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MOHAMMAD SALAHI NEZHAD
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Abstract
Rolling Contact Fatigue (RCF) cracks in railway rails are critical due to their impact on
safety and maintenance costs. A rail break can be the ultimate consequence of progressive
crack growth. Understanding influential mechanisms involved in RCF initiation and
propagation is essential for developing effective inspection, maintenance, and replacement
strategies. Despite extensive research on understanding mechanisms, and predicting RCF
crack growth, there are still open questions, particularly regarding the direction and rate
of RCF crack growth. This is due to the complex non-proportional and compressive
loading from wheel–rail contact in combination with rail bending and thermal loads.

This thesis aims to develop and employ a numerical framework for predicting directions
and rates for RCF crack growth in railway rails under operational loading. A numerical
procedure for simulating a propagating crack in 2D is developed. The finite element
model features an inclined surface-breaking crack subjected to wheel–rail contact load,
rail bending, and temperature drop as isolated scenarios and in combinations. The
effective crack propagation direction is predicted based on an accumulative vector crack
tip displacement criterion. The influence of crack face friction and crack growth rate
predictions are added to the numerical framework. It is observed that frictional cracks
tend to go deeper into the rail under a pure contact load and under a combination of
bending and contact loads, while friction has a moderate influence on crack paths under
combined tensile thermal and contact loads. Furthermore, friction reduces crack growth
rates.

The numerical framework for a frictionless stationary crack is extended to the 3D case
of a semi-circular gauge corner crack embedded in a 60E1 rail. Results are evaluated
at points along the crack front. The influence of crack size and inclination, magnitude
and position of the contact load, wheel–rail tractive forces, rail bending with different
track support conditions, and varying thermal loads is studied. Rail bending and tensile
thermal loads are found to promote downward growth compared to pure contact load
cases. The location of the contact load significantly influences predicted growth rates
while the influence of a tractive force decreases (rapidly) with depth. Rail lives computed
from the integration of predicted growth rates are comparable to growth rates found in
field investigations.

Keywords: Rolling contact fatigue, Crack growth direction, Crack growth rate, Vector
crack tip displacement, Paris law, Crack face friction, Finite element analysis, Rail
deterioration.
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Part I
Extended Summary

1 Introduction

1.1 Background and motivation

Railway transportation is generally a safe and efficient mode of transport with a low
carbon footprint. A study from Sweden in 2008 shows that rail transports are about
fifty to one hundred times safer than road transports [1]. On a global level in 2016,
about 8% of passengers and 7% of freight movements were transported via railways
while consuming less than 2% of transport energy [2]. The efficiency is related to the
steel-to-steel wheel–rail contact, which gives a (relatively) low rolling resistance [3], and
large load capacity. Also, railways have low CO2 emissions per passenger-kilometer and
tonne-kilometer [4].

Thanks to these advantages, demand for rail transportation has increased in recent
decades and is expected to rise significantly until 2050 [2]. However, the amount of
available tracks increases at a slower rate than the transport volumes due to expensive
infrastructure. This means that the availability for inspections and maintenance is
decreasing while the consequences of insufficient maintenance become larger and larger.
The situation can be further aggravated by the limited possibility of rerouting railway
traffic.

Following Hertzian contact theory [5], one consequence of having stiff contacting
materials would be very high contact stresses between the contacting bodies [3]. The
maximum contact pressure in the wheel–rail contact can exceed 1000 MPa [6]. Additional
tractive forces are also acting in the wheel–rail interface, particularly in conjunction with
braking, accelerating, and negotiating curves. Rolling Contact Fatigue (RCF) cracks are
an inevitable consequence of such high stresses, see Fig. 1.1. These cracks are widespread
and costly to mitigate, potentially leading to traffic disruptions and affecting the reliability
and safety of the railways if not treated in time. The annual maintenance of RCF cracks
can cost millions of euros, depending on the network, as indicated in [7, 8]. Therefore, the
ability to understand and predict the behaviour of these cracks, allowing for optimisation
of rail maintenance, would be of utmost interest to railway infrastructure managers.

RCF cracks can grow either downwards into the rail head or towards the rail surface.
The former can cause rail breaks, which are obvious safety risks, while the latter can lead
to spalling of the rail material. Modified contact conditions resulting from, e.g., spalling
of the rail, can also change the dynamic response of the track. This may worsen the
situation. In addition to the wheel–rail contact load with high compressive and shear
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(a) (b)

Figure 1.1: RCF cracks in rails. (a) Head checks. (b) Squats. Photos: Anders Ekberg.

components, other loads also affect the rails. Examples are rail bending, tensile thermal
stresses in the continuously welded rails due to the restricted thermal contraction, and
residual stresses due to welding and/or rail manufacturing. The resulting RCF cracks thus
grow under a very complicated non-proportional mixed-mode and compressive loading,
which makes the prediction of the development of RCF cracks much more complex than
for ‘plain’ fatigue 1 cases [9]. Therefore, there are still many open questions, especially
regarding RCF crack propagation in the zone near the rail surface.

Two of the most common types of RCF cracks in railways are head checks and squats
[10]. Head checks generally appear at the gauge corner of the higher rail in curves as a
series of inclined, tightly spaced surface cracks, see Fig. 1.1a. They are initiated by plastic
strain accumulation due to frictional wheel–rail contact [11]. Squats typically occur on
the running band of (near) tangent tracks as isolated depressions, see Fig. 1.1b. They are
initiated mainly by rail surface defects such as indentations, martensite, and short-pitch
corrugations, along with the resulting high-frequency dynamic forces [11]. Despite the
differences, the adopted concept of crack propagation analysis for these RCF cracks is (to
a large extent) identical in the literature.

In a crack propagation study, three general questions typically need to be addressed:

1. When is a crack (of a certain size and orientation) formed? (initiation)

2. In which direction does a crack tend to grow? (growth direction)

3. How fast does a crack propagate? (growth rate)

This thesis focuses on the crack growth direction and rate (second and third questions).
Regarding crack initiation in rails, more information can be found in e.g., [12, 13].

1In ‘plain’ or ‘classic’ fatigue (as opposed to multiaxial fatigue), the cyclic loading is uniaxial.
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1.2 Aim and scope of research
Having a deeper understanding of the behaviour of RCF cracks is crucial for optimising
maintenance procedures. There are still significant uncertainties in predicting crack
growth, particularly regarding the direction and rate of propagation. This study aims to
improve the predictions of RCF crack growth in rails under operational loading scenarios.
In particular, the goal is to investigate crack growth direction and rate for an existing
(macroscopic) crack using Finite Element (FE) simulations in 2D and 3D primarily setting
out from available tools in the literature and further improving these when needed. This
leads to the following specific research objectives:

1. Develop a numerical framework in 2D and 3D for predicting crack growth directions
and rates in a rail featuring an isolated surface-breaking inclined RCF crack under
relevant operational load scenarios.

2. Investigate the influence of operational parameters to determine the influential ones.

3. Investigate the influence of model dimensions (2D and 3D) on predicted results.

4. Describe practical implications of the obtained results.

There are some restrictions on the conducted study in this thesis. Firstly, the process
of crack initiation is not considered. Also, the rail material is assumed to be linearly elastic.
Thereby, this research does not take into account the influence of existing anisotropy very
close to the rail surface. Moreover, the influence of wear-off and residual stresses in the
rail is not considered. In addition, the obtained results are based solely on macroscopic
models, i.e., microstructural effects are not considered in this study. Finally, predictions
of crack growth rates should be taken as qualitative since model parameters need to be
further calibrated towards experimental data for more quantitative predictions.

