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Abstract: People are increasingly eager to knowmore about

themselves through technology. To date, technology has

primarily provided information on our physiology. Yet,

with advances in wearable technology and artificial intel-

ligence, the current advent of consumer neurotechnology

will enable users to measure their cognitive activity. We see

an opportunity for research in Human-Computer Interac-

tion (HCI) in the development of these devices. Neurotech-

nology offers new insights into user experiences and facili-

tates the development of novel methods in HCI. Researchers

will be able to create innovative interactive systems based

on the ability to measure cognitive activity at scale in real-

world settings. In this paper, we contribute a vision of how

neurotechnology will transform HCI research and prac-

tice. We discuss how neurotechnology prompts a discussion

about ethics, privacy, and trust. This trend highlights HCI’s

crucial role in ensuring that neurotechnology is developed

and utilised in ways that truly benefit people.
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1 Introduction

The human need to gain a deeper understanding of them-

selves aligns with the increasing availability of neurotech-

nology on the consumer market. For this article, we define

neurotechnology as non-invasive tools that assess and

interpret cognitive activity in users (e.g. Neurosity,1 Emo-

tiv MN8,2 Muse3). With the continuous rapid progress in

wearable devices, machine learning, and artificial intelli-

gence (AI), we anticipate a substantial expansion in the

range, accuracy, and reliability of cognitive facets mea-

surable in the next decade at decreasing costs for such

devices. These technologies, if effective, hold immense

potential to revolutionise our self-perception and how we

interact with each other, but also for how such insights

are involved in research as they become more widely

accessible.

For end users, integrating these tools into their lives

offers exciting possibilities as they could allow quantifying

cognitive performance in a manner similar to how we cur-

rently assess physical activity with wearables. This perspec-

tive of Cognitive Personal Informatics (CPI), the quantifica-

tion of cognitive activity through neurotechnology, offers

new possibilities for self-monitoring, self-reflection, and

self-regulation.4 CPI can help users gain insights into inter-

nal functions like workload and stress. In the future, more

complex processes such as reasoning, learning, creativ-

ity, problem-solving, and decision-making. In other words,

these developments might not only offer improved self-

awareness but also the possibility of changing existing

practices and developing new ones in personal health and

lifestyle.

This emerging landscape calls for a detailed under-

standing from a Human-Computer Interaction (HCI) per-

spective to effectively utilise these novel experiences. It is

crucial to thoroughly explore user interactions with and

perceptions of neurotechnology to design meaningful expe-

riences. This involves addressing not just the technological

aspects but also the human elements – emotional, cognitive,

and social – to ensure that these advancements effectively

enhance lives and align with user needs and preferences.
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Thus, the advancement in neurotechnology also has

significant implications for HCI as a field. The currently

available research andmedical-gradeneurotechnology, util-

ising techniques such as Electroencephalography (EEG) and

functional Near Infrared Spectroscopy (fNIRS), are already

capable of estimating cognitive aspects like mental work-

load,5,6 stress levels,7 and emotions,8 if in controlled con-

ditions. Here, more reliable, affordable, and unobtrusive

neurotechnology could bring the necessary advancement

to change how research is done and how it can utilise cog-

nitive data beyond laboratory settings. Indeed, researchers

can begin to imagine that cognitive activity is a form of

data that can be used to design and build new interactive

systems.

In this work, we unpack the implications that matur-

ing consumer neurotechnology will have for the future of

human-computer interaction. We specifically look into the

period of the next 20 years, a time framewe chose aiming to

balance between the rapid pace of technological advance-

ment and the slower processes of market penetration, soci-

etal change, and academic research cycles. 20 years is also

a comparable timeframe to the research developments in

personal informatics as relating to wearables for physical

activity tracking, between approximately 2000 and 2020. In

line with van Berkel and Hornbæk,9 who discuss implica-

tions for methodology, theory, design, practice, policy and

society. Discussing these aspects, we identify challenges and

opportunities for the HCI community.

2 Looking back: what we’ve had to

do until now

This section aims to highlight how we have reached our

current transition to maturing neurotechnology: that prior

research comes from a range of fields, that HCI has long

relied on alternative means to evaluate cognitive experi-

ences with technology, and that recent research contin-

ues to demonstrate that changes in cognitive state can be

detected using psychophysiological sensors with increasing

accuracy.

2.1 The central role of cognition research in
HCI’s past (and future)

Human cognition has always been at the core of HCI

research. Long before computers and trying to understand

human information processing,10 the origins of cognitive

psychology, looking at memory and attention, are typically

attributed to the late 1800s.11 It is important to note that

many assumptions in HCI are grounded in the findings

of cognitive psychology, including e.g. divided attention,

spatial and episodic memory, and dual processing. Indeed,

many HCI researchers, and much of an HCI curriculum,

come from cognitive psychology backgrounds. A key chal-

lenge for research now, as discussed later, is to properly

understand different types of cognitive activity (e.g.12) and

how to identify, track, and measure them. Due to this very

close relationship between HCI and human cognition, we

expect this history to have renewed importance in the devel-

opments of cognitively focused wearables.

