1 for 𝑛 = 0,… ,𝑁 − 1. Then, we set k𝑛 ∶= 𝑡𝑛 − 𝑡𝑛−1 for 𝑛 = 1,… ,𝑁,
and proceed as the following steps (see Ref. [5]):

Step FD1. Set

𝖴0 = 𝖱ℎ𝑢0. (13)

Step FD2. For 𝑛 = 1,… ,𝑁, first we define 𝖴𝑛−
1

2 ∈ 𝖲𝑟
ℎ
by

𝖴
𝑛−

1

2 − 𝖴𝑛−1 + i
k𝑛
4
𝛥ℎ

(
𝖴
𝑛−

1

2 + 𝖴𝑛−1

)
= i

k𝑛
4
𝖯ℎ

[
𝑓
( ||𝖴𝑛−1||2) (𝖴𝑛−

1

2 + 𝖴𝑛−1)

]
(14)

and then we find 𝑈𝑛 ∈ 𝖲𝑟
ℎ
such that

𝖴𝑛 − 𝖴𝑛−1 + i
k𝑛
2
𝛥ℎ

(
𝖴𝑛 + 𝖴𝑛−1

)
= i

k𝑛
2
𝖯ℎ

[
𝑓

( ||𝖴𝑛−
1

2 ||2) (𝖴𝑛 + 𝖴𝑛−1)

]
. (15)

Remark 2. The method produces in total 2𝑁 approximations of the solution at the nodes and at
the midpoints of the partition  . The computation of each of those approximations requires the
numerical solution of a linear system of algebraic equations, the matrix of which depends on the
basis of the finite element space 𝖲𝑟

ℎ
involved.

Remark 3. Taking the 𝐿2(𝐷)-inner product of (14) by 𝖴𝑛−
1

2 + 𝖴𝑛−1 and of (15) by 𝖴𝑛 + 𝖴𝑛−1, and

then taking the real parts of the equalities obtained, it follows that ‖𝖴𝑛‖ = ‖𝖴𝑛−1‖ and ‖𝖴𝑛−
1

2 ‖ =‖𝖴𝑛−1‖ for 𝑛 = 1,… ,𝑁. By a simple induction argument, we conclude that ‖𝖴𝑛‖ = ‖𝖴𝑛−
1

2 ‖ =‖𝖴0‖ for 𝑛 = 1,… ,𝑁. Thus, the numerical method (13)–(15) conserves the 𝐿2(𝐷) norm.

Remark 4. The existence and uniqueness of (𝖴𝑛)𝑁𝑛=1 and (𝖴
𝑛−

1

2 )𝑁𝑛=1 follows, unconditionally,
by observing that the operator 𝖳𝜀 ∶ 𝖲𝑟

ℎ
→ 𝖲𝑟

ℎ
defined by 𝖳𝜀𝜒 = 𝜒 + i 𝜀 𝛥ℎ𝜒 for 𝜒 ∈ 𝖲𝑟

ℎ
and 𝜀 > 0

is invertible.
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6 of 34 ASADZADEH and ZOURARIS

1.5 Motivation, main results, and bibliography

The application of implicit time-stepping methods for the numerical approximation of the solu-
tion to the (NLS) equation gives birth to nonlinear systems of algebraic equations that one has to
solve numerically by applying an iterative method (see, e.g., Refs. [2–4, 17, 24, 26–28, 36, 41, 43,
44]). Alternatively, the use of an explicit time-steppingmethod is not attractive because stability is
guaranteed only if a rather restrictive CFL condition is satisfied (see, e.g., Ref. [36]). Another way
is the development of unconditionally stable, linearly implicit time-stepping methods, where, at
every time level, only the solution of a linear system of algebraic equations is required (see, e.g.,
Refs. [6, 9, 10, 19, 39, 42, 46]). Nevertheless, it is easily observed that the second order, linearly
implicit methods proposed in the literature have been constructed and analyzed over a uniform
partition of the time interval, mainly because the linearization of the nonlinear term is achieved
by using approximations already computed at the previous time nodes (see, e.g., Refs. [6, 10, 19,
39, 42, 46]). Even though a reformulation of the aforementioned methods is possible in order to
achieve a second-order consistency error over a nonuniform time partition (see, e.g., Ref. [29]), it
seems that the existing convergence theories are not directly applicable.
Here, we focus on an alternative second-order, linearly implicit time discretization of the (NLS)

equation (see Ref. [5]) that is far from the idea of using approximations computed at the previous
time nodes and close to the idea of computing extra intermediate approximations within each
partition interval [𝑡𝑛−1, 𝑡𝑛] (cf., e.g., Ref. [37]). Indeed, the method performs a linearly implicit

half time-step from 𝑡𝑛−1 to 𝑡𝑛−1 +
k𝑛
2
by constructing an approximation 𝖴

𝑛−
1

2 of the solution 𝑢

at the midpoint 𝑡𝑛−1 +
k𝑛
2
(see (14)), which then is used to linearize the usual Crank–Nicolson

method from 𝑡𝑛−1 to 𝑡𝑛 (see (15)) and thus there is no contribution of the previous time levels
in the linearization process. However, there is an additional computational cost, which is finally

acceptable because the extra intermediate approximations𝖴𝑛−
1

2 are second-order approximations
of the solution 𝑢 at the midpoints, something that is not standard among the Runge–Kutta meth-
ods, where intermediate approximations are also used. Here, investigating the aforementioned
method, we focus on how to provide an 𝐿∞ bound for the fully discrete approximations, on how
the nonuniform partition of the time interval influences the error estimation in the 𝐿2 and 𝐻1

norm, and on how to avoid the enforcement of CFL conditions, which appear frequently in the
bibliography (see, e.g., Refs. [2, 3, 22, 26–28, 36, 41, 46]).
Since 𝑓 is a locally Lipschitz function on [0, +∞), we build up a convergence analysis of the

numerical method under investigation through the derivation of an 𝐿∞ bound for the numerical
approximations, which is independent of the discretization parameters. Moving to this direction,
we begin by formulating amodified time discrete (MTD)method, which is based on a propermol-
lification of the nonlinear term (cf. Ref. [46]) and has the following property: When the (MTD)
approximations are close to the solution 𝑢 to the problem in the 𝑊2,∞ norm, then the mollifier
acts as an identity (see (39)–(41)). Analyzing the convergence of the (MTD) method, we provide
optimal, second-order in time error estimates in the 𝐻1 and 𝐻2 norm, without imposing condi-
tions on the variable time stepping (see (43) and (44)). In addition, we obtain an error bound in
the 𝐻4 norm (see (45)), assuming that there exists a constant 𝖢̂1, independent of the partition  ,
such that

𝖪() ∶=
𝑁∑

𝓁=1

(𝑁 + 1 − 𝓁) k3
𝓁
≤ 𝖢̂1, (16)
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ASADZADEH and ZOURARIS 7 of 34

which can be viewed, conditionally, as a suboptimal, first-order in time error estimate (see
Remark 5).
Our next step is the formulation of a modified fully discrete (MFD) method, which is based on

the mollification of the nonlinear term by a special cut-off function (cf. Ref. [46]) and is charac-
terized by the following property: When the (MFD) approximations are close to the solution 𝑢 to
the problem in the 𝐿∞ norm, then they are identical to the fully discrete approximations defined
by (13)–(15) (see (104)–(106)). Developing a convergence analysis for the (MFD) method, we focus
on the estimation of the error between the (MFD) approximations and the elliptic projection of the
(MTD) approximations in the 𝐿2 norm. In particular, for that error, we derive an 𝑂(ℎ2) estimate
when 𝑟 ≥ 1 and (16) holds (see (129)), and a higher order 𝑂(ℎmin{𝑟+1,4}) estimate when 𝑟 ≥ 2 and
the partition  satisfies

max
1≤𝓁≤𝑁 k𝓁 ≤ 𝖢 min

1≤𝓁≤𝑁 k𝓁 (17)

(see (130)), which is stronger than (16) (see Remark 5). In light of all available error estimates
and of the finite element properties, we apply an argument proposed in Ref. [31] (see also Refs.
[23, 42]) to conclude the desired 𝐿∞ boundedness of the fully discrete approximations, without
the enforcement of a CFL condition. Using the latter result, we derive an 𝑂(𝜏2 + ℎ𝑟+1) error esti-
mate in the 𝐿2 norm and an 𝑂(𝜏2 + ℎ) error estimate in the 𝐻1 norm when (16) holds, where
𝜏 ∶= max1≤𝓁≤𝑁 k𝓁. Also, assuming that (17) holds, we arrive at a higher order 𝑂(𝜏2 + ℎmin{𝑟,3})

error estimate in the 𝐻1 norm, which is optimal for 𝑟 ∈ {2, 3}. The latter limitation in the order
of convergence in the 𝐻1 norm is due to the, by construction, limited regularity of the (MTD)
approximations.
In the convergence analysis we develop here, we use results from the convergence analysis of

the corresponding time discrete approximations as a tool to avoid the enforcement of CFL con-
ditions. This technique has been used in the error estimation: of a linearized semi-implicit finite
element method for a nonlinear parabolic problem,31 of a two-step linearly implicit finite element
method approximation for an (NLS) equation over a uniform partition of the time interval,42
and, in a different setting, of a Backward Euler finite element method for a linear stochastic
parabolic problem.30 Within this framework, in order to arrive at an optimal-order error esti-
mate in the 𝐿2 norm, it is sufficient to derive a first-order error estimate in the 𝐻2 norm for the
time discrete approximations. However, since the partition  is not uniform, such an 𝐻2 error
estimate leads to the enforcement of the mesh condition (17) in order to bound, in the 𝐻2 norm,
the discrete time derivative of the time discrete approximations that appears in the analysis of
the fully discrete approximations. This restriction motivated us to push the error analysis up to
the 𝐻4 norm by introducing a properly defined modified version of the time discrete method,
and thus arriving at the milder and less restrictive mesh condition (16) in light of which we are
able to derive an optimal-order error estimate in the 𝐿2 norm, for all 𝑟, and in the 𝐻1 norm,
for 𝑟 = 1.
Let us close this section by giving an overview of the paper. In Section 2, we define and estimate

the consistency error of the time discretization to which our convergence analysis heavily relies.
Section 3 concerns time approximations to the solution, where employing a parameter-dependent
mollifier, we construct time discrete approximations and investigate their convergence in higher
Sobolev norms. Section 4 is devoted to fully discrete approximations, where following the path in
Section 3 (now relying on a parameter dependent smooth cut-off function), we construct (MFD)
approximations and prove optimal-order convergence, in the 𝐿2 and 𝐻1 norms, of the whole,
combined, approximations introduced by (13)–(15). Finally, we summarize our results in Section 5.
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8 of 34 ASADZADEH and ZOURARIS

2 CONSISTENCY OF THE TIME DISCRETIZATION

Let 𝑢𝑛 ∶= 𝑢(𝑡𝑛, ⋅) for 𝑛 = 0,… ,𝑁, 𝑡
𝑛−

1

2

∶=
𝑡𝑛+𝑡𝑛−1

2
for 𝑛 = 1,… ,𝑁, and 𝑢𝑛−

1

2 ∶= 𝑢(𝑡
𝑛−

1

2

, ⋅) for 𝑛 =

1,… ,𝑁. Then, for 𝑛 = 1,… ,𝑁, we define the consistency errors 𝜂𝑛−
1

2 and 𝜂𝑛 by

𝑢
𝑛−

1
2 −𝑢𝑛−1

k𝑛∕2
= i 𝛥

(
𝑢
𝑛−

1
2 +𝑢𝑛−1

2

)
+ i 𝑓

(|𝑢𝑛−1|2) 𝑢
𝑛−

1
2 +𝑢𝑛−1

2
+ 𝜂

𝑛−
1

2 (18)

and

𝑢𝑛−𝑢𝑛−1

k𝑛
= i 𝛥

(
𝑢𝑛+𝑢𝑛−1

2

)
+ i 𝑓

(|𝑢𝑛−1

2 |2) 𝑢𝑛+𝑢𝑛−1

2
+ 𝜂𝑛. (19)

Below we derive some estimates of 𝜂𝑛−
1

2 and 𝜂𝑛 in terms of k𝑛, which we will use later in the
convergence analysis of the numerical method.

Proposition 1. We assume that 𝑓 ∈ 𝐶2([0, +∞),ℝ) and

𝑢 ∈ 𝐶3([0, 𝑇], ℍ2(𝐷)) ∩ 𝐶2([0, 𝑇], ℍ4(𝐷)). (20)

Then, it holds that

𝑢(𝑡, ⋅), 𝑓
(|𝑢(𝑡, ⋅)|2) ∈ 𝐶2(𝐷) ∀ 𝑡 ∈ [0, 𝑇], (21)

𝛥𝑢(𝑡, ⋅) ∈ ℍ2(𝐷) ∀ 𝑡 ∈ [0, 𝑇], (22)

𝜂
𝑛−

1

2 , 𝜂𝑛 ∈ ℍ2(𝐷), 𝑛 = 1,… ,𝑁, (23)

and, there exist positive constants𝐶𝙲𝙴𝟷,𝐶𝙲𝙴𝟸,𝐶𝙲𝙴𝟹,𝐶𝙲𝙴𝟺,𝐶𝙲𝙴𝟻, and𝐶𝙲𝙴𝟼, independent of (k𝑛)𝑁𝑛=1 and
𝑁, such that

‖𝜂𝑛− 1

2 ‖ ≤ 𝐶𝙲𝙴𝟷 k𝑛

[
max
[0,𝑇]

‖𝜕2𝑡 𝑢‖ +max
[0,𝑇]

|𝑓(|𝑢|2)|∞ max
[0,𝑇]

‖𝜕𝑡𝑢‖ +max
[0,𝑇]

‖𝜕𝑡𝑢‖2 ], (24)

‖𝜂𝑛‖ ≤ 𝐶𝙲𝙴𝟸 k2𝑛

[
max
[0,𝑇]

‖𝜕3𝑡 𝑢‖ +max
[0,𝑇]

|𝑓(|𝑢|2)|∞ max
[0,𝑇]

‖𝜕2𝑡 𝑢‖ +max
[0,𝑇]

‖𝜕2𝑡 𝑢‖2], (25)

‖∇𝜂𝑛−1

2 ‖ ≤𝐶𝙲𝙴𝟹 k𝑛

[
max
[0,𝑇]

‖𝜕2𝑡 𝑢‖1 + max
[0,𝑇]

|𝑓(|𝑢|2)|∞ max
[0,𝑇]

‖𝜕𝑡𝑢‖1 + max
[0,𝑇]

‖𝜕𝑡𝑢‖3
+ max

[0,𝑇]
|𝑓(|𝑢|2)|1,∞ max

[0,𝑇]
‖𝜕𝑡𝑢‖], (26)

‖∇𝜂𝑛‖ ≤𝐶𝙲𝙴𝟺 k2𝑛

[
max
[0,𝑇]

‖𝜕3𝑡 𝑢‖1 + max
[0,𝑇]

|𝑓(|𝑢|2)|∞ max
[0,𝑇]

‖𝜕2𝑡 𝑢‖1 + max
[0,𝑇]

‖𝜕2𝑡 𝑢‖3
+ max

[0,𝑇]
|𝑓(|𝑢|2)|1,∞ max

[0,𝑇]
‖𝜕2𝑡 𝑢‖],

(27)
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ASADZADEH and ZOURARIS 9 of 34

‖𝛥𝜂𝑛−1

2 ‖ ≤𝐶𝙲𝙴𝟻 k𝑛

[
max
[0,𝑇]

‖𝜕2𝑡 𝑢‖2 + max
[0,𝑇]

|𝑓(|𝑢|2)|∞ max
[0,𝑇]

‖𝜕𝑡𝑢‖2 + max
[0,𝑇]

‖𝜕𝑡𝑢‖4
+ max

[0,𝑇]
|𝑓(|𝑢|2)|2,∞ max

[0,𝑇]
‖𝜕𝑡𝑢‖ +max

[0,𝑇]
|𝑓(|𝑢|2)|1,∞ max

[0,𝑇]
‖𝜕𝑡𝑢‖1], (28)

and

‖𝛥𝜂𝑛‖ ≤𝐶𝙲𝙴𝟼 k2𝑛

[
max
[0,𝑇]

‖𝜕3𝑡 𝑢‖2 + max
[0,𝑇]

|𝑓(|𝑢|2)|∞ max
[0,𝑇]

‖𝜕2𝑡 𝑢‖2 + max
[0,𝑇]

‖𝜕2𝑡 𝑢‖4
+ max

[0,𝑇]
|𝑓(|𝑢|2)|2,∞ max

[0,𝑇]
‖𝜕2𝑡 𝑢‖ +max

[0,𝑇]
|𝑓(|𝑢|2)|1,∞ max

[0,𝑇]
‖𝜕2𝑡 𝑢‖1]

(29)

for 𝑛 = 1,… ,𝑁.

