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Abstract
To combat poor health and living conditions, pol-
icymakers in Africa require temporally and ge-
ographically granular data measuring economic
well-being. Machine learning (ML) offers a
promising alternative to expensive and time-
consuming survey measurements by training mod-
els to predict economic conditions from freely
available satellite imagery. However, previous ef-
forts have failed to utilize the temporal informa-
tion available in earth observation (EO) data, which
may capture developments important to standards
of living. In this work, we develop an EO-ML
method for inferring neighborhood-level material-
asset wealth using multi-temporal imagery and re-
current convolutional neural networks.1 Our model
outperforms state-of-the-art models in several as-
pects of generalization, explaining 72% of the vari-
ance in wealth across held-out countries and 75%
held-out time spans. Using our geographically
and temporally aware models, we created spatio-
temporal material-asset data maps covering the en-
tire continent of Africa from 1990 to 2019, making
our data product the largest dataset of its kind. We
showcase these results by analyzing which neigh-
borhoods are likely to escape poverty by the year
2030, which is the deadline for when the Sustain-
able Development Goals (SDG) are evaluated.

1 Introduction
About 700 million people live in extreme poverty, i.e., on less
than $2.15 a day, and about two-thirds of these people live in
Africa [World Bank, 2022]. Although researchers have a firm
understanding of poverty at the level of countries [Halleröd et
al., 2013], granular geo-temporal data is necessary to effec-
tively target social and economic policy at the neighborhood
level. Classically, researchers and policymakers have col-
lected such data through surveys [Daoud and Dubhashi, 2023;

∗Contact author
1Technical appendix and code can be found at the project page:

github.com/AIandGlobalDevelopmentLab/temporal-eo-wealth

Groves and Lyberg, 2010; Lavrakas, 2008], but these are ex-
pensive to perform, are geographically limited, and seldom
provide information about the historical trajectory of poverty
which may influence policy.

Consequently, a major research challenge is how best to
fill in the gaps in the geo-temporal poverty data for neighbor-
hoods and moments where no surveys have been conducted.
Unlike surveys, planetary-scale satellite imagery is available
in Africa over both wide and granular geography and tem-
porality [Gorelick et al., 2017]. Researchers have shown
that such earth observation (EO) data and machine learning
(ML) models can be successfully used to impute proxies of
poverty in Africa & India [Jean et al., 2016; Yeh et al., 2020;
Chi et al., 2022; Rolf et al., 2021; Daoud et al., 2023].

While EO-ML models represent a significant breakthrough
in poverty research, they provide only a granular geograph-
ical ”snapshot” of African poverty—they fail to leverage
and estimate its temporality. From earth’s orbit, it is possi-
ble to observe the economic development of neighborhoods
through the construction and maintenance of housing, farm-
land and infrastructure such as roads, bridges and factories.
Such progress is directly associated with the wealth of the
people living in the neighborhood. Conversely, if an area
is not expanding with time, this can indicate a lack of re-
sources [Daoud, 2011]. A temporally aware model, which
observes this development, or lack thereof, can better esti-
mate levels of and changes in poverty.

In this article, we develop a new EO-ML model for imput-
ing poverty levels from satellite imagery which is both geo-
graphically and temporally aware. To do this, we assemble
138 African surveys stretching over a 30-year period from
1990-2020, containing data on the health and living condi-
tions of household clusters, providing the labels on economic
status needed for training. We map each survey point to its
corresponding raw satellite images, providing the input data
to our model. Second, we generalize an existing EO-ML ar-
chitecture proposed by Yeh et al. [2020], based on a resid-
ual neural network (ResNet), to accept sequences of satel-
lite images as input using a long short-term memory (LSTM)
layer [Hochreiter and Schmidhuber, 1997]. This allows the
model to learn from both geographical and temporal features.