1.3 Thesis outline
The remainder of this extended summary is structured as follows. Important topics
regarding the prediction of rolling contact fatigue crack growth are presented in Chapter 2.
The numerical framework employed in this thesis is introduced in Chapter 3. A brief
summary of appended papers with some main results is given in Chapter 4. Finally, the
main conclusions from the study with their practical implications, and some suggestions
for future work are discussed in Chapter 5.
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2 Prediction of rolling contact fatigue crack
growth

2.1 Stress Intensity Factors

Linear Elastic Fracture Mechanics (LEFM) is the dominant theory for studying crack
growth and fracture. The most important assumption in LEFM is that the material
response can be modelled as linear elastic. This implies that only small-scale yielding at
the tip of a macroscopic crack is allowed. Irwin in 1957 introduced a scalar parameter
known as the ‘Stress Intensity Factor (SIF)’ to quantify the severity of the crack loading
in the analytical solution of elasticity problems [14]. This parameter has since been widely
used in LEFM.

SIFs are important parameters in LEFM as (almost) all desired quantities in the vicinity
of a crack tip/front such as stress, energy and displacements can be described in terms of
SIFs. As a result, there is a lot of effort in the literature to evaluate these parameters
under various conditions using experimental, analytical, and numerical methods.

Available solutions in handbooks [15, 16, 17] are examples of analytical solutions.
These methods can typically be used for idealized conditions (geometries and loadings),
and are generally not very suitable for complex cases. For these applications, numerical
methods are used to estimate SIFs and their evolution.

In computational fracture mechanics, the Boundary Element Method (BEM) and
the Finite Element Method (FEM) are two common approaches for SIF evaluations. In
this thesis, FEM is employed. An Overview of FEM approaches is given in e.g., [18]. A
review of approaches based on BEM is described in [19]. A combination of numerical and
analytical methods can also be used such as in hybrid and alternating methods described
in [20].

A common approach to evaluate SIFs in LEFM analyses, particularly in commercial
software, is by using the J-integral [21, 22]. However, the method is usually not the best
option for RCF crack growth due to issues related to crack closure resulting from high
compressive forces.

Another method for SIF evaluation is to use the displacement or stress fields in the
vicinity of the crack tip (in the crack local coordinate system shown in Fig. 2.2) [23].
This approach is straightforward and can be adopted either directly with a very fine
mesh around the crack or in combination with parameter estimation methods. As lower
computational costs for 2D simulations can make using a dense mesh around the crack
feasible, a direct displacement-based method can be used in 2D. However, mesh refinement
in 3D models can substantially increase the computational cost. To have good accuracy in
SIF computations with reasonably low computational cost, a displacement-based method
employing a relatively fine mesh in combination with a least squares formulation is
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developed in [24]. The method fits a low-order asymptotic displacement field ansatz
to the displacement obtained from an analysis using FEM/eXtended Finite Element
Method (XFEM)1 over an integration domain defined around the desired point on the
crack front. This method is particularly suitable for multiaxial load cases especially those
with (large) shear and compressive loads, which is the case for the wheel–rail contact.
This is achieved by considering three terms in the presumed ansatz: stress singularities,
rigid body motion and uniform strain fields. Another advantage of the method is its
simplicity and ease of implementation. Note however that caution must be taken when
using the method near free surfaces due to the assumption of plane strain conditions in
the employed displacement ansatz for the stress singularities term.

2.2 Crack modelling by use of FEM
Representation of cracks is one of the most difficult, and often time-consuming, aspects
of numerical modelling of cracked bodies. In principle, the approaches in FE crack
modelling can be divided into discontinuous methods, where there is a discontinuity in the
displacement field along the crack, and continuous methods, where the displacement field
is considered continuous along the crack. The former approaches are briefly discussed in
the following as they are employed in this thesis.

Discontinuous, also known as explicit or discrete, crack modelling is the oldest approach
in the field [25]. It started with employing a crack directly into the FE mesh with standard
elements, i.e., having separate sets of nodes for the top and bottom surfaces of the crack.
This method provides an accurate representation of the crack geometry. However, the
quality of the mesh around the crack is of great importance. This often makes it
cumbersome to generate a good quality FE mesh in the crack area, especially for complex
crack geometries. Further, FE mesh needs to be regenerated for each crack growth
increment in a crack propagation analysis [18].

A remedy is considering special elements close to the crack tip/front. The basic idea is
to modify the position of the middle nodes of the elements to better capture the singularity
close to the crack. These elements are often called singular elements and one of the most
famous elements in this category is the quarter-point element [26, 27], where the middle
node moves to the quarter-point in the direction of crack tip/front. Regarding crack
propagation analyses, employing adaptive remeshing techniques can also improve the
accuracy and efficiency of the simulations, see e.g., [28] for a review of these techniques
for 3D fatigue crack growth modelling.

Another method, called the eXtended Finite Element Method (XFEM), was introduced
in [29, 30] to facilitate the meshing process. In this method, the standard FE approximation
for displacement field, uFE(x), is enriched with additional functions for the cracked
elements [30]. As shown in Fig. 2.1 for a 2D mesh, it can be expressed in the most basic

1More details on XFEM is given in Section 2.2
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x
x∗n

Figure 2.1: FE mesh with an embedded crack shown with a dashed line. The enriched
nodes marked with squares. For an arbitrary point x in the domain, the corresponding x∗

and n at x∗ are shown that is used in the Heaviside function calculation.

case as
uFE(x) = N(x)a︸ ︷︷ ︸

standard

+N(x)H(x)b︸ ︷︷ ︸
enrichment

, (2.1)

where N contains shape functions, a consists of nodal displacements, and x shows spatial
coordinates. Also, b contains enrichment nodal values, and H(x) is the Heaviside function
defined as

H(x) =
{

1 for (x −x∗) ·n> 0
0 for (x −x∗) ·n< 0

. (2.2)

Here, x∗ is the point on the crack closest to x, and n denotes the unit outward normal to
the crack at x∗.

XFEM still requires mesh refinement in the crack area, but the mesh does not need
to conform to the crack geometry. However, if a crack crosses an element very close to
one of its nodes or coincides with element edges, it can cause numerical issues. As a
result, the method allows for modelling the crack (almost) independently of the FE mesh
and makes crack geometry modifications much easier compared to previous methods.
For this, XFEM has become a very popular method in crack propagation analyses. It
has been applied in different areas, and more enrichment terms have been proposed to
capture more specific phenomena related to the problem at hand and to improve the
numerical convergence of the method. For instance, it is possible to explicitly incorporate
the singular fields. This also allows the crack tip/front to reside within an element. More
details are given in e.g., [31].

As RCF cracks experience large shear and compressive loads, another important aspect
of RCF crack modelling in FE analyses is the crack face constraints. Contact constraints
at the crack faces in the normal direction (ê⊥ in Fig. 2.2) are employed to avoid crack

6



face penetrations. Crack face friction is considered by modelling the relation between
tangential traction and slip, i.e., relative displacements of contacting faces. A more
detailed description of contact constraints is given in [32].

2.3 Prediction of mixed-mode crack growth

There are three modes of crack growth: opening mode (mode I, tensile growth), sliding
mode (mode II, shear growth), and tearing mode (mode III, shear growth) [33]. A crack
can grow in one of these modes or in a combination of modes. Abundant studies in the
literature focus on tensile growth since the majority of practical cases occur in this mode.
However, this is not the case for RCF cracks. The loading of such cracks is in general in
mixed-mode.

