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A B S T R A C T

Material flow analysis is an important tool for estimating material flows and embedded emissions of transport infrastructure. Missing attributes tend to be a major
barrier to accurate estimates. In this study a machine learning model is developed to estimate the missing data in a statistics dataset of roads, to enable a bottom-up
material stock and flow analysis. The proposed approach was applied to the Swedish road network to predict missing data for road width in the statistical dataset. The
predicted hybrid dataset was then used to estimate material stocks, flows, and embodied emissions from Year 2020 to Year 2045 using decarbonization scenarios with
a supply chain perspective. The study demonstrates that machine learning models can be used to enable national-level material stock and flow analyses of roads.
Multiple machine learning algorithms were tested, and the best performing model achieved an R2 value of 0.784. In the scenario-based analysis, the embodied
emissions of Swedish roads could be reduced by up to 51% using available materials.

1. Introduction

The Intergovernmental Panel on Climate Change (IPCC) 6th assess-
ment report concludes that existing Nationally Determined Contribu-
tions (NDCs) are likely to result in global warming far exceeding 1.5 ◦C,
and that limiting warming to less than 2 ◦C will require rapid intensi-
fication of mitigation efforts after Year 2030 (IPCC, 2022). The global
construction sector has a significant role to play in societal decarbon-
ization, given that the sector is responsible for 36% of total energy
consumption and 39% of the carbon dioxide (CO2) emissions related to
energy and industrial processes (UN Environment Programme, 2019).
Echoing the IPCC report, it has been suggested that the construction
sector needs to become carbon-neutral or even have negative emissions
after Year 2030 (Rockströ et al., 2017), which represents a formidable
challenge.

Infrastructure construction, including road construction, accounts
for a significant share of the carbon footprint of the global construction
sector. Müller et al. (2013) in a study from 2013 estimated the carbon
footprint of the existing global infrastructure stock in Year (2008) as 122
(− 20/+ 15) GtCO2. More recently, Rousseau et al. (2022) estimated
embodied greenhouse gas (GHG) emissions in the global road material
stock to be 8.4 GtCO2-eq (lower estimate of 5.3 GtCO2-eq, and upper
estimate of 12 GtCO2-eq). In addition, road construction and mainte-
nance are expected to increase in the future, as a considerable share of
the global population still lacks access to basic road infrastructure (Wenz

et al., 2020). Despite this, the challenges involved in limiting material
demand and GHG emissions associated with road construction have
received less attention in the literature than have the challenges linked
to buildings (Nasir et al., 2021).

Material stock and flow analysis (MFA) is a well-developed meth-
odology to estimate the stock and flow of construction materials (for a
review, see (Augiseau and Barles, 2017a)). MFA studies can be classified
as using either a top-down or bottom-up approach (Augiseau and Barles,
2017b). Ebrahimi et al. (2022) have conducted a literature review on
material flow analysis (MFA) studies of transport infrastructure. The
review indicates that most of the recent studies on transport in-
frastructures have used the bottom-up approach. Compared to a
top-down approach, the bottom-up approach helps to identify the
composition of the stock in a more-detailed manner (Tanikawa et al.,
2015). The disadvantage of the bottom-up approach is that it requires
more data and labor, as each item in the inventory needs to be quantified
(Lanau et al., 2019).

The lack of data is a major challenge for the expansion of both top-
down and bottom-up MFA studies of transport infrastructures such as
roads (Lanau et al., 2019) (Nguyen et al., 2019). At the global level, the
Global Roads Inventory Project (GRIP) has gathered and harmonized
information related to road length and type of roads for 222 countries
(Meijer et al., 2018). Rousseau et al. (2022) have reported that in the
GRIP dataset, more than 20% of the road length data is missing in many
countries, while Central and South American and European countries
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have the lowest levels of missing data. Similarly, OpenStreetMap, which
is another global-level dataset describing roads, suffers from data
incompleteness (Funke et al., 2015). In Europe, many gaps exist in the
official Eurostat statistics on transport infrastructure (Eurostat, 2022). In
addition, non-government-owned roads, such as communal roads, have
overall lower data quality and are sometimes not included in the na-
tional statistics (Wiedenhofer et al., 2015).

To overcome this lack of data, a variety of approaches have been
adopted in MFA studies of transport infrastructures. To limit the chal-
lenges associated with low data quality and data unavailability, the
scope of the study can be narrowed, as has been done in several works
(Tanikawa and Hashimoto, 2009; Guo et al., 2014, 2017; Currie et al.,
2017; Gontia et al., 2019; Lanau and Liu, 2020; Miatto et al., 2021;
Kloostra et al., 2022; Khumvongsa et al., 2023). The most-common
methods for imputing missing data are interpolation (Wiedenhofer
et al., 2015), (Miatto et al., 2017), (Deng et al., 2022) and extrapolation
(Han and Xiang, 2013), (Wiedenhofer et al., 2015). The main drawback
of these methods is that they do not capture the inherent heterogeneity
of the physical properties of roads, since they use extensive data ag-
gregation (Wang et al., 2022). This motivates the development of novel
methods that can utilize a wider range of available data, to complement
and improve the predictions of missing data with finer geographic scope.

Machine learning is an emerging method to estimate the stocks and
flows of materials across various geographic scales (Donati et al., 2022).
Several recent studies have applied machine learning-based approaches
to estimate the material stocks and flows of roads by predicting various
types of road attributes (Ebrahimi et al., 2022), (Bao et al., 2023),
(Zhang et al., 2023). Zhang et al. (2023) employed a set of time series
analysis-based machine learning models to project the historical mate-
rial stock (MS) of Japanese roads from Year (2020) to Year 2050 under
five different national shared socio-economic pathways (SSPs). The
study used an archetype-based approach by dividing roads into arche-
types and applying a material intensity (MI) to estimate the material
stocks and flows. The road data were collected for each prefecture in
Japan, including national, prefectural, and municipal roads. The
explanatory variables used were gross domestic product (GDP), popu-
lation growth, and transportation statistics. The main limitation of this
approach is that the MS is projected at a too-aggregated level of
geographic resolution (prefectures). The archetype-based approaches
are also unable to capture fully the effects of traffic and climate on the
stocks and flows of roads (Wang et al., 2022).