Our experiments show that our temporal EO-ML method
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increases Pearson’s correlation (r2) by up to 29.3% on held-
out data. Based on our geo-temporal EO-ML model, we cre-
ate poverty estimates for every populated neighborhood lo-
cation for the whole continent of Africa. To the best of our
knowledge, this is the largest estimated poverty data of its
kind that covers African neighborhood-level poverty at this
level of granularity (6.72 × 6.72 km) and over 30 years [Chi
et al., 2022]. Our results correlate strongly with country-
level economic statistics and trends. Finally, we forecast
which neighborhoods are likely to escape poverty by the year
2030—the year in which the United Nations’ Sustainable De-
velopment Goals (SDGs) will be evaluated. This use case ex-
emplifies how our data can be used to study planetary prob-
lems on a different scale than what has previously been pos-
sible using only earth observation data and machine learning.

2 Methodology
Our problem is to predict the average material wealth Yi,t ∈
R in a cluster of households surrounding a location i at time
t. The cluster is the primary sampling unit of DHS surveys,
and it corresponds to a neighborhood in an urban setting and
a village in rural areas. We use as input a sequence of satel-
lite imagery Xi,t ∈ RF×w×h×d covering the location i and
surrounding the time point t. Here, F represents the num-
ber of image frames, w and h the image width and height in
pixels, and d the number of bands. Each one of the F image
frames is equally spaced out in time such that they each rep-
resent a time span of the same fixed length. This paper aims
to develop an EO-ML method which given Xi,t predicts Yi,t.

2.1 Data
Survey Data
In this article, we use data from ∼1.2 million households liv-
ing in 57,195 survey clusters in 36 African countries. The
data was drawn from 138 nationally representative Demo-
graphic and Health Surveys (DHS) conducted between 1991
and 2019. The DHS program has conducted surveys with
standardized questions in low- to middle-income countries,
and since the 1990’s many of these surveys contain GPS coor-
dinates [DHS, 2022]. Although the questionnaires are aimed
at collecting household-level information, the corresponding
geo-location is collected for the centroid of a neighborhood to
which a household belongs. To preserve household privacy,
the DHS displaces the GPS coordinate by up to 2 km for ur-
ban neighborhoods and up to 5 km for 99% for rural loca-
tions, with the remaining 1% of given coordinates displaced
at most 10 km from the true location [Burgert et al., 2013].
Because these surveys are cross-sectional, we only measure
each neighborhood once.

To obtain a standardized indicator of cluster-level asset
wealth Y , we used the International Wealth Index (IWI), de-
veloped by Smits et al. [2015]. The IWI variable is computed
from household-level answers to the DHS questionnaire ask-
ing whether members of the household have access to the fol-
lowing: TV, refrigerator, phone, bike, car, utensils, and elec-
tricity. The questionnaire also measures the quality of facil-
ities: water, toilet, floor, and the number of bedrooms. The
IWI is then obtained by taking the first principal component

of the questionnaire responses. The purpose of the IWI is
to function as a one-dimensional summary of the many di-
mensions of human health and living conditions. After each
household’s IWI has been estimated, we calculate the mean
IWI for each neighborhood (cluster), such that each cluster i
surveyed at time t receives a corresponding mean IWI score,
Yi,t ∈ [0, 100]. We obtained the IWI by using the R package
DHSharmonisation [Ekbrand, 2019].

Satellite Imagery
Our pipeline for gathering and preprocessing EO data largely
follows that of Yeh et al. [2020]. The main source of EO data
were surface reflectance images from the Landsat 5, 7, and 8
satellites [Gorelick et al., 2017]. To mitigate seasonal vari-
ations, input frames were compiled from the per-band three-
year median of all cloud-free pixels. Since our study spans
the 30-year period from 1990 to 2019, the complete Landsat
dataset was condensed into ten sequential image-composite
frames. For every cluster (i), we collected a sequence of ten
frames centered on the corresponding survey location, form-
ing a concise video of the area measuring 6.72 × 6.72 km.
Further details about the chosen image size can be found
in Appendix A.1; derived from our CNN architecture’s in-
put size (224× 224 pixels) and the Landsat image resolution
(30 m/px). We used all seven available Landsat bands, which
we refer to as multispectral: red, green, blue, near-infrared,
shortwave infrared 1, shortwave infrared 2, and thermal.