Proof. Since 𝑓 ∈ 𝐶2([0, +∞),ℝ) and (20) holds, we have 𝜕𝑡𝑢(𝑡, ⋅) ∈ ℍ4(𝐷) ⊂ 𝐶2(𝐷), 𝑢(𝑡, ⋅) ∈
ℍ4(𝐷) ⊂ 𝐶2(𝐷), 𝛥𝑢(𝑡, ⋅) ∈ 𝐻2(𝐷), and 𝑓(|𝑢(𝑡, ⋅)|2) ∈ 𝐶2(𝐷) for 𝑡 ∈ [0, 𝑇], which, along with (1),
yield (21) and

𝛥𝑢(𝑡, ⋅)|𝜕𝐷 = 0 ∀ 𝑡 ∈ [0, 𝑇], (30)

and thus, 𝛥𝑢(𝑡, ⋅) ∈ ℍ2(𝐷) for 𝑡 ∈ [0, 𝑇]. Finally, combining (30) with (18) and (19), we obtain

𝜂
𝑛−

1

2 , 𝜂𝑛 ∈ ℍ2(𝐷) for 𝑛 = 1,… ,𝑁.

Let 𝑛 ∈ {1, … ,𝑁}. Now, we subtract the (NLS) equation (1) at time 𝑡 = 𝑡
𝑛−

1

2

from (19) and at

time 𝑡 = 𝑡𝑛−1 from (18) to get

𝜂
𝑛−

1

2 = 𝔏
𝑛−

1

2

1 − i 𝔏
𝑛−

1

2

2 − i 𝔏
𝑛−

1

2

3 and 𝜂𝑛 = 𝔏𝑛
1 − i𝔏𝑛

2 − i𝔏𝑛
3 , (31)

where

𝔏
𝑛−

1

2

1 ∶=
𝑢
𝑛−

1
2 −𝑢𝑛−1

k𝑛∕2
− 𝑢𝑡(𝑡𝑛−1, ⋅), 𝔏

𝑛−
1

2

2 ∶=
𝛥𝑢

𝑛−
1
2 +𝛥𝑢𝑛−1

2
− 𝛥𝑢𝑛−1,

𝔏
𝑛−

1

2

3 ∶= 𝑓
(|𝑢𝑛−1|2)(𝑢

𝑛−
1
2 +𝑢𝑛−1

2
− 𝑢𝑛−1

)
,

𝔏𝑛
1 ∶=

𝑢𝑛−𝑢𝑛−1

k𝑛
− 𝑢𝑡(𝑡𝑛− 1

2

, ⋅), 𝔏𝑛
2 ∶=

𝛥𝑢𝑛+𝛥𝑢𝑛−1

2
− 𝛥𝑢

𝑛−
1

2 ,

𝔏𝑛
3 ∶= 𝑓

(|𝑢𝑛−1

2 |2)(
𝑢𝑛+𝑢𝑛−1

2
− 𝑢

𝑛−
1

2

)
.
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10 of 34 ASADZADEH and ZOURARIS

Next, we Taylor expand 𝑢𝑛 and 𝑢𝑛−1 about 𝑡
𝑛−

1

2

to arrive at

𝔏
𝑛−

1

2

1 =
k𝑛
2 ∫

1

0

(1 − 𝑡) 𝜕2𝑡 𝑢
(
𝑡𝑛−1 +

k𝑛
2
𝑡, ⋅
)
𝑑𝑡,

𝔏
𝑛−

1

2

2 =
k𝑛
4 ∫

1

0

𝜕𝑡𝛥𝑢
(
𝑡𝑛−1 +

k𝑛
2
𝑡, ⋅
)
𝑑𝑡,

𝔏
𝑛−

1

2

3 =
k𝑛
4
𝑓
(|𝑢𝑛−1|2) ∫

1

0

𝜕𝑡𝑢
(
𝑡𝑛−1 +

k𝑛
2
𝑡, ⋅
)
𝑑𝑡,

(32)

and

𝔏𝑛
1 =

k2𝑛
8

[
∫

1

0

𝑡2 𝜕3𝑡 𝑢
(
𝑡𝑛 −

k𝑛
2
𝑡, ⋅
)
𝑑𝑡 + ∫

1

0

𝑡2 𝜕3𝑡 𝑢
(
𝑡𝑛−1 +

k𝑛
2
𝑡, ⋅
)
𝑑𝑡

]
,

𝔏𝑛
2 =

k2𝑛
8

[
∫

1

0

𝑡 𝜕2𝑡 𝛥𝑢
(
𝑡𝑛 −

k𝑛
2
𝑡, ⋅
)
𝑑𝑡 + ∫

1

0

𝑡 𝜕2𝑡 𝛥𝑢
(
𝑡𝑛−1 +

k𝑛
2
𝑡, ⋅
)
𝑑𝑡

]
,

𝔏𝑛
3 =𝑓

(|𝑢𝑛−1

2 |2) k2𝑛
8

[
∫

1

0

𝑡 𝜕2𝑡 𝑢
(
𝑡𝑛 −

k𝑛
2
𝑡, ⋅
)
𝑑𝑡 + ∫

1

0

𝑡 𝜕2𝑡 𝑢(𝑡𝑛−1 +
k𝑛
2
𝑡, ⋅) 𝑑𝑡

]
.

(33)

Finally, we use (31), (33), and (32), to obtain the consistency error bounds (24) and (25). The esti-
mates (26)–(29) follow by a similar manipulation after applying the operators ∇ and 𝛥 to both
sides of (31). □

3 TIME DISCRETE APPROXIMATIONS

3.1 Constructing a mollifier

Let 𝜉 ∶ (0, +∞) × ℝ → [0, 1] be defined by

𝜉(𝜆, 𝑥) ∶=

⎧⎪⎪⎨⎪⎪⎩

1, if 𝑥 ≤ 𝜆,

2𝜆−𝑥

𝜆
, if 𝑥 ∈ (𝜆, 2𝜆],

0, if 𝑥>2𝜆,

∀ 𝑥 ∈ ℝ, ∀ 𝜆 > 0. (34)

Then, for 𝜆 > 0 and 𝑡 ∈ [0, 𝑇], we define (cf. Ref. [46]) a mollifier𝖬𝜆
2,∞(𝑡) ∶ 𝐻4(𝐷) → 𝐻4(𝐷) by

𝖬𝜆
2,∞(𝑡)𝑣 ∶= 𝑣 𝜉

(
𝜆, ‖𝑣 − 𝑢(𝑡, ⋅)‖2,∞) + 𝑢(𝑡, ⋅)

[
1 − 𝜉

(
𝜆, ‖𝑣 − 𝑢(𝑡, ⋅)‖2,∞) ] ∀ 𝑣 ∈ 𝐻4(𝐷), (35)

provided that the solution 𝑢 to the problem (1)–(3) satisfies 𝑢(𝑡, ⋅) ∈ 𝐻4(𝐷) for 𝑡 ∈ [0, 𝑇].
In the lemma below, we present some basic properties of the mollifier𝖬𝜆

2,∞(𝑡).
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ASADZADEH and ZOURARIS 11 of 34

Lemma 2. Let 𝜆 > 0, 𝐵𝜆(𝑣) ∶=
{
𝑤 ∈ 𝐻4(𝐷) ∶ ‖𝑣 − 𝑤‖2,∞ ≤ 𝜆

}
for 𝑣 ∈ 𝐻4(𝐷), 𝜈 be a seminorm

on𝐻4(𝐷) and 𝜇 ∶= max
[0,𝑇]

‖𝑢‖2,∞. Then, for 𝑡 ∈ [0, 𝑇], it holds that

𝖬𝜆
2,∞(𝑡)𝑣 = 𝑣 ∀ 𝑣 ∈ 𝐵𝜆(𝑢(𝑡, ⋅)), ∀ 𝜆 > 0, (36)

‖‖𝖬𝜆
2,∞(𝑡)𝑣‖‖2,∞ < 3 𝜆 ∀ 𝑣 ∈ 𝐻4(𝐷), ∀ 𝜆 ≥ 𝜇, (37)

𝜈
(
𝖬𝜆

2,∞(𝑡)𝑣 − 𝑢(𝑡, ⋅)
) ≤ 𝜈( 𝑣 − 𝑢(𝑡, ⋅) ) ∀ 𝑣 ∈ 𝐻4(𝐷), ∀ 𝜆 > 0. (38)

Proof. Equality (36) is a simple outcome of the definition (34). The proofs for (37) and (38) follow
easily, by proceeding along the lines of the proof of Lemmata 3.1 and 3.2 in [47], and thus are
omitted. □

3.2 The (MTD) approximations

Let 𝜆 > 0, 𝑓 ∈ 𝐶2([0, +∞),ℝ), 𝑢0 ∈ ℍ4(𝐷), and 𝛥𝑢0 ∈ ℍ2(𝐷). Then, we construct (MTD)
approximations of 𝑢 following the steps below:

Step MTD1. Set

Υ0
4,𝜆

∶= 𝑢0 ∈ ℍ4(𝐷). (39)

Step MDT2. For𝑚 = 1,… ,𝑁, first seek Υ
𝑚−

1

2

4,𝜆
∈ ℍ4(𝐷) such that

Υ
𝑚−

1

2

4,𝜆
− Υ𝑚−1

4,𝜆
= i

k𝑚
4
𝛥

(
Υ
𝑚−

1

2

4,𝜆
+ Υ𝑚−1

4,𝜆

)
+ i

k𝑚
4
𝑓
(||𝖬𝑚−1

2,∞,𝜆
||2)

(
Υ
𝑚−

1

2

4,𝜆
+ Υ𝑚−1

4,𝜆

)
(40)

with𝖬𝑚−1
2,∞,𝜆

∶= 𝖬𝜆
2,∞(𝑡𝑚−1)Υ

𝑚−1
4,𝜆

, and then seek Υ𝑚
4,𝜆

∈ ℍ4(𝐷) such that

Υ𝑚
4,𝜆

− Υ𝑚−1
4,𝜆

= i
k𝑚
2
𝛥
(
Υ𝑚
4,𝜆

+ Υ𝑚−1
4,𝜆

)
+ i

k𝑚
2
𝑓

(||𝖬𝑚−
1

2

2,∞,𝜆
||2
)(

Υ𝑚
4,𝜆

+ Υ𝑚−1
4,𝜆

)
(41)

with𝖬
𝑚−

1

2

2,∞,𝜆
∶= 𝖬𝜆

2,∞(𝑡
𝑚−

1

2

)Υ
𝑚−

1

2

4,𝜆
.

Below, we discuss the existence and uniqueness of the (MTD) approximations defined above.

Lemma 3. Let 𝜆 > 0, 𝑓 ∈ 𝐶2([0, +∞),ℝ), 𝑢0 ∈ ℍ4(𝐷), and 𝛥𝑢0 ∈ ℍ2(𝐷). Then, the (MTD)

approximations (Υ
𝑚−

1

2

4,𝜆
)𝑁𝑚=1 and (Υ𝑚

4,𝜆
)𝑁𝑚=1 are well defined in ℍ4(𝐷) by (40) and (41), and

𝛥Υ
𝑚−

1

2

4,𝜆
, 𝛥Υ𝑚

4,𝜆
∈ ℍ2(𝐷) for𝑚 = 1,… ,𝑁.

Proof. The proof is based on an induction argument. First, we observe that, by our assumptions,
we have Υ0

4,𝜆
∈ ℍ4(𝐷) and 𝛥Υ0

4,𝜆
∈ ℍ2(𝐷). Now, let us assume that for a given 𝓁 ∈ {1, … ,𝑁}, the

(MTD) approximationΥ𝓁−1
4,𝜆

is well defined inℍ4(𝐷) ⊂ 𝐶2(𝐷) and satisfies𝛥Υ𝓁−1
4,𝜆

∈ ℍ2(𝐷). Then,
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12 of 34 ASADZADEH and ZOURARIS

we define a linear elliptic operator Λ ∶ ℍ2(𝐷) → 𝐿2(𝐷) by

Λ𝑣 ∶= 𝑣 − i
k𝓁
4
𝛥𝑣 − i

k𝓁
4
𝑓
(||𝖬𝓁−1

2,∞,𝜆
||2) 𝑣 ∀ 𝑣 ∈ ℍ2(𝐷)

and the corresponding bilinear form𝔅 ∶ ℍ1(𝐷) × ℍ1(𝐷) → ℂ by

𝔅(𝑣,𝑤) ∶= (𝑣, 𝑤) + i
k𝓁
4
(∇𝑣,∇𝑤) − i

k𝓁
4

(
𝑓
(|𝖬𝓁−1

2,∞,𝜆
|2) 𝑣, 𝑤) ∀ 𝑣,𝑤 ∈ ℍ1(𝐷).

According to (40), we are looking for a Υ
𝓁−

1

2

4,𝜆
∈ ℍ4(𝐷) such that

ΛΥ
𝓁−

1

2

4,𝜆
= Φ

𝓁−
1

2 , (42)

where

Φ
𝓁−

1

2 ∶= Υ𝓁−1
4,𝜆

+ i
k𝓁
4
𝛥Υ𝓁−1

4,𝜆
+ i

k𝓁
4
𝑓
(||𝖬𝓁−1

2,∞,𝜆
||2)Υ𝓁−1

4,𝜆
∈ ℍ2(𝐷).

Since Re [𝔅(𝑣, 𝑣)] = ‖𝑣‖2 for 𝑣 ∈ ℍ1(𝐷), the Fredholm Alternative Theorem (see, e.g., Ref. [18])

yields existence and uniqueness of a weak solutionΥ
𝓁−

1

2

4,𝜆
∈ ℍ1(𝐷). SinceΦ𝓁−

1

2 ∈ 𝐻2(𝐷), the stan-

dard theory of elliptic regularity yields, in addition, thatΥ
𝓁−

1

2

4,𝜆
∈ ℍ4(𝐷), andhence it is the solution

of (42). Since Φ𝓁−
1

2 ∈ ℍ2(𝐷), Υ
𝓁−

1

2

4,𝜆
∈ ℍ2(𝐷), and 𝑓

(||𝖬𝓁−1
2,∞,𝜆

||2) ∈ 𝐶2(𝐷), it follows easily from

(42) that 𝛥Υ
𝓁−

1

2

4,𝜆
∈ ℍ2(𝐷). Proceeding in an analogous manner, we show, also, that there exists

unique Υ𝓁
4,𝜆

∈ ℍ4(𝐷) solving (41) and satisfying 𝛥Υ𝓁
4,𝜆

∈ ℍ2(𝐷). □

3.3 Convergence of the (MTD) approximations

Here, we investigate convergence properties of the (MTD) approximations in various norms.