Another strand of research aims to overcome these limitations by
using machine learning models to predict the depth of the road layers.
Ebrahimi et al. (2022) estimated and predicted the material stocks and
flows of the Norwegian road network by predicting the depth of roads
with a decision tree-based machine learning algorithm. The strengths of
this method are its abilities to incorporate the effect of traffic flows and
to estimate the dissipative flows of materials. As the machine learning
training process requires extensive data, the analyses were limited to
national roads, for which all the input data were complete Similarly,
Wang et al. (2022) estimated the material stocks and flows of road in-
frastructures in Belgium using a combination of machine learning
models and the archetype-based approach. The missing layer thick-
nesses of asphalt motorways were predicted using a machine learning
approach, while the layer thicknesses of other road types were predicted
using an archetype approach. The reason for using this hybrid approach
is that roads that are not asphalt highways lack the necessary data to
train the machine learning model.

While the abovementioned approaches advance the estimation of
material stock and flows of roads, they do not fully address the funda-
mental challenge of missing road attribute data. Even within a country,
the quality and availability of the data on road attributes can be highly
heterogeneous (see Wang et al. (2022)), and this impedes the imple-
mentation of bottom-up MFA studies of roads at the national or inter-
national level. Furthermore, the material stocks and flows of
non-government-owned roads are often underestimated due to

incomplete data (Wiedenhofer et al., 2015). A key data-point for esti-
mating the material stock and flows of roads is the road width, since it
has been demonstrated that the material stock of roads is highly sensi-
tive and varies significantly with road width (Yu et al., 2021).

By developing and applying a machine learning model that can
predict missing road width data this study contributes to ongoing
method development aimed at improving the accuracy in MFA studies to
estimate the material stock and embodied emissions of road infra-
structure construction. The novelty of this study is therefore to explore
and show how machine learning methods can fill in the gaps in 2D road
data for non-government-owned roads using existing open administra-
tive data for government owned roads at a high spatial resolution. Thus,
we address the aforementioned gap in literature where non-government-
owned roads cannot be represented with reasonable accuracy in road
MFA studies (Wiedenhofer et al., 2015). Additionally, we utilize
street-network features which have not been used in previous studies.
Furthermore, this study proposes a framework for how to address the
issue of lack of data for the purpose of estimating embodied carbon
emissions of roads using bottom-up MFA models. The model is demon-
strated for the Swedish road stock but can be applied to other
geographical areas facing similar problems of incomplete attribute data.
The proposed framework may be used for analyzing pathways and
policies to reduce embodied carbon and thus should be of interest to
policy makers and local stakeholders.

The present study aimed to develop a novel machine-learning based
method to predict missing road width data, for the purpose of estimating
the material stock of the Swedish road system and using this as the basis
for the calculation of embodied carbon emissions. The developed ma-
chine learning model uses roads that have no missing data as the
training dataset and testing dataset. The resulting machine learning
model is then used to make predictions for the roads that have missing
data. The completed dataset is used to conduct a stock-driven MFA up to
the Year 2045. Scenario-based emission factors are applied to the in-
flows to estimate the embodied emissions and their potential reduction
pathways.

The paper is structured as follows. In Section 2, we describe the scope
andmethod of this study. In Section 3, we present our findings. Section 4
discusses the applicability of machine learning methods to MFA studies
for roads and the limitations of the study. Finally, in Section 5, we draw
conclusions and outline key areas for further investigation and for policy
actions.

2. Materials and methods

This study proposes a new machine learning-based method to esti-
mate missing road width data in a statistical dataset, for the purpose of
material stock and flow quantification. The proposed method is
demonstrated for a Swedish national road dataset utilizing open-source
data and software. This section presents the system boundary, data
sources, methodologic framework, data preprocessing, feature engi-
neering, machine learning models, and estimation of the material stock
and flow.

2.1. Methodologic approach

The methodologic approach developed and applied in this work is
divided into four steps: 1) Data gathering and preprocessing; 2) Feature
engineering; 3) Machine learning; and 4) Material stock and flow
analysis Fig. 1. The methodology is developed based on the assumption
that the physical attributes of roads within a region are correlated to
some extent. Transport infrastructures are constrained by the natural
conditions of the location and the physical attributes of a road or other
type of infrastructure that reciprocally influence the spatial character-
istics of the location (Rodrigue, 2020). For example, a stretch of road
that is surrounded by apartment buildings is more likely to be a paved
road, whereas a stretch of road on farmland is more likely to be unpaved
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or be a gravel road. In practice, this means that when using known
spatial characteristics and physical attributes of roads in an incomplete
dataset, the missing information can be estimated using a machine
learning regression model.

2.2. Data gathering and pre-processing

This section describes the first step of the methodologic framework,
as shown in Fig. 1.

2.2.1. Data gathering and data sources
This study used the following open-source datasets.

1) Swedish road shapefile with attributes from the Swedish Transport
Administration (STA) (Trafikverket, 2022a). The road shapefile in-
cludes 1-dimensional line strings that represent the shapes of the
road sections with coordinates, a unique ID, geometric length, geo-
metric width, road owner type (state-owned, municipally owned or

Fig. 1. Flow diagram describing the main steps in the analysis work: 1) Data gathering and data preprocessing; 2) Feature engineering; 3) Machine learning; and 4)
Material stock and flow analysis. The light-brown boxes represent input data, the green boxes represent intermediate processing steps in the workflow, and the
orange-colored boxes represent the outputs. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

Q. Liu et al.
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privately owned), road type, road surface type, and the speed limit
for each road section.

2) Swedish building footprint shapefile from the Swedish Land Survey
(Lantmäteriet, 2023a), which contains 2-dimensional footprints of
buildings in Sweden, the type of building, the perimeter, and the area
of each footprint.

3) Socio-economic data from Statistics Sweden (Statistikmyndigheten,
2023a), which were used as additional predictor variables in the
machine learning process. The socio-economic data includes
administrative and population data. The administrative data include
all counties, municipalities, demographic statistical areas (DeSO)
(Statistikmyndigheten, 2023b), and regional statistical areas
(RegSO) (Statistikmyndigheten, 2023c) in Sweden, in the form of GIS
shapefiles. Sweden is administratively divided into 21 counties, 290
municipalities, 5984 demographic statistical areas, and 3363
regional statistical areas. The population data break down Sweden’s
population into 1-km grids, accessed in the form of a GIS shapefile
(Statistikmyndigheten, 2023d).

4) Material intensity (MI) data for road archetypes from the STA
(Trafikverket, 2022b), and road lifetime distributions of the roads in
Sweden (Nilsson et al., 2020). These were used for the MFA. The
material intensity (MI) coefficient data (material use per m2 of road)
were obtained from the STA’s Klimatkalkyl tool (Trafikverket,
2022b). The Klimatkalkyl tool has been designed for construction
companies in Sweden that work with the STA to calculate the life-
cycle energy use and climate impact of new construction projects.
This database contains the MIs of the different archetypes of roads
that were used to categorize the stock data. These MIs were obtained
from previously executed construction projects. In some cases, the
MIs were computed from the results obtained from multiple con-
struction projects. The MI values are listed in Table 1.

