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Abstract: Fractional delay-Doppler (DD) channel estimation in orthogonal time–frequency space
(OTFS) systems poses a significant challenge considering the severe effects of inter-path interference
(IPI). To this end, several algorithms have been extensively explored in the literature for accurate
low-complexity channel estimation in both integer and fractional DD scenarios. In this work, we
develop a variant of the state-of-the-art delay-Doppler inter-path interference cancellation (DDIPIC)
algorithm that progressively cancels the IPI as estimates are obtained. The key advantage of the
proposed approach is that it requires only a final refinement procedure reducing the complexity of the
algorithm. Specifically, the time difference in latency between the proposed approach and the DDIPIC
algorithm is almost proportional to the square of the number of estimated paths. Numerical results
show that the proposed algorithm outperforms the other channel estimation schemes achieving lower
normalized mean square error (NMSE) and bit error rate (BER).

Keywords: OTFS; channel estimation; (DD) delay-Doppler domain; fractional parameter estimation;
inter-path interference

1. Introduction

Reliable communication in doubly dispersive channels, where high delay and Doppler
spreads due to multipath and mobility are experienced, is becoming an increasingly promi-
nent research topic toward the development of next-generation wireless networks [1,2]. The
widely adopted OFDM (orthogonal frequency division multiplexing) is suitable for static
frequency-selective multipath channels but experiences drastic performance degradation
in high-mobility scenarios due to the loss of orthogonality between the subcarriers, as
analyzed in [3], inducing intercarrier interference (ICI). To cater to high-mobility scenarios,
several novel waveforms have been introduced in literature. An overview of some of the
existing modulation schemes for high-mobility wireless channels is reported in [4]. Orthogo-
nal time–frequency space (OTFS) modulation was proposed in [5,6] and is garnering a lot of
attention due to its robustness against the Doppler effect. OTFS is a two-dimensional mod-
ulation scheme that multiplexes information symbols in the delay-Doppler domain, where
the channel representation becomes sparse and the channel can be considered almost time-
invariant [5–7]. In contrast, OFDM multiplexes information symbols in the time–frequency
(TF) domain, where mobility generates a frequency response of the time-varying channel.

1.1. Problem Context

In this work, we consider a scenario comprising a single-antenna transmitter and
receiver, focusing on the channel estimation problem with fractional delays and Doppler
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shifts and no prior information about the number of propagation paths [8,9]. The transmit-
ter sends a pilot symbol in the delay-Doppler (DD) domain, while the receiver processes
the received pilot frame to extrapolate the knowledge of the channel parameters.

The channel estimation problem is often considered in the integer DD scenario, which
is facilitated by the assumption of having a channel with delays and Doppler shifts that are
multiples of delay and Doppler resolutions. In this case, there is no interference between
adjacent DD bins, and a simple threshold method can be used to obtain good performances,
as shown in [10]. On the other hand, in reality, this assumption may not hold, which
motivates the study of fractional DD scenario, which is more challenging, since the received
replica of the pilot symbol in the DD domain spreads into adjacent bins after 2D sampling
of the DD domain [7,11]. This is the well-known inter-path interference phenomenon.
Our focus is on the effects of IPI caused by fractional DDs and IPI cancellation to recover
channel state information (CSI) with high accuracy.

1.2. State of the Art

Channel estimation in OTFS systems has been widely investigated in the literature
since the detection performance of the OTFS receiver is based on the estimated channel
matrix [12–15]. In [10], an embedded-pilot-aided method for channel estimation is pro-
posed, achieving good performances in both integer DDs and fractional Doppler scenarios.
Channel estimation in massive multiple-input multiple-output scenarios (MIMO) has been
investigated in [16], where additional sparsity due to a large number of transmit and
receive antennas allows the channel estimation problem to become a simpler sparse re-
covery problem taking advantage of the angular domain. In [17–19] a novel tensor-based
approach for channel estimation in massive MIMO systems is proposed to further exploit
channel sparsity in the delay-Doppler-angle domain and reduce signal processing burden.
Low-complexity channel estimation schemes were considered in single-antenna systems
in [8], where modified maximum likelihood estimator (M-MLE) and two-step estimator
(TSE) algorithms were introduced. The first is based on the asymptotic orthogonality of a
delay-Doppler parameter matrix for large OTFS frames, which allows for the simplification
of the cost function. On the other hand, the second one has lower complexity and relies on
disjoint delay and Doppler estimation. Under the assumption of having good separability
of the received pilot replica due to fine delay and Doppler resolutions, in both algorithms,
the IPI is cancelled, and at each iteration, a residual received vector is used for estimating
channel parameters of the next path. Similarly, IPI cancellation is performed in the low-
complexity channel estimation scheme for discrete Zak transform-based OTFS (DZT-OTFS)
proposed in [20]. Sparse Bayesian learning (SBL) algorithms for channel estimation are also
considered in [21,22], but M-MLE and TSE algorithms are shown to perform better then
SBL in [8] when delay and Doppler resolutions are fine enough. In [23], different channel
estimation schemes for the fractional DD case are proposed with the scope of improving the
spectrum efficiency and reduce the peak-to-average-power-ratio (PAPR) by sending pilots
in the time–frequency (TF) domain. The problem of high-precision channel estimation in
IPI scenarios has been addressed in [11], where an iterative delay-Doppler IPI cancellation
(DDIPIC) algorithm was proposed. In this case, the IPI cancellation is performed indirectly
through refinement procedures carried out at each iteration. These refinements of the
channel parameters take time, increasing the computational burdening of the channel
estimation algorithm. In more detail, the computational complexity of the cost function,
which is evaluated multiple times during each iteration, increases with the cube of the
iteration index due to matrix inversion. However, in [11], the DDIPIC algorithm is shown
to perform better than the M-MLE algorithm. Hence, in this work, we considered only the
comparison between the proposed approach and the state-of-the-art DDIPIC algorithm.