We included nighttime luminosity to these seven bands,
as previous works have shown that it is of economic activ-
ity [Henderson et al., 2012]. We used images from the
DMSP [Hsu et al., 2015] satellite for the first seven frames
(1990-2010) and the VIIRS [Elvidge et al., 2017] satellite for
the final three (2011-2019). As nightlights have a lower reso-
lution (1 km/px for DMSP and 450 m/px for VIIRS) than the
Landsat daylight images (30 m/px), they were resized using
nearest-neighbor upsampling to cover the same spatial area
as the Landsat images. They were then appended as an ex-
tra band to the composite frames. All EO data was processed
using the Google Earth Engine [Gorelick et al., 2017].

2.2 Method
A SINGLE-FRAME Model: The Baseline Architecture
Yeh et al. [2020] proposed a convolutional neural network
(CNN) architecture for learning to predict asset wealth, as
measured in national wealth surveys, based on multispectral
daytime- and nighttime luminosity images captured by satel-
lites. This model, illustrated in Figure 1a, contains two archi-
tectural segments. The first, the encoder ϕ : Rw×h×b → R2v ,
separates the daylight and nighttime bands, using the well-
known ResNet-18 architecture (v2 with pre-activation) [He
et al., 2016] to produce one feature representation for the
daytime and one for nightlight imagery. Here, w × h × b
are the width, height and depth dimensions of a single image
frame and v is the dimension of the last layer of a ResNet.
In our case v = 1000. The encoding ϕ concatenates two
v-dimensional encodings from two ResNets, one for the day-
time and one for the nightlight bands. In the second segment,
the pair of encodings are concatenated and combined with a
linear layer ŷ = β⊤ϕ(·), with parameters β ∈ R2v to predict
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(a) SINGLE-FRAME (b) MULTI-FRAME

Figure 1: The two architectures used for experiments. (a) is an iden-
tical architecture to the one proposed by Yeh et al. [2020]. It takes a
single image, with multispectral and nightlight bands, as input. (b)
is the same architecture, but with an added recurrent layer. Its input
will consist of a time series of F multispectral-nightlight images.

wealth outcomes. This model, which we will refer to as the
SINGLE-FRAME model, is trained to predict wealth from an
image frame Xi centered on a surveyed cluster i by picking
up on different spatial patterns correlated with wealth.

Since surveys are repeated cross-sectionally, i.e., new clus-
ter locations are randomly drawn for each survey, it follows
that each location i is only surveyed at a single time point ti.
Thus, we can simplify notation such that yi = Yi,ti ∈ R
represents available supervision for i. Similarly, there ex-
ists a single image frame Xi drawn from the multi-temporal
sequence representative of this time point: Xi = Xi,ti ∈
Rw×h×b. Our learning objective is the ridge-regularized
mean square error (MSE) of the model output,

1

n

n∑
i=1

(
yi − β⊤ϕ (Xi)

)2
+ λ

2v∑
j=1

|βj |2 (1)

where n is the number of samples (survey points), β are the
regression coefficients and λ is a constant controlling regular-
ization strength. As will be further discussed in Section 3.1,
λ was tuned using cross-validation.

Two MULTI-FRAME Models
To study the advantage of additional information provided
by multi-temporal EO data, we compare the SINGLE-FRAME
model to an extended MULTI-FRAME architecture. By ex-
panding the model input from a single image frame to a se-
quence of frames and inserting a recurrent long short-term
memory (LSTM) layer we hope to make the model aware
of temporal economic development around cluster i. Such
development may include the construction of new infrastruc-
ture, urban expansion, environmental changes or other factors
relevant to the area’s level of wealth. This temporally aware
MULTI-FRAME architecture builds on the SINGLE-FRAME
model by adding a hidden recurrent layer.

Just as for the SINGLE-FRAME, the MULTI-FRAME archi-
tecture consists of two segments (see Figure 1b). The first, the

encoder Φ : RF×w×h×b → RF×u, transforms a sequence of
F image frames by i) encoding the daylight and nightlight
bands of each image frame using ResNets, and ii) concate-
nating the two encodings for each frame, as in ϕ. Finally,
in Φ, each frame encoding is linked through a bidirectional
LSTM with output size u = 32, which results in a sequence
of u-dimensional representations of length F . The second
segment is, just like for the SINGLE-FRAME model, a single
linear layer with parameters β used to predict the poverty la-
bel corresponding to each frame. Parameters of both encoders
and prediction layers are shared between all frames.