Table 2 presents the lifetime distribution parameters of the roads.
The lifetimes of roads are assumed to follow a different Weibull distri-
bution for each region in Sweden. Svenson et al. (2016) have developed
the lifetimes using a mixed proportional hazards model that applies
independent variables, such as climate zone, bearing capacity class and
speed limit. The lifetime distributions are assumed to be the same for all
types of roads located in the same geographic region. The lifetime dis-
tributions are used to model maintenance of roads, and we assume that
no existing roads are demolished.

2.2.2. Data preprocessing
In the data preprocessing phase, all the input data were verified and

processed in Python, and all the GIS-related calculations were per-
formed using the GeoPandas package (Jordahl et al., 2019). As
described above, the Swedish Traffic Administration (STA) collects
extensive data on state-owned roads, whereas the datasets for munici-
pally owned and privately owned roads have incomplete attributes
(Liljenströ et al., 2019). The road dataset contains 2,003,127 sections of
roads, corresponding to approximately 1,114,879 km of paved and
gravel roads. An assessment of the dataset showed that the majority of
missing road width data are associated with privately owned roads, as
shown in Fig. 2. For an overview of the data used in the analysis see
Fig. 4.

The building footprints were joined with the road shapefile using the
‘nearest spatial join’ function in GeoPandas, with the distance between
the matching road and building being computed and stored as an
attribute. In addition, the geometries of the matching building were
retained as attributes. The socio-economic data were similarly combined
with the road shapefile using the ‘nearest spatial join’ function in Geo-
Pandas, as additional attributes. Further details of data preprocessing
steps can be found in the Supplementary Information.

2.3. Feature engineering

In the context of machine learning: “a feature is a numeric repre-
sentation of an aspect of raw data, and feature engineering is the act of
extracting features from raw data and transforming them into formats
that are suitable for the machine learning model” (Zheng and Casari,
2018). For regression tasks, a feature is equivalent to a predictor vari-
able. The aim of the feature engineering phase of this work was to
generate useful and useable predictor variables so that the regression
model could make better predictions on the response variables. In total,
29 features were used; the list of features and their descriptions are given
in Table 3. The details of the features and the assumptions underlying
their selection are explained in this section.

2.3.1. Road and building features
In the National Road Database (NVDB) database, the geometry of

roads is represented as a 1-dimensional line string, which limits the
possibilities for generating geometric features for a road dataset. A
geometric feature is a numeric description of a given geometry, such as a
perimeter or area of a 2-dimensional polygon, or the height of a 3-
dimensional object. Three geometric features were computed based on

Table 1
Material intensity values for each road archetype, based on data from the Kli-
matkalkyl tool of the Swedish Transport Administration (Trafikverket, 2022b).

Asphalt (tonne/
m2)

Steel (tonne/
m2)

Gravel (tonne/
m2)

One-lane Road 0.403 0 0.499
Two-lane road 0.403 0 0.473
Highway 0.403 0.04 0.454
Meeting free road 0.403 0.0097 0.454
Gravel road 0 0 0.6

Table 2
Lifetime Weibull distribution parameters for
each region in Sweden, based on data from
Nilsson et al. (2020). The scale parameter is
3.0199 for all regions.

Regions Shape

North 13.93
Middle 12.60
Stockholm 10.95
South 13.25
East 11.29
West 13.38

Fig. 2. Lengths and percentages of roads with missing road width data
according to ownership type, based on data from the Swedish Land Survey
(Lantmäteriet, 2023b).

Q. Liu et al.
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the line strings: 1) convex hull area; 2) convex hull perimeter; and 3)
envelope area. The relatively low number of features limited the
explanatory power of the regression model. Therefore, additional data
were collected and added to the road dataset.

The patterns and characteristics of a road network correlate with and
are influenced by the spatial distribution of its surrounding buildings
and land-use pattern (Kasraian et al., 2016). The assumption is made
that the characteristics of the building nearest to the road correlate with
the width of the road. Four nearest-building-based features were added,
including: 1) distance to the nearest building; 2) nearest building
perimeter; 3) nearest building area; and 4) nearest building type.

2.3.2. Socio-economic features
The assumption made regarding the addition of socio-economic

features is that transport infrastructures in the same geographic area
tend to correlate with each other (Rodrigue, 2020). As described above,
these socio-economic features contain information as to the region or
area in which a road section is located. The socio-economic features
added can be divided into administrative and population features.

The four administrative features or areas are: 1) county; 2) munici-
pality; 3) demographic statistical area (DeSO); and 4) regional statistical
area (RegSO). Demographic statistical areas are subdivisions of munic-
ipalities that take geographic conditions into account. Regional statis-
tical areas are subdivisions of municipalities that are used for statistical
monitoring of socio-economic segregation. Population density and dis-
tribution have a direct correlation with the pattern of a road network
(Zhao et al., 2016). Therefore, the addition of population features aims
to capture this correlation.

2.3.3. Network features
Urban morphology refers to the study and analysis of the physical

form, layout, structure, and evolution of an urban area or a city (Kropf,
2018). The topological and morphological characteristics of a road
network can be analyzed computationally using a graphical approach
(Jiang and Claramunt, 2004). In similarity to the socio-economic

features, the assumption is that these characteristics have complex
correlations with the geometric attributes of roads, which could be
captured by a machine learning model.

These network features are computed using the Python package
Momepy (Fleischmann, 2019), which is a flexible tool for computing
urban morphometric characters. The list of features computed using
Momepy are: 1) Local closeness centrality (400-m radius); 2) Linearity;
3) Neighboring Street orientation deviation; 4) Connectivity Gamma; 5)
Edge node ratio; 6) Mean node degree; 7) Mean node distance; 8) Seg-
ments length; 9) Proportion of three-way intersection; 10) Proportion of
four-way intersection; 11) Proportion of dead ends; and 12) Meshedness.
All features are computed for each road line string.

2.4. Machine learning

The underlying correlation between the spatial structure of a road’s
location and its physical attributes is both complex and non-linear.
Therefore, this study employed a supervised machine -learning regres-
sion approach, which uses the proportion of data with known width to
train and test machine learning models, so as to capture the correlation;
thereafter, the trainedmodel is used to predict the missing width data, as
shown in Fig. 2.Multiple machine learning models were trained, tested,
and validated for this study, including Random Forest (RF), extreme
gradient boosting (XGBoost), CatBoost, and Light gradient-boosting
machine (LightGBM).

