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A Research of Different Energy 
Management Strategies of Lithium-ion 
Battery-Ultracapacitor Hybrid Energy 
Storage System 

Dongjie Zhang, Lin Hu, Qingtao Tian, and Changfu Zou 

Abstract Given the exacerbating effect of fossil fuel use in conventional vehicles 
on the greenhouse effect, the imperative development of electric vehicle technology 
becomes evident. To address the high energy and power density demands of electric 
vehicles, a lithium-ion battery-ultracapacitor hybrid energy storage system proves 
effective. This study, utilizing ADVISOR and Matlab/Simulink, employs an electric 
vehicle prototype for modeling and simulating both logic threshold and fuzzy logic 
control strategies. It aims to analyze the average output power and state of charge 
(SOC) of the lithium-ion battery, as well as the SOC of the ultracapacitor, within 
hybrid energy storage systems governed by these differing strategies. The findings 
indicate that the fuzzy logic control strategy results in a reduction of 2.73 kW in the 
average output power of the lithium-ion battery and a 20% increase in the SOC drop 
rate of the ultracapacitor compared to the logic threshold control strategy. Under the 
logic threshold control strategy, lithium-ion batteries demonstrate superior output 
stability, albeit within a broader amplitude range. Conversely, the fuzzy logic control 
strategy maximizes the utilization of ultracapacitors but leads to frequent fluctua-
tions in the output power of lithium-ion batteries, thereby exhibiting reduced stability. 
These results underscore the inherent trade-offs between stability and utilization effi-
ciency in hybrid energy storage systems for electric vehicles under different control 
strategies. The selection of a control strategy should be contingent upon specific
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performance priorities and objectives within the context of electric vehicle design 
and operation. 

Keywords Hybrid energy storage system · Energy management · Logical 
threshold control strategy · Fuzzy logic control strategy 

1 Introduction 

In recent years, the gas emitted by traditional fuel vehicles has aggravated air pollution 
and fossil energy is non-renewable. Therefore, it’s essential to develop and enter a 
period of accelerated development of electric vehicles (EV). 

In [1], it indicates that high discharge rates and depth of discharge will cause high 
rate of capacity fade and a shorter useful life of lithium-ion battery (LiB). Studies have 
shown that when the LiB faces a high-power impact, it may lead to over-discharge of 
the LiB, leading to the reduction of the number of charge and discharge cycles of the 
LiB. Ultracapacitors (UC) can meet the high-power requirements of EV, but their low 
energy density makes it difficult for vehicles to have a long life. The hybrid energy 
storage system (HESS) composed of LiB and UC plays a role of "peak cutting and 
valley filling" for LiB. In [2], the results show that HESS with appropriate size and 
enabled energy management can significantly reduce the battery degradation rate by 
about 40% compared to battery energy storage systems (ESS), and at only 1/8 of the 
additional cost of the system. 

HESS primarily encompass three types of topologies: passive topology, semi-
active topology, and active topology [3]. Pratim Bhattacharyya et al. [4] proposed 
an improved LiB and UC hybrid semi-active structure for EVs where the size and 
space of the energy storage system (ESS) are critical. Zhu et al. [5] proposed that 
bidirectional DC/DC converters can be divided into isolated (IBDC) and non-isolated 
bidirectional DC/DC converters (NBDC) according to whether electrical isolation is 
realized between ports. Li et al. [6] conducted an optimization design for a UC-based 
semi-active HESS and interleaved parallel bidirectional Buck/Boost converters, and 
analyzed the reasons behind the optimization results. 