The MULTI-FRAME architecture accepts a sequence of
similarly configured images as input, essentially forming a
short video sequence of the location. We denote any multi-
temporal sequence of length F depicting cluster i and con-
taining the time-point ti by XF

i ∈ RF×w×h×b. The model
outputs a prediction for each of the F time frames, but as only
one of these corresponds to the survey time ti, when the label
was measured, this is the only output considered by the loss
function. We use fi to denote the index in XF

i corresponding
to ti. The MULTI-FRAME loss function then becomes

1

n

n∑
i=1

(
yi − β⊤Φfi

(
XF

i

))2

+ λ
u∑

j=1

|βj |2 (2)

Note that the time-point ti could be covered by any of the
F time frames, from the first to the last, and that there are
therefore up to F number of valid configurations of XF

i (ex-
plained in detail in Appendix A.2). During training, it resam-
ples a new sequence configuration uniformly for each epoch.

A Shallow Baseline Model
To obtain a reference point for the performance of our deep
models (i.e., our SINGLE-FRAME and MULTI-FRAME CNN
models), we use a shallow baseline: a basic k-nearest neigh-
bor model (KNN). This model predicts IWI based on the k
locations with the most similar nightlight-values. For each
image frame, a histogram of nightlight luminosity levels was
created. These were then used as inputs for the algorithm
(KNN) where k was tuned by cross-validation.

3 Experimental Setup
The main aim of this paper is to evaluate whether a geograph-
ically and temporally aware EO-ML method improves the es-
timation of health and living conditions in Africa from satel-
lite imagery. To this end, we conducted three experiments:

• Out-of-area (OOA): The model is trained on one set of
clusters and tested on another set, without stratification.

• Out-of-country (OOC): The model is trained on clus-
ters from one set of countries and evaluated on clusters
from held-out countries. This is done to evaluate how
well the model generalizes across borders.

• Out-of-time-span (OOTS): The model is trained on
surveys from one period of time and evaluated on sur-
veys from a different time span. This is done to evaluate
how well the model generalizes over time.
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In all three experiments, we trained and evaluated our
EO-ML models on data splits from five-fold cross-validation
(CV). For the OOA experiment, the only restriction on sam-
ple splitting was that images in the training set could not ge-
ographically overlap (regardless of time) with the images in
the test set. This restriction prevents models from making
a prediction for a location in the test set by recognizing it
from the training set. Appendix A.3 delineates how all clus-
ters were divided into collections where, if all members of a
collection were put in the same CV fold, this problem would
be avoided. To ensure an equal number of clusters per fold,
the largest remaining collection was sorted into the fold with
the fewest samples until all collections had been assigned to
a fold. The same procedure was carried out for the OOC ex-
periment with each country treated as a collection. For the
OOTS experiment, the folds consisted of the five consecu-
tive time spans which resulted in the most equal number of
clusters across all folds. These time spans were: 1991-2003,
2004-2008, 2009-2012, 2013-2015, and 2016-2019.

For each CV fold, we trained one shallow KNN-model,
one SINGLE-FRAME-model, and two MULTI-FRAME mod-
els with different numbers of time steps. The first of these
MULTI-FRAME models considered ten frames, our full 30-
years time period for which we have image data when mak-
ing predictions. The second one only considered a subset of
five frames (15 years), selected to cover the observed time-
point ti. Further details about these two configurations can
be found in Appendix A.2. The main reason for trying two
different sequence lengths is to evaluate the impact of more
temporal data.