1.3. Contributions

The goal of this work is to propose a variant of the DDIPIC algorithm from [11], named
the progressive IPI cancellation (P-IPIC) algorithm, which cancels the IPI by performing
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residue cost function (RCF) maximization at each step. The main difference of the proposed
algorithm with respect to the DDIPIC is that it operates in two phases: A search phase,
where a certain number of possible paths are detected and a first rough estimate of the
channel parameters is provided, A refinement phase, where the found paths are refined,
looking for ones declared as false alarms and discarded, until the stopping criterion is met.
This procedure allows the correct number of paths to be found while the accuracy of the
estimates is improved. The contributions of this work can be summarized as follows:

• Progressive IPI cancellation: Instead of discovering possible paths and performing
refinements in each iteration maximizing the observation-based cost function as in [11],
we perform maximization of a residue-based cost function (RCF) at each step during
the discovery phase. This progressive cancellation of the IPI allows a first channel
estimate to be provided, aiming to reduce the residue energy as iteration progress,
achieving high accuracy in channel matrix reconstruction.

• Latency reduction due to single global refinement of the estimates: The main drawback of
the state-of-the-art DDIPIC algorithm is that it performs refinement procedures at each
iteration, as discussed in Section 3.5. Progressive IPI cancellation allows the latency
to be reduced, since, as discussed above, the algorithm can operate in two distinct
phases and a single global refinement is needed.

• Computational complexity reduction in search phase: During the iterative search phase,
the proposed algorithm looks for new paths by performing a RCF maximization. This
allows us to reduce the computational cost since the computation of the RCF does not
require matrix inversion. Moreover, the computational cost does not depend on the
iteration index. As a consequence, coarse and fine estimation procedures described in
Section 3.4 will take less time.

• Resilience towards high-IPI scenarios: In the literature, it is commonly assumed to have
sufficiently fine delay and Doppler resolutions such that all the propagation paths
are resolvable in the DD domain. In some cases, this may not hold, and robust low-
complexity channel estimation algorithms must be designed to suit high-IPI scenarios.
In this work, we consider both low- and high-IPI regimes, showing that the proposed
approach is suitable for both regimes.

The remainder of this paper is organized as follows. In Section 2, the OTFS signal
model is presented. In Section 3, OTFS channel estimation is covered, including the baseline
DDIPIC method and our proposed P-IPIC method.

2. OTFS Modulation

In this section, the employed models for the OTFS signal, the propagation channel,
and receiver-side processing are presented.

2.1. Transmitted Signal Model

In OTFS systems [5,7], the TX arranges MN symbols in the delay-Doppler grid, re-
ferred to as IDD, where M is the number of subcarriers and N is the number of time slots of
the OTFS frame. The DD-domain symbols are then converted to the time–frequency domain
through inverse symplectic finite Fourier transform (ISFFT). Denoting with X ∈ CM×N the
delay-Doppler symbols multiplexed in the DD domain, the corresponding symbols in the
time–frequency grid are obtained as

Xt f [l, k] =
1√
MN

N−1

∑
n=0

M−1

∑
m=0

X[m, n]ej2π
(

nk
N − ml

M

)
. (1)

After that, the time-domain OTFS signal is obtained through the the Heisenberg
transform as

s(t) =
N−1

∑
k=0

M−1

∑
l=0

Xt f [l, k]gtx(t − kT)ej2πl∆ f (t−kT), (2)



Sensors 2024, 24, 4414 4 of 16

where gtx(t) is the transmit-shaping pulse of duration T. The continuous-time signal in
Equation (2) has a total duration of NT and a bandwidth of M∆ f , where T corresponds to
the time slot duration and ∆ f = 1/T is the subcarrier spacing. Thus, the delay and Doppler
resolutions are, respectively,

τres =
1

M∆ f
, νres =

1
NT

. (3)

2.2. Channel Model

The transmitted signal passes through the channel that in the DD domain is modeled as

h(τ, ν) =
P

∑
i=1

giδ(τ − τi)δ(ν − νi). (4)

where P is the number of propagation paths and gi, τi, and νi are the complex channel gain,
the propagation delay, and the Doppler shift of the i-th path, respectively.

