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ABSTRACT

Software developers use natural language to interact not only with

other humans, but increasingly also with chatbots. These interac-

tions have di�erent properties and �ow di�erently based on what

goal the developer wants to achieve and who they interact with. In

this paper, we aim to understand the dynamics of conversations that

occur during modern software development after the integration of

AI and chatbots, enabling a deeper recognition of the advantages

and disadvantages of including chatbot interactions in addition

to human conversations in collaborative work. We compile exist-

ing conversation attributes with humans and NLU-based chatbots

and adapt them to the context of software development. Then, we

extend the comparison to include LLM-powered chatbots based

on an observational study. We present similarities and di�erences

between human-to-human and human-to-bot conversations, also

distinguishing between NLU- and LLM-based chatbots. Further-

more, we discuss how understanding the di�erences among the

conversation styles guides the developer on how to shape their

expectations from a conversation and consequently support the

communication within a software team. We conclude that the re-

cent conversation styles that we observe with LLM-chatbots can

not replace conversations with humans due to certain attributes

regarding social aspects despite their ability to support productivity

and decrease the developers’ mental load.
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1 INTRODUCTION

In software development, discussions and conversations within a

team play an important role in communicating progress and resolv-

ing issues. These conversations are not only between humans — in

modern software projects, developers also interact with chatbots

through conversational interfaces, and increasingly also with pow-

erful generative AI models, such as Large Language Models (LLMs).

LLMs in particular can be seen as a hype topic, with multiple recent

studies investigating their usage in software development [12, 14].

Intuitively, despite using the same interface (natural language),

conversations with chatbots and LLMs follow di�erent rules and

have di�erent purposes and constraints than conversations with

fellow humans. So far, these di�erences are ill-understood, with

developers either anthropomorphizing interactions with smart pro-

gramming tools, or underusing their capabilities.

In this article, we provide a structured comparison of conver-

sations between: (i) humans, (ii) humans and chatbots based on

natural language understanding (NLU), and (iii) humans and LLM-

based chatbots. Following a comparison taxonomy by Clark et

al. [3], we discuss di�erences in purpose, understanding, trustwor-

thiness, listening, and use of humour. A particular focus of our

work is LLM-based chatbots, and their place in modern software

development processes.

Our discussion aims to assist software engineers in calibrating

their expectations when engaging with di�erent conversational

partners, be they other humans or various types of chatbots. By

understanding the dynamics of these interactions practitioners

can better recognize the potential gains and losses of collaborative

work when substituting human dialogue with chatbot interactions,

particularly in the realms of knowledge sharing.

2 A RESEARCH VIEW ON BOTS IN SOFTWARE
DEVELOPMENT

Bots in software development (DevBots) have become common

tools that play a big role in improving developers’ productivity

and communication throughout the development process. With

the constant emergence of new DevBots each day, research was

�rst focused on understanding the role of bots. Erlenhov et al. [5]

focus on the DevBots roles and introduce a taxonomy to classify

DevBots according to their functionalities and how they contribute

to enhancing software development processes. While Wessel et

al. [17] further explore the use cases of DevBots in open-source

software and found that they are mostly used for automation pur-

poses. Among the various types of DevBots, chatbots have drawn

more attention due to their ability to communicate with developers

This work is licensed under a Creative Commons Attribution-

NoDerivatives 4.0 International License.
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through natural language, expanding the spectrum of tasks that

DevBots can assist with.

Earlier chatbots were powered by natural language understand-

ing (NLU) to automate repetitive and simple tasks. For example,

MSRBot [2] that answers questions related to a software reposi-

tory, and Stack Over�ow Bot1 has been used to retrieve relevant

information from Stack Over�ow. NLU-based chatbots operate by

predicting the user’s intention and then mapping it to a correspond-

ing response in the chatbot’s database. Therefore, the possible use

cases of such chatbots are limited to the database and training data.

More recently, Large Language Models (LLMs) introduced a

generative aspect to chatbots, making it possible for chatbots to

generate responses to queries it was not trained on. This revealed

more possible use cases that can be more complex due to their

need to understand, synthesize, and create artifacts. For example,

GitHub Copilot2 generates code given the user’s speci�cations

and the context of the project. The use cases were not con�ned to

code generation but also testing, requirement analysis, and other

activities.

