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ABSTRACT

The scope of this paper is a multivariate setting involving categorical variables. Following an external manipulation of one variable, the goal is to
evaluate the causal effect on an outcome of interest. A typical scenario involves a system of variables representing lifestyle, physical and mental
features, symptoms, and risk factors, with the outcome being the presence or absence of a disease. These variables are interconnected in complex
ways, allowing the effect of an intervention to propagate through multiple paths. A distinctive feature of our approach is the estimation of causal
effects while accounting for uncertainty in both the dependence structure, which we represent through a directed acyclic graph (DAG), and the
DAG-model parameters. Specifically, we propose a Markov chain Monte Carlo algorithm that targets the joint posterior over DAGs and parame-
ters, based on an efficient reversible-jump proposal scheme. We validate our method through extensive simulation studies and demonstrate that
it outperforms current state-of-the-art procedures in terms of estimation accuracy. Finally, we apply our methodology to analyze a dataset on

depression and anxiety in undergraduate students.

KEYWORDS: Bayesian inference; categorical data; causal inference; directed acyclic graph; reversible jump Markov chain Monte Carlo.

1 INTRODUCTION

The general framework of this paper is a multivariate setting con-
sisting of categorical variables. Following an external manipula-
tion of one variable, the primary goal is to evaluate the causal
effect of this intervention on an outcome of interest. A typi-
cal example is represented by a system of variables representing
lifestyle, physical and mental features, symptoms, and risk fac-
tors, and the outcome is the presence or absence of a disease. All
these variables are interconnected in a complex way, which must
be learned and taken into account because the effect could prop-
agate along several paths. For an alternative example, consider
health data on functioning and disability. Here, the variables rep-
resent categories identified according to the International Clas-
sification of Functioning, Disability and Health (ICF) (Stucki
etal., 2007). ICF categories are organized into 2 parts, each con-
sisting of different components. The first part covers function-
ing and disability and includes the components “Body Func-
tions and Structures” and “Activities and Participation.” The sec-
ond part covers contextual factors with the components “Envi-
ronmental Factors” and “Personal Factors.” In this framework,
Kalisch et al. (2010) analyzed data on patients with spinal cord
injury (SCI) resulting from a multicenter, cross-sectional study
conducted in 14 countries; see Biering-Serensen et al. (2006) for
further details. After preprocessing, the dataset included around
200 ICF categories mostly from Body Functions/Structures and
Activities and Participation. The authors carefully investigated

the dependence structure among the variables (categories) and
determined the causal effects on a critical outcome variable,
“General Health Perception” (ghp), following an intervention
on the remaining items present in the dataset. Among the S most
influential variables on ghp, 4 turned out to belong to the Activ-
ities and Participation group (the top one being “Doing house-
work”), with only 1 (“Sensation of pain”) belonging to the Body
Functions group. The practical implication of these findings is to
inform policies (eg, therapy) available to health care providers.

The analyses carried out on the IFC-SCI data were performed
using techniques based on graphical models (Lauritzen, 1996),
and more specifically directed acyclic graphs (DAGs) (Koller
and Friedman, 2009), where nodes represent variables. This is
also the broad methodological framework embraced in our pa-
per. Our distinctive contributions include (i) a Bayesian graph-
ical model for multivariate categorical variables that simultane-
ously accounts for DAG structure and model parameter uncer-
tainty; (ii) a method for Bayesian Model Averaging (BMA) in-
ference on the causal effects induced by external manipulations
of variables; (iii) an efficient computational scheme to perform
tasks (i) and (ii).

The rest of this section recaps the basic facts about Bayesian
learning of graph structures using observational data and causal
inference based on DAG models. To perform causal inference,
a DAG model has to be equipped with suitable causal semantics
(Pearl,2000). Alternatively, a (causal) structural equation model
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could be employed (Pearl, 1995) but is not discussed in this
article. Our causal model is represented by a family of observa-
tional probability distributions that satisfy the Markov factor-
ization implied by a DAG (Sadeghi, 2017). The term “causal”
becomes meaningful through the do-calculus (Pearl, 2000), a
technique to determine the interventional distribution resulting
from an external manipulation of variables in the system. A no-
table feature of the interventional distribution is that it is ex-
pressed in terms of the observational distribution, which is es-
timable from the data; as a consequence, under a few further
assumptions (notably that there exist no hidden confounders),
causal queries can be answered even when the data are purely
observational.