2.3. Receiver Processing

The received signal is obtained by computing the Heisenberg transform and adding
additive white Gaussian noise (AWGN) with monolateral power spectral density (PSD) N0,
referred to as n(t). Thus, the received signal is

r(t) =
∫∫

h(τ, ν)s(t − τ)ej2πν(t−τ)dτdν + n(t), (5)

At the receiver side, inverse operations are performed to recover the received symbols
in the DD domain. Firstly, the receiver computes the Wigner transform by sampling the
so-called cross-ambiguity function (CAF) Agrx ,r( f , t) to convert the received time-domain
signal into samples in the time–frequency grid as

Yt f [l, k] = Agrx ,r( f , t)| f=l∆ f ,t=kT =
∫

r(t′)g∗rx(t
′ − t)e−j2π f (t′−t)dt′

∣∣∣∣∣
f=l∆ f ,t=kT

. (6)

Secondly, a SFFT is applied to obtain the DD-domain received frame

Y[m, n] =
1√
MN

N−1

∑
k=0

M−1

∑
l=0

Yt f [l, k]e−j2π
(

nk
N − ml

M

)
. (7)

From now on, we are going to consider OTFS modulation with rectangular shaping
filters of duration T and amplitude 1/

√
T at both the transmitter and receiver side.

3. OTFS Channel Estimation

The purpose of channel estimation is to determine the parameters of (4), based on
pilot signals. In this section, the pilot model and corresponding observation model are
presented, followed by the baseline method and the proposed method.

3.1. Pilot Model

In our scenario [8,11], the single-antenna transmitter sends a pilot symbol in the DD
domain. The corresponding pilot frame is given by

X[m, n] =

{√
Ep m = mp, n = np,

0 otherwise,
(8)

where m = mp, n = np is the delay-Doppler resource element (DDRE), in which the pilot is
sent and Ep is the energy of the transmitted pilot signal.
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At the receiver, after the operations described above and vectorization, the received
pilot frame is given by

y = vec(Y) = Hvec(X) + w = Hx + w, (9)

where w ∼ CN (0, N0I) ∈ CMN×1 is the AWGN noise vector and H ∈ CMN×MN is the
delay-Doppler domain channel matrix, given by

H =
P

∑
i=1

giGi(τi, νi), (10)

where Gi(τi, νi) ∈ CMN×MN is a matrix that captures the effect of the propagation delay
and the Doppler shift of the i-th path, and for l′, l′′ = 0, 1, .., M − 1, k′, k′′ = 0, 1, ..., N − 1 is
computed as [8,11]

Gi[k′M + l′, k′′M + l′′] =
e−j2πτiνi

MN

N−1

∑
n=0

M−1

∑
m=0

rk′′ ,l′(m)e
j2π

(
m
M

(
l′−l′′− Mτi

T

)
− n

N

(
k′−k′′− Nνi

∆ f

))
, (11)

where

rk′′ ,l′(m) =
M−1−m

∑
s=−m

ej2πs l′
M

[(
1 − τi

T

)
ejπ
(

1+ τi
T

)(
νi
∆ f −s

)
sinc

((
1 − τi

T

)( νi
∆ f

− s
))

+

τi
T

e−j2π k′′
N ejπ

(
τi
T

)(
νi
∆ f −s

)
sinc

(
τi
(
νi − s∆ f

))]
.

(12)

If the channel coefficients are normalized such that ∑P
i=1 |gi|2 = 1, the received pilot

signal power equals the transmitted one. Under this hypothesis, the pilot signal-to-noise
ratio (PSNR) can be computed as in [8]. Hence, the pilot signal power is the total energy
Ep divided by the overall time duration NT, while the noise power is the product of the
power spectral density N0 and the bandwidth M∆ f . Thus,

PSNR =
Ep/NT
M∆ f N0

=
Ep

MNN0
. (13)

During a channel coherence window, the receiver processes the received pilot frame
running a channel estimation algorithm, and once the estimated channel matrix Ĥ is
obtained, uses the estimate to detect the incoming data frames.