To evaluate the e�ectiveness of chatbots and how they can sup-

port software engineers, current research focuses on the quality

[3], usability [10], and helpfulness [18] of the chatbot’s outcome.

Nevertheless, we lack a holistic understanding of the experience

and the �ow of the conversation between software engineers and

chatbots.

3 AN OBSERVATIONAL STUDY

The re�ections and insights of this paper are based on a dataset and

�ndings from our previous work [9]. The study aimed to understand

how software engineers use ChatGPT in their workplace in real-

world settings. Particularly, the previous paper analyzed the user

experience of ChatGPT, focusing on practitioners’ goals when inter-

acting with ChatGPT and the helpfulness of dialogue outcomes. In

contrast, this study distinguishes the di�erent ways conversations

occur between humans, as well as between humans and various

types of bots, using data from previous work to particularly high-

light contrasts in human and LLM-based chatbot interactions.

To collect the data for this study, we reached out to practitioners

in di�erent software organizations that allow the use of ChatGPT in

their workplaces. In total, 24 software engineers from 10 software

organizations of di�erent sizes and domains registered to participate

in our study (See Table 1). The data is available in Zenodo [8] and

includes information about the purpose of each prompt from partic-

ipants and how the prompts support various Software Engineering

tasks such as coding, testing, and design. However, we cannot share

the chat �les or the open-ended survey responses, as they might

compromise participant anonymity or contain company-speci�c

information.

The participants actively used ChatGPT for a week during their

normal work, that is, to perform tasks that are relevant to their role

in software engineering. At the end of the week, each participant

sent us their chat logs and �lled out an exit survey.

We qualitatively analyzed 180 dialogues that consist of 580 prompts

regarding the nature and purpose of interactions, dialogue types,

1https://aka.ms/stackover�ow-bot-sample
2http://copilot.github.com

Table 1: Information about how the participants are dis-

tributed across di�erent organizations of di�erent sizes and

domains. We refer to each organization with an ID, and the

sizes used are Startups, Small and Medium enterprises (SME),

and Large enterprises.

Org. ID Org. Size Domain # Participants

A SME Testing 3

B SME E-learning 3

C Startup Medical 4

D Startup Gaming 1

E Startup Gaming 1

F Large E-commerce 1

G Large Automotive 7

H Large Consultancy 1

I SME Consultancy 2

J Large Automotive 1

�ow of conversation, and other attributes using interpretative phe-

nomenological analysis [4] which is a research method that allowed

us to capture patterns in personal experiences and better under-

stand the characteristics of the dialogues.

In addition, the exit survey provided valuable insights into sub-

jective assessments of productivity with ChatGPT, as well as for

which purposes the chatbot was perceived as useful.

In short, this article combines our �ndings from this earlier

study with established knowledge on human-to-human and human-

to-chatbot interactions [3], in order to provide context for how

interactions with LLMs di�er from conversations between humans

on the one hand, and conversations between humans and traditional

NLU-based chatbots on the other.

4 EXAMPLES OF CONVERSATIONS IN
SOFTWARE ENGINEERING

In this article, we particularly contrast three �avors of software engi-

neering conversations — conversations between humans, between

humans and more well-established NLU-based chatbots (hence-

forth called NLU-chatbots) such as GitHub bot on Slack3, and, more

recently, with LLM-powered chatbots such as ChatGPT4 and Bard5.

Depending on the agents involved, conversations can have di�erent

purposes and happen during planning and syncing, pair program-

ming, requesting assistance, or just chit-chatting.

Let us consider an example: Alex (a junior software developer)

recently joined a development team that follows an Agile process

and commits daily to GitHub. The team works with authentication

and uses Java, which Alex is not fully experienced in, but she knows

that colleagues such as Kevin (a senior Java developer), can help

her when needed. Alex faces a problem where she needs to handle

the response from an authenticator service if it returns an error.

Figure 1 illustrates three possible conversations with three di�er-

ent types of agents. In the �rst conversation, Alex seeks help from

her colleague, Kevin, via the company Slack. In the conversation,

3https://slack.github.com
4https://chat.openai.com/
5https://bard.google.com
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You can simply check if the
response is an instance of type
AuthenticationErrorResponse

Hey Kevin, have you been involved
in the authorization part?

Yes, I worked on it last week.
Issue #4: Vulnerability in the
authorization

Latest issue opened by @Alex

Authentication error response not
handled properly.