A good energy management strategy (EMS) of HESSs can improve performance 
in different and complex driving conditions and reduce driving costs. HESS energy 
management methods [7–9] in EV applications can be summarized into the following 
two categories, namely model-based methods and rule-based methods. Model-based 
energy management methods usually cooperate with other control methods for power 
distribution, such as the global optimization algorithm dynamic programming (DP) 
[10], which can obtain the optimal control input by minimizing the cost function, 
and it’s suitable for offline calculation to provide parameter setting values for deter-
mining rule control. After analyzing different data sets according to the optimal power 
distribution strategy, Shen et al. [11] proposed a neural network-based (NN-based) 
HESS control method for medium-sized EVs. Rule-based methods consist of a set 
of predefined, empirical control rules [12]. Wang et al. [13] proposed a rule-based
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control method to realize mode selection and current distribution of multi-mode 
HESS in EV applications. Yin et al. [14] proposed an adaptive fuzzy logic control 
(FLC) scheme for EV energy management, where the output membership functions 
are periodically refreshed to adapt to changing driving patterns. The experimental 
results in An et al. [15] conducted under the HWFET condition demonstrate that the 
fully active dual-energy source HESS, along with the EMS based on FLC, effectively 
safeguards the LiB against the detrimental effects of substantial current fluctuations, 
consequently prolonging the battery’s lifespan. Based on the advantages of flexibility 
and robustness of the fuzzy logic controller, Gao et al. [16] proposed an optimization 
method of fuzzy controller hybridization (DOH) and membership function based 
on the golden section rule. In [17], The optimal logical threshold control (LTC) 
can fully leverage the high-power UC’s characteristics and conduct hardware-in-the-
loop (HIL) experiments to further validate the real-time and dependable nature of 
the near-optimal LTC. The gray wolf optimization (GWO) is used in Hu et al. [18] 
to optimize the battery output power upper limit and UC charging upper limit of 
mature multi-mode control (MMC). In [19], frequency-based energy management 
distributes high- and low-frequency power requirements to batteries and ultracapac-
itors respectively. Min [20] proposed a multi-objective EMS for EV HESS based 
on separating load power. The impact of different sorting methods on the results by 
using elite strategy non-dominating sorting genetic algorithms (NSGA-II). 

With the widespread adoption of EVs, experts and scholars have initiated research 
into artificial intelligence power distribution strategies. On the basis of existing algo-
rithms, it’s necessary to improve the robustness of EV under driving conditions and 
optimize the control strategy algorithm. The sections of this article are as follows. 
In the second section, we introduce vehicle parameters, HESS components, and the 
simulation model. Section 3 provides an overview of the LTC and FLC strategies. 
Sections 4 and 5 present the simulation results and draw conclusions, followed by 
future prospects. 

2 Parameters and Hybrid Energy Storage System Model 

2.1 Vehicle Parameters 

The parameters of the electric vehicle are designed according to a benchmark model. 
The main vehicle parameters are shown in Table 1.

2.2 Lithium-ion Battery 

The equivalent circuit models of LiB include Rint model, RC model, PNGV model, 
etc. Due to its concise structure and convenient calculation method, the Rint model
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Table 1 Main vehicle 
parameters Parameter type Value 

Body size 4694 × 1849 × 1443 mm 

Frontal area 2.4m2 

Air resistance coefficient 0.24 

Full load mass 1320 kg 

Tire rolling radius 0.45 m 

Rolling resistance coefficient 0.009 

Fixed speed ratio 1 

Centroid height 0.4 

Front track/rear track 1580/1580 mm

Table 2 Parameter settings 
of LiBs Parameter type Value 

Cell rated voltage/V 3.7 

Cell rated capacity/Ah 4.8 

Series number 96 

Parallel number 46 

was selected in this research. There is a certain relationship between the open circuit 
voltage UOC and the load voltage Ub, as shown in equation: Ub = UOC − IL · R0. 
The parameter settings of the LiBs are shown in Table 2. 

2.3 Ultracapacitor 

Under high power requirements, ultracapacitor can provide excellent output power, 
effectively reduce the load of LiB, and significantly improve the efficiency of the 
system. The parameter settings of the UCs are shown in Table 3. 

Table 3 Parameter settings 
of UCs Parameter type Value 

Cell rated voltage /V 2.7 

Cell rated capacity /F 3400 

Series number 120 

Parallel number 3
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2.4 Topology Structure 

Figure 1 shows the specific classification of HESS topology. We used a UC semi-
active topology in this study for the following reasons: passive topology makes it 
difficult to achieve energy conversion between LiB and UC, while active topology is 
more expensive and harder to control. In the semi-active topology of LiB, the linear 
charge and discharge characteristics of UC can lead to sharp fluctuations in DC circuit 
voltage. The UC semi-active topology effectively improves capacity efficiency. The 
formed topology model is presented in Fig. 2. 

Fig. 1 Topology structure 
classification of HESS 

Fig. 2 UC semi-active topology simulation model
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Table 4 Average power 
required in UDDS Condition Time/s Average required power/kW 

Driving 973 10.20 

Braking 155 −3.79 

Fig. 3 Logic threshold control strategy flowchart 

3 Control Strategy 

3.1 Logical Threshold Control Strategy 

In this study, writing an integrated program in Matlab to calculate the energy demand 
according to the required power of the UDDS model of an electric vehicle with a 
single power supply, to get the Pave_p logic threshold, the related parameters are listed 
in Table 4. The logic flow of the LTC strategy is presented in Fig. 3. 