3.1 Model Training and Hyperparameter Selection
Aside from the sample splitting procedure, the training
pipeline was the same across all three experiments and all
model architectures. First, all image bands were normalized
to be between 0 and 1 based on the min- and max-values in the
training data for each CV fold. As the two nightlights satel-
lites used different pixel value ranges, these were normalized
separately. During the training of the deep models, we ap-
plied image augmentation by random horizontal and vertical
flips, as well as brightness and contrast shifts for the mul-
tispectral bands. All encoders (ResNet-18, see Section 2.2)
were initialized with weights pre-trained on the ImageNet
data set [Deng et al., 2009]. As was proposed by Yeh et
al. [2020], the weights in the first layer in our models (for
the red, green, and blue bands) are the same as the ImageNet
model. For the other bands, the mean weights of the red-
green-blue bands were used for initialization. The remaining
ResNet layers were kept as they were while we initialized the
weights in the LSTM and regression layers randomly using
Glorot uniform initialization [Glorot and Bengio, 2010].

We trained our models to minimize the MSE loss using the
Adam optimizer [Kingma and Ba, 2014], with batch size 64.
Each model used 300 epochs for training and tuning, finally
selecting the model iteration with the best loss on the valida-
tion set (early stopping). To find a suitable learning rate faster,
it was tuned using population-based tuning [Li et al., 2019]:
12 agents sampled a learning rate from a log-uniform distri-
bution (between 10−10 and 10−1). In every third epoch, the

worst-performing quarter of the models was perturbed. These
perturbed models were paired with one of the models from
the best-performing quarter and copied their weights and pa-
rameters. Their learning rates were then perturbed again by a
multiplicative factor of 0.8 or 1.2, except for in 25% of cases
where they were re-sampled from the original log-uniform
distribution.

The regularization parameter λ (weight decay) for the final
regression layers was tuned separately after the population-
based training was finished. This was done by freezing the
weights of previous layers (ϕ and Φ, respectively), using them
to encode the training set, and tuning the parameter with grid
search. The tuning was conducted for each of the different
experiment-specific groups in the training and validation set:
for the OOA experiment, the tuning was done over each CV
fold; for OOC, it was done over each country; and, for OOTS
it was done for each year.

3.2 Evaluation Metrics
To evaluate the discriminative predictive power of trained
models, we use the squared Pearson’s correlation r2 between
the predicted IWI ŷi and its held-out ground-truth value yi.
Pearson’s r2 captures correlations between predictions and
labels without accounting for differences in scale. To mea-
sure quality in predictions on an absolute scale, we use the
root mean squared error (RMSE). As RMSE is the standard
deviation of predictive variation, it gives an absolute measure
of how well our model is generalizing to previously unseen
(held-out) data. The RMSE maintains the scale of the IWI
score, which ranges between 0 and 100, and thereby, may
be readily interpreted by domain experts. This interpretative
analysis is facilitated by using an absolute index.

4 Results
Figure 2 show all aggregated results across the three ex-
perimental settings. The KNN baseline model achieves a
moderate performance across all experiments, with r2 rang-
ing from 0.42 to 0.62. This confirms the literature finding
that satellite images are predictive of IWI [Jean et al., 2016;
Yeh et al., 2020; Chi et al., 2022]. The three deep archi-
tectures achieve higher performance than baseline, across all
experiments. Moreover, one of our key findings is that tempo-
rally aware models (FIVE-FRAME, TEN-FRAME) outperform
models that are not explicitly temporally aware (SINGLE-
FRAME, KNN). In other words, by injecting our EO-ML
model with an LSTM layer, giving it the capacity to use mul-
tiple frames, our model improves its predictive performance.
Compared to the SINGLE-FRAME model (i.e., the current
state-of-the-art EO-ML method), our TEN-FRAME model im-
proves predictive performance by the following percentage
points: in OOA by 10, OOC by 12, and OOTS by 17. The
absolute performance of the 10-frame model across the three
experiments are: (r2 = 0.76) for OOA, (r2 = 0.72) for OOC,
and (r2 = 0.75) for OOTS. These results show that historical
and future satellite images, across a neighborhood’s location,
contain sufficient signal for predicting IWI.