3.2. Observation Model for Channel Estimation

As in [11], channel estimation is performed considering the input–output relation in
Equation (9), rewritten as

y = R
(
τ, ν

)
g + w, (14)

where g = [g1 g2 ... gP]
T ∈ CP×1 is the channel gains vector and R

(
τ, ν

)
= [r1 r2 ... rP] ∈

CMN×P is a matrix called constituent delay-Doppler parameter matrix (CDDPM). Each
column of R

(
τ, ν

)
is related to a different path and is given by

ri(τi, νi) = Gi(τi, νi)x. (15)

Given the input–output relation in Equation (14), the maximum likelihood (ML)
estimate of the unknowns is given by

(ĝ, τ̂, ν̂) = arg min
g,τ,ν

∥y − R
(
τ, ν

)
g∥2. (16)
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Although the minimization problem depends on three parameters, it can be simplified
performing a two-step ML estimate of the unknowns as

(τ̂, ν̂) = arg max
τ,ν

Φ
(
R
(
τ, ν

)
, y
)
, (17)

and
ĝ =

(
RH(τ̂, ν̂

)
R
(
τ̂, ν̂

))−1
RH(τ̂, ν̂

)
y. (18)

Here, the cost function Φ
(
R
(
τ, ν

)
, y
)

is computed as

Φ
(
R
(
τ, ν

)
, y
)
= yHR

(
τ, ν

)(
RH(τ, ν

)
R
(
τ, ν

))−1
RH(τ, ν

)
y. (19)

The DDIPIC algorithm proposed in [11] performs an iterative maximization of the
cost function in Equation (17) in order to jointly estimate delays and Dopplers of the paths.
The operation of the algorithm is summarized below.

3.3. DDIPIC Algorithm

The algorithm proceeds iteratively for a maximum of Pmax iterations and the CDDPM
matrix is initialized as R

(
τ, ν

)
= 0. The details of the DDIPIC algorithm are provided in

Algorithm 1. At each iteration, the parameters of one path are estimated as follows:

1. Coarse estimation (line 2): The cost function in (19) is maximized over the DD grid
of integer multiples of delay and Doppler resolutions, providing a coarse estimate
of delay and Doppler shift. The search area is limited to [0, Lτres]× [−Kνres, Kνres],
where L = ⌈ τmax

τres
⌉ and K = ⌈ νmax

νres
⌉.

2. Fine estimation (lines 5–11): An iterative procedure runs for a maximum of smax it-
erations to provide a better estimate of the off-grid DDs. In each iteration, the cost
function in (19) is maximized over a search area comprising fractional delays and
Dopplers around, for s = 1, the coarse estimate obtained in step 1 or, for s > 1,
the fine estimate obtained in the previous iteration. The search space is narrowed
down as the iteration progresses, reducing the delay and Doppler search widths
(lines 6–7). The fine estimation procedure ends when the stopping criteria for τ and
ν are met. The search space for the fine estimation procedure is called F(s)

DD, and we
define Γ = {−⌊mτ

2 ⌋, ..., 0, ..., ⌊mτ
2 ⌋} and Λ = {−⌊ nν

2 ⌋, ..., 0, ..., ⌊ nν
2 ⌋} where mτ and nν

are design parameters. Notice that after the Cartesian product (denoted ×) of the two
sets, only positive delays need to be considered. The parameters ϵτ and ϵν are chosen
to achieve the desired accuracy compatibly with smax.

3. Check stopping criterion (line 15–19): A residue vector is computed as E (i) = y −
R(τ̂, ν̂)ĝ and if ∥E (i)∥ < ϵ is satisfied, the algorithm stops and a number of P̂ paths
are detected; otherwise, before starting the search for a new path, all previous esti-
mates are refined as described below. The convergence tolerance parameter ϵ for the
stopping criterion must be chosen not to underestimate the number of propagation
paths, not to miss those with smaller amplitudes, and not to overestimate the number
of propagation paths due to residual IPI or noise. Since the noise is Gaussian, a
reasonable value could be set taking into account the fact that the number of sym-
bols per frame is MN, and the noise variance is N0, so that we have set its value to
ϵ = 3

√
MNN0.

4. Refinement procedure (line 20–21): All coarse and fine estimates are performed again
for all the previously detected paths until the current one. In particular, at the i-th
iteration, lines 2–13 are run again iteratively for iref = 1, ..., i.
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Algorithm 1: DDIPIC
Input: Pmax, ϵ, smax, ϵτ , ϵν, mτ , nν, y

1 for i = 1 to Pmax do
2 τ

(i)
coarse, ν

(i)
coarse = arg max(τ,ν)∈IDD

Φ(R(τ, ν), y);

3 τ̂
(0)
fine = τ

(i)
coarse;

4 ν̂
(0)
fine = ν

(i)
coarse;

5 for s = 1 to smax do
6 W(s)

τ = τres
ms−1

τ
: delay search width;

7 W(s)
ν = νres

ns−1
ν

: Doppler search width;

8 F(s)
DD =

{
W(s)