Theorem 1. Let us assume that 𝑓 ∈ 𝐶3([0, +∞),ℝ), 𝑢0 ∈ ℍ4(𝐷), 𝛥𝑢0 ∈ ℍ2(𝐷),

𝑢 ∈ 𝐶3([0, 𝑇], ℍ2(𝐷)) ∩ 𝐶2([0, 𝑇], ℍ4(𝐷)),

𝜆 > 1 + 3 max
[0,𝑇]

‖𝑢‖2,∞, and 𝜏 ∶= max
1≤𝑚≤𝑁

k𝑚. Then, there exist positive constants 𝖢𝙸
𝜆
, 𝖢𝙸𝙸

𝜆
, and 𝖢𝙸𝙸𝙸

𝜆
,

independent of (k𝑚)𝑁𝑚=1 and𝑁, such that

max
1≤𝑚≤𝑁

‖‖𝑢𝑚−
1

2 − Υ
𝑚−

1

2

4,𝜆
‖‖1 + max

0≤𝑚≤𝑁
‖𝑢𝑚 − Υ𝑚

4,𝜆
‖1 ≤ 𝖢𝙸

𝜆
𝜏2, (43)

max
1≤𝑚≤𝑁

‖‖𝛥𝑢𝑚−
1

2 − 𝛥Υ
𝑚−

1

2

4,𝜆
‖‖ + max

0≤𝑚≤𝑁
‖𝛥𝑢𝑚 − 𝛥Υ𝑚

4,𝜆
‖ ≤ 𝖢𝙸𝙸

𝜆
𝜏2, (44)

and

max
1≤𝑚≤𝑁

‖𝛥2𝑢
𝑚−

1

2 − 𝛥2Υ
𝑚−

1

2

4,𝜆
‖ + max

0≤𝑚≤𝑁
‖𝛥2𝑢𝑚 − 𝛥2Υ𝑚

4,𝜆
‖ ≤ 𝖢𝙸𝙸𝙸

𝜆
[𝜏 + 𝖪()], (45)
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ASADZADEH and ZOURARIS 13 of 34

where

𝖪() ∶=
𝑁∑

𝑚=1

𝑚∑
𝓁=1

k3
𝓁
=

𝑁∑
𝓁=1

(𝑁 + 1 − 𝓁) k3
𝓁
. (46)

Proof. We simplify notation by setting 𝖤
𝑚−

1

2 ∶= 𝑢
𝑚−

1

2 − Υ
𝑚−

1

2

4,𝜆
∈ ℍ4(𝐷) for 𝑚 = 1,… ,𝑁, and

𝖤𝑚 ∶= 𝑢𝑚 − Υ𝑚
4,𝜆

∈ ℍ4(𝐷) for 𝑚 = 0,… ,𝑁. Also, we set 𝑐1,𝑚 ∶= 𝑚 − 1, 𝑐2,𝑚 ∶= 𝑚 −
1

2
, 𝓁1,𝑚 ∶=

𝑚 −
1

2
, and 𝓁2,𝑚 ∶= 𝑚 for𝑚 = 1,… ,𝑁.

In the sequel, we will use the symbol 𝐶 to denote a generic constant that is independent of
(k𝑚)𝑁𝑚=1, 𝑁 and 𝜆, and may be different at different appearances. Also, we will use the symbol
𝐶𝜆 (with or without additional indexes) to denote a generic constant that depends on 𝜆 but is
independent of (k𝑚)𝑁𝑚=1 and 𝑁, not necessarily the same at each occurrence. We note that the
constants 𝐶 and 𝐶𝜆 may depend on the solution 𝑢 and its derivatives.
Part 1: Subtracting (40) from (18) and (41) from (19), we arrive at the following error equations:

𝖤
𝑚−

1

2 − 𝖤𝑚−1 = i
k𝑚
4
𝛥

(
𝖤
𝑚−

1

2 + 𝖤𝑚−1

)
+

i k𝑚
4

(
𝖠1,𝑚 + 𝖡1,𝑚

)
+

k𝑚
2
𝜂
𝑚−

1

2 , (47)

𝖤𝑚 − 𝖤𝑚−1 = i
k𝑚
2
𝛥
(
𝖤𝑚 + 𝖤𝑚−1

)
+

i k𝑚
2

(
𝖠2,𝑚 + 𝖡2,𝑚

)
+ k𝑚 𝜂𝑚, (48)

where

𝖠𝑗,𝑚 ∶=
[
𝑓
(|𝑢𝑐𝑗,𝑚 |2) − 𝑓

(|𝖬𝑐𝑗,𝑚
2,∞,𝜆

|2)] (𝑢𝓁𝑗,𝑚 + 𝑢𝑚−1) ∈ ℍ2(𝐷),

𝖡𝑗,𝑚 ∶=𝑓(|𝖬𝑐𝑗,𝑚
2,∞,𝜆

|2)(𝖤𝓁𝑗,𝑚 + 𝖤𝑚−1
)
∈ ℍ2(𝐷),

for𝑚 = 1,… ,𝑁 and 𝑗 = 1, 2.

Part 2: Here, we deal with the 𝐿2(𝐷)-estimation of the terms 𝖠1,𝑚 and 𝖠2,𝑚, appearing on the
right-hand side of (47) and (48). First, using the mean value theorem and (37), we obtain

‖𝖠𝑗,𝑚‖ ≤( |𝑢𝓁𝑗,𝑚 |∞ + |𝑢𝑚−1|∞ )‖‖𝑓(|𝑢𝑐𝑗,𝑚 |2) − 𝑓
(|𝖬𝑐𝑗,𝑚

2,∞,𝜆
|2)‖‖

≤𝐶
( ‖𝑢𝓁𝑗,𝑚‖2 + ‖𝑢𝑚−1‖2 )‖‖𝑓(|𝑢𝑐𝑗,𝑚 |2) − 𝑓

(|𝖬𝑐𝑗,𝑚
2,∞,𝜆

|2)‖‖
≤𝐶

‖‖‖‖‖‖
[
∫

1

0

𝑓′
(
𝜌 |𝑢𝑐𝑗,𝑚 |2 + (1 − 𝜌) |𝖬𝑐𝑗,𝑚

2,∞,𝜆
|2) 𝑑𝜌

]( |𝑢𝑐𝑗,𝑚 |2 − |𝖬𝑐𝑗,𝑚
2,∞,𝜆

|2 )‖‖‖‖‖‖
≤𝐶

|||||∫
1

0

𝑓′
(
𝜌 |𝑢𝑐𝑗,𝑚 |2 + (1 − 𝜌) |𝖬𝑐𝑗,𝑚

2,∞,𝜆
|2) 𝑑𝜌

|||||∞ ‖‖ |𝑢𝑐𝑗,𝑚 |2 − |𝖬𝑐𝑗,𝑚
2,∞,𝜆

|2 ‖‖
≤𝐶 max

𝜌∈[0,1]

||||𝑓′
(
𝜌 |𝑢𝑐𝑗,𝑚 |2 + (1 − 𝜌) |𝖬𝑐𝑗,𝑚

2,∞,𝜆
|2) ||||∞ ‖‖ |𝑢𝑐𝑗,𝑚 |2 − |𝖬𝑐𝑗,𝑚

2,∞,𝜆
|2 ‖‖

≤𝐶 max|𝑥|∈[0,3𝜆] |𝑓′(𝑥2)| ‖‖ |𝑢𝑐𝑗,𝑚 |2 − |𝖬𝑐𝑗,𝑚
2,∞,𝜆

|2 ‖‖
≤𝐶𝜆

‖‖ |𝑢𝑐𝑗,𝑚 |2 − |𝖬𝑐𝑗,𝑚
2,∞,𝜆

|2 ‖‖, 𝑚 = 1,… ,𝑁, 𝑗 = 1, 2.

(49)
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14 of 34 ASADZADEH and ZOURARIS

Next, we apply (37) and (38) to get

‖‖ |𝑢𝑐𝑗,𝑚 |2 − |𝖬𝑐𝑗,𝑚
2,∞,𝜆

|2 ‖‖ ≤ ‖‖ |𝑢𝑐𝑗,𝑚 + 𝖬
𝑐𝑗,𝑚
2,∞,𝜆

| |𝑢𝑐𝑗,𝑚 − 𝖬
𝑐𝑗,𝑚
2,∞,𝜆

| ‖‖
≤( ||𝑢𝑐𝑗,𝑚 ||∞ + ||𝖬𝑐𝑗,𝑚

2,∞,𝜆
||∞ )‖‖𝑢𝑐𝑗,𝑚 − 𝖬

𝑐𝑗,𝑚
2,∞,𝜆

‖‖
≤𝐶𝜆

‖‖𝑢𝑐𝑗,𝑚 − 𝖬
𝑐𝑗,𝑚
2,∞,𝜆

‖‖
≤𝐶𝜆 ‖𝑢𝑐𝑗,𝑚 − Υ

𝑐𝑗,𝑚
4,𝜆

‖
≤𝐶𝜆 ‖𝖤𝑐𝑗,𝑚‖, 𝑚 = 1,… ,𝑁, 𝑗 = 1, 2.

(50)

Thus, from (49) and (50), it follows that

‖𝖠𝑗,𝑚‖ ≤ 𝐶𝜆 ‖𝖤𝑐𝑗,𝑚‖, 𝑚 = 1,… ,𝑁, 𝑗 = 1, 2. (51)

Part 3: Taking the 𝐿2(𝐷)-inner product of both sides of (47) and (48), with 𝖤
𝑚−

1

2 + 𝖤𝑚−1 and
𝖤𝑚 + 𝖤𝑚−1, respectively, and then integrating by parts, taking real parts, applying the Cauchy–
Schwarz inequality, and using (51), we obtain

‖𝖤𝑚−
1

2 ‖2 − ‖𝖤𝑚−1‖2 = k𝑚
2
Re(𝜂𝑚−

1

2 , 𝖤
𝑚−

1

2 + 𝖤𝑚−1) −
k𝑚
4
Im(𝖠1,𝑚, 𝖤

𝑚−
1

2 + 𝖤𝑚−1)

≤ k𝑚

(‖𝜂𝑚−
1

2 ‖ + 𝐶𝜆 ‖𝖤𝑚−1‖)(‖𝖤𝑚−
1

2 ‖ + ‖𝖤𝑚−1‖)
and

‖𝖤𝑚‖2 − ‖𝖤𝑚−1‖2 = k𝑚 Re(𝜂𝑚, 𝖤𝑚 + 𝖤𝑚−1) −
k𝑚
2
Im(𝖠2,𝑚, 𝖤𝑚 + 𝖤𝑚−1)

≤ k𝑚

(‖𝜂𝑚‖ + 𝐶𝜆 ‖𝖤𝑚−
1

2 ‖) (‖𝖤𝑚‖ + ‖𝖤𝑚−1‖)
for𝑚 = 1,… ,𝑁 (where we have used that (𝖡𝑗,𝑚, 𝖤𝑗,𝑚 + 𝖤𝑚−1) is real), which, along with (24) and
(25), yields

‖𝖤𝑚−
1

2 ‖ ≤ (1 + 𝐶𝜆 k𝑚) ‖𝖤𝑚−1‖ + 𝐶 k2𝑚, (52)

‖𝖤𝑚‖ ≤ ‖𝖤𝑚−1‖ + 𝐶𝜆 k𝑚 ‖𝖤𝑚−
1

2 ‖ + 𝐶 k3𝑚 (53)

for𝑚 = 1,… ,𝑁. Next, we combine (52) and (53), to conclude

‖𝖤𝑚‖ ≤ (1 + 𝐶𝜆 k𝑚) ‖𝖤𝑚−1‖ + 𝐶𝜆 k3𝑚, 𝑚 = 1,… ,𝑁. (54)

In view of 𝖤0 = 0, we apply a standard discrete Gronwall argument on (54), to arrive at

‖𝖤𝑚‖ ≤ 𝐶𝜆

(
𝑚∑
𝓁=1

k3
𝓁

)
, 𝑚 = 1,… ,𝑁, (55)
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ASADZADEH and ZOURARIS 15 of 34

which, along with (52), yields

‖𝖤𝑚−
1

2 ‖ ≤ 𝐶𝜆

(
k2𝑚 +

𝑚−1∑
𝓁=1

k3
𝓁

)
, 𝑚 = 1,… ,𝑁. (56)

Part 4: First, we take the 𝐿2(𝐷)-inner product of both sides of (47) by 𝛥(𝖤𝑚−
1

2 + 𝖤𝑚−1), and of
(48) by 𝛥(𝖤𝑚 + 𝖤𝑚−1). Then, in light of (23), we integrate by parts to get

(
∇
(
𝖤𝓁𝑗,𝑚 − 𝖤𝑚−1

)
, ∇

(
𝖤𝓁𝑗,𝑚 + 𝖤𝑚−1

))
= − i 2𝑗−3 k𝑚 ‖𝛥(𝖤𝓁𝑗,𝑚 + 𝖤𝑚−1

)‖2
+ 2𝑗−2 k𝑚

(
∇𝜂𝓁𝑗,𝑚 , ∇

(
𝖤𝓁𝑗,𝑚 + 𝖤𝑚−1

))
+ i 2𝑗−3 k𝑚

(
∇𝖠𝑗,𝑚,∇

(
𝖤𝓁𝑗,𝑚 + 𝖤𝑚−1

))
+ i 2𝑗−3 k𝑚

(
∇𝖡𝑗,𝑚,∇

(
𝖤𝓁𝑗,𝑚 + 𝖤𝑚−1

))
(57)

for 𝑚 = 1,… ,𝑁 and 𝑗 = 1, 2. Taking the real parts of (57), and then using (26), (27), and the
Cauchy–Schwarz inequality, we obtain

|𝖤𝑚−
1

2 |21 − |𝖤𝑚−1|21 ≤𝐶
(
k2𝑚 + k𝑚 ‖∇𝖠1,𝑚‖)( |𝖤𝑚−

1

2 |1 + |𝖤𝑚−1|1)
−

k𝑚
4
Im(∇𝖡1,𝑚,∇(𝖤

𝑚−
1

2 + 𝖤𝑚−1))

(58)

and

|𝖤𝑚|21 − |𝖤𝑚−1|21 ≤𝐶
(
k3𝑚 + k𝑚 ‖∇𝖠2,𝑚‖ ) ( |𝖤𝑚|1 + |𝖤𝑚−1|1 )

−
k𝑚
2
Im(∇𝖡2,𝑚,∇(𝖤𝑚 + 𝖤𝑚−1))