As a software developer,
Handle the error from the response.

[code provided]

The provided code is implementing
OAuth 2.0 authorization code flow
for obtaining an authorization code.

Throw an exception with the
message "authentication failed"

Here is code for handling the
authentication error:

Here's how you can modify the
code to include an exception:

Do not forget to declare the
exception in the method signature
using the throws clause. 

ChatGPT (LLM-based Chatbot)GitHub Bot (NLU-based Chatbot)Kevin (Software Developer)

Add a comment "@Kevin can you
help out with checking an error in

the response?"

Show the latest open issue

Do you know how to check if there
is an error in the response?

Alright, thanks!
Comment posted to Issue #4

Figure 1: Three example conversations between a software developer and a fellow software developer (left), an NLU-based

chatbot (middle), and an LLM-based chatbot (right).

Alex’s �rst task is to establish a mutual understanding and validate

that Kevin is the right colleague to ask before proceeding to ask for

help. As a response, Kevin explains the basic idea Alex can follow

to solve the problem, without necessarily providing complete solu-

tions (as a tool such as ChatGPT would). However, Kevin is unlikely

to invent an entirely irrelevant solution, and Alex will generally

have high trust in the correctness of Kevin’s answer. Additionally,

this interaction may have social bene�ts for the team, increasing

rapport between Kevin and his new colleague.

In the second conversation, Alex uses a traditional chatbot, such

as GitHub Bot, to help with her issue. Despite also supporting

a conversational interface, such tools provide a much narrower

range of support in comparison to either asking a colleague or

using an LLM-based tool. Hence, Alex is not able to directly ask

for a solution to her problem. However, she can use the chatbot

to retrieve relevant information or post new entries e.g., on the

project issue tracker. Alex’s trust in the retrieved information will

generally be high, but if the chatbot does not support her speci�c

request she is out of luck. Further, in comparison to the other types

of conversations, Alex will need to be comparatively formulaic in

her request, as the chatbot’s capabilities to parse natural language

will be limited in comparison to the other options.

In the third conversation, Alex uses ChatGPT as it is highly ac-

cessible and readily available (unlike, for example, Kevin, who may

be unavailable for a conversation). Alex starts by providing context

to her question. In comparison to the �rst conversation, Alex needs

to be much more deliberate about which context to provide and

in which form. ChatGPT then explains the code provided and pro-

poses a solution. Alex is able to ask follow-up questions and build

on the previous solution, much like a conversation with another

human. However, unlike conversing with a human, Alex needs to

consider what context to provide and how to frame her question

(often referred to as prompt engineering), and she needs to carefully

check the correctness of the provided solution to identify possi-

ble hallucinations. Nevertheless, ChatGPT will (ideally) provide a

working code, which Alex can use or adapt quickly.

It is evident that, despite all three scenarios involving Alex "chat-

ting" via natural language, the actual context as well as the style

of conversation (and what Alex can expect to get out of it) varies

dramatically. In the following, we explore these di�erences more

systematically.

5 A COMPARISON OF CONVERSATIONS

We use the framework �rst described by Clark et al. [3] to compare

and contrast the three styles of conversations summarized in Ta-

ble 2. This framework entails attributes of conversations between

humans and traditional chatbots. We focus on the following at-

tributes: (i) purpose refers to the reason the conversation happens;

(ii) understanding of scope as the ability to comprehend the context

of a conversation; (iii) listening - comprehending the content of a

conversation; (iv) trustworthiness as the ability to provide reliable

outcomes; and (v) the use of humour by lightening the conversation

and making it more amusing.

40



AIware ’24, July 15–16, 2024, Porto de Galinhas, Brazil Khojah et al.

Table 2: Summary of the conversation attributes between software developers and (i) other developers, (ii) NLU-based chatbots

and (iii) LLM-based chatbots

Human Software Developers NLU-based Chatbots LLM-based Chatbots

Purpose Social, general guidance, training Basic information retrieval, simple

automation

General guidance, training, arti-

fact generation and manipulation

Understanding of Scope Mutual understanding Fixed customization Dynamic customization

Listening Body language (Active) and knowl-

edge (Accurate)

Acknowledgement (Active) and in-

tent classi�cation (Accurate)

Query summary (Active) and

knowledge (Accurate)

Trustworthiness Shared experiences and previous

interactions

Performance and e�ciency Meeting expectations and trans-

parency

Use of Humour Common Not applicable On-demand

5.1 Purpose of interaction

The purpose is the outcome that one expects from a conver-

sation that helps achieve a bigger goal. Using our example

in Figure 1, we explain the di�erent purposes.