A causal model is predicated on a given DAG. In real-world ap-
plications, however, the generating DAG is unknown and thus
needs to be learned. A difficulty we face is that the true generat-
ing DAG is not identifiable in general from purely observational
data because its conditional independencies can be encoded in
different DAGs that can be grouped into a (Markov) equivalence
class; identifiability can be reached but this requires specific dis-
tributional assumptions; see, for instance, Peters and Bithlmann
(2014), Mahdi Mahmoudi and Wit (2018), and Shimizu et al.
(2006). Because only a Markov equivalence class can be in-
ferred from data, it follows that there exists a whole collection of
causal effects (one for each DAG in the class); see Maathuis et al.
(2009) for methods to identify these effects in high-dimensional
multivariate Gaussian models.

Historically, DAGs were introduced as an engine for prob-
abilistic expert systems with categorical/discrete variables as
nodes, and in that setting they acquired the name Bayesian net-
works (Pearl, 1988). Causal discovery for Bayesian networks can
be traced back to Heckerman et al. (1995); see also Scutari and
Denis (2014) and Roverato (2017) for a more recent account.
In this context, Madigan et al. (1996), Castelo and Perlman
(2004), and more recently, Castelletti and Peluso (2021) focus
on learning equivalence classes. A large part of recent method-
ological research in causal inference is, however, framed in terms
of continuous multivariate distributions (Maathuis et al., 2009;
Castelletti and Consonni, 2021). The methodology of Maathuis
et al. (2009) was later adapted to categorical distributions by
Kalisch et al. (2010). To this end, they first implement the PC
algorithm to estimate a Markov equivalence class of DAGs and
then compute a battery of possible causal effects for variables of
interest using do-calculus rules. Their method relies on a sin-
gle completed partially DAG (CPDAG) representing the esti-
mated Markov equivalence class of DAGs; accordingly, no un-
certainty around such graph estimate is provided, unlike in our
approach.

The remaining part of this paper is structured as follows. Sec-
tion 2 presents relevant notation, the model formulation, and the
allied priors; Section 3 specifies the causal effect as the main pa-
rameter of inference; and Section 4 details our computational
strategy leading up to a BMA estimate of the causal effect. The
performance of our method, including comparisons with alter-
native approaches, is presented in Section S, while Section 6
presents an application to depression and anxiety data. The fi-
nal section offers a brief discussion together with possible future
developments.

2 BAYESIAN INFERENCE OF CATEGORICAL
DAG MODELS

2.1 Categorical data and notation
Let X = (X, j€ V)T, V={1,...,q},bea (q, 1) vector of
categorical random variables with X; taking values in the cor-
responding set of levels &’j, whose generic element is x;. We
let X : = X ey & be the product space of the sets of levels.
The collection of joint probabilities ¥ = {7, x € X'} canbe ar-
ranged in a g-way contingency table of probabilities, where each
cell refers to a specific level x € X. For any given § C V, we let
Xs = (Xj, j € S) be the sub-vector of X with components in-
dexed by S, and x5 € X5 : = X jcs&j one ofits levels. We then
let thss = Pr(Xs = x5 | ) be the corresponding marginal joint
probability for variables in S. We instead write Gx]] l‘ is =Pr(X; =

x; | Xs = xs, 1) to denote the conditional probability for vari-
able X; evaluated at x;, given configuration xs of variables in S,

j¢s.
Consider now n observations x(l), e, 2 from X, where
x) = (xgl), .. .,x‘g"))—r € Xfori=1,...,n.Foranyx € X,

we can compute the count n, = Y 1(x\) = x), that is, the
number of observations that are equal to x, and organize the
resulting collection of values in a g-way contingency table of
counts N = {n,, x € X'}. In addition, for any x5 € X, we let

n = > ﬂ(xgi) = «xg5) and Ny = {nis, x5 € Xs} be the al-

lied |S|-way marginal contingency table of counts.