A second key finding is that, although the performance in-
crease is slight, the TEN-FRAME model consistently outper-
forms the FIVE-FRAME model. This finding suggests that
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Figure 2: Performance of the baseline and the three model architec-
tures trained on three different tasks. The MULTI-FRAME models
are able to utilize temporal information (as described in Section 2.2)
and thereby outperform the SINGLE-FRAME model across all three
experiments.

the more frames used, the longer the period of time consid-
ered, and the better the predictions. Both findings reinforce
our overarching hypothesis that by accounting for the inher-
ent temporal structure in the data, an EO-ML methods will
improve its performance, across both geography and tempo-
rality. In the following sections, we further probe our exper-
imental results by analyzing models’ performances by time,
country, and locality (urban-rural).

4.1 Analyzing Results by Time
Because EO-ML models are beneficial for imputing IWI in
time points that lack surveys, we assessed how well our mod-
els generalize to time spans they have not been exposed to
during training. Figure 3 shows that both MULTI-FRAME
models outperform the SINGLE-FRAME model across almost
all years. On average, the FIVE-FRAME model improves the
r2 score by 0.14 above the SINGLE-FRAME, and the TEN-
FRAME model improves by 0.13. The two MULTI-FRAME
models exhibit a comparable performance for all years.

All models struggle with the starting decade, up to the year
2000. A possible explanation is that the year 1999 marks the
launch of the Landsat 7 mission, which supplies more satel-
lite images. All imagery prior to this is therefore solely cap-
tured by satellites from the Landsat 5 program, resulting in a
domain shift for the input data from training to testing.

The SINGLE-FRAME model struggles in particular with
the first year in which its r2-performance approaches zero,
whereas the MULTI-FRAME models hover just above r2 =
0.25. Comparing the first and last year, we note that MULTI-
FRAME performance is much higher in the ending frame. In
addition, the best temporal performance occurs in the middle
of the frame span, where r2 approaches 0.9.

Figure 3 shows that model performances are highly vari-
able across years. This variability has at least two explana-
tions. First, it should be noted that it is impossible to fully
differentiate between the model’s performance in a given year
from the model’s performance in the countries surveyed that
year. Because the DHS surveys only a subset of countries
in any given year, we can only evaluate our models against
these surveyed countries. Second, each year contains only a
fraction of the countries for which we would like to evaluate
predictions. For example, the years 1991 and 1996 only have

Figure 3: Performance of the OOTS models per year. In general,
the MULTI-FRAME models outperform the SINGLE-FRAME. The
models all struggle the most in the early years, with a big uptick in
performance after the launch of Landsat 7.

surveys from a single country each, Cameroon and Benin, re-
spectively; and in 2002, the DHS conducted no surveys at all.
This lack of DHS surveys limits our training and evaluation
capabilities, but it is an inherent data limitation. Nonetheless,
despite these limitations, our MULTI-FRAME models demon-
strate competitive average results, reaching r2 = 0.76 for
pooled observations across held-out folds (see Figure 2).

4.2 Analyzing Results by Country
As one of our aims is to create a data map of the full continent
of Africa, it is of particular interest to analyze the extent to
which our EO-ML models generalize to countries not in the
training set. That is the purpose of the OOC experiment.

For most countries, prediction performance is high (see
Figure 9a in the appendix). The best-performing countries
are diversely distributed, both geographically and socially,
across the continent. The mean of country RMSEs of 8.82
(and a median of 8.12). As this figure is on the IWI scale
(in the range [0, 100]), it provides an intuition for the distri-
bution of predictive variation. The highest explained vari-
ation comes from Ethiopia where our FIVE-FRAME model
trained on other countries can explain 80% of the variation
in wealth between neighborhoods. For some countries, such
as Morocco and South Africa, our model exhibits lower per-
formance, with a minimum yet non-trivial r2 = 0.31 for
Lesotho.