In Paris law [34], the fatigue crack growth rate is evaluated from the range of the SIF
through a power law and mode I growth is typically presumed. This is one of the most
commonly used crack growth laws even today. Conceptually, the criteria developed in the
literature for fatigue crack growth under mixed-mode loading can generally be divided
into three categories: stress-, energy- and displacement-based. Note that, the majority
of the criteria in the literature are developed within the scope of LEFM, and generally
presume proportional and planar loading.

Stress-based criteria propose that a crack grows in the direction defined based on a
stress-based parameter. Two of the most commonly used criteria are Maximum Tangential
Stress (MTS) and Maximum Shear Stress (MSS) [35]. In short, the MTS criterion assumes
crack growth perpendicular to the maximum tangential stress2 and MSS postulates that
crack grows in the direction of the maximum shear stress. Both of the criteria were
originally developed for static/monotonic analysis, but common practice is to employ the
range of stress parameters, often described in terms of SIFs, to adapt these criteria for
fatigue crack growth analysis, e.g., the MTS range criterion proposed in [36]. Different
extensions of each of these criteria exist in the literature to account for different phenomena.
For instance, crack closure can be considered by applying effective SIFs, see e.g., [37]. In
addition, there are some other criteria in the literature that use similar concepts as the
MTS and MSS criteria. For example, a criterion in [38] suggested that a crack in 3D
propagates perpendicular to the direction of the maximum principal stress. Regarding the
performance of these criteria, MTS-based criteria have good accuracy for the predictions in
mode I dominated crack growth [39], whereas their performance worsens as the crack shear
loading increases [40, 41]. On the other hand, MSS-based criteria can predict shear-driven
growth accurately [42] but are inaccurate for tensile growth [43]. In short, these criteria
typically give more reliable results when one mode dominates crack propagation. For
crack growth rate evaluations under mixed-mode loading, these criteria typically employ
a Paris-type equation with an equivalent SIF, see e.g., [44, 45, 46]. In this regard, Qian

2Tangential stress is also known as hoop stress and circumferential stress.
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and Fatemi [47] and Richard et al. [48] reviewed some of the most common criteria in the
literature and briefly discussed their underlying assumptions.

Energy-based criteria are set out from the energy release rate [49], which is a scalar
quantity defined as the rate of change in potential energy with respect to a crack extension.
Also, the term crack driving force is commonly used in the literature as a vectorial
counterpart of the energy release rate. The J-integral [21, 22] is a measure that is usually
used in this type of criteria. Although this measure was originally proposed for a non-linear
elastic case in [22], it can, to some extent, also be applicable to elastic-plastic conditions. A
cyclic J-integral (∆J) that considers elastic-plastic responses can be employed for fatigue
crack growth, see e.g., [50, 51]. This criterion can (to some extent) deal with multiaxial
loading but it does not provide any information on growth direction in itself. However,
it can be used with e.g., virtual crack extension techniques [52, 53] to find the direction
that maximizes the energy release rate for propagating the crack. Another criterion in
this category is the Minimum Strain Energy Density (MSED) criterion [54, 55], which
assumes crack growth in the direction that minimizes the strain energy density function,
S. MSED-based criteria are able to predict mode I dominated crack growth with good
accuracy [39], but they cannot accurately predict under mode II dominant conditions [40,
41]. Regarding the crack growth rate, a Paris-type equation is usually employed and the
SIF range in the equation is replaced by an energy-based parameter, e.g., ∆J or ∆S.

During the recent decades, the concept of the Configurational Forces (CF) (or material
forces) [56], which can be considered as a vectorial extension of the energy release rate,
was employed to evaluate crack driving forces [57]. In this approach, the crack driving
force can give information about both the rate and direction of crack growth. In addition,
CF criteria can account for various phenomena such as crack closure, crack face friction
and inelastic material behaviour. Thus, it attracted great attention from researchers in the
field. However, it has been shown that the CF criteria are typically not very numerically
stable. For instance, an RCF crack propagation using a CF criterion in [58] showed that
the perpendicular component of the employed CF criterion is heavily mesh-dependent.
The pathological mesh sensitivity was solved in [59] by adding regularization in terms of
gradient-enhanced plasticity into the criterion. A CF criterion was used in [43] to simulate
four mixed-mode fatigue crack growth experiments in 2D (tensile growth under mode
I-dominated crack loading, tensile growth under mixed-mode crack loading, stable shear
growth under non-proportional loading, and shear growth followed by crack kinking to
tensile growth). It demonstrated that the performance of the criterion decreases as shear
loading increases. It is also sensitive to the material model used in the simulations, and
the approach for the evaluation of crack driving force (i.e., viscous or rate-independent).

Displacement-based criteria are usually developed based on the crack face displacements
near the crack tip, i.e., Crack Tip Opening Displacement (CTOD or δI) and Crack Tip
Sliding Displacement (CTSD or δII). They stem from [60], but there are very few
displacement-based criteria in the literature for mixed-mode loading due to difficulties in
measuring δI and δII [61]. Although δI and δII are related to SIFs in LEFM, the criteria are
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also applicable to, e.g., elastic-plastic responses, since the criteria depend only on δI and δII.
However, the criteria are sensitive to how δI and δII are evaluated. The Vector Crack Tip
Displacement (VCTD) criterion [62] was proposed under proportional loading, based on
the assumption that cyclic deformations are the microscopic mechanism for fatigue crack
growth. Hence, it was concluded that the crack tip displacements represent the condition
at the crack tip and can be used to define the propagation. The fatigue crack growth
direction in the VCTD criterion is determined using the range of crack face displacements,
i.e., ∆δI and ∆δII. This is defined in the crack local coordinate system at the crack tip
(as shown in Fig. 2.2) as ϑ = arcsin(∆δII/∆δ), where ∆δ =

√
∆δ2

I +2∆δI∆δII +2∆δ2
II.

The analytical crack growth direction and rate predictions of the VCTD criterion show
good agreement with experimental results under proportional mixed-mode loading [62].
In simulating four fatigue tests in [43], a modification of the VCTD criterion yielded
promising crack growth direction results for a linear elastic material model and it was
also shown that modelling the cyclic elastic-plastic material response did not improve the
accuracy of the predictions. It should be noted that using the crack driving displacement
from the VCTD criterion in a Paris-type equation for rate predictions in some cases can
overestimate the predicted growth rates, see e.g., [63].

(a) (b) (c)

Figure 2.2: Illustration of crack growth variables. Crack local coordinate system
(
ê‖, ê⊥

)
at the crack tip for an inclined crack is shown. The dashed line indicates the orientation
of the undeformed crack. (a) Undeformed closed crack. (b) Crack tip displacements and
instantaneous crack growth direction, ϑ, for a loaded crack. (c) Crack growth direction
for the entire load cycle, φ. Adapted from Paper A.

Another criterion, the maximum crack growth rate criterion [64, 65], assumes that
the crack grows in the direction that maximizes the crack growth rate. The criterion
performs well in shear-dominated crack growth and can handle non-proportional loading.
However, the performance of the criterion worsens for a higher degree of mixed-mode I
and II loading [64].