2.2 Model formulation

Let D = (V, E) be a DAG, with set of nodes V, one for each of
the g variables,and E C V' x V its set of directed edges. If u # v
and (u, v) € E, then (v, u) ¢ E, and we say that D contains the
directed edge u — v, where u is a parent of v; equivalently, v is
a child of u. The set of all parents of u in D is written pay,(u),
while fap (u) = u U pap (u) identifies the family of u. In the re-
mainder of this section and in Section 3, we reason conditionally
on a single given DAG, which, for simplicity, is omitted from our
notation. Under D, and for any level x € X, the joint probability
function of the random vector X factorizes as

p(x):Pr(Xlle,...,quxq)

= [Tr(x; = %1 Xpaj) = %) (1)
j=1
Under a family of probability distributions and given i.i.d. real-
izations {x(i), i=1,...,n}, thelikelihood function becomes

‘ ; ; . v 1+ =)
p(X10) = 1‘[{1—[ {Pr(le =x§‘),...,Xq<‘> :x‘(zx)‘o)} s(=x }

i=1 \xeX

» a0
=11 { [1 I [T {ee) } ] : @)
J=L ke, () | med)

where X is the (1, q) observed data matrix whose ith row is
()T, Importantly, the model in (2) is identifiable because
it belongs to an exponential family; see Consonni and Massam
(2012, Lemma 2.1). For related results, see also Massam and
Wesolotowski (2016). Notice that Equation 2 depends on the
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raw observations X through the counts N, which are the suffi-
cient statistics.

2.3 Parameter prior distributions

We now proceed by assigning a prior distribution to 6. Specif-

ically, consider for each j € V' and each xp,(j) € Xj,a(j) the al-
lied set of parameters (60 j_‘Pa(j), x;i e X;):= 0,5 lp,a(j), where
Xj | Xpa(j) ] J pa(j)

each element is a | X;|-dimensional vector of conditional prob-

abilities for variable X; given configuration x,,(;) of its parents.

Clearly, for each x, (), the equality ijeX, 0/1720) — 1 holds.

% | %pa(y)

Moreover, let <0jlpa(j), Xpa(j) € Xpa(}-)> .= 71720 be the col-

Fpa(j)
lection of conditional probabilities for node j. We introduce the
following independence assumptions (Geiger and Heckerman,
1997):

* (G) JlT/ 6719207 (global parameter independence);
j€
035 Ipa(j)

pa(j)

e (L) L
() €Xpa )
independence).

for each variable j (local parameter

Furthermore, we assume for each 0kj Ipa(j) ,with j € Vandk €

Xpa(j)’

ekj\Pa(i) ~ Dir(akj‘Pa(j)), (3)

jlpa(j) _
k

a Dirichlet distribution with hyperparameter a
(a ,4]1 If;:(j ) > 0,me X j) , whose probability density function is
given by

» <0kjlp3(/’)) _

ilpali) _q

jlpa(j)
F<Z’"E"z gL ) 1—[ {eﬂpa(;‘)}“wk
m|k

jlpa(j)
nmex, r (“m [k med;
ilpa(i) _q

_ h<akj\Pa(1’)) 1—[ [Qrilwia(i)}“mw ’ (4)

meX;

where h(-) is the prior normalizing constant. Equation 4, to-
gether with (G) and (L), determines a prior on the overall DAG-
parameter

0 = {okjlpa(j)’ ]G V, k € Xpa(j)} N (5)

which factorizes as

q

=1 ke X))
ZH 1—[ pDir(olj'p“(j)‘a,j‘pa(j)) . (6)
j=1 kEXP“(i)

The choice of the hyperparameters in (6) requires care espe-
cially when several DAGs are entertained and the purpose is
DAG model selection. In particular, assuming faithfulness, ob-
servational data cannot distinguish between Markov equivalent
DAGs; accordingly, the prior on the parameter 6 should guaran-
tee that any two equivalent DAGs are assigned the same marginal
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likelihood; this is the rationale behind the procedure for prior
elicitation introduced by Heckerman et al. (1995) leading to
their Bayesian Dirichlet equivalent uniform score (BDeu); see
also Geiger and Heckerman (2002). Specifically, these authors
show that the default choice

jlpa(i) _

m T~ JEV,
|k | Xy

me Xj, kEXpa(j), (7)
with a > 0, guarantees DAG score equivalence. Besides ensur-
ing this compatibility requirement, the proposed model provides
closed-form expressions for posterior distributions of parame-
ters and marginal likelihoods. We will leverage this feature in Sec-
tion 4 to develop a Markov chain Monte Carlo (MCMC) sam-
pler targeting the posterior over the space of DAGs and parame-
ters.