Conversations among human developers can have social or more

goal-oriented purposes. While sometimes developers may ask oth-

ers to outright perform a task (e.g., delegation), many conversations

are arguably targeted at receiving information or training [3]. This

is illustrated in our example when Alex asks Kevin how to check

for an error to get the needed information and guidance to com-

plete the error-checking task rather than ask him for the complete

syntax. It should be noted that there is often a social bene�t to the

conversation, even if the conversation’s original purpose is a more

technical one.

On the other hand, conversations with NLU-based chatbots

are limited to delegating or performing a set of tasks (usually

straightforward automation tasks) and general information re-

trieval. More personalized guidance and training are not possible in

many development-related NLU-chatbots. In the example conver-

sation with GitHub bot, Alex tries to achieve her goal of getting a

solution by utilizing the limited queries that she can use to interact

with GitHub bot, so she asks the bot to assign the open issue to

Kevin.

LLM-based chatbots support a much wider range of purposes.

Our data reveals that developers ask ChatGPT general questions

(123, or 68%, of interactions), but also saw them use the LLM to

generate or manipulate concrete code artifacts (32%). In the conver-

sation between Alex and ChatGPT, Alex’s main goal is to handle

an error from the HTTP response in her Java code. To achieve this

goal, she has three options as purposes of the conversation: She

can get some training from ChatGPT to learn about error handling

and HTTP responses in Java, she can get general information on

how to solve her problem and what logic to follow (similar to what

a human colleague would likely provide), or she can ask for artifact

manipulation and get the speci�c code solution. Alex decides to go

with the third option as it makes her reach her goal faster.

5.2 Understanding of Scope

Individuals use some information, i.e. the scope, as a foun-

dation of a conversation that ensures that it �ows towards

the intended purpose. The information can take the form

of assumptions or be explicitly shared in the conversation

that the conversation is to be built on.

Conversations with human developers are built on mutual un-

derstanding. Before Alex asks Kevin for help, she makes sure he is

familiar with the code on which the question is based. Since Kevin

made it clear that he had seen the code, a common ground is estab-

lished and the conversation carries on. Note that Alex does not need

to share more information regarding the project (e.g., programming

language, or project dependencies) since she assumes that Kevin

knows it already given that they work in the same team. However,

instead of mutual understanding, NLU-chatbots are customized

during the design phase to hold conversations that align with the

user’s preferences, history, and speci�c context. The NLU-chatbot

that Alex uses (i.e., GitHub bot) is customized to the context of the

project Alex works on. Therefore, when Alex asks to show the latest

issue, it displays the issue for her project. Technical personalization

takes the place of a socially constructed common ground.

While LLM-chatbots can be customized during design or deploy-

ment, they also provide the option for customization during the

interaction, e.g., through prompt engineering. Developers provide

a context or a perspective that the LLM-chatbot should consider. In

our data, 62 prompts (34%) included contextual information such as

domain-speci�c knowledge, production code, etc. In our example,

Alex steers the conversation toward getting development-related

assistance when asking ChatGPT to take the role of a software

developer. Alex also provides a context (that is, her code) on which

she expects the rest of the conversation to be based.

5.3 Listening

Listening is the act of actively receiving and interpreting

the data shared within a conversation. The data include

underlying intention, information shared, and similar.
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There are two aspects of listening: active listening and accurate

listening. In active listening, the listener focuses on receiving the

information shared, while accurate listening concerns interpreting

the information correctly. While both aspects are needed in a con-

versation, they are expressed di�erently in di�erent conversations.

Active listening is needed in a software organization and is

applied in common activities such as daily stand-ups. When one

developer verbalizes their progress to other fellow developers who

show engagement through body language and maintaining eye

contact, even if a solution cannot be provided, active listening helps

developers organize their thoughts. On the other hand, accurate

listening requires the developer to be familiar with the discussed

query and have enough knowledge and expertise to interpret the

query, which is why Alex chose to ask Kevin who is a Java expert.