τ Γ + τ̂
(s−1)
fine

}
×
{

W(s)
ν Λ + ν̂

(s−1)
fine

}
;

9 τ̂
(s)
fine, ν̂

(s)
fine = arg max

(τ,ν)∈F(s)
DD

Φ(R(τ, ν), y);

10 if s = smax or
(∣∣τ̂(s)

fine − τ̂
(s−1)
fine

∣∣ < ϵτ and
∣∣ν̂(s)fine − ν̂

(s−1)
fine

∣∣ < ϵν

)
then

11 break;

12 τ̂[i] = τ̂
(s)
fine;

13 ν̂[i] = ν̂
(s)
fine;

14 ĝ =
(

RH(τ̂, ν̂)R(τ̂, ν̂)
)−1

RH(τ̂, ν̂)y;

15 E (i) = y − R(τ̂, ν̂)ĝ;
16 if i > 1 then
17 if ∥E (i)∥ < ϵ then
18 P̂ = i;
19 break;

20 else
21 Refinement procedure (iref = 1, ..., i);

22 Output: Ĥ = ∑P̂
i=1 ĝiGi(τ̂i, ν̂i);

3.4. Proposed P-IPIC Algorithm

The proposed variant of the DDIPIC algorithm aims to reduce the complexity of
DDIPIC and is based on a RCF maximization and performs an iterative search as in the
original algorithm until the maximum number of iterations is reached or the stopping crite-
rion is met. The pseudocode of the proposed P-IPIC algorithm is provided in Algorithm 2.
The main parameters are as for the DDIPIC algorithm.
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Algorithm 2: Proposed P-IPIC
Input: Pmax, ϵ, smax, ϵτ , ϵν, mτ , nν, N0, y

1 E (0) = y;
2 for i = 1 to Pmax do
3 τ

(i)
coarse, ν

(i)
coarse = arg max(τ,ν)∈IDD

Φ
(
r(τ, ν), E (i−1));

4 τ̂
(0)
fine = τ

(i)
coarse;

5 ν̂
(0)
fine = ν

(i)
coarse;

6 for s = 1 to smax do
7 W(s)

τ = τres
ms−1

τ
: delay search width;

8 W(s)
ν = νres

ns−1
ν

: Doppler search width;

9 F(s)
DD =

{
W(s)

τ Γ + τ̂
(s−1)
fine

}
×
{

W(s)
ν Λ + ν̂

(s−1)
fine

}
;

10 τ̂
(s)
fine, ν̂

(s)
fine = arg max

(τ,ν)∈F(s)
DD

Φ
(
r(τ, ν), E (i−1));

11 if s = smax or
(∣∣τ̂(s)

fine − τ̂
(s−1)
fine

∣∣ < ϵτ and
∣∣ν̂(s)fine − ν̂

(s−1)
fine

∣∣ < ϵν

)
then

12 break;

13 τ̂[i] = τ̂
(s)
fine;

14 ν̂[i] = ν̂
(s)
fine;

15 ĝ =
(

RH(τ̂, ν̂)R(τ̂, ν̂) + N0I
)−1

RH(τ̂, ν̂)y;

16 E (i) = y − R(τ̂, ν̂)ĝ;
17 if i > 1 then
18 if ∥E (i)∥ < ϵ then
19 P̂ = i;
20 break;

21 Refinement procedure (iref = 1, . . . , P̂) → ˆ̂P;

22 Output: Ĥ = ∑
ˆ̂P

i=1 ĝiGi(τ̂i, ν̂i);

The proposed algorithm features several key differences compared to Algorithm 1:

• Coarse and fine estimation based on the residuals (lines 3 and 10): The key idea is that once
a path is detected and the residue vector is obtained, during the next search, a new
path is discovered looking at the residual pilot signal of the previous iteration. Thus,
at the i-th iteration, the algorithm looks for a new path maximizing an RCF given by

Φ
(
r(τ, ν), E (i−1)) = (E (i−1))Hr(τ, ν)

(
rH(τ, ν)r(τ, ν)

))−1
rH(τ, ν)E (i−1) (20)

=

(
rH(τ, ν)E (i−1))∗rH(τ, ν)E (i−1)

∥r(τ, ν)∥2 =
|rH(τ, ν)E (i−1)|2

∥r(τ, ν)∥2 . (21)

In this way, at each iteration, the IPI between the paths is directly canceled, facilitating
the new search.