(59)

for𝑚 = 1,… ,𝑁. Using (37), we have

||||𝜕𝑥𝜅(𝑓(|𝖬𝑐𝑗,𝑚
2,∞,𝜆

|2))||||∞ =2
|||||𝑓′(|𝖬𝑐𝑗,𝑚

2,∞,𝜆
|2) Re

(
𝜕𝑥𝜅𝖬

𝑐𝑗,𝑚
2,∞,𝜆

𝖬
𝑐𝑗,𝑚
2,∞,𝜆

)|||||∞
≤ 2 max

𝑥∈[0,3𝜆]
|𝑓′(𝑥2)| |||𝖬𝑐𝑗,𝑚

2,∞,𝜆

|||∞ |||𝜕𝑥𝜅𝖬𝑐𝑗,𝑚
2,∞,𝜆

|||∞
≤ 2 max

𝑥∈[0,3𝜆]
|𝑓′(𝑥2)| ‖‖𝖬𝑐𝑗,𝑚

2,∞,𝜆
‖‖21,∞

≤𝐶𝜆, 𝜅 = 1,… , 𝑑, 𝑚 = 1,… ,𝑁, 𝑗 = 1, 2,

(60)
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16 of 34 ASADZADEH and ZOURARIS

which is used to obtain

|| Im(∇𝖡𝑗,𝑚,∇(𝖤𝓁𝑗,𝑚 + 𝖤𝑚−1
))|| = ||| Im((𝖤𝓁𝑗,𝑚 + 𝖤𝑚−1

)
∇(𝑓(|𝖬𝑐𝑗,𝑚

2,∞,𝜆
|2)), ∇(𝖤𝓁𝑗,𝑚 + 𝖤𝑚−1

))|||
≤ ‖‖(𝖤𝓁𝑗,𝑚 + 𝖤𝑚−1

)
∇(𝑓(|𝖬𝑐𝑗,𝑚

2,∞,𝜆
|2)‖‖ ||𝖤𝓁𝑗,𝑚 + 𝖤𝑚−1||1

≤𝐶 max
1≤𝜅≤𝑑

||𝜕𝑥𝜅(𝑓(|𝖬𝑐𝑗,𝑚
2,∞,𝜆

|2))||∞ ‖𝖤𝓁𝑗,𝑚 + 𝖤𝑚−1‖ |𝖤𝓁𝑗,𝑚 + 𝖤𝑚−1|1
≤𝐶𝜆

(‖𝖤𝓁𝑗,𝑚‖ + ‖𝖤𝑚−1‖)(|𝖤𝓁𝑗,𝑚 |1 + |𝖤𝑚−1|1)
(61)

for 𝑚 = 1,… ,𝑁 and 𝑗 = 1, 2 (where we have used that Im(𝑓(|𝖬𝑐𝑗,𝑚
2,∞,𝜆

|2)∇(𝖤𝓁𝑗,𝑚 +

𝖤𝑚−1), ∇(𝖤𝓁𝑗,𝑚 + 𝖤𝑚−1)) = 0). Observing that

∇𝖠𝑗,𝑚 = (𝑢𝓁𝑗,𝑚 + 𝑢𝑚−1)
(
𝑓′
(|𝑢𝑐𝑗,𝑚 |2) − 𝑓′

(|𝖬𝑐𝑗,𝑚
2,∞,𝜆

|2))∇|𝑢𝑐𝑗,𝑚 |2
+ (𝑢𝓁𝑗,𝑚 + 𝑢𝑚−1) 𝑓′

(|𝖬𝑐𝑗,𝑚
2,∞,𝜆

|2) ∇
( |𝑢𝑐𝑗,𝑚 |2 − |𝖬𝑐𝑗,𝑚

2,∞,𝜆
|2)

+
[
𝑓
(|𝑢𝑐𝑗,𝑚 |2) − 𝑓

(|𝖬𝑐𝑗,𝑚
2,∞,𝜆

|2)]∇(𝑢𝓁𝑗,𝑚 + 𝑢𝑚−1)

and moving along the lines of (49) and (50), we obtain

‖∇𝖠𝑗,𝑚‖ ≤𝐶𝜆 ‖𝖤𝑐𝑗,𝑚‖ + 𝐶 ‖‖𝑓′
(|𝖬𝑐𝑗,𝑚

2,∞,𝜆
|2)∇(|𝑢𝑐𝑗,𝑚 |2 − |𝖬𝑐𝑗,𝑚

2,∞,𝜆
|2)‖‖

≤𝐶𝜆 ‖𝖤𝑐𝑗,𝑚‖ + 𝐶 ||𝑓′
(|𝖬𝑐𝑗,𝑚

2,∞,𝜆
|2)||∞ ‖∇(|𝑢𝑐𝑗,𝑚 |2 − |𝖬𝑐𝑗,𝑚

2,∞,𝜆
|2)‖‖

≤𝐶𝜆 ‖𝖤𝑐𝑗,𝑚‖ + 𝐶 max|𝑥|∈[0,3𝜆] |𝑓′(𝑥2)| ‖∇(|𝑢𝑐𝑗,𝑚 |2 − |𝖬𝑐𝑗,𝑚
2,∞,𝜆

|2)‖‖
≤𝐶𝜆

[ ‖𝖤𝑐𝑗,𝑚‖ + ‖∇(|𝑢𝑐𝑗,𝑚 |2 − |𝖬𝑐𝑗,𝑚
2,∞,𝜆

|2)‖‖]
(62)

for𝑚 = 1,… ,𝑁 and 𝑗 = 1, 2. In light of Lemma 2 and of the following relation

∇
( |𝑢𝑐𝑗,𝑚 |2 − |𝖬𝑐𝑗,𝑚

2,∞,𝜆
|2) = Re

[ (
𝑢𝑐𝑗,𝑚 + 𝖬

𝑐𝑗,𝑚
2,∞,𝜆

)
∇
(
𝑢𝑐𝑗,𝑚 − 𝖬

𝑐𝑗,𝑚
2,∞,𝜆

)]
+ Re

[ (
𝑢𝑐𝑗,𝑚 − 𝖬

𝑐𝑗,𝑚
2,∞,𝜆

)
∇(𝑢𝑐𝑗,𝑚 + 𝖬

𝑐𝑗,𝑚
2,∞,𝜆

)

]
,

(63)

we get

‖‖∇(|𝑢𝑐𝑗,𝑚 |2 − |𝖬𝑐𝑗,𝑚
2,∞,𝜆

|2)‖‖ ≤(|𝑢𝑐𝑗,𝑚 |∞ + |𝖬𝑐𝑗,𝑚
2,∞,𝜆

|∞)‖∇(𝑢𝑐𝑗,𝑚 − 𝖬
𝑐𝑗,𝑚
2,∞,𝜆

)‖
+ 𝐶 max

1≤𝜅≤𝑑 |𝜕𝑥𝜅 (𝑢𝑐𝑗,𝑚 + 𝖬
𝑐𝑗,𝑚
2,∞,𝜆

)|∞ ‖𝑢𝑐𝑗,𝑚 − 𝖬
𝑐𝑗,𝑚
2,∞,𝜆

‖
≤𝐶𝜆 ( ‖𝖤𝑐𝑗,𝑚‖ + |𝖤𝑐𝑗,𝑚 |1 )

(64)
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ASADZADEH and ZOURARIS 17 of 34

for𝑚 = 1,… ,𝑁 and 𝑗 = 1, 2. Thus, (62) and (64) yield

‖∇𝖠𝑗,𝑚‖ ≤ 𝐶𝜆 ( ‖𝖤𝑐𝑗,𝑚‖ + |𝖤𝑐𝑗,𝑚 |1 ), 𝑚 = 1,… ,𝑁, 𝑗 = 1, 2. (65)

Now, we use (58), (59), (61), (65), and (52), to conclude

|𝖤𝑚−
1

2 |1 ≤ (1 + 𝐶𝜆 k𝑚) |𝖤𝑚−1|1 + 𝐶𝜆 (k2𝑚 + k𝑚 ‖𝖤𝑚−1‖) (66)

and

|𝖤𝑚|1 ≤ |𝖤𝑚−1|1 + 𝐶𝜆 k𝑚

(‖𝖤𝑚‖ + ‖𝖤𝑚−1‖ + |𝖤𝑚−
1

2 |1 + k2𝑚

)
(67)

for𝑚 = 1,… ,𝑁. Finally, (66) and (67) yield

|𝖤𝑚|1 ≤ (1 + 𝐶𝜆 k𝑚) |𝖤𝑚−1|1 + 𝐶𝜆 k𝑚 (k2𝑚 + ‖𝖤𝑚‖ + ‖𝖤𝑚−1‖), 𝑚 = 1,… ,𝑁. (68)

In light of 𝖤0 = 0, we apply a standard discrete Gronwall argument on (68) and use (55), to arrive
at

|𝖤𝑚|1 ≤𝐶𝜆

(
𝑚∑
𝓁=1

k3
𝓁
+ max

0≤𝓁≤𝑚 ‖𝖤𝓁‖
)

≤ 𝐶𝜆

(
𝑚∑
𝓁=1

k3
𝓁

)
, 𝑚 = 1,… ,𝑁, (69)

which, along with (66) and (55), yields

|𝖤𝑚−
1

2 |1 ≤ 𝐶𝜆

(
k2𝑚 +

𝑚−1∑
𝓁=1

k3
𝓁

)
, 𝑚 = 1,… ,𝑁. (70)

Thus, (43) follows as a simple outcome of (55), (56), (69), and (70).

Part 5: Here, for simplicity, we set 𝖹𝑚−
1

2 ∶= 𝛥𝖤
𝑚−

1

2 ∈ ℍ2(𝐷) for 𝑚 = 1,… ,𝑁, and 𝖹𝑚 ∶=

𝛥𝖤𝑚 ∈ ℍ2(𝐷) for𝑚 = 0,… ,𝑁 (see Lemma 3 and (22)). Then, from (47) and (48), we obtain

𝖹
𝑚−

1

2 − 𝖹𝑚−1 = i
k𝑚
4
𝛥(𝖹

𝑚−
1

2 + 𝖹𝑚−1) + i
k𝑚
4

7∑
𝓁=1

𝖪1,𝑚
𝓁

+
k𝑚
2
𝛥𝜂

𝑚−
1

2 , (71)

𝖹𝑚 − 𝖹𝑚−1 = i
k𝑚
2
𝛥
(
𝖹𝑚 + 𝖹𝑚−1

)
+ i

k𝑚
2

7∑
𝓁=1

𝖪2,𝑚
𝓁

+ k𝑚 𝛥𝜂𝑚 (72)

for𝑚 = 1,… ,𝑁, where

𝖪
𝑗,𝑚
1 ∶=𝛥

[
𝑓
(|𝑢𝑐𝑗,𝑚 |2) − 𝑓

(|𝖬𝑐𝑗,𝑚
2,∞,𝜆

|2)](𝑢𝓁𝑗,𝑚 + 𝑢𝑚−1
)
,

𝖪
𝑗,𝑚
2 ∶=

[
𝑓
(|𝑢𝑐𝑗,𝑚 |2) − 𝑓

(|𝖬𝑐𝑗,𝑚
2,∞,𝜆

|2)]𝛥(𝑢𝓁𝑗,𝑚 + 𝑢𝑚−1),

𝖪
𝑗,𝑚
3 ∶= 2𝑓′

(|𝑢𝑐𝑗,𝑚 |2) [∇(|𝑢𝑐𝑗,𝑚 |2 − |𝖬𝑐𝑗,𝑚
2,∞,𝜆

|2) ⋅ ∇(𝑢𝓁𝑗,𝑚 + 𝑢𝑚−1)
]
,

𝖪
𝑗,𝑚
4 ∶=

(
𝑓′
(|𝑢𝑐𝑗,𝑚 |2) − 𝑓′

(|𝖬𝑐𝑗,𝑚
2,∞,𝜆

|2)) [∇|𝖬𝑐𝑗,𝑚
2,∞,𝜆

|2 ⋅ ∇(𝑢𝓁𝑗,𝑚 + 𝑢𝑚−1)
]
,
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18 of 34 ASADZADEH and ZOURARIS

and

𝖪
𝑗,𝑚
5 ∶= 𝛥(𝑓(|𝖬𝑐𝑗,𝑚

2,∞,𝜆
|2))(𝖤𝓁𝑗,𝑚 + 𝖤𝑚−1

)
, 𝖪

𝑗,𝑚
6 ∶= 2∇(𝑓(|𝖬𝑐𝑗,𝑚

2,∞,𝜆
|2)) ⋅ ∇(𝖤𝓁𝑗,𝑚 + 𝖤𝑚−1

)
,

𝖪
𝑗,𝑚
7 ∶= 𝑓(|𝖬𝑐𝑗,𝑚

2,∞,𝜆
|2) (𝖹𝓁𝑗,𝑚 + 𝖹𝑚−1).

Part 6: Taking the 𝐿2(𝐷)-inner product of both sides of (71) by 𝖹𝑚−
1

2 + 𝖹𝑚−1 and of both sides
of (72) by 𝖹𝑚 + 𝖹𝑚−1, integrating by parts, taking real parts, observing that

Im
[
(𝖪

𝑗,𝑚
7 , 𝖹𝓁𝑗,𝑚 + 𝖹𝑚−1)

]
= 0, 𝑚 = 1,… ,𝑁, 𝑗 = 1, 2,

using (28) and (29), and applying the Cauchy–Schwarz inequality, we get

‖𝖹𝓁𝑗,𝑚‖ − ‖𝖹𝑚−1‖ ≤ 𝐶

(
k𝑗+1𝑚 + k𝑚

6∑
𝓁=1

‖𝖪𝑗,𝑚
𝓁

‖), 𝑚 = 1,… ,𝑁, 𝑗 = 1, 2. (73)

In view of Lemma 2, we have

||𝛥(𝑓(|𝖬𝑐𝑗,𝑚
2,∞,𝜆

|2))|| ≤ 𝑑∑
𝜅=1

|||𝑓′′(|𝖬𝑐𝑗,𝑚
2,∞,𝜆

|2)(𝜕𝑥𝜅 |𝖬𝑐𝑗,𝑚
2,∞,𝜆

|2)2 + 𝑓′(|𝖬𝑐𝑗,𝑚
2,∞,𝜆

|2) 𝜕2𝑥𝜅 |𝖬𝑐𝑗,𝑚
2,∞,𝜆

|2|||
≤ 4 max|𝑥|∈[0,3𝜆] |𝑓′′(𝑥2)| ||𝖬𝑐𝑗,𝑚

2,∞,𝜆
||2∞ 𝑑∑

𝜅=1

||𝜕𝑥𝜅𝖬𝑐𝑗,𝑚
2,∞,𝜆

||2∞
+ 2 max|𝑥|∈[0,3𝜆] |𝑓′(𝑥2)| 𝑑∑

𝜅=1

(||𝜕2𝑥𝜅𝖬𝑐𝑗,𝑚
2,∞,𝜆

||∞ ||𝖬𝑐𝑗,𝑚
2,∞,𝜆

||∞ + ||𝜕𝑥𝜅𝖬𝑐𝑗,𝑚
2,∞,𝜆

||2∞)
≤𝐶𝜆

[ ‖‖𝖬𝑐𝑗,𝑚
2,∞,𝜆

‖‖41,∞ + ‖𝖬𝑐𝑗,𝑚
2,∞,𝜆

‖22,∞ + ‖𝖬𝑐𝑗,𝑚
2,∞,𝜆

‖21,∞ ]
≤𝐶𝜆

(74)

and

|||∇|𝖬𝑐𝑗,𝑚
2,∞,𝜆

||2 ⋅ ∇(𝑢𝓁𝑗,𝑚 + 𝑢𝑚−1
)||| ≤ 𝑑∑

𝜅=1

||𝜕𝑥𝜅 |𝖬𝑐𝑗,𝑚
2,∞,𝜆

|2||∞ ||𝜕𝑥𝜅 (𝑢𝓁𝑗,𝑚 + 𝑢𝑚−1)||∞
≤𝐶 ||𝖬𝑐𝑗,𝑚

2,∞,𝜆
||∞ 𝑑∑

𝜅=1

||𝜕𝑥𝜅𝖬𝑐𝑗,𝑚
2,∞,𝜆

||∞
≤𝐶 ‖‖𝖬𝑐𝑗,𝑚

2,∞,𝜆
‖‖21,∞

≤𝐶𝜆

(75)

for𝑚 = 1,… ,𝑁 and 𝑗 = 1, 2. Using (74) and (60), we have

‖𝖪𝑗,𝑚5 ‖ ≤ ||𝛥(𝑓(|𝖬𝑐𝑗,𝑚
2,∞,𝜆

|2))||∞ ‖𝖤𝓁𝑗,𝑚 + 𝖤𝑚−1‖
≤𝐶𝜆

(‖𝖤𝓁𝑗,𝑚‖ + ‖𝖤𝑚−1‖), (76)
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ASADZADEH and ZOURARIS 19 of 34