In general, our MULTI-FRAME models generalize better
to unseen countries than the SINGLE-FRAME model. As
Figure 9b in the Appendix shows, for countries where the
SINGLE-FRAME model is already performing well, the two
MULTI-FRAME models improve performance only slightly.
The largest improvements over the SINGLE-FRAME model
can be found in countries where model performance was al-
ready poor. Thus, while our MULTI-FRAME models’ per-
formance is lowest in Lesotho, Morocco and South Africa,
our models actually improve over the SINGLE-FRAME most
in these particular. These countries have fewer samples, and
are likely most different from the rest of the sample, making
model learning hard in general.
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(a) TEN-FRAME OOC model perfor-
mance in urban versus rural regions

(b) Mean prediction improvement when switching
from MULTI-FRAME to TEN-FRAME

(c) Examples of areas with a major gain
versus deterioration in accuracy

Figure 4: Model performance in different localities. (a) Calibration of the FIVE-FRAME model in urban and rural locations. The model
exhibits greater proficiency in distinguishing wealthier clusters from poorer ones in rural areas than in urban contexts. (b) Mean improvement
when switching from the SINGLE-FRAME to the TEN-FRAME model aggregated for each percentile of surveyed IWI value and split by
urban/rural. For both urban and rural settings, the largest improvements occur for relatively wealthy clusters. (c) Comparison between two
locations with a big improvement/deterioration when switching from SINGLE-FRAME to MULTI-FRAME. The top row depicts an area with
major developments where the SINGLE-FRAME model underestimated the level of wealth. The MULTI-FRAME models, which observed these
changes, accurately gave a higher estimate.

4.3 Analyzing Results by Locality

To understand the performance of the models, we break down
the results by urban and rural neighborhoods, using data
available in DHS surveys. To reiterate, our EO-models do
not have access to this information explicitly when trained.
However, by adding locality to the predicted values, we are
enabled to probe model performance better.

As shown in Figure 4a, even if our models do not explic-
itly have access to locality, they still implicitly distinguish
between urban and rural neighborhoods. Although this sep-
aration accounts for a part of the explained variation, we are
still able to distinguish well between poor and wealthy clus-
ters within these two localities.

Although the temporally aware models perform better
in both urban and rural neighborhoods compared to the
SINGLE-FRAME model, these improvements tend to be larger
in urban neighborhoods (decrease in RMSE by 2.62 com-
pared to 0.58 for rural), as shown in Figure 4b. We can
see a generally larger improvement for wealthier neighbor-
hoods. Additionally, in rural neighborhoods, the temporally
aware model notably excels in the poorest locations. For
both urban and rural neighborhoods, we can see that the
SINGLE-FRAME model actually performs better on neighbor-
hoods with a wealth level close to the median (46.8 for urban
and 18.5 for rural). This suggests that our SINGLE-FRAME
model has a higher bias, but low variance. Nonetheless, the
MULTI-FRAME models performing better in urban areas is
expected, following our overarching motivation of making
EO-ML methods with a temporal component. This sort of
change is more visible in urban areas where roads, buildings,
and infrastructure are constructed at a higher rate.

We unpack this argument—that MULTI-FRAME models
perform better in urbanized areas—through a qualitative anal-
ysis of locations where the biggest and smallest improve-

ments are made when going from SINGLE-FRAME to MULTI-
FRAME. Figure 4c shows two archetypal locations where
performance improved and deteriorated when switching from
SINGLE-FRAME to TEN-FRAME model. The most improved
prediction, the top images, is an urban neighborhood where
major urbanization has occurred. The pattern is similar for
other neighborhoods with major performance gains. Con-
versely, areas with the least improvement are typically rural
with limited human activity and exhibit little to no observable
change in their image sequences. Interestingly, several cases
of significant performance degradation (e.g. bottom row in
Figure 4c) consist of desert patches where sand dunes slowly
“drift” over the years. The MULTI-FRAME models severely
overestimate the wealth of these areas. With some specula-
tion, this could be attributed to the temporally aware model
picking up on large-scale changes correlating with higher
wealth and confusing the movement of dunes with e.g. con-
struction of infrastructure.