Based on the above discussion and the challenges mentioned in [66], there are still
issues regarding the analysis of fatigue crack growth under mixed-mode loading which are
not fully addressed in the literature. The situation for RCF cracks is even more complex
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[9] since the (frictional) rolling contact conditions impose a non-proportional multiaxial
stress/strain state, which exerts compression and mixed-mode deformations on these cracks.
The formation of large plastic deformation is also present near the contact surfaces. In non-
proportional mixed-mode loading, challenges such as high mode mixity, cyclic plasticity,
crack closure, and variable mode mixity along the crack front need further investigation,
and there is no (globally) accepted crack driving force parameter in the literature, see
[67]. In addition, one way to account for the variation of phase angle between the modes
in the case of non-proportional loading is to consider an accumulation of instantaneous
contributions. However, there are challenges in formulating the accumulation scheme,
and in the scheme calibration that requires (substantial) experimental data.

In railways, shorter RCF cracks grow mainly under shear while the larger ones can
deviate to tensile growth due to the longitudinal tensile thermal and bending loads that
exist in the rails [68]. Therefore, it is crucial for the crack growth direction criterion to
also be able to capture the transition from shear to tensile growth.

Stress-based criteria are not suitable for these cracks due to their poor predictive
performance under a high degree of mixed-mode loading. Moreover, most of these criteria
can only be employed in LEFM analyses because of the employment of elastic response
with small-scale yielding assumption. Although energy-based criteria can theoretically be
a fascinating option for RCF cracks, more development is needed to address some practical
issues regarding the reliability and robustness of the numerical results. Displacement-
based criteria do not have any limiting theoretical assumption in order to be applicable
to RCF cracks and they have shown promising results under stable shear growth, for the
transition from shear to tensile growth, and during tensile growth for both proportional
and non-proportional loadings [43, 69].

2.4 Wheel–rail contact modelling

The wheel–rail contact generates a stress field that drives the growth of surface initiated
cracks, particularly for smaller cracks. In the contact interface, contact pressure, and
longitudinal and lateral tractions can generally be present. Although normal and tangential
tractions are in general coupled, the influence of the tangential traction on the normal
contact pressure distribution and the contact patch size is small for elastic bodies in
contact (zero for elastically compliant contacting bodies3) [70]. As a result, a common
approach is to first solve the normal contact problem to evaluate the magnitude and
distribution of the contact pressure. The tangential problem is then solved using the
results of the normal contact and the relative velocity between the contacting bodies
known as creepage. There is a lot of research in the literature to investigate different
aspects of contact problems, see e.g., Johnson [70] and Kalker [71] books on this topic.

3This requires that the contacting bodies have the same elastic constants defined in terms of shear
modulus G and Poisson’s ratio ν, i.e., G1

1−2ν1
= G2

1−2ν2
.
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Analytical solutions to the rolling contact problem can provide generally good insights
into the subject in a computationally efficient way. Hertzian theory [5] is one of the most
commonly used among these solutions. The theory considers an elliptical contact patch
with semi-axes a and b with a semi-ellipsoid pressure distribution, see Fig. 2.3, for normal
wheel–rail contact under the following assumptions [70]:

• Homogeneous isotropic linear elasticity.

• Linear kinematics, i.e., small deformation theory is valid.

• Constant curvature, i.e., contacting surfaces can be described by quadratic functions
within the contact patch.

• Half-space condition, i.e., contact patch size is small compared to the dimensions of
the contacting bodies.

• Perfectly smooth (frictionless) contact surfaces.

The contact patch semi-axes, a and b, are evaluated following [72], and depend on the
loading, and geometrical and elastic properties of the contacting bodies.

For 2D investigations, an approach proposed in [70] for two cylindrical bodies with
parallel axes in contact can be used. This condition gives a contact width, b, with
an elliptical pressure distribution that extends over a strip in the thickness direction
(rectangular contact patch).

The Hertzian theory assumptions are usually violated (to some extent) in the wheel–
rail contact scenarios. To highlight some of the violated situations in railways, plastic
deformations can occur for heavy wheel loads. The wheel and rail profiles have different
curvatures in different parts of their profile, especially at the gauge shoulder [73]. Confor-
mal contact (large contact area) can also occur in the case of flange contact. Moreover,
two-point contact can occur e.g., in curve negotiations. However, the theory can still
be beneficial as an approximation, especially in computationally demanding simulations,
where computational efficiency is an important parameter. Moreover, the theory laid a
foundation for more advanced (normal) contact theories.

The modified version of Kalker’s exact contact theory, also known as Li-Kalker theory,
[74] can deal with non-elliptical contact patches, multiple contact points, and conformal
contact. However, this theory needs (relatively) intensive computations. STRIPES [75] is
a computationally efficient semi-Hertzian approach, which divides the contact patch into
strips in the rolling direction of the wheel and applies a Hertzian-based pressure in the
direction of rolling on each strip locally. Investigations in [76] show that the method is
more accurate and still fast for cases that Hertzian theory cannot handle.

There are also several methods for solving the tangential rolling contact problem.
Carter’s method [70] and Kalker’s simplified and exact theories [77, 71] are three of the
most commonly used approaches in the literature. Note that the tangential stress, pt,
reaches full slip conditions, i.e., pt = fwrpn, when the creepage is sufficiently high. Here,
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Figure 2.3: Illustration of a Hertzian pressure distribution, pn(x,y), with semi-axes a and
b.

fwr is the wheel–rail traction coefficient and pn shows normal pressure between contacting
bodies. More details regarding available wheel–rail contact models are given in [78].
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3 Numerical framework

3.1 FE model

For 2D investigations in Papers A and B, a rectangular (rail) part with the width of
w = 300mm and the height of h= 100mm is used as the FE domain, see Fig. 3.1. Plane
strain conditions are presumed and the bottom edge of the model is clamped in the global
y-direction. Three-noded (linear) triangular elements are used in Paper A and 8-noded
(second-order) quadrilateral elements are employed in Paper B to discretise the FE
domain.

A 300mm long and 172mm high 60E1 rail profile [79] is used as the FE domain for
3D studies in Papers C and D, see Fig. 3.2. 8-noded (linear) hexahedral elements, also
known as brick elements, are used for discretisation. The bottom surface of the model is
clamped in the global x- and y-directions. In this thesis, a linearly elastic material model
is used. More details regarding the FE models are given in Papers A–D.

Figure 3.1: A sketch of a 2D rail part with an isolated surface-breaking inclined crack
subjected to a Hertzian contact load (pn,pt) and constant longitudinal prescribed dis-
placements up

x (red), or boundary displacements up
x(x̄;y) corresponding to bending (blue).

Adapted from Paper B.

3.2 Crack modelling

A discrete crack modelling approach with remeshing is adopted in the 2D investigations in
Papers A and B. As shown in Fig. 3.1, an initial crack with an inclination of ϕ0 = −25◦

and an initial crack length of a0 = 4.3mm with the tip initially at a depth of d= 2mm is
considered. The crack is propagated in an unbiased fashion (i.e., not following a prescribed
path) in the direction predicted by an accumulative VCTD criterion, see Section 3.4,
in the 2D studies (Papers A and B). The accumulated growth for multiple cycles is

13



Figure 3.2: The FE mesh used for the 60E1 rail profile features a semi-circular, surface-
breaking inclined gauge corner crack with a radius of r. A detailed view of the mesh in
the cracked area, highlighted by a box on the global mesh, is provided. From Paper D.

