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ED I TOR I A L

The artificial intelligence advantage: Supercharging
exploratory data analysis

Abstract
Explorative data analysis (EDA) is a critical step in
scientific projects, aiming to uncover valuable in-
sights and patterns within data. Traditionally, EDA
involves manual inspection, visualization, and vari-
ous statistical methods. The advent of artificial
intelligence (AI) and machine learning (ML) has
the potential to improve EDA, offering more sophis-
ticated approaches that enhance its efficacy. This
review explores how AI and ML algorithms can
improve feature engineering and selection during
EDA, leading to more robust predictive models and
data‐driven decisions. Tree‐based models, regular-
ized regression, and clustering algorithms were
identified as key techniques. These methods auto-
mate feature importance ranking, handle complex
interactions, perform feature selection, reveal hid-
den groupings, and detect anomalies. Real‐world
applications include risk prediction in total hip
arthroplasty and subgroup identification in scoliosis
patients. Recent advances in explainable AI and
EDA automation show potential for further improve-
ment. The integration of AI and ML into EDA
accelerates tasks and uncovers sophisticated in-
sights. However, effective utilization requires a deep
understanding of the algorithms, their assumptions,
and limitations, along with domain knowledge for
proper interpretation. As data continues to grow, AI
will play an increasingly pivotal role in EDA when
combined with human expertise, driving more
informed, data‐driven decision‐making across vari-
ous scientific domains.

Level of Evidence: Level V ‐ Expert opinion.
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INTRODUCTION

Explorative data analysis (EDA) is a crucial step in any
scientific project, aimed at uncovering valuable insights
and patterns within the data. Traditional EDA tech-
niques often involve manual inspection, visualization,
and traditional statistical methods to understand the
data's characteristics, identify outliers, and explore
relationships between variables. However, the advent
of artificial intelligence (AI) and machine learning (ML)
has opened up new avenues for enhancing EDA,
offering more sophisticated approaches that can
improve the efficacy with which EDA is conducted.

AI and ML algorithms can play a significant role in
feature engineering and selection, two critical compo-
nents of EDA. Even AI and ML techniques that have
been around for relatively long, like tree‐based
models, regularized regression, and clustering can
automatically identify the most important features,
uncover complex relationships between variables, and
reveal hidden groupings or patterns within the data
(Table 1). It is worth noting that some of these
methods can be considered to be at the intersection
of traditional statistical methods and modern ML [15].
These methods can streamline the feature engineer-
ing process, provide valuable insights for interaction
terms (representing the joint effect of two or more
features on the outcome), and can reveal the impor-
tance of undervalued variables, both in preparation for
traditional statistics or further ML applications [9, 10].

Unsupervised learning algorithms like clustering
can be leveraged to discover intrinsic groupings,
detect anomalies, and summarize data during EDA.
These techniques can uncover hidden segments,
outliers, or trends that may not be immediately
apparent, enabling more in‐depth analysis and
understanding of the data.

By integrating AI and ML into the EDA process, data
scientists can not only accelerate certain tasks but also
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uncover more sophisticated insights and patterns,
ultimately leading to more robust and accurate predic-
tive models or data‐driven decisions.

AI/ML IMPROVES FEATURE
ENGINEERING AND SELECTION
DURING EDA

Algorithms like tree‐based models, explainable boosted
machines, or regularized regression can identify the most
important features and their relationships with the target
variable [1, 8].

These algorithms have built‐in mechanisms for
feature importance ranking, which can guide feature
engineering efforts. For instance, tree‐based models
compute feature importance scores based on metrics
that highlight the features that contribute most to the
model's predictive power [8]. Regularized regression
methods, like Lasso perform automatic feature
selection by driving the coefficients of irrelevant
features to zero, effectively eliminating them from
the model [12]. For example, here are two common
approaches to using Lasso for feature selection:

1. Lasso as the Final Model: Fit a Lasso regression
model and use the nonzero coefficients to identify
the selected features. This approach performs
feature selection and model fitting simulta-
neously [12].

2. Two‐Stage Approach: First, fit a Lasso model with
a fixed penalty to identify a subset of relevant
features. Then, fit a separate model (e.g., ordi-
nary least squares, ridge regression) using only
the selected features [6].

The two‐stage approach, also known as the ‘Relaxed
Lasso’, can be beneficial when the Lasso's shrinkage
effect is too severe, leading to biased estimates for the

selected features. By separating feature selection and
model fitting, the second stage can estimate coefficients
without the Lasso's shrinkage penalty [6].

It is important to note that while Lasso can handle
multicollinearity better than ordinary least squares, it
may arbitrarily drop one of a group of highly correlated
features. In such cases, alternative methods like elastic
net or manual feature selection may be preferable [14].

Venäläinen et al. employed Lasso regression to
develop risk prediction models for common adverse
outcomes after primary total hip arthroplasty (THA) [13].
Lasso was applied to the training cohort, which consisted
of two‐thirds of the data from the Finnish Arthroplasty
Register, to identify subsets of variables that were most
predictive of each outcome. By shrinking less important
feature coefficients to zero, Lasso helped create parsimo-
nious models that included only the most relevant
predictors.