• Global refinement (line 21): It is important to notice that this solution is prone to error
propagation across all estimates. This may lead to residue vectors with residual peaks
that are interpreted as small-amplitude paths by the algorithm. In order to avoid
false alarms or multidetections due to residual uncancelled IPI, the P-IPIC algorithm
needs a final refinement step in which all the estimates are refined while the residue
in monitored. If the residue satisfies the stopping criterion, all remaining unrefined
estimates are declared false alarms and, therefore, discarded. Specifically, during the
search phase, a number of paths equal to P̂ is detected. After that, during the refinement
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phase the paths are refined as in the DDIPIC algorithm with the only difference in
using the cost function in Equation (19) with a Tikhonov regularization, also known
as ridge-regression, and in performing channel gain refinement as in line 15. As
discussed above, during this phase some paths may be discarded. Therefore, the
refinement procedure provides a number of estimated paths equal to ˆ̂P ≤ P̂. The
number of paths detected during the search phase cannot be determined a priori but it
is reasonable to assume that, if the IPI is not too large and the channel is made of a
sufficiently high number of propagation paths, ˆ̂P ≈ P̂.

• Regularization (line 15): Another difference from the original version of the IPI cancella-
tion algorithm is that the ordinary least squares (OLS) estimate of channel gains in
Equation (18) is replaced by a regularized least squares (RLS) estimate to make the
matrix inversion more stable. This is due to the fact that, due to residual IPI, some
paths are detected multiple times, and as a result, the CDDPM matrix may have some
almost collinear columns. Therefore, the RLS estimate of the channel gains vector is
given by

ĝ =
(

RH(τ̂, ν̂)R(τ̂, ν̂) + N0I
)−1

RH(τ̂, ν̂)y (22)

where I is the identity matrix.

3.5. Latency/Complexity Comparison

The key advantage of the proposed approach is that it requires a single final refinement
procedure compared to the P̂− 1 refinements performed by the DDIPIC algorithm. A rough
latency comparison of the two approaches is shown in Table 1, where we assumed that
the P-IPIC algorithm does not overestimate the number of paths significantly during the
first iterative procedure; thus, ˆ̂P ≈ P̂. Under this hypothesis, and denoting by Tcoarse the
average time needed to perform a coarse estimate and with Tfine the average time needed
to perform a fine estimate, we can make the following observations.

1. DDIPIC: This performs a coarse and fine estimation for every path in a time equal to
P̂(Tcoarse + Tfine). Moreover, from the second iteration to the end, it performs P̂ − 1
refinement procedures of the estimates. Therefore, at each refinement procedure, it
performs i coarse and fine estimates.

2. P-IPIC: This performs a coarse and fine estimation for every path in a time equal to
P̂(Tcoarse + Tfine) during the search phase. Moreover, the refinement phase performs a
second coarse and fine estimate for each path.

Table 1. Latency comparison of the two IPIC algorithms.

Algorithm Latency

DDIPIC [11]
(Tcoarse + Tfine)P̂ + (Tcoarse + Tfine)∑P̂

i=2 i =

2(Tcoarse + Tfine)P̂ + (Tcoarse + Tfine)
(

P̂(P̂−1)
2 − 1

)
P-IPIC (Prop.) 2(Tcoarse + Tfine)P̂

During the search phase , the proposed P-IPIC algorithm runs coarse and fine estimation
procedures of channel delays and Dopplers performing maximization of the cost function
in Equation (21), while during the refinement phase, it maximizes the regularized version of
Equation (19). The complexity comparison of the cost function in Equation (19) and the
RCF is shown in Table 2. It can be noticed that the first advantage in computing the RCF is
that it does not require matrix inversion but only multiplications and additions; instead,
the computation of the cost function in Equation (19) does. In order to compare the two
cost functions, we can make the following observations.

1. DDIPIC cost function in (19): During the i-th iteration, the number of required opera-
tions is
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(a) yHR
(
τ, ν

)
, y ∈ CMN×1, R

(
τ, ν

)
∈ CMN×i requires MNi multiplications and

(MN − 1)i additions. Then, RH(τ, ν
)
y is simply obtained applying the Her-

mitian operator.
(b) RH(τ, ν

)
R
(
τ, ν

)
∈ Ci×i requires MNi2 multiplications and (MN − 1)i2 addi-

tions. After that, matrix inversion has a complexity in the order of O(i3).

(c) yHR
(
τ, ν
)(

RH(τ, ν
)
R
(
τ, ν
))−1

requires i2 multiplications and i(i − 1) additions.

(d) The matrix multiplication of the 1 × i matrix obtained in the previous step by(
yHR

(
τ, ν

))H
requires i multiplications and i − 1 additions.

2. P-IPIC RCF: during the i-th iteration, the number of required operations is

(a) rH(τ, ν)E (i−1),r ∈ CMN×1,E (i−1) ∈ CMN×1 requires MN multiplications and
MN − 1 additions. After that, an additional multiplication is needed to com-
pute the squared module.

(b) ∥r(τ, ν)∥2 requires MN multiplications and MN − 1 additions.
(c) One final division is required to compute the ratio between numerator

and denominator.