‖𝖪𝑗,𝑚7 ‖ ≤ ||𝑓(|𝖬𝑐𝑗,𝑚
2,∞,𝜆

|2)||∞ ‖𝖹𝓁𝑗,𝑚 + 𝖹𝑚−1‖
≤ max|𝑥|∈[0,3𝜆] |𝑓(𝑥2)| ‖𝖹𝓁𝑗,𝑚 + 𝖹𝑚−1‖
≤𝐶𝜆

(‖𝖹𝓁𝑗,𝑚‖ + ‖𝖹𝑚−1‖),
(77)

and

‖𝖪𝑗,𝑚6 ‖ ≤𝐶 max
1≤𝜅≤𝑑

||𝜕𝑥𝜅(𝑓(|𝖬𝑐𝑗,𝑚
2,∞,𝜆

|2))||∞ ‖∇(𝖤𝓁𝑗,𝑚 + 𝖤𝑚−1
)‖

≤𝐶𝜆

( |𝖤𝓁𝑗,𝑚 |1 + |𝖤𝑚−1|1 ) (78)

for𝑚 = 1,… ,𝑁 and 𝑗 = 1, 2. Using (49), (50), (63), (64), and (75), we obtain

‖𝖪𝑗,𝑚2 ‖ ≤ ||𝛥(𝑢𝓁𝑗,𝑚 + 𝑢𝑚−1)||∞ ‖𝑓(|𝑢𝑐𝑗,𝑚 |2) − 𝑓(|𝖬𝑐𝑗,𝑚
2,∞,𝜆

|2)‖
≤𝐶𝜆

( ‖𝑢𝓁𝑗,𝑚‖4 + ‖𝑢𝑚−1‖4 )‖𝖤𝑐𝑗,𝑚‖
≤𝐶𝜆 ‖𝖤𝑐𝑗,𝑚‖,

(79)

‖𝖪𝑗,𝑚3 ‖ ≤𝐶 max|𝑥|∈[0,3𝜆] |𝑓′(𝑥2)| max
1≤𝜅≤𝑑 |𝜕𝑥𝜅 (𝑢𝓁𝑗,𝑚 + 𝑢𝑚−1)|∞ ‖∇(|𝑢𝑐𝑗,𝑚 |2 − |𝖬𝑐𝑗,𝑚

2,∞,𝜆
|2)‖

≤𝐶𝜆

(‖𝑢𝓁𝑗,𝑚‖3 + ‖𝑢𝑚−1‖3) (‖𝖤𝑐𝑗,𝑚‖ + |𝖤𝑐𝑗,𝑚 |1)
≤𝐶𝜆 ‖𝖤𝑐𝑗,𝑚‖1,

(80)

and

‖𝖪𝑗,𝑚4 ‖ ≤ ||∇|𝖬𝑐𝑗,𝑚
2,∞,𝜆

|2 ⋅ ∇(𝑢𝓁𝑗,𝑚 + 𝑢𝑚−1)||∞ ‖𝑓′(|𝑢𝑐𝑗,𝑚 |2) − 𝑓′(|𝖬𝑐𝑗,𝑚
2,∞,𝜆

|2)‖
≤𝐶𝜆 ‖𝑓′(|𝑢𝑐𝑗,𝑚 |2) − 𝑓′(|𝖬𝑐𝑗,𝑚

2,∞,𝜆
|2)‖

≤𝐶𝜆 ‖𝖤𝑐𝑗,𝑚‖
(81)

for𝑚 = 1,… ,𝑁 and 𝑗 = 1, 2. To estimate 𝖪𝑗,𝑚1 , we observe that

‖𝖪𝑗,𝑚1 ‖ ≤ |𝑢𝓁𝑗,𝑚 + 𝑢𝑚−1|∞ 4∑
𝓁=1

‖𝖪𝑗,𝑚
1,𝓁

‖ ≤ 𝐶

4∑
𝓁=1

‖𝖪𝑗,𝑚
1,𝓁

‖, 𝑚 = 1,… ,𝑁, 𝑗 = 1, 2, (82)
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20 of 34 ASADZADEH and ZOURARIS

where

𝖪
𝑗,𝑚
1,1 ∶=

[
𝑓′′

(|𝑢𝑐𝑗,𝑚 |2) − 𝑓′′
(|𝖬𝑐𝑗,𝑚

2,∞,𝜆
|2) ] ||∇(|𝑢𝑐𝑗,𝑚 |2)||2,

𝖪
𝑗,𝑚
1,2 ∶=𝑓′′

(|𝖬𝑐𝑗,𝑚
2,∞,𝜆

|2) [∇(|𝑢𝑐𝑗,𝑚 |2 + |𝖬𝑐𝑗,𝑚
2,∞,𝜆

|2) ⋅ ∇
(|𝑢𝑐𝑗,𝑚 |2 − |𝖬𝑐𝑗,𝑚

2,∞,𝜆
|2)],

𝖪
𝑗,𝑚
1,3 ∶=𝛥

(|𝑢𝑐𝑗,𝑚 |2) [𝑓′
(|𝑢𝑐𝑗,𝑚 |2) − 𝑓′

(|𝖬𝑐𝑗,𝑚
2,∞,𝜆

|2) ],
𝖪
𝑗,𝑚
1,4 ∶=𝑓′

(|𝖬𝑐𝑗,𝑚
2,∞,𝜆

|2)𝛥(|𝑢𝑐𝑗,𝑚 |2 − |𝖬𝑐𝑗,𝑚
2,∞,𝜆

|2).
Moving along the lines of (49) and (50), and using (37) and (64), we have

‖𝖪𝑗,𝑚1,1 ‖ ≤
(

𝑑∑
𝜅=1

||𝜕𝑥𝜅 |𝑢𝑐𝑗,𝑚 |2||2∞
)‖‖𝑓′′

(|𝑢𝑐𝑗,𝑚 |2) − 𝑓′′
(|𝖬𝑐𝑗,𝑚

2,∞,𝜆
|2)‖‖

≤𝐶 |𝑢𝑐𝑗,𝑚 |2∞ ‖𝑢𝑐𝑗,𝑚‖21,∞ ‖‖𝑓′′
(|𝑢𝑐𝑗,𝑚 |2) − 𝑓′′

(|𝖬𝑐𝑗,𝑚
2,∞,𝜆

|2)‖‖
≤𝐶𝜆 ‖𝖤𝑐𝑗,𝑚‖,

(83)

‖𝖪𝑗,𝑚1,2 ‖ ≤ ||𝑓′′
(|𝖬𝑐𝑗,𝑚

2,∞,𝜆
|2)||∞ ‖∇(|𝑢𝑐𝑗,𝑚 |2 + |𝖬𝑐𝑗,𝑚

2,∞,𝜆
|2) ⋅ ∇

(|𝑢𝑐𝑗,𝑚 |2 − |𝖬𝑐𝑗,𝑚
2,∞,𝜆

|2)‖
≤𝐶 max|𝑥|∈[0,3𝜆] |𝑓′′(𝑥2)| (‖𝑢𝑐𝑗,𝑚‖21,∞ + ‖𝖬𝑐𝑗,𝑚

2,∞,𝜆
‖21,∞)‖‖∇(|𝑢𝑐𝑗,𝑚 |2 − |𝖬𝑐𝑗,𝑚

2,∞,𝜆
|2)‖‖

≤𝐶𝜆
‖‖∇(|𝑢𝑐𝑗,𝑚 |2 − |𝖬𝑐𝑗,𝑚

2,∞,𝜆
|2)‖‖

≤𝐶𝜆 ‖𝖤𝑐𝑗,𝑚‖1,
(84)

and

‖𝖪𝑗,𝑚1,3 ‖ ≤
||||||
𝑑∑

𝜅=1

𝜕2𝑥𝜅 |𝑢𝑐𝑗,𝑚 |2||||||∞ ‖𝑓′
(|𝑢𝑐𝑗,𝑚 |2) − 𝑓′

(|𝖬𝑐𝑗,𝑚
2,∞,𝜆

|2)‖
≤𝐶

(|𝑢𝑐𝑗,𝑚 |∞ ‖𝑢𝑐𝑗,𝑚‖4 + ‖𝑢𝑐𝑗,𝑚‖23) ‖𝑓′
(|𝑢𝑐𝑗,𝑚 |2) − 𝑓′

(|𝖬𝑐𝑗,𝑚
2,∞,𝜆

|2)‖
≤𝐶𝜆 ‖𝖤𝑐𝑗,𝑚‖

(85)

for𝑚 = 1,… ,𝑁 and 𝑗 = 1, 2. Observing that

Δ
(|𝑢𝑐𝑗,𝑚 |2 − |M𝑐𝑗,𝑚

2,∞,𝜆
|2) = 2Re

[
Δ𝑢𝑐𝑗,𝑚

(
𝑢𝑐𝑗,𝑚 − M

𝑐𝑗,𝑚
2,∞,𝜆

)
+ Δ

(
𝑢𝑐𝑗,𝑚 − M

𝑐𝑗,𝑚
2,∞,𝜆

)
M

𝑐𝑗,𝑚
2,∞,𝜆

]
+2Re

[
∇
(
𝑢𝑐𝑗,𝑚 + M

𝑐𝑗,𝑚
2,∞,𝜆

)
⋅ ∇

(
𝑢𝑐𝑗,𝑚 − M

𝑐𝑗,𝑚
2,∞,𝜆

)]
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ASADZADEH and ZOURARIS 21 of 34

and using Lemma 2, we obtain

‖𝖪𝑗,𝑚1,4 ‖ ≤ max|𝑥|∈[0,3𝜆] |𝑓′(𝑥2)| ‖‖𝛥(|𝑢𝑐𝑗,𝑚 |2 − |𝖬𝑐𝑗,𝑚
2,∞,𝜆

|2)‖‖
≤𝐶𝜆

[|𝛥𝑢𝑐𝑗,𝑚 |∞ ‖𝑢𝑚−1 − 𝖬
𝑐𝑗,𝑚
2,∞,𝜆

‖ + ||𝖬𝑐𝑗,𝑚
2,∞,𝜆

||∞ ‖‖𝛥(𝑢𝑐𝑗,𝑚 − 𝖬
𝑐𝑗,𝑚
2,∞,𝜆

)‖‖
+ max

1≤𝜅≤𝑑
||𝜕𝑥𝜅 (𝑢𝑐𝑗,𝑚 + 𝖬

𝑐𝑗,𝑚
2,∞,𝜆

)||∞ ‖‖∇(𝑢𝑐𝑗,𝑚 − 𝖬
𝑐𝑗,𝑚
2,∞,𝜆

)‖‖]
≤𝐶𝜆 ( ‖𝖤𝑐𝑗,𝑚‖1 + ‖𝖹𝑐𝑗,𝑚‖ )

(86)

for𝑚 = 1,… ,𝑁 and 𝑗 = 1, 2. Thus, from the inequalities (82), (83), (84), (85), (86), (79), (80), (81),
(76), and (78), it follows that

6∑
𝓁=1

‖𝖪𝑗,𝑚
𝓁

‖ ≤ 𝐶𝜆

(‖𝖤𝓁𝑗,𝑚‖1 + ‖𝖤𝑚−1‖1 + ‖𝖤𝑐𝑗,𝑚‖1 + ‖𝖹𝑐𝑗,𝑚‖), 𝑚 = 1,… ,𝑁, 𝑗 = 1, 2. (87)

Combining (73), (87), (52), and (66), we arrive at

‖𝖹𝑚−
1

2 ‖ ≤ (1 + 𝐶𝜆 k𝑚) ‖𝖹𝑚−1‖ + 𝐶𝜆 k𝑚

(‖𝖤𝑚−
1

2 ‖1 + ‖𝖤𝑚−1‖1) + 𝐶 k2𝑚, (88)

‖𝖹𝑚‖ ≤ ‖𝖹𝑚−1‖ + 𝐶𝜆 k𝑚

(‖𝖤𝑚‖1 + ‖𝖤𝑚−1‖1 + ‖𝖤𝑚−
1

2 ‖1 + ‖𝖹𝑚−
1

2 ‖) + 𝐶 k3𝑚 (89)

for𝑚 = 1,… ,𝑁. Now, using (88), (89), (52), and (66), we get

‖𝖹𝑚−
1

2 ‖ ≤ (1 + 𝐶𝜆 k𝑚) ‖𝖹𝑚−1‖ + 𝐶𝜆 k𝑚 ‖𝖤𝑚−1‖1 + 𝐶𝜆 k2𝑚, (90)

‖𝖹𝑚‖ ≤ (1 + 𝐶𝜆 k𝑚) ‖𝖹𝑚−1‖ + 𝐶𝜆 k𝑚
(‖𝖤𝑚‖1 + ‖𝖤𝑚−1‖1) + 𝐶𝜆 k3𝑚, (91)

for𝑚 = 1,… ,𝑁. Since 𝖹0 = 0, after applying a standard discrete Gronwall argument on (91) and
then using (55) and (69), we arrive at

‖𝖹𝑚‖ ≤ 𝐶𝜆

(
𝑚∑
𝓁=1

k3
𝓁
+ max

0≤𝓁≤𝑚 ‖𝖤𝓁‖1
)

≤ 𝐶𝜆

(
𝑚∑
𝓁=1

k3
𝓁

)
, 𝑚 = 1,… ,𝑁, (92)

which, along with (90), (55), and (69), yields

‖𝖹𝑚−
1

2 ‖ ≤ 𝐶𝜆

(
k2𝑚 +

𝑚−1∑
𝓁=1

k3
𝓁

)
, 𝑚 = 1,… ,𝑁. (93)
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22 of 34 ASADZADEH and ZOURARIS

Hence, (44) follows, easily, from (92) and (93).