Random Forest is an often-used machine learning algorithm that
combines the principles of decision trees and ensemble learning. A de-
cision tree is a tree-like structure in which each node represents a
feature, each edge represents a decision based on that feature, and each
leaf node represents a predicted outcome. An RF consists of multiple
decision trees, and each tree is built using a different subset of training
data selected using the bootstrapping technique and a subset of
randomly selected features. This introduces diversity to the tree and
reduces overfitting. The RF model is implemented using the Python
scikit-learn package (ver. 1.3.0) (Pedregosa et al., 2011).

Fig. 3. Comparison of actual versus predicted value in meters, the number of bins used is 40.

Q. Liu et al.



Cleaner Environmental Systems 14 (2024) 100211

6

XGBoost is a machine learning algorithm that is a member of the
family of gradient-boosting techniques (Chen and Guestrin, 2016).
XGBoost is an ensemble learning method that combines the predictions
of multiple individual decision trees, known as weaker learners, to
create a strong final predictive model. In gradient boosting, new models
are built sequentially by correcting the mistakes of the previous model.
Each new model is trained to predict the residual errors of the ensemble
of previous models.

CatBoost is another gradient-boosting algorithm that is known for its
ability to handle categorical features without requiring extensive pre-
processing (Prokhorenkova et al., 2018). CatBoost uses an ordered
boosting technique, which helps to reduce overfitting by controlling the
magnitude of individual trees’ contributions to the ensemble. This is
achieved by introducing an additional regularization term into the
optimization process. A specialized algorithm is used to calculate the
gradients for categorical features in the boosting process.

Similar to XGBoost and CatBoost, LightGBM is based on the gradient-
boosting framework (Ke et al., 2017). It builds an ensemble of weak
learners to create a strong predictive model. One of the key features of
LightGBM is its leaf-wise tree growth strategy. Unlike the depth-wise
growth used in other boosting algorithms, LightGBM grows trees in a
leaf-wise fashion. This means that the algorithm chooses the leaf with
the largest gradient for expansion at each step. This approach can lead to
faster convergence and potentially more-accurate models. LightGBM

also uses histogram-based learning for splitting nodes during tree con-
struction. This technique discretizes the feature values into bins, which
reduces memory usage and speeds up the process of finding the best
split.

During the training and testing processes, the proportion of data with
known width data is divided into response variable (width) and pre-
dictor variables (all other attributes) as inputs to the regression model.
The response and predictor variables are further split into training and
testing datasets with a 80/20 split using the Python scikit-learn package
(ver. 1.3.0) (Pedregosa et al., 2011). The performance evaluation met-
rics used during the model validation process are mean absolute error
(MAE), mean absolute percentage error (MAPE), and coefficient of
determination (R2). Furthermore, the computational time for each
model is recorded for model selection. Lastly, the hyperparameters of
each model are tuned to improve model performance using the Python
Optuna package (ver. 3.3.0) (Akiba et al., 2019). A 5-fold
cross-validation procedure with shuffle is employed for each model
during the hyperparameter tuning process, to minimize overfitting.

The tuned and cross-validated results for each model are compared,
and the model with the best overall performance is selected. To create a
new hybrid dataset consisting of real and synthetic road widths, the best
model is used to predict the missing width values, and the predicted
width values are then appended to the proportion of data with width
values.

Fig. 4. Comparison of road sections based on the type of road and type of road ownership for the year 2020 in Sweden: a) road length (km) per road type; b) road
area (km2); c) material stock by road type (Mton); and d) material stock by material type (Mton).

Q. Liu et al.
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2.5. Sweden as a case study

Sweden is located in Northern Europe with a total land area of
447,430 km2 and a total population of 10.5 million1

(Statistikmyndigheten, 2023a). Sweden has a relatively low population
density and one of the greatest road lengths per capita in the EU (Brons
et al., 2022). At the national level, Sweden has committed to reduce
national GHG emissions to net-zero by Year (2045) (Persson, 2020),
which is why the scenario analysis in this study is up to Year 2045. The

STA has announced its ambition for Sweden’s transport infrastructure to
be carbon-neutral by Year (2040) (Trafikverket). All roads in Sweden are
recorded in NVDB, with varying degrees of completeness depending on
road ownership. To achieve the ambitious emissions reduction goal, it is
necessary to understand what the future material flows might look like.
This makes Sweden an ideal case study to investigate how to overcome
shortcomings in the available dataset for MFA and to demonstrate its
application with regards to embodied emissions reductions.

2.6. System boundary

The study includes all paved and gravel roads in Sweden (as of Year,
2023) that are owned by three types of actors: the STA, local municipal
governments, and private owners or owner associations. This study fo-
cuses on the road network and excludes sidewalks, cycleways, round-
abouts (traffic circles), tunnels, and bridges. It covers all layers of the
road, except for the foundations and ground reinforcements, lighting,
road signs, and wildlife barriers. Future studies should pay more
attention to those components of the network that contain concrete.

Since the present study is limited to roads, the three main road
materials are considered: asphalt, steel, and aggregates (including
gravels used for gravel roads and sand and stone used in the base layer of
roads). Steel is mainly used in guard rails. The reason for including the
guard rails, even though their mass is small compared to asphalt and
aggregates, is that steel has a significantly higher emission factor per
kilogram compared to asphalt and gravel (Karlsson et al., 2020a).
Concrete roads are excluded from the system boundary, as there are only
68 km of concrete roads in Sweden as of Year (2022) (VTI, 2022).
Therefore, all paved roads included in the analysis are asphalt roads.

2.7. Material stock and flow analysis

A prospective bottom-up MFA of Swedish roads is performed to
showcase the applicability of the proposed method. Furthermore, the
embodied emissions associated with the prospective material flows are
estimated using emission factors. To investigate the future embodied
emissions of roads and the potential to reduce these emissions, two
different future scenarios are constructed and analyzed. The method
applied in each analysis step is described below, subsections 2.7.1-2.7.4.