3 CAUSAL EFFECTS

The DAG factorization (1) is also called the observational (or pre-
intervention) distribution. Consider now two variables, X, and
Xy, : = Y (h # v), where the latter is a response of interest. We
are interested in the (total) causal effect on Y of an intervention
on X,. In particular, we consider a hard intervention on X,, con-
sisting in the action of forcing its value to a given level &, denoted
do(X, = x).Under a hard intervention, the post-intervention dis-
tribution (Pearl, 2000) is given by the truncated factorization

p(x|do(X, = %))

[T 50X = %) [ Xp() = %) i = &
= |/ (8)
0 otherwise,
where each term p(X = x| -) is the corresponding (pre-
intervention) conditional distribution of Equation 1 and again
we omit subscript D to ease the notation. Assuming for simplic-
ity thatboth X, andY are binary taking valuesin {0, 1}, the causal
effectonY resulting from an intervention on X, can be defined as

¢ =E(Y|do(X, =1)) — E(Y |do(X, =0)).  (9)
Moreover, it can be shown (Pearl, 2000, Theorem 3.2.3) that

G = Z [E(Y | Xy =1, Xpo(0) = k) Pr (Xpa(V) = k)
keXpa(V)

= D E(Y1X = 0.Xp0) = b) Pr (X = ).
kEXpa(v)

(10)
where the expectations can be alternatively written in terms
of conditional probabilities of Y being a success because of its
binary nature. Equation 10 uses the set of parents as an ad-
justment set; however, alternative sets are also available (Pearl,
2000; Henckel et al., 2022). Under model (2) the causal effect
becomes

(0) _ Z QY\fa(v) _eYlfa(v) Gpa(v) (11)
Y - 1] (1,k) 1](0,k) k .

ke X (w)

Notice that the univariate 6-parameters involved in (11) are not
the components of the overall DAG-parameter @ in (S) because
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the conditional distribution of Y' | X, (,y does not appear in gen-
eral in the factorization (2). Yet ¥, (+) is a function of 6, so that
inference on the causal effect can be retrieved from the posterior
distribution of #, which is the subject of the next section; see
also Web Appendix A for examples. When X, is polytomous,
one can define a battery of causal effects. Typically, one would
choose a reference level for X,, m say, and then apply (9) for
pairs (X, = m, X, = m) withm # m. On the other hand, when
the levels of the response Y are more than 2, the conditional
expectation in (9) should be replaced by the probability that Y
attains a suitable benchmark level. Alternatively, a collection of
causal effects, one for each level of Y, can be computed and then
analyzed to gauge sensitivity.

4 POSTERIOR INFERENCE

Let S, be the set of all DAGs with g nodes. In this section, we
also regard DAG D as uncertain and introduce a reversible jump
MCMC scheme for joint posterior inference on the DAG struc-
ture and the allied parameter. Let p(D) be a prior on D € S,
which will be specified in Section 4.1. Our target is the joint pos-
terior distribution

p(0.D|X) x p(X|0,D) p(6| D) p(D),  (12)

where we now emphasize the dependence on DAG D both in

the likelihood and prior.

4.1 Prioron DAGD
We assign a prior on DAGs belonging to S, as follows. For
a given DAG D = (V,E) € S, let S” be the 0 — 1 adja-
cency matrix of its skeleton, which is the underlying undirected
graph obtained after removing the orientation of all its edges.

For each (u, v)-element of §P, we have SEV =1 if and only
if (u, v) € E or (v, u) € E, zero otherwise. Conditionally on a
prior probability of inclusion n € (0, 1) we assume, for each
u> 8" |n 9 Ber(1), which implies p(S? | ) = 78”11 —

(-1 _|g
n)%ﬂsl", where |$?| is the number of edges in D (equiva-

lently in its skeleton), and g(q — 1)/2 is the maximum number
of edges in a DAG on g nodes. We then assume 7 ~ Beta(c, d),
so that, by integrating out 7, the resulting prior on sP s

PSP+ T (152 18P +d) 14 q)

Dy __ .
R =y PO @)

(13)

Finally, we set p(D) oc p(SP) foreach D € Sy

4.2 MCMC scheme and posterior summaries

To approximate the posterior (12), we develop an MCMC
scheme. This is presented in Web Appendix B and is based on a
Partial Analytic Structure (PAS) algorithm, which iteratively up-
dates DAG D and the DAG-parameter # by sampling from their
full conditional distributions.