The computation of the RCF is independent of the iteration index i, while the com-
putational complexity of the cost function in Equation (19) increases as O(i3) due to the
inversion of a i × i matrix.

In the end, the search cost of the proposed P-IPIC is identical to that of the DDIPIC,
since coarse and fine estimates are performed in the same way apart from the cost function.
Hence, as in [11], the search cost depends on the number of points in the integer DD grid
during the coarse estimate, or the number of points in the fractional search space F(s)

DD
during the fine estimate. In particular, during the coarse estimation phase, both algorithms
perform (L + 1)(2K + 1) cost function maximizations, while during the fine estimation
phase, they perform at most

(
2⌊mτ

2 ⌋+ 1
)(

2⌊ nν
2 ⌋+ 1

)
maximizations.

Table 2. Comparison of computational complexity of cost functions.

Cost Function Equation (19) RCF

Multiplications (MN + 1)(i2 + i) 2MN + 1

Additions (MN − 1)(i2 + i) + i2 − 1 2(MN − 1)

Total number of operations 2MN(i2 + i) + i2 − 1 +O(i3) 4MN

4. Simulation Results

In this section, the proposed method is evaluated and compared against the baseline
DDIPIC method.

4.1. Simulation Parameters

To investigate the performance of the proposed approach, we consider OTFS mod-
ulation with M = 16 and N = 16 with subcarrier spacing of ∆ f = 25 kHz and a carrier
frequency fc = 5.1 GHz. Thus, delay and Doppler resolutions are τres = 2.5 µs, and
νres = 1.5625 kHz. As in [11], the parameters for running channel estimation algorithms
are Pmax = 15, smax = 10, ϵτ = 10−10, ϵν = 10−2, mτ = 10, nν = 10 . Finally, as discussed
above, the convergence tolerance parameter for the stopping criterion is set according to
the noise variance and OTFS frame parameters.

4.2. Simulation Scenarios

The high-mobility multipath channel is assumed to have P = 4 Rayleigh faded paths
with exponential power delay profile (PDP) with a decaying time constant of 10 µs and
a maximum delay of 10 µs. We consider two different case studies corresponding to
different scenarios:
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1. Low-IPI Regime: Propagation delays and Doppler shifts assume fractional values but
the paths are far enough to guarantee low IPI. Thus, all paths are separable in the
DD domain.
The delays and Doppler shifts of the paths are τ = [0 0.86τres 2.11τres 3.2τres] s,
ν = [−1.87νres 2.24νres − 3νres 1.3νres] Hz, respectively.

2. High-IPI Regime: Propagation delays and Doppler shifts assume fractional values, and
the paths are close enough to create high IPI.
The propagation delays of the paths are τ = [0 2.3 3.15 7.7] µs. The maximum user
equipment (UE) speed is vUE = 190 m

s (684 km
h ), resulting in a maximum Doppler

spread of νmax = vUE
c fc = 3.23 kHz, where c = 3 · 108 m

s is the speed of light.
The Doppler shifts of all paths are generated assuming Jakes’ Doppler power spectrum
(DPS) using νi = νmaxcos(θi) where θi ∼ U [0, 2π].

An example of a pilot frame received in both regimes is provided in Figure 1.

Figure 1. Received DD domain pilot signal.

4.3. Performance Metrics

We will consider the following performance metrics:

• Channel estimation: The accuracy of the channel estimate is measured through the
normalized mean square error (NMSE) computed as

NMSE = E
[
∥H − Ĥ∥2

F
∥H∥2

F

]
. (23)

• Channel parameter estimation: The accuracy of the channel parameter estimates is also
considered evaluating the normalized root mean square error (NRMSE) as

NRMSE(ϑ) =

√√√√E
[

∑P
i=1 |ϑi − ϑ̂i|2

]
∑P

i=1 |ϑi|2
, (24)

where ϑ is a variable that represents delay, Doppler, or channel gain.
• Model order performance: The estimation of P will be evaluated by the average num-

ber of estimated paths and the probability mass function (PMF) of the number of
detected paths.

• Communication: Communication performance of the proposed approach are evaluated
by measuring the bit error rate (BER) as a function of the SNR/bit in order to inves-
tigate for the detection robustness when real channel estimation with the proposed
variant is performed at the receiver. The SNR/bit is given by Eb/N0 where Eb is the
average energy per bit. We consider a quadrature amplitude modulation (QAM) with
Q = 16 constellation points and Eb = 2(Q−1)

3log2Q . The input–output relation for data
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frames is the one in Equation (9). At the receiver, a linear minimum mean square error
(LMMSE) equalizer provides the estimated symbols as

x̂ =

(
ĤHĤ +

1
SNR

I

)−1

ĤHy, (25)

where SNR = MNEs/NT
M∆ f N0

= Es
N0

is the communication signal-to-noise ratio and Es =

Eblog2Q is the average energy per symbol. After that, a symbol-by-symbol maximum
likelihood (ML) detector takes the decision.