(a)

Gauge face

Rail center line

β

r
γ

Crack center point
A

B
C

z

x

(b)

ϕ
z

y

Figure 3.3: Crack plane inclination (defined by angles ϕ and β) w.r.t. the rail. (a) Top
view (xz-plane). Point A is located at the gauge side (γ = 45◦), B at the middle of the
crack front (γ = 90◦), and C at the center side (γ = 135◦). (b) Side view of the cracked
rail head (yz-plane). Adapted from Paper D.

simulated by repeating the process for each load cycle. In these studies, the crack growth
direction and rate are predicted in an ‘uncoupled’ way, i.e., the length of the incremental
propagation of the crack is a pure discretisation parameter (rather than representing a
certain number of load cycles).

XFEM is used in the 3D investigations in Papers C and D. Fig. 3.2 shows the
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individual surface-breaking inclined crack considered at the rail gauge corner in the middle
of the rail section. The crack is quasi semi-circular with a radius r. The crack plane is
assumed to have an inclination of ϕ w.r.t. the z-axis and β w.r.t. the x-axis, see Fig.
3.3. The crack is considered stationary in the 3D studies (Papers C and D). Results
are evaluated at three different points along the crack front: point A on the gauge side
with γ = 45◦, point B at the middle of the crack front with γ = 90◦, and point C on the
center side with γ = 135◦, as shown in Fig. 3.3a. Four crack radii (r = 3, 5, 9, 13 mm)
are considered.

In this thesis, similar to the FE mesh shown in Fig. 3.2, a mesh refinement close to
the crack area, with no special or singular elements around the crack tip, is employed. To
apply contact constraints at the crack faces in the normal direction, a penalty formulation
is employed in Papers A–D. For the tangential direction, frictionless crack faces are
considered in Papers A, C, and D, while crack face friction using a Coulomb friction
model is employed in Paper B. In this model, the tangential traction between two
contacting surfaces, pt, is evaluated as{

|pt| ≤µCF pn vt = 0 (stick condition)
pt = −µCF pn

vt
|vt| vt 6= 0 (slip condition)

. (3.1)

Here, µCF and pn are the friction coefficient and normal contact pressure between the
surfaces, respectively, and vt denotes relative sliding velocity.

3.3 Operational loads

In this thesis, three loads are considered: contact loading due to a wheel passage,
longitudinal bending, and thermal loading. The influence of each load on predicted
crack growth direction and rate is evaluated independently and in combinations. A brief
description is given below. Details are found in Papers A–D.

3.3.1 Contact load

Hertzian theory is employed for solving the normal rolling contact problem in this thesis
due to its computational efficiency. For the 2D investigations in Papers A and B, a 2D
Hertzian approach as proposed in [70] for cylindrical bodies with parallel axes in contact
is used. The contact patch width, b, is evaluated following [72]. In the 3D investigations
in Papers C and D, a semi-ellipsoid load distribution is applied over an elliptical contact
patch with semi-axes a and b, as computed following [72].

For all the studied cases in Papers A–D, wheel–rail longitudinal stresses are evaluated
presuming full slip conditions, and the lateral tractive stresses are not considered. The
influence of varying contact loads is investigated in Papers A, B, and D.
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3.3.2 Rail bending load

A passing wheelset induces bending in the rails. In this thesis, longitudinal bending is
considered, and evaluated using the in-house code DIFF [80]. The evolution of bending
moment as a wheel load traverses a track section, obtained from DIFF simulations, is
applied as boundary displacements on the vertical side edges of the model, see Fig. 3.1
for the 2D model. For this, the rail model is considered as an Euler–Bernoulli beam, and
boundary displacements are evaluated using the moment–curvature relation. Further, it
is assumed that the crack is located at the midspan of a sleeper bay for 2D investigations
in Papers A and B, and above a sleeper for 3D investigations in Papers C and D as
this location is more critical for crack growth in a rail head. In addition, the influence of
track support conditions and varying wheel loads is investigated in Paper D.

3.3.3 Thermal load

A continuously welded rail experiences longitudinal thermal loads due to the variation
of the ambient temperature from the stress-free temperature. This load is applied as
prescribed uniform displacements acting on the vertical side edges of the rail part using
a linear thermoelasticity assumption, as shown in Fig. 3.1 for the 2D model. Tensile
thermal load, i.e., temperature drop due to cold climate, is considered in Papers A–D,
and compressive thermal load is investigated in Paper B to show the performance of
the framework under this load. The influence of varying thermal loads is investigated in
Paper D.

3.4 Prediction of crack growth direction
In this thesis, the VCTD criterion has been chosen to predict crack growth directions.
The employed criterion is a modification of the original VCTD criterion [62] that considers
an accumulation scheme to account for non-proportional loading [43].

The accumulated VCTD criterion proposed in [43] is used in Paper A. For this, crack
face opening displacement, δI(t), and crack face sliding displacement, δII(t), are computed
at a distance dh from the crack tip for each time instance t of the load cycle. This can be
expressed as the difference between the top and bottom surface crack face displacements
(ϑ= π, and ϑ= −π, respectively as shown in Fig. 2.2), i.e.,

δI(dh, t) = u⊥(dh,π, t)−u⊥(dh,−π,t), δII(dh, t) = u‖(dh,π, t)−u‖(dh,−π,t). (3.2)

The ‘amplitudes’ of δI(t) and δII(t) are defined using mid-values over the load cycle,
δI/II = 1

2

[
max

t

(
δI/II(t)

)
+min

t

(
δI/II(t)

)]
, as δ̃I/II(t) = δI/II(t)− δI/II.

The instantaneous crack growth direction, ϑ(t), in the crack local coordinate system
shown in Fig. 2.2, and the instantaneous crack driving displacement, δ̃(t), are evaluated
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as
ϑ(t) = arcsin

(
−δ̃II(t)
δ̃(t)

)
, (3.3)

and
δ̃(t) =

√
〈δ̃I(t)〉2 +2〈δ̃I(t)〉|δ̃II(t)|+2δ̃II(t)2, (3.4)

where 〈•〉 = 1
2 [•+ |•|] are Macaulay brackets.

The crack driving displacement, ∆a, is evaluated from the accumulation of instanta-
neous contributions assuming a rate-independent response for the entire load cycle. More
specifically, the crack driving displacement is evaluated as the maximum of two trial crack
driving displacements corresponding to presumed positive and negative growth directions,
∆a+ and ∆a− respectively,

∆a = argmax
∆ã∈{∆a+,∆a−}

‖∆ã‖, ∆a+/− =
∫ Tc

0
〈dδ̃(t)

dt 〉êϑ(t)f+/−(t)dt. (3.5)

Here, êϑ(t) is the unit vector in the direction of the instantaneous crack growth direction
ϑ(t), see Fig. 2.2b. Further, f+(t) and f−(t) apply the ‘reversed shear’ condition and are
defined as

f+(t) =
{

0 δ̃II < 0 and δI
|δII| ≤ ψ

1 δ̃II ≥ 0 or δI
|δII| > ψ

, f−(t) =
{

0 δ̃II > 0 and δI
|δII| ≤ ψ

1 δ̃II ≤ 0 or δI
|δII| > ψ

, (3.6)

where ψ is the reversed shear threshold parameter. This parameter is used to account
for crack face locking by restricting the contribution of ‘reversed shear’ instances. Here,
crack face locking is defined as in [81], meaning that a part of the crack is active (has slip
between crack faces) at each time instant and there are no relative displacements between
the closed crack faces for inactive part(s) of the crack. Also, ‘reversed shear’ refers to a
shear deformation with the opposite sign to the presumed growth direction.