Its output is a collection of DAGs and corresponding DAG-
parameters {(0(1), D(l)), e ,(0(5), D(s)) }, approximately
sampled from (12), where S is the number of final MCMC
iterations. An approximate marginal posterior distribution over

the DAG space S; can be computed as

p(D|X) = éZ]l(D(S) =D) (14)

s=1

forany D € S, where 1 (+) is the indicator function, and whose
expression corresponds to the MCMC frequency of visits of
D. In addition, for any directed edge (u, v), we can estimate a
marginal posterior probability of edge inclusion (PPI) as

S
ff(u—>v|X)=lZ]l(u—>ve’D(s)). (15)
§ s=1

Starting from the previous quantities, single DAG estimates
summarizing the MCMC output can be recovered: a maximum
a posteriori estimate, corresponding to the DAG with the high-
est posterior probability (14) or a median probability model
(MPM) estimate, obtained by including only those edges whose
PPI (15) is greater than 0.5.

For a givennode v € {2, ..., g}, consider now the causal ef-
fect of do(X, = &) onY, represented by the parameter y, () in
(11). For each draw 8¢) from the posterior (12), we can first re-
cover Y, (0(5)) using Equation 11. An estimate of y,(#) is then

S

~ 1 .

=2 ) n(eY), (16)
s=1

which implicitly performs BMA through the MCMC frequen-
cies of the visited DAGs.

S SIMULATION STUDY

We illustrate the performance of our methodology through sim-
ulation. Specifically, we consider different scenarios in which we
vary the number of variables q € {10, 20} and the sample size
n € {200, 500, 1000, 2000}. For each choice of g, we randomly
generate G = 50 DAGs with probability of edge inclusion 2/q
reflecting sparsity. Under each DAG, a dataset consisting of n ob-
servations from g categorical variables is generated as described
in Web Appendix C. Eventually, a collection of G = 50 DAGs
and allied datasets is available under each scenario defined by
{g, n}. In the same section of the Web Appendix, we provide
details on the computation of the true causal effect " for each
nodev € {2, ..., q},and withnode Y = X; as the response.

5.1 Results

We apply our MCMC scheme to approximate the joint posterior
distribution in (12). To this end, we let the number of MCMC
iterations S vary in the set {5000, 10 000} for, respectively, g €
{10, 20}, disregarding from the output a burn-in period of size
B € {1000, 2000} for the two values of g, respectively. More-
over, we set the common hyperparameter of the Dirichlet prior
in (7) asa =1and ¢ = d = 1 in the Beta(c, d) prior for the
probability of edge inclusion 71 leading to the prior on DAG-
space p(D); see Section 4.1.

We start by evaluating the global performance of our method
in learning the underlying graphical structure. Specifically,
we first estimate the posterior probabilities of edge inclu-
sion as in (15) for each pair of distinct nodes (u,v) and
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TABLE 1 Simulations. Average (w.r.t. SO simulations) Structural
Hamming Distance (SHD), sensitivity (SEN), and specificity (SPE)
indexes, computed under each scenario defined by number of vari-
ables g € {10, 20} and sample size n € {200, 500, 1000, 2000}.

n=200 n=500 n=1000 n=2000

gq=10 SHD 635 522 4.50 4.15
SEN  56.15 69.62 78.28 82.36
SPE 9623 95.92 95.47 95.70

q=20 SHD 1547 12.55 12.10 11.40
SEN 5027 66.15 73.02 74.37
SPE  98.10 97.95 97.50 97.61

TABLE 2 Simulations. Average (w.r.t. SO simulations and intervened
nodes) absolute error (AE) between true and estimated causal ef-
fect (values multiplied by 100), computed under each scenario de-
fined by number of variables g € {10, 20} and sample size n €
{200, 500, 1000, 2000}.

n =200 n = 500 n=1000 n=2000
q=10 4.46 3.70 3.50 3.28
q=20 2.17 1.80 1.74 1.65

produce an MPM estimate of the DAG, D. The latter is
compared with the true DAG D in terms of sensitivity
(SEN) and specificity (SPE) indexes, respectively, defined
as SEN = TP/(TP + EN), SPE = TN/(TN + FP), where
TP, TN, FP, and FN are the numbers of true positives, true
negatives, false positives, and false negatives, respectively, which
can be recovered from the 0-1 adjacency matrix of the estimated
graphs. As an overall summary, we also consider the Structural
Hamming Distance (SHD), defined as the number of insertions
and deletions of flips needed to transform the estimated graph
into the true graph. Results, averaged w.r.t. the G = 50 simula-
tions under each scenario defined by q and #, are summarized in
Table 1. Both the SHD and SEN metrics suggest that the accu-
racy of our method in recovering the true DAG improves as the
number of available data grows; moreover, the SPE index attains
high levels even for the smallest value of 1, and is essentially sta-
ble as the sample size grows; accordingly, the method shows an
overall appreciable performance.