2.7.1. Material stock estimation
A bottom-up estimation of the material stock is accomplished by

summing the amounts of relevant materials that are present within the
system boundary at a certain time (Gerst and Graedel, 2008). The flow of
materials can be quantified based on the stock, using a stock-drivenMFA
approach (Müller, 2006). This stock in roads is quantified using the
archetype-based approach introduced by Schiller (2007), and this spe-
cific approach has been adapted from Miatto et al. (2017). All roads are
grouped based on archetype and width information into the following
six categories: 1) one-lane road; 2) highway; 3) two-lane road wide; 4)
two-lane road normal; 5) 2 + 1 road; and 6) gravel road. The material
stock is calculated by multiplying the inventories of the roads by an MI
factor, as expressed by Equation (1):

MSroadt,m =
∑

i,j,r
Lroadi,j,r,t ∗Wroadi,j,r,t ∗ MIroadi,m (1)

where MSroadt,m is the total mass of material stock of roads in year t of
material m, Lroadi,j,r,t is the length of road type i of road segment j in
region r in year t in km,Wroadi,j,r,t is the width (both actual and predicted)
of road type i of road segment j in year t in km, and MIroadi,m is the
material intensity (tonne /m2) of material m for road type i.

2.7.2. Prospective material flow analysis
The prospective stock-driven MFA model for each year in the period

of 2023–2045 is implemented in the Open Dynamic Material Systems

Table 3
Description of the features selected for further use in the machine learning step.

Features Description

Road features
Road ownership The ownership of the road section (state,

municipality or private)
Road surface type The surface type of the road section (asphalt paved or

gravel)
Road archetype (m2) The type of the road section (e.g., highway, one-lane

road, or two-lane road)
Road length (m) The length of each road section
Speed limit (km/h) The upper speed limit of the road section
Convex hull area (m2) The area of the smallest convex polygon containing

all points in the line string
Convex hull perimeter (m) The perimeter of the smallest convex polygon

containing all points in the line string
Envelope area (m2) The area of the envelope of the road section line

string

Building features
Distance to the nearest
building (m)

The distance between the center point of the road
(line string) and the center point of the nearest
building (polygon), computed using GeoPandas

Nearest building perimeter
(m)

The perimeter of the nearest building to the road
section

Nearest building area (m2) The area of the nearest building to the road section
Nearest building type The type of the nearest building to the road section (e.

g., detached building, apartment building or office)

Socio-economic features
County The county in which the road section is located
Municipality The municipality in which the road section is located
Demographic statistical
area (DeSO)

The demographic statistical area in which the road
section is located

Regional statistical area
(RegSO)

The regional statistical area in which the road section
is located

Population The number of people living inside the 1 km2 grid in
which the road section is located

Network features
Local closeness centrality
(400 m radius)

The average distance to every other road intersection
(node) from each intersection in a road network
(graph)

Linearity The Euclidean distance of the road section divided by
the road length

Neighboring street
orientation deviation

The mean deviation of solar orientation of adjacent
roads

Gamma The connectivity gamma index for the road network
(graph) around each road intersection (node)

Edge node ratio The ratio of edges and intersections (node) for the
intersection (node)

Mean node degree The mean node degree around each intersection
(node) for the whole road network (graph)

Mean node distance The mean distance to neighboring intersections
(node)

Segments length The mean length of each segment
Proportion of three-way
intersection

The proportion of three-way intersections in the road
network (graph)

Proportion of four-way
intersection

The proportion of four-way intersections in the road
network (graph)

Proportion of dead ends The proportion of dead ends in the road network
(graph)

Meshedness The meshedness for the road network (graph) around
each intersection (node)

1 Population size as of February 2023.
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(ODYM) model (Pauliuk and Heeren, 2020). ODYM is an open-source
software framework developed for dynamic MFA that involves multi-
ple products and materials. The dynamic stock modeling sub-module
was used to conduct the analysis.

The first step of the analysis is to calculate the materials need for the
construction of new roads in each year (M inflow newt+1), as expressed
in Equation (2):

Minflownew t+1,m =
∑

i,r
Lroad proji,r,t ∗Wroad proji,r,t ∗ MIroadi,m (2)

where Lroad proji,r,t+1 is the projected length of new construction of road
type i in region r at time t + 1 , and Wroad proji,r,t+1 is the width of pro-
jected new construction of road type i in region r at time t+ 1. The
widths are assumed to be the average of all road widths of each road type
i. For further information on the projection of new construction the
reader is referred to the Supplementary Information.

The second step is to calculate the materials needed for the main-
tenance of roads. It is assumed that roads are not fully demolished, but
instead are only maintained. At the end-of-life for each road section,
only a fraction of the top asphalt layer is removed, and the road is
subsequently repaved. This activity is defined as maintenance of the
road. The assumption made is that each individual section of road is only
maintained at the end-of-life with 50 mm of the asphalt layer being
removed and subsequently repaved (based on information from experts
in the road construction industry). Therefore, the frequency of mainte-
nance depends on the lifetime of the road section.

Based on the stock and lifetime data, the amount of material needed
for the maintenance of roads (Minflowmaint,m,r

)
of material m in region r in

year t is calculated using Equation (3):

where Lroadi,j,r,t is the length of road type i of road segment j in region r in
year t in km, Wroadi,j,r,t is the width (both actual and predicted) of road
type i of road segment j in year t in km, and Survivalmaint− τ,r is the survival
curve using complementary cumulative distribution function of roads in
year t in region r based on the Weibull distributions outlined in Table 3.
The MIs for maintenance flow MI maini,t,m for road type i for material
type m were used.

The total inflow of material (M inflow totalt,m
)
is, thus, the sum of

the material inflows for new constructions and maintenance, as
expressed by Equation (4):

Minflowtotalt,m = Minflownew t,m +
∑

r
Minflowmaint,m,r (4)

2.7.3. Embodied emissions
The embodied emissions in roads are calculated using Equation (5):

Embodiedemissiont =
∑

i,t,m
Minflowtotal i,t,m ∗ EFm (5)

where Embodied emissiont is the total embodied CO2 emissions for all
Swedish roads in year t, M inflow totalt,m is the total inflow of material
from Equation (5), and EFm is the emission factor for material m. The
emission factors (EF) used here are based on estimates made by Karlsson
et al. (2020b).

2.7.4. Scenario analysis
A scenario analysis is carried out to assess the potential for reducing

embodied emissions. The scenarios explore different developments in
material production and new construction versus maintenance activ-
ities. Two different sets of emission factors (EFs) were used for the future
projection scenarios (See Table 1 in the Supplementary Information). In
the Business-as-usual scenario, no emissions reductions are assumed to be
achieved in relation to materials production from Year (2020) onwards.
In the Emission reduction scenario, significant emissions reductions are
assumed to be achieved in relation to basic materials production over
the studied period. The purpose of this scenario is to establish a baseline
for comparison. For further information on the scenarios, the EFs, and
the projection of new construction the reader is referred to the Supple-
mentary Information.