The accumulated crack propagation direction for the entire load cycle φ in the crack
local coordinate system, shown in Fig. 2.2c, is computed as a unit vector in the direction
of the crack driving displacement vector, i.e.,

êφ = ∆a
‖∆a‖

. (3.7)

A modification in the criterion has been proposed in Paper B. This modified version
is then used in Papers B–D. In short, the modification neglects the ‘reversed shear’
condition and thereby, Eqs. (3.5) and (3.6) are replaced by

∆a =
∫ Tc

0
〈dδ̃(t)

dt 〉êϑ(t)dt. (3.8)
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Crack face displacements, δI(t) and δII(t), in Eq. (3.2) are computed directly from
FE resolved displacement fields in Papers A and B (2D investigations) and from SIFs,
which are evaluated following [24], in Papers C and D (3D investigations). For more
information regarding the detailed formulae of the employed criteria, see Papers A–D 1.

Remark. Eqs. (3.5) and (3.8) result in a rate-independent formulation related to the
range of δ̃. As an illustration, in the scalar case (considering constant direction),∫ Tc

0
〈dδ̃(t)

dt 〉dt= max
0<t<Tc

(
δ̃(t)

)
− min

0<t<Tc

(
δ̃(t)

)
= ∆δ̃. (3.9)

Hence, the loading is proportional to the range ∆δ̃ and independent of the load cycle
duration, Tc.

3.5 Prediction of crack growth rate
Paris-type laws are used to predict crack growth rates. Two versions are employed to
account for various mode interactions. The zero mode interaction is assumed (lower
estimate ‘lo’) using(

da

dN

)
lo

= C(∆KI)m +C(∆KII)m +C

(
∆KIII√

1−ν

)m

, (3.10)

and full mode interaction (upper estimate ‘up’) is considered using(
da

dN

)
up

= C(∆Keq)m, with ∆Keq =
√

∆K2
I +∆K2

II + 1
1−ν

∆K2
III. (3.11)

Eqs. (3.10) and (3.11) are used in Papers C and D (3D investigations). ∆KIII = 0
is presumed to obtain the equations in Paper B (2D investigations) with the history
of SIFs evaluated from a direct displacement-based approach. For more information on
growth rate predictions, see Papers B–D.

Remark. The chosen expression incorporating ∆KIII in the lower estimate of crack
growth rate (Eq. (3.10)) leads to the explicit inequality

(
da
dN

)
up ≥

(
da
dN

)
lo, given that SIF

ranges for all three modes are non-negative (∆K = max
t

(K(t))−min
t

(K(t))).

1Note that there is a sign error in the formula presented for crack face displacements in Paper A.
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4 Summary of appended papers

4.1 Preliminaries
In Papers A–D, the FE model briefly described in Chapter 3 was implemented in
the commercial FE software ABAQUS/CAE [82], and post-processing was conducted in
MATLAB [83]. The overall contents of the appended papers are indicated in Table 4.1.
Highlighted results of each paper are briefly described in the following.

Table 4.1: Overall contents of the appended papers.

model dimension crack modelling growth direction growth rate varying loads crack face friction
Paper A 2D propagating X X
Paper B 2D propagating X X X X
Paper C 3D stationary X X
Paper D 3D stationary X X X

4.2 Paper A: Numerical predictions of crack growth
direction in a railhead under contact, bending and
thermal loads

The main objective of this paper is to establish a numerical framework for predicting the
crack growth path in a 2D rail model under operational loads simplified to 2D. For this, a
numerical framework for a 2D linear elastic model of a rail under plane strain conditions
with an isolated surface-breaking frictionless crack has been developed. The influence
of wheel–rail contact load, rail bending and tensile thermal loads (individually and in
combinations) on predicted crack paths is investigated. The inclined crack is propagated
into the rail in an unbiased manner (i.e., not following a prescribed path) based on the
predicted growth direction at the end of each load cycle using an accumulative VCTD
criterion as proposed in [43] (see Section 3.4). In addition, the effect of the employed value
of the reversed shear threshold parameter, ψ, on the predicted crack paths is investigated.

To model the crack growth under winter conditions in rails, a tensile thermal load in
combination with a moving Hertzian contact load of varying magnitude and a wheel–rail
traction coefficient of fwr = 0.3 was studied. As shown in Fig. 4.1, the crack tends to grow
towards a shallower path as the contact load magnitude increases. This change in the
crack path happens gradually. Results have the same trend for both ψ values studied. It
is thus concluded that the employed value for the reversed shear threshold parameter, ψ,
does not have a strong influence on the predicted crack paths for these load combinations.

To mimic rail bending by passing wheels, a combined load of bending and a moving
contact load of varying magnitude with a traction coefficient of fwr = 0.3 was investigated.
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It is observed in Fig. 4.2 that the combinations of bending and low contact loads result in
crack path predictions similar to those of pure bending, while the predicted crack paths
for higher contact loads in combination with bending are closer to the crack path for
a pure contact load. The change in the crack path happens abruptly. The trends are
similar between ψ = 0.001 and ψ = 0.01. However, the jump between the paths occurs
at a lower contact load for ψ = 0.001. This shows that the predicted crack paths for
combined bending and contact loads are somewhat sensitive to the employed ψ value.

0.1540 0.1543 0.1546 0.15490.0974

0.0976

0.0978

0.0980

x [m]

y
[m

]

ψ = 0.001
pure thermal load
thermal + 7.3 MN/m contact load
thermal + 33.8 MN/m contact load
pure 33.8 MN/m contact load

ψ = 0.01
pure thermal load
thermal + 7.3 MN/m contact load
thermal + 33.8 MN/m contact load
pure 33.8 MN/m contact load

Figure 4.1: Predicted crack paths for a frictionless crack under tensile thermal (∆T =
−20◦C) load in combination with different contact load magnitudes with fwr = 0.3. Cor-
rected from Paper A.

0.1540 0.1543 0.1546 0.15490.0974

0.0976

0.0978

0.0980

x [m]

y
[m

]

ψ = 0.001
pure bending load
bending + 5.0 MN/m contact load
bending + 7.3 MN/m contact load
bending + 14.0 MN/m contact load
bending + 33.8 MN/m contact load
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bending + 33.8 MN/m contact load
pure 33.8 MN/m contact load

Figure 4.2: Predicted crack paths for a frictionless crack under combined bending and
varying contact load magnitudes with fwr = 0.3. Adapted from Paper A.
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4.3 Paper B: Numerical prediction of railhead rolling
contact fatigue crack growth

The main goal of the paper is to further develop the proposed numerical framework in
Paper A to account for crack face friction and also to predict crack growth rates. The
crack face friction has been modelled using the Coulomb model, and the crack growth rate
has been evaluated employing two Paris-type equations described in Section 3.5. In this
study, two modifications are proposed for the numerical framework. Firstly, removing the
reversed shear condition in the accumulated VCTD criterion leads to a better match with
results from a twin-disc experiment and more physically sound predictions under combined
loads. Also, a change in the mid-value computations over a load cycle is considered only
under combined thermal and contact load, which is due to the difference in the time scale
of the contact and thermal loads (see discussion in Paper B). In addition, the influence
of a compressive thermal load is studied.

Similar load combinations as used in Paper A are employed to investigate the influence
of the crack face friction on the crack growth. The predicted crack paths for frictional
and frictionless cracks under combined thermal and contact loads are shown in Fig. 4.3a.
A similar trend is seen for the results in both cases with a little more tendency towards
transverse growth for the thermal and 7.3MN/m contact load in the frictionless crack. It
is thus concluded that the crack face friction has a moderate influence on the predicted
crack path. Further, the friction reduces the crack growth rate as shown in Fig. 4.3b.