We now consider causal effect estimation. To this end, we pro-
duce the collection of BMA estimates ﬂBMA, ve{2,...,q}ac
cording to Equation 16. We compare each BMA estimate with
the corresponding true causal effect y,*, and compute the abso-
lute error (AE)

AE, = |y, — 7M. (17)

Results are summarized in Table 2, where we report for each
value of g and n the average value of the AE x 100 (computed
across the 50 simulated DAGs and nodesv =2, .. ., q). By in-
creasing the sample size the difference between estimated and
true causal effect progressively reduces.

5.2 Comparisons with PC algorithm, HC, and IDA approach

In this section, we compare the performance of our Bayesian
methodology with the IDA (identification when DAG is absent)
approach of Maathuis et al. (2009), originally introduced for

Biometrics, 2024, Vol. 80,No.3 e §

Gaussian data and adapted to a categorical setting in Kalisch et al.
(2010). IDA estimates first a CPDAG using the PC algorithm
(Spirtes et al., 2000; Kalisch and Bithlmann, 2007). The latter
is based on a sequence of conditional independence tests that
we implement for significance level @ € {1%, 5%, 10%}. The re-
sulting CPDAG represents a Markov equivalence class of DAGs;
although these are equivalent in terms of conditional indepen-
dencies, they can lead in principle to distinct causal effects for
the same intervention. Accordingly, Maathuis et al. (2009) pro-
pose two different strategies for causal effect estimation. The first
enumerates all DAGs in the equivalence class and for each one
estimates the causal effect. As this approach is computationally
expensive, even for moderate values of ¢, a second algorithm
(hereinafter considered), which only outputs the distinct causal
effects within a given equivalence class, is implemented. Finally,
an average causal effect, computed across all distinct causal ef-
fects compatible with the estimated CPDAG, is returned. Each
of the distinct causal effect coefficients is computed as in Equa-
tion 11 upon replacing marginal and conditional probabilities
with the corresponding sample proportions. We refer to the re-
sulting estimate as y/P*. Finally, notice that the PC algorithm
provides a CPDAG estimate, rather than a DAG. For compar-
ison purposes, we then recover from our MPM DAG estimate
the representative CPDAG.

For the purpose of structure learning underlying the IDA ap-
proach, we also consider a Hill Climbing (HC) score-based
method (Russell and Norvig, 2009). HC is an optimized greedy
search algorithm that explores the space of DAGs by single-arc
additions, removals, and reversals. We implement HC with both
the Bayesian Information Criterion (HC BIC) and the Bayesian
Dirichlet equivalent uniform score (HC BDeu) of Heckerman
etal. (1995); see also Russell and Norvig (2009). Both HC BIC
and HC BDeu output a DAG estimate, for which we construct
the representative CPDAG. Then, the IDA approach for causal
effect estimation is applied as described above.

Figure 1 summarizes the distribution of SHD computed across
the 50 simulations under each method and for different values of
q and n. In general, it appears that the results of our method im-
prove as the sample size grows, while for PC and HC, this holds
only for moderate sample sizes (from 200 to 500), because when
n increases from 1000 to 2000 the performance slightly deterio-
rates. Our Bayesian method adapted to output an MPM-based
CPDAG is therefore highly competitive with all three versions
of PC and outperforms both HC BIC and HC BDeu; moreover,
it shows an overall better performance across sample sizes when
considering the median value of the distribution, while variabil-
ity is comparable to mildly larger.

Finally, we consider causal effect estimation and report in Fig-
ure 2, for each method and different combinations of g and n,
the boxplot of the AE, again computed across the 50 simulated
DAGs and nodes subject to intervention. While all methods im-
prove as n grows for both values of g, our Bayesian methodology
based on a BMA estimate of the causal effect outperforms the
IDA method under all scenarios. The relative inaccuracy of IDA
is strictly related to the poor performance of both the PC and HC
algorithms in recovering the true CPDAG. This in turn affects
the correct identification of the set of distinct causal effects lead-
ing to the IDA estimate. By contrast, our BMA output s typically
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FIGURE 1 Simulations. Structural Hamming Distance (SHD) between true and estimated CPDAGs for number of nodes g € {10, 20} and
increasing samples sizes n € {200, S00, 1000, 2000}. Methods under comparison are as follows: our Bayesian proposal (Bayes) leading to the
MPM CPDAG estimate, the PC algorithm implemented for significance levels « € {0.10, 0.05, 0.01} (respectively, PC 0.10, PC 0.0S, PC
0.01), and the Hill Climbing algorithm with BIC and BDeu scores (respectively, HC BIC, HC BDeu,).