Part 7: Taking the 𝐿2(𝐷)-inner product of both sides of (71) by 𝛥(𝖹𝑚−
1

2 − 𝖹𝑚−1), and of (72) by
𝛥(𝖹𝑚 − 𝖤𝑚−1), and then integrating by parts, we have

−‖∇(𝖹𝓁𝑗,𝑚 − 𝖹𝑚−1)‖2 = i 2𝑗−3 k𝑚
(
𝛥(𝖹𝓁𝑗,𝑚 + 𝖹𝑚−1), 𝛥(𝖹𝓁𝑗,𝑚 − 𝖹𝑚−1)

)
+ i 2𝑗−3 k𝑚

7∑
𝓁=1

(
𝖪
𝑗,𝑚

𝓁
, 𝛥(𝖹𝓁𝑗,𝑚 − 𝖹𝑚−1)

)
+ 2𝑗−2 k𝑚

(
𝛥𝜂𝓁𝑗,𝑚 , 𝛥(𝖹𝓁𝑗,𝑚 − 𝖹𝑚−1)

)

for 𝑚 = 1,… ,𝑁 and 𝑗 = 1, 2, which, after taking their imaginary parts, applying the Cauchy–
Schwarz inequality, and using (28) and (29) yields

‖𝛥𝖹𝓁𝑗,𝑚‖2 − ‖𝛥𝖹𝑚−1‖2 = −

7∑
𝓁=1

Re
(
𝖪
𝑗,𝑚

𝓁
, 𝛥(𝖹𝓁𝑗,𝑚 − 𝖹𝑚−1)

)
− 2 Im

(
𝛥𝜂𝓁𝑗,𝑚 , 𝛥(𝖹𝓁𝑗,𝑚 − 𝖹𝑚−1)

)
≤𝐶

(
k𝑗𝑚 +

7∑
𝓁=1

‖𝖪𝑗,𝑚
𝓁

‖)(‖𝛥𝖹𝓁𝑗,𝑚‖ + ‖𝛥𝖹𝑚−1‖)
(94)

for𝑚 = 1,… ,𝑁 and 𝑗 = 1, 2. Using (87), (77), (52), (66), (90), (55), (69), and (92), it follows that

‖𝛥𝖹𝑚−
1

2 ‖ − ‖𝛥𝖹𝑚−1‖ ≤𝐶𝜆

(
k𝑚 + ‖𝖤𝑚−

1

2 ‖1 + ‖𝖹𝑚−
1

2 ‖ + ‖𝖤𝑚−1‖1 + ‖𝖹𝑚−1‖)
≤𝐶𝜆

(
k𝑚 + ‖𝖤𝑚−1‖1 + ‖𝖹𝑚−1‖) (95)

and

‖𝛥𝖹𝑚‖ − ‖𝛥𝖹𝑚−1‖ ≤𝐶𝜆

(
k2𝑚 + ‖𝖤𝑚−

1

2 ‖1 + ‖𝖹𝑚−
1

2 ‖ + ‖𝖤𝑚‖1 + ‖𝖹𝑚‖
+‖𝖤𝑚−1‖1 + ‖𝖹𝑚−1‖)

≤𝐶𝜆

(
k2𝑚 + ‖𝖤𝑚‖1 + ‖𝖹𝑚‖ + ‖𝖤𝑚−1‖1 + ‖𝖹𝑚−1‖)

≤𝐶𝜆

(
k2𝑚 +

𝑚∑
𝓁=1

k3
𝓁

)
(96)
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ASADZADEH and ZOURARIS 23 of 34

for𝑚 = 1,… ,𝑁. In light of 𝛥𝖹0 = 0, we sum with respect to𝑚 both sides of (96), to obtain

‖𝛥𝖹𝑚‖ ≤𝐶𝜆

⎡⎢⎢⎣
𝑚∑

𝓁′=1

k2
𝓁′
+

𝑚∑
𝓁′=1

𝓁′∑
𝓁=1

k3
𝓁

⎤⎥⎥⎦
≤𝐶𝜆

⎡⎢⎢⎣
𝑁∑

𝓁′=1

k2
𝓁′
+

𝑁∑
𝓁′=1

𝓁′∑
𝓁=1

k3
𝓁

⎤⎥⎥⎦
≤𝐶𝜆 [𝜏 + 𝖪()], 𝑚 = 1,… ,𝑁.

(97)

Also, we use (95) along with (97), (92), (55), and (69), to get

max
1≤𝑚≤𝑁

‖𝛥𝖹𝑚−
1

2 ‖ ≤ 𝐶𝜆 [𝜏 + 𝖪()]. (98)

Thus, (45) follows, easily, from (97) and (98). □

Remark 5. The error bound (45) turns into a first-order error estimate, when there exists a constant
𝖢, independent of 𝑁 and the partition  of the time interval, such that

max
1≤𝓁≤𝑁

k𝓁 ≤ 𝖢 min
1≤𝓁≤𝑁

k𝓁 (99)

or

max
1≤𝓁≤𝑁

[k𝓁 (𝑁 + 1 − 𝓁)] ≤ 𝖢, (100)

which are both valid when the partition  is uniform. Indeed, using (99) and (46), we obtain

𝖪() =
𝑁∑

𝓁′=1

𝓁′∑
𝓁=1

k3
𝓁
≤

𝑁∑
𝓁′=1

k𝓁′
𝓁′∑
𝓁=1

k3
𝓁

k𝓁′
≤ 𝖢

𝑁∑
𝓁′=1

k𝓁′
𝓁′∑
𝓁=1

k2
𝓁
≤ 𝖢𝜏

𝑁∑
𝓁′=1

𝑡𝓁′k𝓁′ ≤ 𝖢𝑇2 𝜏

and (100) along with (46) yields

𝖪() =
𝑁∑

𝓁′=1

𝓁′∑
𝓁=1

k3
𝓁
=

𝑁∑
𝓁′=1

(𝑁 + 1 − 𝓁′) k3
𝓁′

≤ 𝖢

𝑁∑
𝓁′=1

k2
𝓁′

≤ 𝖢𝑇 𝜏.

We note that if (99) holds, then (100) is satisfied because min
1≤𝓁≤𝑁

k𝓁 ≤ 1

𝑁
and

max
1≤𝓁≤𝑁

[k𝓁 (𝑁 + 1 − 𝓁)] ≤ 𝑁 max
1≤𝓁≤𝑁

k𝓁 ≤ 𝖢𝑁 min
1≤𝓁≤𝑁

k𝓁 ≤ 𝖢.

However, (99) and (100) are not equivalent, and we can verify it by an counterexample. Let us
choose k𝓁 =

1

𝑁+1−𝓁

𝑇

𝑆𝑁
for 𝓁 = 1,… ,𝑁, where 𝑆𝑁 =

∑𝑁

𝓁=1

1

𝓁
. Then, we conclude that (100) holds

because

max
1≤𝓁≤𝑁

[k𝓁 (𝑁 + 1 − 𝓁)] =
𝑇

𝑆𝑁
≤ 𝑇

ln(𝑁+1)

and that (99) does not hold since max1≤𝓁≤𝑁 k𝓁
min1≤𝓁≤𝑁 k𝓁

= 𝑁.
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24 of 34 ASADZADEH and ZOURARIS

4 CONVERGENCE OF THE FULLY DISCRETE APPROXIMATIONS

4.1 A smooth cut-off function

Let 𝛿 > 0 and 𝛾𝛿 ∈ 𝐶1(ℝ,ℝ) (see, e.g, Ref. [46]) be an odd auxiliary function defined by

𝛾𝛿(𝑠) ∶=

⎧⎪⎪⎨⎪⎪⎩
𝑠, if 𝑠 ∈ [0, 𝛿],

𝑞(𝑠), if 𝑠 ∈ (𝛿, 2𝛿],

2 𝛿, if 𝑠 > 2𝛿,

∀ 𝑠 ≥ 0, (101)

where 𝑞 ∈ ℙ3[𝛿, 2 𝛿] is a polynomial satisfying: 𝑞(𝛿) = 𝛿, 𝑞′(𝛿) = 1, 𝑞(2𝛿) = 2𝛿, and 𝑞′(2𝛿) = 0.
Obviously it holds that 𝛾𝛿(𝑠) = 𝑠 when |𝑠| ≤ 𝛿, and we can show (see, e.g., Ref. [32]) that

sup
ℝ

|𝛾𝛿| = 2𝛿, sup
ℝ

|𝛾′
𝛿
| ≤ 4

3
. (102)

We extend 𝛾𝛿 on ℂ, by setting 𝑔𝛿(𝑧) ∶= 𝛾𝛿( Re(𝑧)) + i 𝛾𝛿( Im(𝑧)) for 𝑧 ∈ ℂ. Then, in view of (101)
and (102), it holds that

𝑔𝛿(𝑧) = 𝑧 ∀ 𝑧 ∈ ℂ with |𝑧| < 𝛿,

|𝑔𝛿(𝑧)| <3𝛿 ∀ 𝑧 ∈ ℂ,

|𝑔𝛿(𝑧) − 𝑔𝛿(𝑤)| ≤ 4

3
|𝑧 − 𝑤| ∀ 𝑧,𝑤 ∈ ℂ.

(103)

4.2 The (MFD) approximations

To investigate the convergence of the fully discrete approximations defined in Section 1.4,we intro-
duce the (MFD) approximations of 𝑢, which are defined, for given 𝛿 > 0, in the following way (cf.
Ref. [46]):

Step MFD1. Set

𝑈0
𝛿
= 𝖴0. (104)

Step MFD2. For 𝑛 = 1,… ,𝑁, first we define 𝑈
𝑛−

1

2

𝛿
∈ 𝖲𝑟

ℎ
such that

𝑈
𝑛−

1

2

𝛿
− 𝑈𝑛−1

𝛿
+ i

k𝑛
4
𝛥ℎ

(
𝑈

𝑛−
1

2

𝛿
+ 𝑈𝑛−1

𝛿

)
= i

k𝑛
4
𝖯ℎ

[
𝑓
( ||𝑔𝛿(𝑈𝑛−1

𝛿
)||2)

(
𝑈

𝑛−
1

2

𝛿
+ 𝑈𝑛−1

𝛿

)]
(105)

and then we find 𝑈𝑛
𝛿
∈ 𝖲𝑟

ℎ
such that

𝑈𝑛
𝛿
− 𝑈𝑛−1

𝛿
+ i

k𝑛
2
𝛥ℎ

(
𝑈𝑛

𝛿
+ 𝑈𝑛−1

𝛿

)
= i

k𝑛
2
𝖯ℎ

[
𝑓

(||𝑔𝛿(𝑈𝑛−
1

2

𝛿
)||2
)
(𝑈𝑛

𝛿
+ 𝑈𝑛−1

𝛿
)

]
. (106)

Remark 6. The existence and uniqueness of the (MFD) approximations follows, unconditionally,
according to Remark 4.

 14679590, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sapm

.12743 by C
halm

ers U
niversity O

f T
echnology, W

iley O
nline L

ibrary on [29/07/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



ASADZADEH and ZOURARIS 25 of 34

4.3 Convergence of the fully discrete approximations

Theorem 2. Let 𝜆⋆ ∶= 1 + 3 max
[0,𝑇]

‖𝑢‖2,∞, 𝜏 ∶= max
1≤𝑚≤𝑁 k𝑚, 𝖢𝚂𝚅,4 be the constant in (4) for 𝜅 =

4, 𝖢2
𝙴𝚁

and 𝖢4
𝙴𝚁

be the constant in (5) for 𝜅 = 2, 4, respectively, 𝖢𝙸𝙸𝙸
𝜆⋆

be the constant in (45) for

𝜆 = 𝜆⋆, and (𝖴𝑚)𝑁𝑚=0 and (𝖴
𝑚−

1

2 )𝑁𝑚=1 be the finite element approximations defined by (13)–(15).
Also, let us assume that 𝑓 ∈ 𝐶3([0, +∞),ℝ), 𝑢0 ∈ ℍ4(𝐷), 𝛥𝑢0 ∈ ℍ2(𝐷), 𝑢 ∈ 𝐶3([0, 𝑇], ℍ2(𝐷)) ∩

𝐶2([0, 𝑇], ℍ4(𝐷)),

𝖢𝚂𝚅,4 𝖢
4
𝙴𝚁

𝖢2
𝙴𝚁

𝖢𝙸𝙸𝙸
𝜆⋆

[𝜏 + 𝖪()] ≤ 𝜆⋆

3
. (107)

Then, there exists a constant ℎ⋆ > 0 such that:

(i) if ℎ ∈ (0, ℎ⋆] and 𝑢 ∈ 𝐶3([0, 𝑇], ℍ2(𝐷)) ∩ 𝐶2([0, 𝑇], ℍ4(𝐷)) ∩ 𝐶1([0, 𝑇], ℍ𝑟+1(𝐷)), then

max
1≤𝑚≤𝑁

‖‖𝖴𝑚−
1

2 − 𝑢
𝑚−

1

2 ‖‖ + max
0≤𝑚≤𝑁

‖𝖴𝑚 − 𝑢𝑚‖ ≤ 𝐶 (𝜏2 + ℎ𝑟+1); (108)

(ii) if ℎ ∈ (0, ℎ⋆], then

max
1≤𝑚≤𝑁

‖‖𝖴𝑚−
1

2 − 𝑢
𝑚−

1

2 ‖‖1 + max
0≤𝑚≤𝑁

‖𝖴𝑚 − 𝑢𝑚‖1 ≤ 𝐶 (𝜏2 + ℎ); (109)

(iii) if ℎ ∈ (0, ℎ⋆], 𝑟 ≥ 2, and there exists a constant 𝖢𝙼𝚂 > 0, independent of 𝑁 and (k𝑚)𝑁𝑚=1, such
that

max
1≤𝓁≤𝑁 k𝓁 ≤ 𝖢𝙼𝚂 min

1≤𝓁≤𝑁 k𝓁, (110)

then

max
1≤𝑚≤𝑁

‖‖𝖴𝑚−
1

2 − 𝑢
𝑚−

1

2 ‖‖1 + max
0≤𝑚≤𝑁

‖𝖴𝑚 − 𝑢𝑚‖1 ≤ 𝐶
(
𝜏2 + ℎmin{3,𝑟}

)
. (111)

Proof. Let 𝛿⋆ ∶= 1 + 3 𝜆⋆, (𝑈𝑚
𝛿⋆
)𝑁𝑚=0 and (𝑈

𝑚−
1

2

𝛿⋆
)𝑁𝑚=1 be the (MFD) approximations specified by

(104)–(106) for 𝛿 = 𝛿⋆, (Υ𝑚
4,𝜆⋆

)𝑁𝑚=0 and (Υ
𝑚−

1

2

4,𝜆⋆
)𝑁𝑚=1 be the (MTD) approximations specified by (39)–

(41) for 𝜆 = 𝜆⋆, 𝜃
𝑚−

1

2 ∶= 𝖱ℎ(Υ
𝑚−

1

2

4,𝜆⋆
) − 𝑈

𝑚−
1

2

𝛿⋆
∈ 𝖲𝑟

ℎ
andΛ

𝑚−
1

2 ∶= 𝖱ℎ(𝑢
𝑚−

1

2 ) − 𝑈
𝑚−

1

2

𝛿⋆
∈ 𝖲𝑟

ℎ
for𝑚 =

1,… ,𝑁, and 𝜃𝑚 ∶= 𝖱ℎ(Υ
𝑚
4,𝜆⋆

) − 𝑈𝑚
𝛿⋆

∈ 𝖲𝑟
ℎ
and Λ

𝑚
∶= 𝖱ℎ(𝑢

𝑚) − 𝑈𝑚
𝛿⋆

∈ 𝖲𝑟
ℎ
for 𝑚 = 0,… ,𝑁. Also,

we recall the previously introduced index notation 𝑐1,𝑚 ∶= 𝑚 − 1, 𝑐2,𝑚 ∶= 𝑚 −
1

2
, 𝓁1,𝑚 ∶= 𝑚 −

1

2
,

and 𝓁2,𝑚 ∶= 𝑚 for𝑚 = 1,… ,𝑁.
In the sequel, we will use the symbol 𝐶 to denote a generic constant that is independent of