3.2 Fuzzy Logic Control Strategy 

This research employs the Madamni structure fuzzy logic controller, where the input 
signals consist of requested power, SOCuc, and SOCbat. The output is denoted as the 
power allocation factor Kbat. The domains and subsets of the membership functions 
are presented in Table 5. 

Table 5 Function domain 
and subset division Parameter Domain Subset 

Preq (>0) [0 60000] AS BS CS MS MB DB EB FB 

Preq (<0) [−14000 0] ZB ZBM ZM ZS 

SOCbat [0 1] S M B  

SOCuc [0 1] S M B  

Kbat [0 1] AS BS CS MS MB DB EB FB
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(a) Preq>0, under driving conditions        (b) Preq<0, under braking conditions 

Fig. 4 FLC rule surface under driving and braking conditions 

Fig. 5 FLC simulation model 

By dividing the intervals as outlined above, we derive a total of 108 control rules. 
The surface of FLC rules under both driving and braking conditions is illustrated in 
Fig. 4, and its model is further visualized in Fig. 5. 

4 Simulation Results 

In this study, we conducted simulation verification within the Matlab and ADVISOR 
environments to align vehicle parameters and EV control models. Both the LiB and 
UC were initialized with a State of Charge (SOC) of 1. As depicted in Fig. 6, the  
speed request curves generated by the two distinct control strategies closely match 
the actual speed curves. This substantiates that the HESS control strategy proposed 
in this paper adequately fulfills the vehicle’s speed requirements.



1098 D. Zhang et al.

Fig. 6 Vehicle speed 
tracking results of two 
control strategies in UDDS 

In Fig. 7, within the single-power controlled EMS, the peak output power of the 
LiB reaches 50.72 kW. This is notably higher, by 40.52 and 39.33 kW, than the values 
obtained using LTC and FLC strategies in the HESS, as detailed in Table 6. In Fig.  8, 
the SOC drop of the LiB within the HESS is more than 30% lower compared to the 
EMS relying on a single power supply. This observation underscores the crucial role 
of well-distributed power in the HESS, effectively extending the lifespan of the LiB 
and potentially increasing the mileage range of EVs. 

In LTC, the output power of the LiB is precisely controlled around the threshold 
value of 10.20 kW, signifying superior output stability of the LiB with a wider

Fig. 7 Power distribution of 
LiB based on different 
energy management 
strategies 

Table 6 Output peak and 
average power of LiB and UC 
under driving conditions in 
UDDS 

Classification Peak power/kW Average power/kW 

Single power supply 50.72 10.20 

Logic threshold 10.20 7.44 

Fuzzy logic 11.39 4.71
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Fig. 8 The solutions of LiB 
SOC in UDDS

amplitude range. In contrast, FLC employs 108 flexible rules to control the LiB’s 
output power. Since this paper focuses on UC’s role in recovering braking energy in 
LTC, we have compared the average LiB output power under driving conditions in 
Table 6. In the FLC, the average LiB output power is 2.73 kW lower than that in LTC, 
highlighting a narrower amplitude range. Figure 7 further illustrates that the LiB’s 
output power curve exhibits more frequent fluctuations in FLC, indicating inferior 
stability compared to LTC. 

The output power of the UC in the FLC strategy consistently surpasses that of 
LTC during most driving instances. Additionally, the SOC of the UC in FLC and LTC 
decreases by approximately 37 and 17%, respectively, signifying a deeper utilization 
and better alignment of capacity parameters in FLC. However, it’s important to note 
that this approach may ultimately render the HESS ineffective in the long term, as 
depicted in Fig. 9. 

Fig. 9 The solutions of UC 
SOC in UDDS
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5 Conclusions and Prospect 

In this paper, we investigate the EMS for both single power supply and hybrid power 
supply configurations. The LTC and FLC power distribution strategies effectively 
regulate the output power of the LiB within an appropriate range. The high-power 
discharge characteristics of the UC efficiently mitigate excessive LiB discharge, thus 
ensuring its prolonged service life, exemplifying the significance of the LiB-UC 
HESS. 

In the future, we will consider utilizing the LiB to supply power to the UC in 
order to meet the power requirements of the UC. Concurrently, further research is 
required to enhance the alignment of UC capacity parameters and control strategies, 
incorporating diverse driver behavior patterns and various system topologies into 
our algorithm design. This will enable us to optimize system costs and control effec-
tiveness while facilitating the flexible selection and application of control strategies 
based on real-world driving scenarios. 
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