llll - Ex lm man i

FIGURE 2 Simulations. Absolute error (AE) between true and estimated causal effects (values multiplied by 100) for number of nodes

q € {10, 20} and increasing samples sizes n € {200, 500, 1000, 2000}. Methods under comparison are as follows: our Bayesian proposal with
the BMA causal effect estimate (BMA) and the IDA method based on the PC algorithm implemented for significance levels

a € {0.10, 0.0S, 0.01} (respectively, PC 0.10, PC 0.05, and PC 0.01) and on the Hill Climbing algorithm with BIC and BDeu scores
(respectively, HC BIC and HC BDeu).

based on a larger collection of DAGs, which, although possibly  the absence/presence of anxiety disorder), and 2 related vari-
outside the equivalence class of the true CPDAG for some frac-  ables indicating the administration or not of a therapy against de-
tion of the iterations, may well lead to a causal effect thatis closer  pression oranxiety (depr treatandanx treat,respec-
to the true value because of the similarity in the corresponding tively), besides other features such as gender, body max index
causal pathway. (bmi, a categorical variable with 2 levels, normal/abnormal),

suicidal instinct (suicidal), and 2 variables linked to day-

time sleepiness: s1leep and its measure based on the Epworth
6 APPLICATION TO ANXIETY AND scale (epworth). Most variables are recorded as binary; scores

DEPRESSION DATA were instead dichotomized.

We consider a dataset relative to a study on depression and anx- We implement our method for structure learning and causal ef-
iety in undergraduate students. Depression represents a serious  fect estimation by running S = 40 000 iterations of our MCMC
illness especially among young people, which can be identified ~ scheme after a burn-in period of S000 runs. We summarize the
through several symptoms such as feelings of melancholy and ~ output by reporting, for each directed edge u — vand each pair
emptiness, disturbed sleep, or loss of interest in social activities. ~ of variables in the dataset, the corresponding posterior proba-
In addition, it is strictly related to anxiety disorders and stress. bility of inclusion (Equation 15). Results are displayed in the
Several therapies for the treatment of depression and anxiety =~ heat map reported in the left-side panel of Figure 3. In addi-
have been proposed, and many of these have shown beneficial ~ tion, we provide a summary of the posterior distribution over
effects on patients in terms of a complete or partial restore of so- ~ the DAG space by constructing the MPM DAG estimate. The
cial behavior and mental conditions. CPDAG representing the Markov equivalence class of the esti-

The dataset was collected from n = 787 undergraduate  mated graph, whichisreported in the right-side panel of Figure 3,
students at the University of Lahore. Variables in the ana- ishighly sparse as it contains only 10 edges, together with 3 un-
lyzed dataset include depression diagnosis (depr, the ab- related components (in addition to the separate variable BMI):
sence/presence of depressive status), anxiety diagnosis (anx, One involving the anxiety-depression diagnosis/measurement
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FIGURE 3 Anxiety and depression data. Heat map with estimated posterior probabilities of edge inclusion for each edge u — v (left panel);
CPDAG representing the equivalence class of the median probability DAG estimate (right panel).

TABLE 3 Anxiety and depression data. Posterior summaries (mean, standard deviation, and posterior probabilities of negative, null, and positive

values) for the 2 causal effect coefficients considered in the study.

[E(VVIX) Sd(J’le) P()’v<0|X) P(yv=0|X) P(yv>0|X)
Depression —0.117 0.243 0.578 0.320 0.102
Anxiety —0.126 0.222 0.818 0.141 0.041

variables, one involving the 2 treatment variables, and finally the
sleepiness block.

Variables that appear to be directly linked to depression sta-
tus are the phq (Patient Health Questionnaire Score) and gad
score (Generalized Anxiety Disorder Index), here included as
binary variables with levels high and low, besides suicidal.
On the other hand, both gender and bmi do not seem to in-
fluence directly the depression or anxiety status.