4.4. Results and Discussion
4.4.1. Channel Estimation Performance

Figure 2 shows the NMSE as a function of the pilot SNR in both low- and high-IPI
regimes. In the low-IPI case at low PSNR, the performance of the proposed variant and the
DDIPIC algorithm are comparable, while at higher values of PSNR, the proposed variant
outperforms the DDIPIC algorithm, achieving much lower NMSE. On the other hand, in
the high-IPI regime, the P-IPIC algorithm achieves an NMSE 1–2 dB lower than the DDIPIC,
except for the case of PSNR = 35 dB, where the NSME performances become comparable.
We attribute this performance gain to the fact that during the search phase, possible paths are
detected with the goal of reducing the residue energy, and thus to achieve high accuracy
in channel matrix estimate. After that, the good channel estimate obtained in the search
phase is used to refine the estimates and declare false alarms. The performance of the
threshold method in [10] is also presented in both cases as a baseline for comparison, and it
can be noticed they are drastically degraded due to the presence of IPI, since it assumes
integer DDs.

Figure 2. NMSE as a function of pilot SNR.

4.4.2. Channel Parameter Estimation Performance

Figure 3 shows the NRMSE of channel gains, delays, and Doppler shift as a function
of pilot SNR in a channel randomly generated according to channel models 1 and 2. In
both low- and high-IPI regimes, the P-IPIC is capable of estimating channel parameters
with higher accuracy. It can be noticed that in the high-IPI case, at low PSRN, the NRMSE
is high due to the fact that small amplitude paths are missed. On the other side, at high
PSNR, the NRMSE for the P-IPIC increases because small errors in the parameter estimates
during the search phase lead to higher residual IPI that is interpreted as small-amplitude
paths, reducing the overall accuracy of the estimates. However, the P-IPIC still outperforms
the DDIPIC algorithm for high PSNR.
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Figure 3. NRMSE of channel parameters as a function of pilot SNR.

4.4.3. Number of Detected Paths

Figure 4 shows the average number of detected paths as a function of PSNR. In the
low-IPI case, performances of both algorithms are comparable. At low PSNR, the average
number of detected paths is below the true value (P = 4) because small-amplitude paths
are missed. At higher PSNR values, both algorithms are able to detect the right number of
paths. On the other hand, in the high-IPI case, detection capabilities are still comparable,
but at high PSNR values, both algorithms overestimate a bit the number of propagation
paths due to high residual interference effects. Figure 5 shows the probability distribution
among all the possible values for P in the case of PSNR = 35 dB. In the low-IPI regime, both
algorithms detect the right number of paths with a probability close to ∼0.98. Thus, the
probability of miss detection and the probability of false alarm are close to zero (probability
of miss dtection < 0.02). In the high-IPI regime, the probability that the algorithm finds the
correct number of paths is reduced to ∼0.73 for the DDIPIC and ∼0.65 for the P-IPIC. The
probability of miss detection is close to zero in both cases (∼0.015 for the P-IPIC). In the
end, the probability of false alarm is ∼0.27 for DDIPIC and ∼0.34 for P-IPIC.
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Figure 4. Average number of estimated paths as a function of pilot SNR.

Figure 5. Probability mass function of the number of detected paths.

4.4.4. Communication Performance

BER performance with the estimated channel (PSNR = 30 dB) and with perfect channel
state information at the receiver (CSIR) is provided in Figure 6, showing the BER perfor-
mance as a function of the SNR/bit in the low- and high-IPI regimes. As expected, the
proposed P-IPIC achieves lower bit error rates in both regimes. In addition, BER curves are
closer to the ideal curves obtained with perfect channel state information at the receiver.

Figure 6. Bit error rate as a function of SNR/bit.
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5. Conclusions and Future Works

In this work, we addressed the challenge of low-complexity fractional delay-Doppler
(DD) channel estimation in orthogonal time–frequency space (OTFS) systems due to inter-
path interference (IPI). A variant of the delay-Doppler inter-path interference cancellation
(DDIPIC) algorithm is proposed, which progressively cancels IPI as estimates are obtained,
requiring only a final refinement procedure. This approach reduces the latency of the
algorithm, with the time difference in latency being almost proportional to the square
of the number of estimated paths. Numerical results demonstrate that the proposed
algorithm achieves both lower normalized mean square error (NMSE) and bit error rate
(BER) compared to other schemes with comparable detection capabilities. The high-IPI
scenario is also taken into account, in which the delay and Doppler resolutions are not
sufficiently fine, and IPI cancellation becomes tricky.

In future work, the use of deep learning (DL) approaches, as in [24], can be considered
to further reduce computational complexity while maintaining good performance and the
analysis in presence of interference will be included.
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