5 Applications
One use-case of our models is to create IWI maps for a variety
of downstream scientific and policy tasks [Jerzak et al., 2022;
Jerzak et al., 2023a; Jerzak et al., 2023b; Burke et al., 2021].
To generate this data, we used our top model to estimate IWI
for all populated areas in Africa, given by population-rasters
from Tatem et al. [2017]. This was done by arranging image
patches of the same 6.72 x 6.72 km as was used for training.
Then, we let the model predict IWI at all ten time-frames,
from 1990 to 2019. The results for the last time-frame can be
found in Figure 5a. As discussed in Appendix A.5, we find
that these maps correlate well with national prosperity indi-
cators such as the Human Development Index (r2 = 0.54).
Additionally, we make the data publicly available through the
repository Harvard Dataverse.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
Special Track on AI for Good

6170



(a) Map of predicted IWI values (b) Map of predictions for when areas escape poverty

Figure 5: Map predictions. (a) Map showing the predicted IWI in the last of ten time-frames (2017-2019). The brighter the color, the wealthier
the area. No predictions were made for the uninhabited areas in gray. (b) Map showing the time when our linear-regression model estimates
an area first achieved an IWI above 20. Areas in red not achieve this level by 2030 and are therefore unlikely to make the SDG 1.

Escaping poverty One downstream task is to forecast
neighborhood-level health and living conditions. The first
of the UN’s Sustainable Development Goals (SDGs) is to
”End poverty in all its forms everywhere” by the year 2030.
Nonetheless, because of previously lacking neighborhood-
level data, there is a lack of forecasts that help policymak-
ers monitor progress toward this goal. Our maps contribute
to changing this situation; and using them, we fitted a linear
regression model in each 6.72 × 6.72 km patch over time.
Our fitted model predicts the future wealth development of
each neighborhood, shown in Figure 5b. When setting a
threshold of IWI ≥ 20, our forecasts reveal that from 2020
to 2030 areas that today house about 9.3% (84.8 million)
of Africa’s population manage to leave poverty while areas
housing 15.5% (142 million) will fail to reach that thresh-
old. Although improvements can be made to our forecasting
analysis and this simplified model does not account for pop-
ulation growth, urban expansion or migration, it nonetheless
demonstrates how our data can be used.

6 Discussion and Conclusion
State-of-the-art EO-ML models have shown that poverty lev-
els in Africa may be imputed with acceptable precision from
satellite imagery [Burke et al., 2021], but they lack aware-
ness of historical context as they rely on single-time satellite
snapshots. We improve these models by infusing them with
an LSTM layer and the ability to accept a multi-temporal se-
quence of images as input. As a result, our models gain an
increased capacity to estimate health and living conditions.
A critical use case of our EO-ML models is generating long-

term geo-temporal data. We demonstrated this by forecast-
ing which African neighborhoods will escape poverty, find-
ing that 15.5% are unlikely to do so by 2030. Our findings
suggest that EO-ML modeling can likely benefit other sus-
tainable development goals as well, from monitoring climate
change [Daoud et al., 2016; Shiba et al., 2022] to urban plan-
ning [Kino et al., 2021].

Our method would benefit from addressing several key lim-
itations in future iterations. First, future research would likely
benefit from incorporating additional geo-temporal indicators
(e.g., weather, roads) as well as utilizing geostatistical meth-
ods to improve estimation [González et al., 2016]. Second,
our EO-ML methods rely on LSTMs to capture temporal re-
lations, yet other architectures (e.g., transformers) could fur-
ther improve estimations. Third, the resolution of time frames
is key. Using three-year windows to handle cloud-induced
missing pixels may not be optimal for analyzing changes in
IWI. In addition, a problem with using satellite images for
studying poverty is that features that are likely to be picked
up by a model (housing, roads, infrastructure, etc.) change
slowly compared to human economic activity. An event like
the coronavirus pandemic (which occurred outside our stud-
ied time period) is estimated to have increased the number
of people living in extreme poverty by 119 million people
[Mahler et al., 2021]. But the pandemic did not inflict ma-
jor change to the earth-orbital appearance of infrastructure,
roads, and housing. Capturing change induced by a fast-
moving and invisible-for-a-satellite event like a pandemic is
an inherent limitation of any EO-ML method. To overcome
this, one would need to incorporate additional sources of in-
formation, e.g. mobile-phone data [Blumenstock, 2018].
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