For NLU-chatbots, active listening is present in acknowledg-

ments of the developers’ query (GitHub bot posts the comment and

acknowledges it to Alex), whereas accurate listening is controlled

by the NLU component of the chatbot. When the NLU accurately

performs intent classi�cation (predicts the user’s intention) and

entity extractions (extracts relevant information), it decreases the

occurrences of intent misclassi�cation and unnecessary clari�ca-

tion questions, hence, maintaining a good conversation �ow. For

example, the conversation between Alex and GitHub bot is short

and e�ective since GitHub bot could understand Alex’s intent (i.e.,

adding a comment) and the correct entities (e.g., issue #4).

Accurate listening also applies to LLM-chatbots, but unlike NLU-

chatbots, they do not focus on understanding the intent and entities

rather than using the wide knowledge that it was trained on and the

transformer architecture [6] to understand the language structures,

syntax, and contextual connections in the prompt and generate a

contextually-relevant response. Another feature of modern LLM-

based chatbots is their application of active listening where they

convey their understanding and then respond. In fact, 30 prompts

(16%) distributed among 12 participants o�ered feedback to Chat-

GPT on whether its recommendations were meeting their expecta-

tions, i.e., whether they felt like ChatGPT actively listened to them.

While the percentage of prompts was low, that was done by half

of our participants which, we argue, indicates a similar pattern to

conversations between humans. When Alex asked ChatGPT to han-

dle the error and provided her code, ChatGPT started explaining

how it interpreted the code in terms of its functionality and then

provided the code solution.

5.4 Trustworthiness

Trust is the con�dence that the result will be bene�cial,

which enables the conversation to begin and continue.

Trust in human developers is built through time, by accumu-

lating information and experiences about the developer, through

interactions and shared moments. The interactions can be during

team discussions, pair programming sessions, or personal consulta-

tions. Alex trusts Kevin enough to ask him since she knows that he

always welcomes her questions and she knows that he is knowl-

edgeable in the area she needs help in and can provide useful advice

and guidance. Alex also trusts Kevin’s answers when he says that

he worked on the code, which supports the �ow of the conversation

and allows Alex to move to discuss her problem.

When it comes to tools, trust also needs to be established simi-

larly [13]. While the outcome of conversations with humans can be

in�uenced by unpredictable factors (such as the time and person’s

mood), tool performance tends to be more consistent. NLU-chatbots

are trusted when they can perform their tasks accurately, for in-

stance, displaying the correct issue requested by Alex. Developers

trust NLU-chatbots when using them to automate tasks and retrieve

information becomes useful and e�cient. The reputation of the

tool’s maker also plays a relevant role in establishing trust.

For LLM-chatbots, accuracy is hard to measure, especially for

complex queries. Instead, developers trust chatbots that meet their

expectations. In our observational study, developers who expected

ChatGPT to be impeccable judging from how smart it sounds when

generating a response, ended up losing trust when ChatGPT hallu-

cinates, whereas developers with more modest expectations often

found themselves positively surprised [9]. In their exit surveys, 8

practitioners (33%) stated having little to no trust in ChatGPT’s

answers, whereas the remainder reported trusting ChatGPT’s an-

swer (between moderate and some trust). Another expectation is

transparency, developers expect ChatGPT to communicate its level

of con�dence in the answer it provides (a goal that ChatGPT rarely

meets, as the tool is reputed for being overcon�dent) and hope

to see a source of the shared information (which ChatGPT, again,

cannot deliver accurately). Hence, developers have good reasons to

have lower trust in LLM-chatbots than in the alternatives, requiring

them to carefully cross-check the outcome of interactions.

Particularly in the LLM context, a second trust angle is related to

privacy. Where both humans as well as NLU-chatbots are generally

considered unproblematic in a privacy sense, many privacy chal-

lenges have recently been raised towards tools such as ChatGPT.

Lack of clarity on what commercial LLMs do with proprietary in-

formation and artifacts that get passed as context is a critical issue

that is right now still hampering their more widespread adoption

in industry.

5.5 Humour

Humour refers to the ability to add lightness or enjoyment

in a dialogue making it more memorable and enhancing

engagement between the parties.