We now focus on causal effect estimation. Specifically, it is of
interest to evaluate the efficacy of the two therapies for depres-
sion and anxiety. Accordingly, we consider depx as the response
of interest Y in our causal-effect analysis and evaluate the causal
effect on depr ofaninterventionondepr treat (X,);sim-
ilarly, we consider the same analysis for intervention target anx
treat and response variable anx. Notice that the estimated
CPDAG exhibits no causal paths from either depr treat
and anx treat to depr and anx, respectively. However,
this is subject to an overall degree of uncertainty because of the
presence of many directed edges whose individual probability of
edge inclusion is below the 0.5 threshold, and yet lead to causal
paths contributing to non-zero causal effects in our BMA esti-
mate; see the heat map in Figure 3. We emphasize that any al-
ternative method based on a single graph estimate such as the
CPDAG in Figure 3 would fail to provide causal effects that are
different from zero.

We recover from our MCMC output the posterior distribution
of the two causal effect parameters computed according to Equa-
tion 11. Summaries in terms of posterior mean, standard devia-
tion, and probabilities of a causal effect being null, negative, or
positive are reported in Table 3.

The posterior means of the two parameters, namely our BMA
estimates, are both around —0.12, suggesting that both thera-
pies have a beneficial effect on the status of depression and anx-
iety. It also appears that the probability of negative causal ef-
fect (suggesting that the therapy lessens depression or anxiety) is
higher than 80% for variable anx treat, while it is substan-
tially smaller for depr treat (only around 58%). Accord-
ingly, the probabilities of null-or-positive effects (which would
imply ineffective treatments) are just around 18% for the anxi-
ety treatment, while not negligible (42%) for depression treat-
ment. In conclusion, these summaries provide useful statistical
information to evaluate the effectiveness of the two therapies.

7 DISCUSSION

In this paper, we have considered multivariate categorical ob-
servations and proposed a novel graphical model framework for
causal inference. Specifically, our Bayesian methodology com-
bines structure learning and parameter inference for categor-
ical DAG models. From a computational perspective, we im-
plemented an MCMC scheme based on a PAS algorithm to
approximate the joint posterior distribution over DAG struc-
tures and DAG-parameters. Starting from this MCMC output,
the full posterior distribution of the causal effects between any
pairs of variables of interest can be recovered, and eventually
summarized through BMA, which naturally incorporates uncer-
tainty around the (unknown) underlying DAG model. We evalu-
ated our method through simulation studies, and demonstrated
that it outperforms alternative state-of-the-art strategies for
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causal effect estimation. Additionally, our method employs exact
formulae based on conditional probabilities when computing
causal effects, and does not require further assumptions unlike
in Kalisch et al. (2010, Supplement).

Our model formulation is based on the assumption of
iid. sample observations from a single categorical graphical
model (which, however, is unknown, or rather uncertain from
a Bayesian perspective). This assumption can be relaxed in two
different directions to allow for heterogeneity among individ-
uals belonging to different subgroups of the same population.
When groups are known beforehand, one can consider a model
comprising multiple distinct graphical structures coupled with a
Markov random field prior that encourages common edges be-
tween groups, and a spike-and-slab prior on network relatedness
parameters (Castelletti et al., 2020). Causal effect estimation at
group-specific level would benefit from borrowing information
across subjects belonging to distinct, yet related groups.

On the other hand, when subgroups are not available a priori,
one can set up a mixture model, either with a finite or an infi-
nite number of components, allowing for joint posterior infer-
ence on DAGs, parameters as well as clustering. A Bayesian non-
parametric Dirichlet Process mixture of Gaussian DAG mod-
els is considered in Castelletti and Consonni (2023) for causal
inference under heterogeneity. Their general framework can be
adapted to categorical DAGs and would lead to causal effect es-
timates at cluster as well as subject-specific level.

SUPPLEMENTARY MATERIALS

Supplementary material is available at Biometrics online.

Web Appendices referenced in Sections 2—5 are available with
this paper at the Biometrics website on Oxford Academic. These
include (A) details on the computation of causal effects from
DAG-parameters, (B) a presentation of our MCMC scheme,
(C) a description of data generation for the simulation studies
of Section S, (D) additional simulations with polytomous vari-
ables, and (E) analyses of sensitivity to prior hyperparameters. R
code implementing our methodology is also available at the Bio-
metrics website on Oxford Academic, and at https://github.com
/FedeCastelletti/bayes_structure causal categorical graphs.
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