3. Results

3.1. Machine learning model selection

The performance levels of the trained models are shown in Table 4.
The performance levels of all four models are similar, with the biggest
difference seen for the training computation time. Despite the relatively
low computation time, the training process for machine learning models
still requires significant computational power. The MAE can be inter-
preted as the average of the absolute prediction errors for each road
section width (in meters).

The results from the LightGBM and XGBoost models are very similar,
with XGBoost producing a slightly lower MAE, MAPE, and higher R2

value. Both LightGBM and XGBoost are implemented to have automatic
multithreading enabled, so as to achieve shorter computation time by

parallelizing the computation on all available computer cores simulta-
neously. The similarity in the results is not unexpected, as the two
models are variations of the gradient-boosting algorithm.

The RF algorithm has fewer hyperparameters available for tuning
and, therefore, performs slightly poorer in terms of the MAE, MAPE and
R2 parameters. Unlike the LightGBM and XGBoost models, the RF model
does not implement approximated training algorithms, and this results
in a longer computation time. Approximated training algorithms are
designed to speed up computation by building histograms for each
feature value and performing iterations through the histograms rather
than the real dataset. The CatBoost model results in the highest MAE and
MAPE values and the lowest R2 value of all four tested algorithms. This is
most likely due to the relatively low number of categorical features (6)
in the dataset, which does not fully take advantage of the algorithm’s
implementations on categorical features. All four chosen models are
tree-based because such an algorithm reduces overfitting; other models

Table 4
Evaluation metrics for trained models, including computational time.

Algorithm MAE MAPE (%) R2 Computation timea

Random forest (RF) 0.623 13.4 0.748 3 min 22 s
XGBoost 0.567 12.5 0.784 30 s
CatBoost 0.669 14.4 0.728 2 min 10 s
LightGBM 0.576 12.6 0.781 32 s

MAE, mean absolute error; MAPE, mean absolute percentage error; R2, coeffi-
cient of determination.
a Computed using a desktop PC with 12 CPU cores.

Minflowmaint,m,r =
∑

i,j
Lroadi,j,r,t ∗Wroadi,j,r,t ∗ MImaini,m −

∑t− 1

τ=t0
Minflowmainτ,m,r ∗ Survivalmaint− τ,r (3)
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such as deep learning (Lecun et al., 2015) could be tested in future work.
Fig. 3 provides a visualization of the results of the XGBoost model.

Actual values (blue) refer to the validation dataset used in the training
process and the predicted values (green) are the results produced by the
XGBoost model using the same training dataset. The results show that
the model is less capable of predicting extreme values, especially road
widths exceeding 10 m. Furthermore, the model under predicts roads
with 6 m in width and results in a normalized distribution for road
widths between 4.5 and 8 m. Overall, the model does capture the dis-
tribution of the real data relatively well in terms of filling in missing
data.

Thus, the overall best-performing model selected is the XGBoost
model. The subset of data with missing road width is predicted by the
XGBoost models using the same set of training features. The predicted
data are subsequently appended to the subset of data with existing width
data to create a hybrid road attributes dataset. This dataset is subse-
quently used to estimate the material stock, material flows, and
embodied emissions of the Swedish roads.

3.2. Material stock

Fig. 4 provides a comparison of the Swedish road sections based on
the type of road ownership with respect to road lengths and road area
(top plots) and the material stock divided according to road type and
material type (bottom plots). In total, there are 638,632 km of paved and
gravel roads in Sweden. Privately owned roads have the longest absolute
length, being approximately four-times longer than the state-owned
roads and 10-times longer than the roads owned by the municipalities.
Gravel roads represent 92% of the total road length for privately owned
roads. Taking the width and the road area into account, the differences
between privately owned roads and other ownership type are dimin-
ished, with the total area of privately owned roads being 272% larger
than that of the stated-owned roads and 600% larger than the area of the
municipally owned roads. In general, the municipalities own roads in
urban areas and, thus, have the lowest number of roads in terms of
length and area.

In total, there are 2011 Mton (106 tonnes) of in-use material stock in
all Swedish roads (bottom panels, Fig. 4). The privately owned,
municipally owned, and state-owned roads represent 56.7%, 12.2%, and
31.1% of the material stock, respectively. The share of in-use material
stock in privately owned roads is much smaller than the share of road
length because gravel roads have the lowest MI per km2. Despite this
lower share, privately and municipally owned roads constitute almost

70% of the total in-use stock, which highlights the need to have more
accurate data for these roads. Fig. 4c shows the material stock for each
road owner distinguished by road type. Two-lane roads represent the
highest share of in-use material stock at 60.3%, and the majority of the
two-lane roads are owned by the state. Fig. 4d shows the material
composition of the in-use stock for each road owner. The aggregated
values represent the highest share of in-use material stock for all road
owners in terms of mass, at 96.9%, 92.2%, and 92.3% for private
owners, municipalities, and the state, respectively. Most of the aggre-
gates are used to form the base course and unbound layer and are not
removed during the maintenance process. As steel is used only in guard
rails in the system boundary, it accounts for very low shares of the stock
at 0.0003%, 0.0002%, and 0.0458% for the private, municipal and state
owners of roads, respectively. State-owned roads have the largest share
of steel due to the higher level of steel usage in highways and 2 + 1
roads.

3.3. Material flows

Fig. 5 presents the annual inflows of aggregates and asphalt (Fig. 5a)
and for steel (Fig. 5b) for the period of 2020–2045, as obtained from the
stock-drivenMFA. The trends regarding the inflows of all three materials
are very similar because it is assumed that the road surface and the
guard rails will be maintained at the same time. The average inflow for
asphalt is 11.84 Mt and the average inflow for steel is 0.15 Mt, and for
each year 0.28 Mt of asphalt and 1394 tonnes of steel are used for new
construction. The peak in inflows in 2022 is due to the right-skewed
Weibull distribution and since the same lifetime is used for all three
materials the peaks happen at the same time.