Humour is a quality that is mostly acceptable from humans in

speci�c scenarios. It serves social purposes to soften the seriousness

of some topics in a conversation. Even in a technical conversation,

humour can be used by Kevin to establish rapport and help Alex

digest di�cult information. Recent work in software engineering

has shown how humour makes developers more engaged in their

tasks and even helps understand complex programming tasks [16].

Neither NLU-based nor LLM-based chatbots e�ectively make use

of humour the way an emphatic human would, and if these tools

employ humour it is sometimes perceived as o�putting. However,

LLM-based chatbots are able to reply with a certain sense of humour

(but need to be explicitly asked to do so).
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6 DISCUSSION

Next, we summarise the di�erences between the di�erent types of

conversations described above while discussing the main implica-

tions and lessons learned from our study.

6.1 Developers should adapt their expectations
based on who they converse with

For example, when conversing with human developers, they can

expect in-depth conversations that can involve emotions or hu-

mor, and rely on shared understanding and collaboration. While

conversations with NLU-based chatbots may prioritize concise an-

swers and accurate task automation over providing complete and

elaborate answers. In LLM-based chatbots, developers should un-

derstand that while there are many factors that a�ect the outcome

of the LLM-chatbots (e.g., the training data and architecture of the

LLM), it is very sensitive to prompts. Prompts can either yield un-

intended results in case of ambiguity or enable utilizing most of

LLM capabilities (e.g., complete answers to complex queries) when

constructed based on recommended prompt techniques. We believe

that adjusting such expectations is one step towards having more

productive interactions within a software team.

6.2 Trustworthiness is the attribute that mainly
determines the �ow of a conversation

Trustworthiness impacts the usefulness of the conversations [3].

By controlling the type and amount of information that can be

shared within a conversation, it determines how the outcome of the

conversation will be implemented by the developer. For instance,

when seeking guidance from a trusted colleague, a developer can

con�dently implement the recommendations received, knowing

they are reliable. While conversing with LLMs that are known

to generate erroneous or irrelevant information, as in the case of

hallucination, can lead the developer to only use the outcome as

a source of inspiration without letting it be a guide for decision-

making.

6.3 LLM-based chatbots enable software
developers to have more human-like
conversations, but with bot-alike e�ciency

LLM-based chatbots allow software developers to engage in conver-

sations that have similar attributes to conversations with humans,

such as the ability to express their knowledge and provide guid-

ance. However, these attributes extend to allow for more conversa-

tional possibilities that are inherited from bot-based interactions

in general and LLM capabilities speci�cally. For example, human-

to-LLM conversations can be more �exible and available compared

to human-to-human conversations. LLM-based chatbots have the

capacity to comprehend a wide range of topics and adapt their

responses based on the context of the conversation. This �exibility

allows them to cover di�erent purposes of conversations, includ-

ing providing speci�c artifacts to solve problems in addition to

providing recommendations and general guidance.

6.4 Conversation styles are not mutually
exclusive, but rather complementary

Communication is an essential part of software development. Re-

searchers have been tackling this by proposing solutions for coordi-

nation and communications in software teams [11]. In the new era

of AI-driven software development (AIware), software teams are

evolving into a hybrid model involving software engineers but also

AI. Consequently, new challenges have emerged in regard to the

adoption of NLU-chatbots [1] and more recently LLM-chatbots e.g.,

the challenge of “crafting e�ective prompts” discussed by Hassan

et al. [7]. With respect to the conversation attributes, one challenge

of human-to-LLM conversations is establishing trust when certain

criteria are missing, such as transparency. This can be mitigated

by involving other communication styles where trustworthiness

criteria are available, for example, with NLU-chatbots providing

a con�dence estimation or with human developers with previous

trustworthy reputations. Hence, di�erent conversation styles can be

combined to mitigate the limitations of individual ones and amplify

their advantages.

7 CONCLUDING REMARKS

LLM-based chatbots are here to stay in software development orga-

nizations. With their human-like ability to inform, generate, and

create, combined with the always-on availability of an IT service,

they �ll a complementary niche that neither pre-existingNLU-based

chatbots nor human colleagues can �ll. However, we argue that

LLM-based chatbots are not directly replacing human co-workers,

nor should they — the social aspect of human interactions cannot be

�lled even by the most advanced bot. Instead, LLM-based chatbots

should be seen as a new and powerful form of generic productivity

tool, which can be used e�ectively to decrease the ever-growing

mental load [15] placed on modern developers.
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