A similar study was conducted for combined bending and contact loads. Predicted
crack paths are presented in Fig. 4.4a. The crack grows deeper into the rail in the presence
of crack face friction for this load combination. In addition, the abrupt change between
the predicted frictionless paths under this load combination seen in Fig. 4.2 is replaced
by a more gradual change. Fig. 4.4b shows that friction reduces the crack growth rate.

Note that there is always a need for a (more or less arbitrary) scale factor between a
2D model and a 3D wheel–rail contact load. This factor can have a large influence on the
predictions. A predictive 3D model is thus crucial for obtaining a deeper understanding
of RCF crack growth behaviour.

21



(a)

0.1540 0.1543 0.1546 0.15490.0974

0.0976

0.0978

0.0980

x [m]

y
[m

]

µCF = 0.3
pure thermal
thermal + 7.3 MN/m contact
thermal + 33.8 MN/m contact
pure 33.8 MN/m contact

µCF = 0
pure thermal
thermal + 7.3 MN/m contact
thermal + 33.8 MN/m contact
pure 33.8 MN/m contact

(b)

0 1 210−8

10−7

10−6

10−5

10−4

10−3

10−2

growth increment number [-]

cr
ac

k
gr

ow
th

ra
te

[m
m

/c
yc

le
]

µCF = 0.3
pure thermal
thermal + 7.3 MN/m contact
thermal + 33.8 MN/m contact
pure 33.8 MN/m contact

µCF = 0
pure thermal
thermal + 7.3 MN/m contact
thermal + 33.8 MN/m contact
pure 33.8 MN/m contact

Figure 4.3: Comparison of frictional (µCF = 0.3) and frictionless (µCF = 0) cracks under
combined tensile thermal (∆T = −20◦C) and contact loads with fwr = 0.3. (a) Predicted
crack paths. (b) Upper estimates of predicted crack growth rates. Adapted from Paper B.

22



(a)

0.1540 0.1543 0.1546 0.15490.0974

0.0976

0.0978

0.0980

x [m]

y
[m

]

µCF = 0.3
pure bending
bending + 7.3 MN/m contact
bending + 14.0 MN/m contact
bending + 33.8 MN/m contact
pure 33.8 MN/m contact

µCF = 0
pure bending
bending + 7.3 MN/m contact
bending + 14.0 MN/m contact
bending + 33.8 MN/m contact
pure 33.8 MN/m contact

(b)

0 1 210−8

10−7

10−6

10−5

10−4

10−3

10−2

growth increment number [-]

cr
ac

k
gr

ow
th

ra
te

[m
m

/c
yc

le
] µCF = 0.3
pure bending
bending + 7.3 MN/m contact
bending + 14.0 MN/m contact
bending + 33.8 MN/m contact
pure 33.8 MN/m contact

µCF = 0
pure bending
bending + 7.3 MN/m contact
bending + 14.0 MN/m contact
bending + 33.8 MN/m contact
pure 33.8 MN/m contact

Figure 4.4: Comparison of frictional (µCF = 0.3) and frictionless (µCF = 0) cracks under
combined bending and contact loads with fwr = 0.3. (a) Predicted crack paths. (b) Upper
estimates of predicted crack growth rates. Adapted from Paper B.
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4.4 Paper C: Finite element analyses of rail head
cracks: Predicting direction and rate of rolling
contact fatigue crack growth

The aim of this paper is to predict crack growth directions and rates in a 3D analysis. For
this, the previously developed numerical framework in Papers A and B is first extended
to 3D for a stationary crack to predict crack growth direction and rate in a rail head. An
inclined semi-circular surface-breaking gauge corner crack with frictionless crack faces is
incorporated into a 60E1 rail model (shown in Fig. 3.2), and the load scenarios of Paper
A are studied. The crack growth direction is predicted using the modified accumulative
VCTD criterion as proposed in Paper B, where the influence of modes I and II are
considered on the predicted direction. The two Paris-type equations employed in Paper
B are extended to take into account mode III effects on the estimated crack growth rates.
The crack is stationary in this study and results are evaluated at three points along the
crack front (shown in Fig. 3.3a) for four crack radii and two crack plane inclinations. The
rate predictions were found to have a reasonable match with field measurements in the
literature.

It is found that the crack is generally predicted to go deeper into the rail under the
combined load cases and in the presence of tractive forces than under pure contact load,
see Fig. 4.5. Crack growth rates for the combined load cases, as upper estimates shown in
Fig. 4.6, are generally higher than (but still close to) those of pure contact load cases.
Under the studied load magnitude, it is observed that a tractive force increases growth
rates for smaller cracks, r ≤ 5mm, whereas a steeper crack plane inclination (ϕ= 45◦)
decreases the growth rate as compared to a shallower inclination (ϕ= 25◦).
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Figure 4.5: Predicted growth directions, crack plane inclination of ϕ = 25◦. (a) Pure
contact, 7.5 t wheel load, fwr = 0. (b) Pure contact, 7.5 t wheel load, fwr = 0.3. (c) Tensile
thermal (∆T = −20◦C) and 7.5 t wheel load, fwr = 0.3. (d) Bending and 7.5 t wheel load,
fwr = 0.3. From Paper C.
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Figure 4.6: Upper estimate of predicted growth rates, crack plane inclination of ϕ= 25◦.
(a) Pure contact, 7.5 t wheel load, fwr = 0. (b) Pure contact, 7.5 t wheel load, fwr = 0.3.
(c) Tensile thermal (∆T = −20◦C) and 7.5 t wheel load, fwr = 0.3. (d) Bending and 7.5 t
wheel load, fwr = 0.3. Adapted from Paper C.
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4.5 Paper D: Rolling contact fatigue crack propagation
in rails – numerical investigation on consequences
of operational load variations

This paper focuses on performing a parametric study on the influence of varying operational
loads on predicted crack growth directions and rates using the numerical framework
developed in Paper C. For the parametric study, the crack plane inclination is fixed
to ϕ= 25◦. Two different track support conditions (‘nominal’ and ‘poor’ as defined in
Paper D), and two different thermal loads are employed in combination with wheel–rail
contact load of different magnitudes and positions. This study highlights the sensitivities
and limitations of the developed framework in Paper C and provides better conclusions
regarding the influence of the considered load scenarios. In addition, rail lives under
different load scenarios are estimated, which can be of use in maintenance planning.

It is observed that the ratio between the contact load and thermal/bending load is
influential for crack growth direction under combined load cases. As shown in Figs. 4.7a
and 4.8a, increasing the thermal load, or having ‘poor’ track support conditions while
keeping the contact load constant, promotes downwards growth while increasing the wheel
load magnitude in the presence of constant bending or thermal load leads to shallower
growth directions. A shallower crack growth can also be obtained by moving a contact
load towards the crack center. Crack growth rates for the combined load cases (upper
estimates shown in Figs. 4.7b and 4.8b) are generally higher than (but still close to) those
of the corresponding pure contact load cases with slightly higher values for the increased
thermal or ‘poor’ track support conditions case. Also, the contact load magnitude and
position mainly influence the crack growth rate.
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Figure 4.7: Predicted crack growth at point B under combined tensile thermal and wheel
load P with fwr = 0.3. (a) Predicted crack growth directions. (b) Upper estimates of
predicted crack growth rates. From Paper D.
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Figure 4.8: Predicted crack growth at point B under combined bending with different track
support conditions and wheel load P with fwr = 0.3. (a) Predicted crack growth directions.
(b) Upper estimates of predicted crack growth rates. From Paper D.
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5 Concluding remarks and future work

5.1 Main results
This research deals with the influence of operational loading conditions on RCF crack
propagation. For this, a numerically robust framework setting out from criteria and
methods in the literature (and fine-tuning them when needed) has been developed for an
unbiased propagating crack in a 2D model and a stationary crack in a 3D model (research
objective 1 in Section 1.2). From the conducted study, the following conclusions can be
drawn (research objectives 2 and 3 in Section 1.2):

• The predicted crack path for a frictionless crack under combined thermal and contact
loads is found to change gradually from transverse growth (corresponding to pure
thermal loading) to shallow growth (corresponding to a pure contact load), while
there is an abrupt variation in the predicted crack path under combined bending
and contact loads as the contact load is increased (Paper A).