(k𝑚)𝑁𝑚=1,𝑁 and ℎ, and may change values from one place to the other. We note that the constant
𝐶 may depend on the solution 𝑢 and its derivatives.
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26 of 34 ASADZADEH and ZOURARIS

Round I: Using (4), Remark 1, (45), and (107), we have

max
𝜇∈{𝑚−

1

2
,𝑚}

‖‖Υ𝜇

4,𝜆⋆
− 𝑢𝜇‖‖2,∞ ≤𝖢𝚂𝚅,4 max

𝜇∈{𝑚−
1

2
,𝑚}

‖‖Υ𝜇

4,𝜆⋆
− 𝑢𝜇‖‖4

≤𝖢𝚂𝚅,4 𝖢
4
𝙴𝚁

𝖢2
𝙴𝚁

max
𝜇∈{𝑚−

1

2
,𝑚}

‖‖𝛥2Υ
𝜇

4,𝜆⋆
− 𝛥2𝑢𝜇‖‖

≤𝖢𝚂𝚅,4 𝖢
4
𝙴𝚁

𝖢2
𝙴𝚁

𝖢𝙸𝙸𝙸
𝜆⋆

[𝜏 + 𝖪()] ≤ 𝜆⋆

3

(112)

and

max
𝜇∈{𝑚−

1

2
,𝑚}

‖‖Υ𝜇

4,𝜆⋆
‖‖2,∞ ≤ max

𝜇∈{𝑚−
1

2
,𝑚}

‖𝑢𝜇‖2,∞ + max
𝜇∈{𝑚−

1

2
,𝑚}

‖‖Υ𝜇

4,𝜆⋆
− 𝑢𝜇‖‖2,∞

≤ 𝜆⋆

3
+ max

𝜇∈{𝑚−
1

2
,𝑚}

‖‖Υ𝜇

4,𝜆⋆
− 𝑢𝜇‖‖2,∞ ≤ 2 𝜆⋆

3

(113)

for𝑚 = 1,… ,𝑁. Observing that ‖‖Υ0
4,𝜆⋆

‖‖2,∞ = ‖𝑢0‖2,∞ < 𝜆⋆, we use (113) to conclude that

max

{
max
1≤𝑚≤𝑁

‖‖Υ𝑚−
1

2

4,𝜆⋆
‖‖2,∞, max

0≤𝑚≤𝑁

‖‖Υ𝑚
4,𝜆⋆

‖‖2,∞
}

< 𝜆⋆ < 𝛿⋆, (114)

which, along with (103), yields

𝑔𝛿⋆

(
Υ
𝑚−

1

2

4,𝜆⋆

)
= Υ

𝑚−
1

2

4,𝜆⋆
and 𝑔𝛿⋆

(
Υ𝑚−1
4,𝜆⋆

)
= Υ𝑚−1

4,𝜆⋆
(115)

for𝑚 = 1,… ,𝑁. Also, from (112) and (36), we conclude that

𝖬
𝑚−

1

2

2,∞,𝜆⋆
= Υ

𝑚−
1

2

4,𝜆⋆
and 𝖬𝑚−1

2,∞,𝜆⋆
= Υ𝑚−1

4,𝜆⋆
(116)

for𝑚 = 1,… ,𝑁.
Round II: In light of (116) and (115), we combine (105) and (106) (with 𝛿 = 𝛿⋆), with (40) and (41)
(with 𝜆 = 𝜆⋆), respectively, to get(

𝜃𝓁𝑗,𝑚 − 𝜃𝑚−1, 𝜒
)
+ i 2𝑗−3 k𝑚 (∇(𝜃𝓁𝑗,𝑚 + 𝜃𝑚−1), ∇𝜒) = k𝑚

4∑
𝓁=1

(
ℭ
𝑗,𝑚

𝓁
, 𝜒
)

∀𝜒 ∈ 𝖲𝑟
ℎ

(117)

for𝑚 = 1,… ,𝑁 and 𝑗 = 1, 2, where

ℭ
𝑗,𝑚
1 ∶=𝖱ℎ

[
Υ
𝓁𝑗,𝑚

4,𝜆⋆
−Υ𝑚−1

4,𝜆⋆

k𝑚

]
−

[
Υ
𝓁𝑗,𝑚

4,𝜆⋆
−Υ𝑚−1

4,𝜆⋆

k𝑚

]
,

ℭ
𝑗,𝑚
2 ∶= i 2𝑗−3

[
𝑓
(|𝑔𝛿⋆(Υ𝑐𝑗,𝑚

4,𝜆⋆
)|2) − 𝑓

(|𝑔𝛿⋆(𝑈𝑐𝑗,𝑚
𝛿⋆

)|2)](Υ𝓁𝑗,𝑚
4,𝜆⋆

+ Υ𝑚−1
4,𝜆⋆

)
,

ℭ
𝑗,𝑚
3 ∶= i 2𝑗−3 𝑓

(|𝑔𝛿⋆(𝑈𝑐𝑗,𝑚
𝛿⋆

)|2) [(Υ𝓁𝑗,𝑚
4,𝜆⋆

+ Υ𝑚−1
4,𝜆⋆

)
− 𝖱ℎ

(
Υ
𝓁𝑗,𝑚
4,𝜆⋆

+ Υ𝑚−1
4,𝜆⋆

)]
,

ℭ
𝑗,𝑚
4 ∶= i 2𝑗−3 𝑓

(|𝑔𝛿⋆(𝑈𝑐𝑗,𝑚
𝛿⋆

)|2)(𝜃𝓁𝑗,𝑚 + 𝜃𝑚−1
)
.
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ASADZADEH and ZOURARIS 27 of 34

Keep the real parts of (117) after setting 𝜒 = 𝜃𝓁𝑗,𝑚 + 𝜃𝑚−1, to have

‖𝜃𝓁𝑗,𝑚‖2 − ‖𝜃𝑚−1‖2 = k𝑚
3∑

𝓁=1

Re
[
(ℭ

𝑗,𝑚

𝓁
, 𝜃𝓁𝑗,𝑚 + 𝜃𝑚−1)

]
, 𝑚 = 1,… ,𝑁, 𝑗 = 1, 2, (118)

where we have used that Re
[
(ℭ

𝑗,𝑚
4 , 𝜃𝓁𝑗,𝑚 + 𝜃𝑚−1)

]
= 0.

Now, we use (118) and the Cauchy–Schwarz inequality, to obtain

‖𝜃𝑚−
1

2 ‖ ≤ ‖𝜃𝑚−1‖ + k𝑚
3∑

𝓁=1

‖ℭ1,𝑚
𝓁

‖, (119)

‖𝜃𝑚‖ ≤ ‖𝜃𝑚−1‖ + k𝑚
3∑

𝓁=1

‖ℭ2,𝑚
𝓁

‖ (120)

for𝑚 = 1,… ,𝑁

Round III: Using (9) (with 𝑠 = 2), Remark 1, Lemma 3, (40), (41), (45), and (107), we have

‖ℭ𝑗,𝑚
1 ‖ ≤𝐶 ℎ2

‖‖‖‖‖‖
Υ
𝓁𝑗,𝑚

4,𝜆⋆
−Υ𝑚−1

4,𝜆⋆

k𝑚

‖‖‖‖‖‖2 ≤ 𝐶 ℎ2
‖‖‖‖‖‖𝛥

[
Υ
𝓁𝑗,𝑚

4,𝜆⋆
−Υ𝑚−1

4,𝜆⋆

k𝑚

]‖‖‖‖‖‖
≤𝐶 ℎ2

[ ‖‖‖‖𝛥2
(
Υ
𝓁𝑗,𝑚
4,𝜆⋆

+ Υ𝑚−1
4,𝜆⋆

)‖‖‖‖ + ‖‖‖‖𝛥[𝑓(||𝖬𝑐𝑗,𝑚
2,∞,𝜆

||2)(Υ𝓁𝑗,𝑚
4,𝜆⋆

+ Υ𝑚−1
4,𝜆⋆

)]‖‖‖‖
]

≤𝐶 ℎ2

(
𝐶 +

3∑
𝓁=1

‖Ξ𝑗,𝑚

𝓁
‖), 𝑚 = 1,… ,𝑁, 𝑗 = 1, 2,

(121)

where

Ξ
𝑗,𝑚
1 ∶=𝛥𝑓

(||𝖬𝑐𝑗,𝑚
2,∞,𝜆

||2)(Υ𝓁𝑗,𝑚
4,𝜆⋆

+ Υ𝑚−1
4,𝜆⋆

)
, Ξ

𝑗,𝑚
2 ∶= 𝑓

(||𝖬𝑐𝑗,𝑚
2,∞,𝜆

||2)𝛥(Υ𝓁𝑗,𝑚
4,𝜆⋆

+ Υ𝑚−1
4,𝜆⋆

)
,

Ξ
𝑗,𝑚
3 ∶=∇𝑓

(||𝖬𝑐𝑗,𝑚
2,∞,𝜆

||2)∇(Υ𝓁𝑗,𝑚
4,𝜆⋆

+ Υ𝑚−1
4,𝜆⋆

)
.

Combining, (121), (74), (37), (44), (60), and (43), we arrive at

‖ℭ𝑗,𝑚
1 ‖ ≤ 𝐶 ℎ2, 𝑚 = 1,… ,𝑁, 𝑗 = 1, 2. (122)

Using (9), Lemma 3, Remark 1, (45) (with 𝜆 = 𝜆⋆), (107), and (103), we have

‖ℭ𝑗,𝑚
3 ‖ ≤𝐶 ℎ𝗌 max|𝑥|∈[0,3𝛿⋆]

|𝑓(𝑥2)| ‖‖Υ𝓁𝑗,𝑚
4,𝜆⋆

+ Υ𝑚−1
4,𝜆⋆

‖‖𝗌
≤𝐶 ℎ𝗌 ‖‖Υ𝓁𝑗,𝑚

4,𝜆⋆
+ Υ𝑚−1

4,𝜆⋆
‖‖4

≤𝐶 ℎ𝗌 ‖‖𝛥2(Υ
𝓁𝑗,𝑚
4,𝜆⋆

) + 𝛥2(Υ𝑚−1
4,𝜆⋆

)‖‖
≤𝐶 ℎ𝗌, 𝗌 = 2,… ,min{4, 𝑟 + 1}, 𝑚 = 1,… ,𝑁, 𝑗 = 1, 2.

(123)
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28 of 34 ASADZADEH and ZOURARIS

Also, in light of (114), (103), (9), Remark 1, (45), and (107), we get

‖ℭ𝑗,𝑚
2 ‖ ≤(||Υ𝓁𝑗,𝑚

4,𝜆⋆
||∞ + ||Υ𝑚−1

4,𝜆⋆
||∞)‖‖𝑓(|𝑔𝛿⋆(Υ𝑐𝑗,𝑚

4,𝜆⋆
)|2) − 𝑓

(|𝑔𝛿⋆(𝑈𝑐𝑗,𝑚
𝛿⋆

)|2)‖‖
≤𝐶 ‖‖𝑓(|𝑔𝛿⋆(Υ𝑐𝑗,𝑚

4,𝜆⋆

)|2) − 𝑓
(|𝑔𝛿⋆(𝑈𝑐𝑗,𝑚

𝛿⋆
)|2)‖‖

≤𝐶 max
𝜌∈[0,1]

|||𝑓′
(
𝜌 |𝑔𝛿⋆(Υ𝑐𝑗,𝑚

4,𝜆⋆

)||2 + (1 − 𝜌) |𝑔𝛿⋆(𝑈𝑐𝑗,𝑚
𝛿⋆

)|2|||∞ ‖𝑔𝛿⋆(Υ𝑐𝑗,𝑚
4,𝜆⋆

)
− 𝑔𝛿⋆

(
𝑈

𝑐𝑗,𝑚
𝛿⋆

)‖
≤𝐶 max|𝑥|∈[0,3𝛿⋆] |𝑓′(𝑥2)| ‖Υ𝑐𝑗,𝑚

4,𝜆⋆
− 𝑈

𝑐𝑗,𝑚
𝛿⋆

‖
≤𝐶

(‖Υ𝑐𝑗,𝑚
4,𝜆⋆

− 𝖱ℎ(Υ
𝑐𝑗,𝑚
4,𝜆⋆

)‖ + ‖𝜃𝑐𝑗,𝑚‖)
≤𝐶

(
ℎ𝗌 ‖Υ𝑐𝑗,𝑚

4,𝜆⋆
‖4 + ‖𝜃𝑐𝑗,𝑚‖)

≤𝐶
(
ℎ𝗌 ‖𝛥2Υ

𝑐𝑗,𝑚
4,𝜆⋆

‖ + ‖𝜃𝑐𝑗,𝑚‖)
≤𝐶 (ℎ𝗌 + ‖𝜃𝑐𝑗,𝑚‖), 𝗌 = 2, … ,min{4, 𝑟 + 1}, 𝑚 = 1,… ,𝑁, 𝑗 = 1, 2.

(124)

Assuming in addition that (110) holds, we can obtain a higher order, with respect to ℎ, estimate of
ℭ
𝑗,𝑚
1 by using Lemma 3, (9), Remark 1, (45) (with 𝜆 = 𝜆⋆), and Remark 5, as follows:

‖ℭ𝑗,𝑚
1 ‖ ≤𝐶 ℎ𝗌

‖‖‖‖‖‖
Υ
𝓁𝑗,𝑚

4,𝜆⋆
−Υ𝑚−1

4,𝜆⋆

k𝑚

‖‖‖‖‖‖𝑠 ≤ 𝐶 ℎ𝗌
‖‖‖‖‖‖
Υ
𝓁𝑗,𝑚

4,𝜆⋆
−Υ𝑚−1

4,𝜆⋆

k𝑚

‖‖‖‖‖‖4 ≤ 𝐶 ℎ𝗌
‖‖‖‖‖‖𝛥2

[
Υ
𝓁𝑗,𝑚

4,𝜆⋆
−Υ𝑚−1

4,𝜆⋆

k𝑚

]‖‖‖‖‖‖
≤𝐶

ℎ𝗌

k𝑚

( ‖‖𝛥2(Υ
𝓁𝑗,𝑚
4,𝜆⋆

− 𝑢𝓁𝑗,𝑚 )‖‖ + ‖‖𝛥2(𝑢𝓁𝑗,𝑚 − 𝑢𝑚−1)‖‖ + ‖‖𝛥2(𝑢𝑚−1 − Υ𝑚−1
4,𝜆⋆

)‖‖)
≤𝐶⋆ ℎ𝗌

k𝑚+𝜏

k𝑚

≤𝐶⋆ ℎ𝗌, 𝗌 = 2,… ,min{4, 𝑟 + 1}, 𝑚 = 1,… ,𝑁, 𝑗 = 1, 2.