3.4. Embodied emissions

Fig. 6 provides the results of the scenario-based embodied emissions
analysis. In both scenarios, a constant level of new construction is
assumed. The variations in the embodied emissions each year in the
Business-as-usual scenario are caused by the lifetime in the MFA model,
as different numbers of roads are maintained each year. Panels a and b in
Fig. 6 show the yearly embodied emissions for both scenarios divided
according to the three materials used. In the Emission Reduction scenario,
the embodied emissions decrease from 0.7 Mt in 2020 to 0.34 Mt in
2045, which represents a 51.4% reduction. Despite only representing
0.024% of the total in-use stock by mass, steel contributes large shares of
the embodied emissions in Year (2045): 40% in the Business-as-usual

Fig. 5. Inflows in Mt (106 tonnes) of aggregates, asphalt, and steel assuming a constant rate of new construction. a) aggregates and asphalt. b) steel.
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scenario; and 32.4% in the Emission reduction scenario. This is because
the emission factor for steel is many magnitudes greater than those of
asphalt and aggregates. An assumption is made that low-carbon steel
(for the type of steel used in construction) will not come onto the market
before Year 2045. Asphalt contributes the largest share of embodied
emissions, at 58.6% for the Business-as-usual scenario and 67.4% for the
Emission reduction scenario in the year 2045.

Panels c and d in Fig. 6 show the embodied emissions for the two
scenarios, distinguishing between the different road owners. These
subplots demonstrate that privately owned roads contribute a significant
share of the embodied emissions, and that greater attention needs to be
paid to data gathering processes and to policy-making that targets this
segment of the road system. State-owned roads contribute the largest
share of embodied emissions at 75.7% for the Business-as-usual scenario
and 73.5% for the emissions reduction scenario in Year (2045).
Municipally owned and privately owned roads contribute 15.7% and
8.6%, respectively, in the Business-as-usual scenario, and 17.6% and
8.8%, respectively, in the emissions reduction scenario for Year 2045.
This highlights that to reach overall net-zero embodied emissions, non-
state road owners need to be included in the policy-making process.

We compare the results of the material flow analysis and embodied
emissions to other studies to contextualize the results. Wiedenhofer et al.
(UN Environment Programme, 2019) assessed the material stock, flow,
and embodied emissions of all mobility infrastructure (roads, railways,
bridges, tunnels, etc.) for 180 countries using a similar spatially explicit,
bottom-up approach. The stock and flow and emissions result provided
by Wiedenhofer et al. were grouped into minimum, mean, and
maximum values. The road length in our dataset is 638,632 kmwhile the

total length in Wiedenhofer et al. is 542,575 km. The maximum total
material stock for all roads in Sweden from Wiedenhofer et al. is 2338.5
Mton while our results is 2011 Mton. This is likely due to the difference
in road width as our study does not assume a constant width for each
road type. Our asphalt inflow is closer to Wiedenhofer et al.’s minimum
inflow (11.65 Mt vs 10.88 Mt) while our aggregates inflow is closer to
the maximum inflow (50.89 Mt vs 58.94 Mt). The differences in the
estimates of aggregate inflows are expected since our analysis mainly
focused on predicting width of private and municipal roads which is
largely consisted of gravel roads.

Furthermore, we compare our results using widths for each road
section to an MFA model that has the same input besides using assumed
average road widths for each type of roads. The assumed average road
width is taken from NVDB. The results of this analysis show that the
material stock from the average road width model is 8.62%, 12.0%, and
37.2% larger respectively for aggregate, asphalt, and steel respectively.
This corresponds to a 24.3% and 22.2% increase in embodied emissions
in the year 2045 in the Business as usual and Emissions reduction sce-
nario respectively. The difference in results could be due to the uncer-
tainty introduced by the machine learning model, but it does highlight
the need for more granular data for material stock and embodied anal-
ysis of roads.

4. Discussion

4.1. Applicability of machine learning methods for predicting road width

Machine learning models, and more specifically gradient-boosting

Fig. 6. Annual embodied emissions in Mt (106) for the period of 2020–2045: a) business-as-usual scenario, distinguished according to types of materials,; b) emissions
reduction scenario, distinguished according to types of materials, in Mt; c) business-as-usual scenario, distinguished according to types of road ownership; d) emissions
reduction scenario, distinguished according to types of road ownership.
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algorithms, perform well in predicting road width in situations where
data are missing from the statistical dataset, with the best-performing
model achieving a R2 value of 0.784. A key challenge in predicting the
geometric attributes of municipal and private roads is that detailed data,
such as layer thickness and traffic flow, are not available and are also
unlikely to be available for other countries. In machine learning work-
flows, the training dataset and the prediction dataset must have the
same set of features. This means that features that are likely to have
strong correlations with the geometric attributes cannot be included in
the model. The results from this work demonstrate that non-physical
features, such as network features, do correlate with physical road at-
tributes, and that machine learning models are able to capture complex
relationships so as to facilitate predictions. Future work could investi-
gate the possibility to utilize a more-urban morphological network-
based analysis for MFA studies. Furthermore, deep learning ap-
proaches could be tested and compared with gradient-boosting machine
learning algorithms (Lecun et al., 2015).

Another limitation associated with the application of the method
introduced in this work is the availability of existing data. Although
many types of data are publicly available in Sweden, there remain large
gaps in the dataset. In countries with lower availability of data, the
potential for machine learning to compensate for missing data will be
more limited. In cases where machine learning cannot be applied due to
lack of available data, the data must first be gathered, for example using
remote sensing from satellites or night-time light approaches. Such
methods might also be more appropriate for developing countries with
limited available data.

4.2. Generalizability of the approach

The proposed framework of combining machine learning andMFA to
quantify embodied carbon emissions using an incomplete data set is
highly generalizable given available data. All the generated features
utilize basic GIS data such as road and building footprints. The use of GIS
data is essential for this approach as most of the features are generated
using spatial analysis tools. The strength of machine learning models is
that they perform (“learn”) differently depending on the specific dataset.
Thus, it is possible to use a different set of features depending on the
context and data availability. This study demonstrates the possibility of
using a very limited number of physical attributes of the roads as fea-
tures (length and surface type) and still achieves a good accuracy (R2

value). One potential future application of this approach is to Open-
StreetMap where the road network attributes are incomplete (Herfort
et al., 2022). The strength of using machine learning to fill-in the gap in

the data is that the data requirement is flexible and can be varied based
on the research question. Furthermore, the proposed approach can also
be used to predict other physical road attributes.

4.3. Embodied emissions from new construction versus maintenance

To achieve the goal of net-zero embodied emissions, a potential
policy could be to scale down or even completely halt the construction of
new roads. For example, in Wales, all new major road construction
projects have been scrapped and any new construction projects must not
increase the levels of carbon emissions (BBC), (The Guardian). This
reduction in new construction could in the future be the result of
decreased driving demand through a combination of technological ad-
vancements, such as self-driving cars and behavioral changes (Morfeldt
et al., 2023). This could reduce the levels of both embodied emissions
and material consumption. Fig. 7 shows the embodied emissions,
divided between maintenance and new construction for the two sce-
narios. In both scenarios, new constructions contribute only around
2.9% of the total annual embodied emissions. The system boundary does
not include other transport infrastructures that use concrete, such as
bridges and tunnels; the percentage of embodied emissions resulting
from new construction will be higher if other infrastructures are
included (Karlsson et al., 2020a).