Furthermore, these algorithms can uncover com-
plex, non‐linear relationships between features and
the target variable, providing insights for creating
interaction terms or higher order polynomial features
during feature engineering [4]. The hierarchical
structure of tree‐based models can also reveal
feature combinations and decision rules that are
predictive of the target, informing the creation of new,
engineered features.

The ability to assist with ranking and selecting relevant
features is a powerful aspect of these algorithms,
streamlining the feature engineering process and reducing
the risk of including irrelevant noise in the final model.

Clustering to find hidden groups and
similarities

Unsupervised learning algorithms like clustering can be
used to explore the inherent structure and groupings
within the data during EDA [3]. This can reveal

TABLE 1 Machine learning techniques in explorative data analysis.

Technique Description Application in explorative data analysis

Tree‐based models Class of algorithms using a tree‐like model of decisions.
Includes decision trees, random forests, and gradient
boosting machines (GBMs).

– Identifying important features: Ranks feature
importance.

– Detecting interactions: Captures complex feature
interactions.

– Visualization: Provides transparent decision‐
making.

Regularized
regression

Adds a penalty to the regression model to prevent
overfitting. Includes ridge regression, lasso regression,
and elastic net.

– Handling multicollinearity: Shrinks coefficients.
– Feature selection: Identifies and removes irrelevant

features.
– Model interpretability: Produces simpler models.

Clustering Unsupervised learning technique grouping similar data
points. Includes K‐means, hierarchical clustering, and
DBSCAN.

– Discovering patterns: Identifies natural groupings.
– Anomaly detection: Detects outliers.
– Cohort segmentation: Groups patients/study

participants into similar segments.
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patterns, subgroups, or segments that may not be
immediately apparent.

Clustering algorithms work by grouping similar
data points together into clusters based on their
proximity or similarity in the feature space [3]. The
goal is to maximize the similarity within clusters while
maximizing the dissimilarity between different clus-
ters. This allows analysts to uncover hidden relation-
ships, trends, or outliers that can provide valuable
insights into the data.

Some key advantages of using clustering for EDA
include:

1. Discovering intrinsic groupings: Clustering can auto-
matically identify inherent groupings or segments
within the data, which can be useful for customer
segmentation, market analysis or identifying subpo-
pulations in scientific studies.

2. Detecting anomalies: Outliers or anomalies that
deviate significantly from the main clusters can
be detected, potentially revealing interesting or
unexpected cases.

3. Data summarization: By grouping similar data points
together, clustering can provide a concise summary
or representation of the data, facilitating under-
standing and further analysis.

4. Feature exploration: Clustering can help explore the
relationships between features and their influence
on the formation of clusters, potentially revealing
important patterns or correlations.

Common clustering algorithms like K‐means [5],
hierarchical clustering, DBSCAN, and Gaussian mixture
models are widely used for EDA across various domains,
including customer analytics, image analysis, bio-
informatics, and more. However, it is important to note
that the choice of algorithm and its configuration can
significantly impact the results, and domain knowledge is
often required to interpret and validate the clusters.

Thong et al. used an unsupervised clustering
method to group together the encoded representations
of 3D spine reconstructions generated by a stacked
auto‐encoder, a type of ML algorithm [11]. This data‐
driven approach revealed 11 distinct subgroups
amongst 915 surgical adolescent idiopathic scoliosis
patients, demonstrating that even within the estab-
lished Lenke classification types, there are subgroups
characterized by specific combinations of curve loca-
tion, kyphosis, and lordosis.

Recent AI/ML advances that can
enhance EDA

While tree‐based models, regularized regression,
and clustering have clear potential to enhance EDA,
more recent AI and ML advances can provide

additional benefits. In the area of eXplainable AI
(XAI), several techniques have been proposed that
can help find smaller and more understandable
models with fewer features which can be important
for further analysis. As one example, a recent
technique can produce families of ML models with
high predictive power and then study the feature
importance for the family as a whole [2]. This avoids
potential problems of the methods mentioned above
that calculate feature importance based on a single,
preferred model. By considering the so‐called Ra-
shomon set of all good models the feature impor-
tance scores are more stable and less sensitive to
minor variations in model training.

There are even approaches to automate larger parts
of the EDA process by leveraging modern AI and ML
approaches [7]. Three main types of solutions have
been studied: EDA recommender system, user interest-
ingness prediction, and full EDA automation. While the
former two augments the scientist by recommending
which aspects of the data they can explore further, the
latter uses sequence learning and generative AI
methods based on Deep Learning to generate whole
EDA reports with the steps, analyses, visualizations, and
conclusions of the AI ‘user’ which the scientist can then
review, use, and build on [7].

CONCLUSION

The integration of AI and ML into EDA offers a powerful
set of tools for enhancing insights and understanding
data. By leveraging the aforementioned techniques, data
scientists can improve feature selection, uncover complex
relationships between variables, and reveal hidden
groupings or patterns. These AI‐driven approaches
streamline feature engineering and provide valuable
guidance for creating new engineered features. However,
effective utilization requires a deep understanding of the
algorithms, their assumptions and limitations, along with
domain knowledge for proper interpretation. As data
continues to grow, AI will play an increasingly pivotal role
in EDA and drive more informed, data‐driven decision‐
making when combined with human expertise.
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