(125)

Round IV: Using (119), (120), (121), (123), (124), and (125), we obtain

‖𝜃𝑚−
1

2 ‖ ≤ (1 + 𝐶 k𝑚) ‖𝜃𝑚−1‖ + 𝐶 k𝑚 ℎ𝜈, (126)

‖𝜃𝑚‖ ≤ ‖𝜃𝑚−1‖ + 𝐶 k𝑚

(‖𝜃𝑚−
1

2 ‖ + ℎ𝜈
)

(127)

for𝑚 = 1,… ,𝑁, where 𝜈 = 2, or, 𝜈 = min{4, 𝑟 + 1} under the assumption (110). Combining (126)
and (127), we obtain

‖𝜃𝑚‖ ≤ (1 + 𝐶 k𝑚) ‖𝜃𝑚−1‖ + 𝐶 k𝑚 ℎ𝜈, 𝑚 = 1,… ,𝑁. (128)

In light of 𝜃0 = 0, we apply a standard Gronwall argument on (128) to get

max
0≤𝑚≤𝑁

‖𝜃𝑚‖ ≤ 𝐶 ℎ𝜈,
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ASADZADEH and ZOURARIS 29 of 34

which, along with (126), yields

max
1≤𝑚≤𝑁

‖𝜃𝑚−
1

2 ‖ ≤ 𝐶 ℎ𝜈.

Thus, we conclude that there exists a constant 𝖢𝙰 > 0, independent of𝑁, ℎ, and (k𝑚)𝑁𝑚=1, such
that

max
0≤𝑚≤𝑁

‖𝜃𝑚‖ + max
1≤𝑚≤𝑁

‖𝜃𝑚−
1

2 ‖ ≤ 𝖢𝙰 ℎ
2. (129)

Also, for 𝑟 ≥ 2, assuming that (110) holds, the error estimate (129) is improved as

max
0≤𝑚≤𝑁

‖𝜃𝑚‖ + max
1≤𝑚≤𝑁

‖𝜃𝑚−
1

2 ‖ ≤ 𝖢𝙱 ℎ
min{4,𝑟+1}, (130)

where 𝖢𝙱 > 0 is a constant independent of 𝑁, ℎ and (k𝑚)𝑁𝑚=1.

Round V: Let𝑚 ∈ {1,… ,𝑁} and 𝜇 ∈ {𝑚 −
1

2
,𝑚, 0}. Also, we recall that there exists positive con-

stant 𝖢2,∞ such that ‖𝑣‖2 ≤ 𝖢2,∞ ‖𝑣‖2,∞ for 𝑣 ∈ 𝐻4(𝐷). Then, we use (10), (12), (114), and (129),
to get

|𝑈𝜇

𝛿⋆
|∞ ≤ ||𝑈𝜇

𝛿⋆
− 𝖱ℎ(Υ

𝜇

4,𝜆⋆
)||∞ + ||𝖱ℎ(Υ𝜇

4,𝜆⋆
) − Υ

𝜇

4,𝜆⋆
||∞ + ||Υ𝜇

4,𝜆⋆
||∞

≤𝖢𝙸𝙽𝚅𝟷 ℎ
−

𝑑

2 ‖𝑈𝜇

𝛿⋆
− 𝖱ℎ(Υ

𝜇

4,𝜆⋆
)‖ + 𝖢𝙴𝙿𝟸 ℎ

2−
𝑑

2 ‖Υ𝜇

4,𝜆⋆
‖2 + 𝜆⋆

≤𝖢𝙸𝙽𝚅𝟷 𝖢𝙰 ℎ
2−

𝑑

2 + 𝜆⋆ + 𝖢𝙴𝙿𝟸 𝖢2,∞ ℎ
2−

𝑑

2 ‖Υ𝜇

4,𝜆⋆
‖2,∞

≤ 𝜆⋆ +
(
𝖢𝙸𝙽𝚅𝟷 𝖢𝙰 + 𝖢2,∞ 𝖢𝙴𝙿𝟸

)
ℎ
2−

𝑑

2 𝜆⋆.

(131)

Now, from (131), we conclude that there exists ℎ⋆ > 0 such that if ℎ ∈ (0, ℎ⋆], then

max
1≤𝑚≤𝑁

||𝑈𝑚−
1

2

𝛿⋆
||∞ + max

0≤𝑚≤𝑁

||𝑈𝑚
𝛿⋆
||∞ ≤ 2 𝜆⋆ < 𝛿⋆, (132)

which, along with (103), yields that

𝑔𝛿⋆(𝑈
𝑚−

1

2

𝛿⋆
) = 𝑈

𝑚−
1

2

𝛿⋆
and 𝑔𝛿⋆(𝑈

𝑚−1
𝛿⋆

) = 𝑈𝑚−1
𝛿⋆

, 𝑚 = 1,… ,𝑁. (133)

Thus, if ℎ ∈ (0, ℎ⋆], in light of (133), (13)–(15), and (104)–(106), we conclude that

𝑈
𝑚−

1

2

𝛿⋆
= 𝖴

𝑚−
1

2 and 𝑈𝑚
𝛿⋆

= 𝖴𝑚, 𝑚 = 1,… ,𝑁. (134)

Round VI: Let us assume that 𝑢 ∈ 𝐶3([0, 𝑇], ℍ2(𝐷)) ∩ 𝐶2([0, 𝑇], ℍ4(𝐷)) ∩ 𝐶1([0, 𝑇], ℍ𝑟+1(𝐷)).
Using (105) and (106) (with 𝛿 = 𝛿⋆) along with (18) and (19), we have

(
Λ
𝓁𝑗,𝑚 − Λ

𝑚−1
, 𝜒
)
+

i k𝑚
23−𝑗

(∇(Λ
𝓁𝑗,𝑚 + Λ

𝑚−1
), ∇𝜒) =

5∑
𝓁=1

(𝔛
𝑗,𝑚

𝓁
, 𝜒) ∀𝜒 ∈ 𝖲𝑟

ℎ
, (135)
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30 of 34 ASADZADEH and ZOURARIS

for𝑚 = 1,… ,𝑁 and 𝑗 = 1, 2, where

𝔛
𝑗,𝑚
1 ∶=𝖱ℎ

(
𝑢𝓁𝑗,𝑚 − 𝑢𝑚−1

)
−
(
𝑢𝓁𝑗,𝑚 − 𝑢𝑚−1

)
,

𝔛
𝑗,𝑚
2 ∶= i

2𝑗−1 k𝑚
4

[
𝑓
(|𝑢𝑐𝑗,𝑚 |2) − 𝑓

(|𝑔𝛿⋆(𝑈𝑐𝑗,𝑚
𝛿⋆

)|2)] (𝑢𝓁𝑗,𝑚 + 𝑢𝑚−1),

𝔛
𝑗,𝑚
3 ∶= i

2𝑗−1 k𝑚
4

𝑓
(|𝑔𝛿⋆(𝑈𝑐𝑗,𝑚

𝛿⋆
)|2) [(𝑢𝓁𝑗,𝑚 + 𝑢𝑚−1

)
− 𝖱ℎ

(
𝑢𝓁𝑗,𝑚 + 𝑢𝑚−1

)]
,

𝔛
𝑗,𝑚
4 ∶= i

2𝑗−1 k𝑚
4

𝑓
(|𝑔𝛿⋆(𝑈𝑐𝑗,𝑚

𝛿⋆
)|2)(Λ

𝓁𝑗,𝑚 + Λ
𝑚−1

)
,

𝔛
𝑗,𝑚
5 ∶= i

2𝑗−1 k𝑚
2

𝜂𝓁𝑗,𝑚 .

Setting 𝜒 = Λ
𝓁𝑗,𝑚 + Λ

𝑚−1 in (135), and then taking real parts, we get

‖Λ𝑚−
1

2 ‖2 − ‖Λ𝑚−1‖2 = 5∑
𝓁=1

Re
[
(𝔛1,𝑚

𝓁
,Λ

𝑚−
1

2 + Λ
𝑚−1

)

]
, (136)

‖Λ𝑚‖2 − ‖Λ𝑚−1‖2 = 5∑
𝓁=1

Re
[
(𝔛2,𝑚

𝓁
,Λ

𝑚
+ Λ

𝑚−1
)
]

(137)

for𝑚 = 1,… ,𝑁. First, we observe that

Re
[(

𝔛
𝑗,𝑚
4 ,Λ

𝓁𝑗,𝑚 + Λ
𝑚−1

)]
= 0, 𝑚 = 1,… ,𝑁, 𝑗 = 1, 2. (138)

Then, we use (9) and (103), to have

‖𝔛𝑗,𝑚
1 ‖ ≤𝐶 ℎ𝑟+1 ‖𝑢𝓁𝑗,𝑚 − 𝑢𝑚−1‖‖𝑟+1

≤𝐶 ℎ𝑟+1 k𝑚,
(139)

‖𝔛𝑗,𝑚
3 ‖ ≤𝐶 k𝑚 ℎ𝑟+1 max|𝑥|∈[0,3𝛿⋆] |𝑓(𝑥2)| ‖𝑢𝓁𝑗,𝑚 + 𝑢𝑚−1‖𝑟+1

≤𝐶⋆ k𝑚 ℎ𝑟+1,

(140)

and

‖𝔛𝑗,𝑚
2 ‖ ≤𝐶 k𝑚 ‖‖𝑓(|𝑢𝑐𝑗,𝑚 |2) − 𝑓

(|𝑔𝛿⋆(𝑈𝑐𝑗,𝑚
𝛿⋆

)|2)‖‖
≤𝐶 k𝑚 max

𝜌∈[0,1]

|||𝑓′
(
𝜌 |𝑔𝛿⋆(𝑢𝑐𝑗,𝑚 )||2 + (1 − 𝜌) |𝑔𝛿⋆(𝑈𝑐𝑗,𝑚

𝛿⋆
)|2|||∞ ‖𝑔𝛿⋆(𝑢𝑐𝑗,𝑚 ) − 𝑔𝛿⋆

(
𝑈

𝑐𝑗,𝑚
𝛿⋆

)‖
≤𝐶 k𝑚 max|𝑥|∈[0,3𝛿⋆] |𝑓′(𝑥2)| ‖𝑢𝑐𝑗,𝑚 − 𝑈

𝑐𝑗,𝑚
𝛿⋆

‖
≤𝐶 k𝑚

(‖𝑢𝑐𝑗,𝑚 − 𝖱ℎ(𝑢
𝑐𝑗,𝑚 )‖ + ‖Λ𝑐𝑗,𝑚‖)

≤𝐶 k𝑚
(
ℎ𝑟+1 + ‖Λ𝑐𝑗,𝑚‖)

(141)
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ASADZADEH and ZOURARIS 31 of 34

for 𝑚 = 1,… ,𝑁 and 𝑗 = 1, 2. (We note that to obtain (141), we have used that, in light of
max
[0,𝑇]

|𝑢|∞ < 𝜆⋆ < 𝛿⋆ and (103), we have 𝑔𝛿⋆(𝑢
𝑐𝑗,𝑚 ) = 𝑢𝑐𝑗,𝑚 .)

Combining (136)–(141), (24), and (25), we obtain

‖Λ𝑚−
1

2 ‖ ≤ (1 + 𝐶 k𝑚) ‖Λ𝑚−1‖ + 𝐶 (k2𝑚 + k𝑚 ℎ𝑟+1), (142)

‖Λ𝑚‖ ≤ ‖Λ𝑚−1‖ + 𝐶 k𝑚

(‖Λ𝑚−
1

2 ‖ + ℎ𝑟+1 + k2𝑚

)
(143)

for𝑚 = 1,… ,𝑁. Now, from (142) and (143), it follows that

‖Λ𝑚‖ ≤ (1 + 𝐶 k𝑚) ‖Λ𝑚−1‖ + 𝐶 k𝑚 (ℎ𝑟+1 + k2𝑚), 𝑚 = 1,… ,𝑁. (144)

Applying a discrete Gronwall argument on (144) and using that Λ0
= 0, we obtain

max
0≤𝑚≤𝑁

‖Λ𝑚‖ ≤ 𝐶 (ℎ𝑟+1 + 𝜏2), (145)

which, along with (142), yields

max
1≤𝑚≤𝑁

‖Λ𝑚−
1

2 ‖ ≤ 𝐶 (ℎ𝑟+1 + 𝜏2). (146)

Thus, (108) follows, in a standard way, from (145), (146), (9), and (134).

Round VII: Let𝑚 ∈ {1,… ,𝑁} and 𝜇 ∈ {𝑚, 𝑛 −
1

2
}. Using (134), (43), (9), (11), Remark 1, (45), and

(107), we obtain

‖𝑢𝜇 − 𝖴𝜇‖1 = ‖𝑢𝜇 − 𝑈
𝜇

𝛿⋆
‖1

≤ ‖𝑢𝜇 − Υ
𝜇

4,𝜆⋆
‖1 + ‖Υ𝜇

4,𝜆⋆
− 𝖱ℎΥ

𝜇

4,𝜆⋆
‖1 + ‖𝖱ℎΥ𝜇

4,𝜆⋆
− 𝑈

𝜇

𝛿⋆
‖1

≤𝐶
(
𝜏2 + ℎmin{3,𝑟} ‖Υ𝜇

4,𝜆⋆
‖min{4,𝑟+1}

)
+ ‖𝜃𝜇‖1

≤𝐶
(
𝜏2 + ℎmin{3,𝑟} ‖Υ𝜇

4,𝜆⋆
‖4 + ℎ−1 ‖𝜃𝜇‖)

≤𝐶
(
𝜏2 + ℎmin{3,𝑟} ‖𝛥2Υ

𝜇

4,𝜆⋆
‖ + ℎ−1 ‖𝜃𝜇‖)

≤𝐶
(
𝜏2 + ℎmin{3,𝑟} + ℎ−1 ‖𝜃𝜇‖).

(147)

Thus, (109) follows, easily, as an outcome of (147) and (129).When 𝑟 ≥ 2 and (110) holds, we obtain
(111) by applying (147) and (130). □

Remark 7. We would like to mention that the error estimate (108) is, also, concluded in Ref. [5],
by developing a different stability argument requiring a restriction of the size of the time steps,
under the assumption that an 𝐿∞ bound for the fully discrete approximations is available without
addressing its derivation. Moreover, the𝐻1 error estimate presented in Ref. [5] is suboptimal and
follows by imposing a CFL condition.
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Remark 8. Assuming further that there exists a constant 𝖢 such that ‖𝖯ℎ𝑣‖1 ≤ 𝖢 ‖𝑣‖1 for 𝑣 ∈

ℍ1(𝐷) (see, e.g. Ref. [15]), and starting from the error equations (135), we can derive, easily, an
optimal-order error estimate in the𝐻1 norm under condition (107) (cf. Refs. [23, 27]).

5 CONCLUSIONS

We consider the approximation of the solution to the (NLS) equation by an 𝐿2-conservative,
second-order in time, linearly implicit finite element method that constructs approximations at
the nodes of a nonuniform partition of the time interval along with their midpoints formulated
in Ref. [5]. In its error analysis, we heavily employ (MTD) approximations and (MFD) approxima-
tions (cf. Ref. [46]) as a standby for the efficient treatment of the nonlinear term in order to arrive
at an 𝐿∞ bound of the fully discrete approximations (see (132) and (134)). In the light of (16), we
derive an optimal, 𝑂(𝜏2 + ℎ𝑟+1), error estimate in the 𝐿2 norm and an optimal, 𝑂(𝜏2 + ℎ), error
estimate in the 𝐻1 norm for linear finite elements, without imposing CFL conditions (cf. Refs.
[31, 42]). Also, assuming that (17) holds, we conclude an optimal, 𝑂(𝜏2 + ℎ𝑟), error estimate in
the 𝐻1 norm for higher order finite elements with 𝑟 ∈ {2, 3}, avoiding again the enforcement of
CFL conditions. However, the latter result can be improved by connecting the construction of the
(MTD) approximations to a properly chosen higher order Sobolev norm. Future research includes
the investigation of the convergence of numerical methods for partial differential equations with
more complex nonlinearities.
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