As Sweden is a developed country with well-established in-
frastructures, the annual addition of new roads is small relative to the
existing stock. Therefore, the largest shares of material consumption and
embodied emissions are from roadmaintenance activities. This indicates
that there are two main pathways to reducing embodied emissions: 1) a
better maintenance regime to prolong the road lifetime; and 2) pro-
curement policies that facilitate the production of low-embodied-
emissions materials. In contrast, the demand for new road construc-
tion remains high in developing economies, where the emissions asso-
ciated with providing road access to at least 97.5% of the population in
any country are estimated to be about 2 GtCO2 (Wenz et al., 2020).
Therefore, measures that would reduce the levels of embodied emissions
for new construction of roads, such as policies for material efficiency,
should be promoted in developing countries (Hertwich et al., 2020).

Since the maintenance of roads contributes the largest share of
embodied emissions, improved maintenance regimes, such as predictive
maintenance, could prolong the lifetimes of roads and, thereby, reduce
the amount of material required for maintenance of the Swedish road
network. This should be applicable to other developed countries with
well-developed road networks, such the US where an estimated 75% of
the yearly material inflow into the road network material stock is linked

Fig. 7. Embodied emissions in Mt (106 tonnes) distinguishing between maintenance and new construction activities from Year (2020) to Year 2045. a) Business-as-
usual scenario. b) Emission reduction scenario.
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to maintenance activities (Miatto et al., 2017). On the other hand, the
implementation of embodied carbon emission requirements for mate-
rials used during maintenance and new construction could be an effec-
tive policy for emissions reductions. A well-implemented procurement
requirement and emissions declaration can lower the technological and
market barriers by creating a market for low-CO2 products, as discussed
by Löfgren & Rootzén (Löfgren et al., 2021). This could be especially
effective for asphalt, since road construction is the main consumer of
asphalt.

4.4. Limitations and future work

The focus of the present work is the development of methods to fill
the gaps in the road dataset. Thus, the MFA used the more-aggregated
archetype approach. As previously discussed, a layer thickness-based
approach can produce more-accurate stock and flow results. The
method introduced in this work could be used to predict other geometric
attributes such as layer thickness, although the challenge is that each
prediction introduces uncertainty and using a predicted value for further
predictions simply increases the level of uncertainty related to the re-
sults. An alternative could be to apply an archetype-based method to
estimate pavement thickness, such as that developed by Wang et al.
(2022), and to combine this with the method proposed in the present
work, thereby creating a hybrid model.

Furthermore, the lifetimes used in the MFA are static and do not
consider potential future changes in climatic conditions or traffic flows
that might affect the lifetimes of the roads. The inclusion of future
climate change scenarios may introduce significant uncertainties related
to the maintenance needs of roads (Valle et al., 2017), (Guest et al.,
2020). Thus, the results of the analysis represent a snapshot of potential
future material flows and embodied emissions, assuming all factors
remain constant.

For the machine learning models, future work should aim to improve
the interpretability of the machine learning results by including feature
importance analysis. This is outside the scope of this study as the focus is
to demonstrate the applicability of machine learning to complement
statistical data. In the context of Industrial Ecology, the ease with which
machine learning models can be interpreted is especially important in
studies that investigate the relationships between cause and outcomes,
which could be used to inform decision-making processes (Donati et al.,
2022). For a comprehensive review of the different explainability
assessment methods of machine learning models, the reader is referred
to the paper of Ali et al. (2023).

Material recycling was excluded from the analysis due to the lack of
information on road surface type and layer thickness data for munici-
pally owned and privately owned roads. If modeling recycling in greater
detail, the reduction in embodied emissions and increase in material
efficiency might be higher than those shown in this work. Along with the
development of various data collection methods and machine learning
models, future work should consider the trade-off between the
complexity of the chosen modeling method and the magnitudes of un-
certainties associated with the method.

Lastly, the spatial aspect of the proposed approach should be further
explored. For example, this approach can be expanded to analyze the
concept of circularity hub of construction materials as describe by Tsui
et al. (2024). The spatial aspect of roads can be used to calculate the
transport distances of a potential circularity hub. Furthermore, the
material outflows from the roads can also be considered for potential
circularity hubs. Similarly, the material stock efficiency of stock as
shown in Wang et al. (2022) can be expanded to include municipal and
privately owned roads to gain a better understanding of stock efficiency
for rural areas.

5. Conclusion

In the coming decades, decarbonization of transport infrastructures

will be a major challenge in relation to limiting global warming. Un-
derstanding the future material flows involved in the construction and
maintenance of the transport infrastructure is essential for meeting
ambitious emission reduction goals. While detailed datasets with high
geographic resolution and physical attributes are crucial, datasets are
usually unavailable. This study proposes a machine learning-based
method for predicting missing statistical data regarding physical attri-
butes in a road dataset, which can be used for estimating material flows
and embodied emissions. Sweden is used as a case study, since the road
dataset is publicly available. Four machine learning algorithms are
tested, and the best-performing model is chosen to predict the missing
road width data. The predicted road widths are used to complete the
dataset, and a stock-driven MSFA is conducted for the period
of2020–2045. The material flows are thereafter used to calculate
scenario-based embodied emissions.

Machine learning models give good prediction results, and the best-
performing model is called XGBoost. The material stock estimation
shows that non-state-owned roads contribute 47.5% of the material
stock, which is the main source of the missing width data. The emissions
reduction scenario shows that by Year (2045), the yearly embodied
emissions for Swedish roads can be reduced by 51%. Furthermore, new
construction contributes only 2% of the total yearly embodied emis-
sions. This points to the importance of improved road maintenance re-
gimes and embodied carbon emissions requirements for the materials
used in road maintenance, as well as new strategies to reduce the
embodied emissions of roads. While the scenario results are relevant to
the Swedish context, the methodological approach is equally applicable
to other countries, provided that the requisite underlying data are
available.

In terms of future research efforts, the application of machine
learning models can be expanded to predict other physical attributes of
roads, such as layer thickness. Furthermore, the feature importance of
the machine learning models can be included to improve the explain-
ability of results. If more data become available, more-detailed models
of layer wear and tear and material recycling should be included to
investigate the embodied emissions reduction potential and material
efficiency.
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