• Predicted crack paths under pure contact load and under combined bending and
contact loads are found to be moderately sensitive to the employed value of the
reversed shear threshold parameter, ψ (Paper A).

• Two modifications of the crack growth direction criterion are investigated. A change
in mid-value calculations under thermal and contact load is proposed. Further, the
reversed shear condition is abandoned since it can yield unphysical predictions under
the investigated combined loads for a frictional crack. Removing the condition also
makes the predictions (slightly) better match the results from a twin-disc experiment
(Paper B).

• A frictional crack tends to grow deeper into the rail than its frictionless counterpart
under pure contact load and combinations of bending and contact loads (Paper B).

• Crack face friction has a moderate influence on predicted crack paths under combined
thermal and contact loads (Paper B).

• Crack face friction reduces the crack growth rate in all investigated cases (Paper
B).

• The predicted final growth direction is almost insensitive to the size of the growth
increment in the numerical procedure. The growth direction typically converges
towards the final direction after a few load cycles (Papers A and B).

• A crack under pure contact load without tractive forces tends to grow upwards.
Adding a tractive force promotes downward growth and increases the crack growth
rate for smaller crack sizes. Superposing a tensile thermal or bending loading also
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increases the downward growth tendency and crack growth rate (Papers C and
D).

• For the assumed semi-circular crack, the gauge side part of the crack deviates the
most from the initial crack inclination with the slowest crack growth rate. The
center side of the crack has the least deviation from the initial crack inclination
(Papers C and D).

• A steeper crack plane inclination reduces the growth rate and introduces more
fluctuations in the predicted growth directions (Paper C).

• An increased thermal load, or having ‘poor’ track support conditions while keeping
the contact load constant, increases the growth rate and the tendency for downward
growth (Paper D).

• Moving the contact load position towards the gauge side increases the crack growth
rate without changing the trend of predicted growth directions but with slightly
shallower directions (Paper D).

• Higher wheel load magnitudes increase the crack growth rate, and result in shallower
crack growth (Paper D).

• Influence of longitudinal traction drops (substantially) with crack depth (Papers
C and D).

• For the assumed semi-circular crack, longitudinal loads in combined load cases have
the most influence in the point on the gauge side and the least influence in the point
on center side (Papers C and D).

• Rail life reduces under combined load cases as compared to the pure contact load
case (Paper D).

Table 5.1 summarizes the influence of investigated parameters.

5.2 Implications for railway operations
There are several practical implications related to this research (research objective 4 in
Section 1.2). Some of these are:

• The wheel–rail contact load has a major influence on the predictions of the crack
growth direction and rate (Papers A–D).

• As a tensile thermal load increases downward growth propensity and growth rate, it
is recommended to perform inspections before/at the beginning of the winter season
and to have shorter inspection intervals as long as these conditions prevail (Papers
A–D).
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Table 5.1: The resulting outcomes of the considered parameter variations (C: contact, B:
bending, T: tensile thermal).

loading parameter crack growth rate crack growth direction

C

wheel–rail traction ↑ for smaller cracks deeper
wheel load magnitude ↑ for higher C shallower for ↑ C
contact load position ↑ for C closer to crack shallower for C closer to crack

steeper crack plane inclination ↓ more fluctuations
crack face friction ↓ deeper

B+C

compared to C with traction ↑ deeper
‘poor’ track support conditions ↑ deeper

wheel load magnitude ↑ for higher C shallower for ↑ C
contact load position ↑ for C closer to crack shallower for C closer to crack

steeper crack plane inclination ↓ more fluctuations
crack face friction ↓ deeper

T+C

compared to C with traction ↑ deeper
thermal load magnitude ↑ for higher T deeper for ↑ T
wheel load magnitude ↑ for higher C shallower for ↑ C
contact load position ↑ for C closer to crack shallower for C closer to crack

steeper crack plane inclination ↓ more fluctuations
crack face friction ↓ moderate influence

• Crack face friction typically promotes more downward growth and reduces crack
growth rate. The former is detrimental while the latter is beneficial from a mainte-
nance planning perspective (Paper B).

• Longitudinal tractive forces are detrimental for the growth of smaller cracks, i.e.,
close to the rail surface, as they promote downward growth with an increase in
growth rate. However, this effect drops (significantly) with depth (Papers C and
D).

• Assuming the same conditions in ambient temperature and track support conditions,
increasing the allowed axle load of a line would increase the crack growth rate.
However, it will promote shallower crack growth (Paper D).

• Track support conditions are important as a ‘poor’ (i.e., soft) condition leads to
more downward crack growth with higher rates (Paper D).

• The distance between the wheel–rail contact point and the crack location has a high
influence on crack growth rates (Paper D).

• Cracks with steeper plane inclination exhibit more fluctuations in growth directions
and lower crack growth rates (Paper C). However, the detection of these cracks in
rails is more difficult due to larger shielding effects [84].

• The gauge side of the crack front is more influenced by the longitudinal bending
and tensile thermal loads while the influence is reduced for the center side of the
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crack front (Papers C and D).

• For smaller cracks, the gauge side part of the crack tends to grow downwards with
the slowest crack growth rate. The center side of the crack grows shallowly into the
rail with a faster crack growth rate (Papers C and D).

5.3 Open questions
Several open questions regarding RCF crack propagation remain. Some of these are:

• Crack advancement modelling and incorporating crack face friction would improve
3D predictions and make validations against experimental/field data possible. For
considering a propagating crack, the numerical efficiency of the framework needs
to be improved, and a suitable description of the evolving crack geometry must be
adopted.

• The current study qualitatively compared the influence of the operational loading
conditions. Further calibrations need to be considered for more precise quantitative
comparisons.

• For gauge corner cracking, wear would also be of importance for quantitative
(growth rate) predictions. This can be incorporated into the numerical framework.
Moreover, the contact formulation has a direct influence on the predictions. In
future calibrations, the contact load formulation may need to change to non-Hertzian
(some of these models have been mentioned in Section 2.4), and lateral tangential
contact forces may need to be accounted for.

• Investigating the influence of the material anisotropy and inelasticity that exists in
a layer close to the rail surface on the growth of surface-breaking cracks will increase
the understanding of the crack growth behaviour. This can be done by considering
a proper elastic-plastic material model and developing a more generally applicable
crack growth criteria if needed. Considering the inelasticity of the rail material also
allows for over-rolling simulations to study the influence of multiple wheel passages
on crack growth.

• The thesis considers the growth of an individual crack in a rail head. For simulating
interaction between cracks similar to crack networks typically seen in the field,
model extensions would be needed.
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