With a key focus on health and safety, many findings

from cognitive psychology were adopted in Human Fac-

tors and Cognitive Ergonomics.13,14 Traditionally,major con-

cerns have been, for example in understanding the capacity

of people in safety-critical job roles like air traffic control15,16

and designing shift work based on people’s ability to main-

tain focus and to recover effectively from fatigue.17 It is per-

haps not surprising that these use cases have inspired early

research into studying air traffic controllerswith neurotech-

nology18,19 and that industry has seen initial examples of

applying neurotechnology in safety helmets,1 to increase

profits. The basis for many subjective and behavioural mea-

sures of cognitive activity in HCI research comes from

human factors and cognitive psychology research. Similarly,

HCI is not alone in its drive to build on top of cognitive

psychology. Educational psychology, for example, has seen

similar models develop for attention and cognitive load20 to

inform the design of instructional material and understand

how people best study and learn.

2.2 Inferring cognition from observational
and self-reported data

As it emerged as a distinct research field in the 1980s,

HCI research has long sought to understand the cognitive

aspects of people’s experiences with technology. Early ana-

lytical inspection methods in HCI were based on cognitive

psychology models, including GOMS21 and the Cognitive

Walkthrough.22 Those methods allowed researchers to eval-

uate interaction with an interface in reference to a cogni-

tive model. When working with users, research relied on

four main techniques: (1) performance measures (e.g. task

completion time, correctness, errors), (2) behavioural mea-

sures (linguistic features such as sentence length or word

complexity), (3) subjective self-reports (e.g. questionnaires),

1 Vice.com commentary on the profits reported from tracking

employee EEG data, titled “China Claims It’s Scanning Workers’ Brain-

waves to Increase Efficiency and Profits” by Samantha Cole, May 1st,

2018.
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and (4) psychophysiological measures (e.g. heart rate, pupil

dilation, blink rate, electrodermal activity, EEG).23,24

Performance and behavioural measures are a valu-

able way of assessing people’s capacity to complete tasks,

often analysed through observing performance drops or

mistakes.Where performancemight bemeasured in time to

complete tasks, it is typically measured in terms of negative

outcomes, such as reduced performance and error rate.

Consequently, much research turned to inferring aspects

of cognition from people’s ability to complete secondary

tasks parallel to their work. Open protocols such as the

think-aloud method25 encourage participants to express

their experiences and perceptions in the interaction with

a system or technology. These insights, in turn, can be

applied to gain insights into cognitive processes. Speech

analysis can help estimate, e.g. mental workload through

sentence length or complexity, tempo,26 or pauses.27 Other

behavioural approaches rely on, e.g. body posture analysis

for fatigue28,29 or on analysis of people’s mouse usage pat-

terns.30

Performance and behavioural measures largely rely on

experimenters to interpret observations. Complementary

subjective self-reports can help researchers assess cog-

nition from the user’s individual perspective, focusing on

subjective perception and experiences. There aremany sub-

jective scales available to estimate different forms of cog-

nitive activity and suit different purposes. These measures

can be of various levels of complexity and generality, from

one-item scales designed for participants to state at inter-

vals during tasks (e.g. ISA31) to multi-dimensional question-

naires. One of the most commonly used multi-dimensional

scales in HCI comes, again, from safety-critical human fac-

tors research thatwas concernedwith astronauts breaching

their ability to handle workload.32 The NASA Task Load

Index (TLX) was produced as a detailed and retrospectively

applied multi-dimensional subjective rating scale.32,33 By

being multi-dimensional, NASA TLX recognised that there

were facets of both physical and cognitive activity that

were important to try and measure, including frustration,

mental workload, and temporal workload on the cognitive

side.

2.3 Neurotechnology and
psychophysiological measures

However, prior work shows that it can be challenging

for people to correctly assess their cognitive functioning,

especially concerning neurological deficits (e.g.34,35). Conse-

quently, much attention has been given to psychophysio-

logical measures of cognitive activity, such as EEG, fNIRS,

gaze features (specifically for attention), heart rate, and

temperature. Such research started in the early 70s with

EEG,36 primarily in medical contexts. Similarly, eye track-

ing was used in medical circumstances as an input mech-

anism for disabled users, e.g. for text entry and device

control. Many research fields now seek to classify cogni-

tive activity with psychophysiological data, including HCI.

Alsurakh et al. highlight that for every physiological signal

used to estimate mental workload, the same signals have

been used to estimate stress levels.37 Where research has

demonstrated that advanced neurotechnology can be used

to identify changes in cognitive activity, it is now largely

established that, e.g. heart rate variability reflects stress lev-

els and current smartwatches are beginning to track stress

levels in the wild.

Wilson et al. argue that cognitive activity tracking is at

a turning point, similar to the move from scientific stages of

activity tracking in lab conditions to its widespread prolif-

eration within wearable technology.4 Wearable neurotech-

nology devices have become increasingly small and pow-

erful and have even been released as consumer devices.

Similarly, where machine learning research has made sig-

nificant advances in improving the accuracy of classify-

ing electro- and neurophysiological signals, recent advance-

ments in AI mean we are likely to see reliable classifi-

cation of cognitive activity, in consumer devices, in the

near future. Notably, we increasingly see the application of

consumer-grade EEG technologies in HCI research, such as

the Emotiv Epoc38–41 or the Muse EEG.42,43 These research

settings include improving focus at work, use in the cre-

ative arts, and integration into environments like virtual or

augmented reality.44,45 However, the study of how people

track their activity over time (Personal Informatics, PI46)

will need to study how people manage their Cognitive Per-

sonal Informatics. This implies that HCI will need to study

how PI processes47 are altered by the inclusion of cognition

data, particularly in key PI aspects such as goal setting48 and

lapsing.49

In many respects, the development of reliable neu-

rotechnology suddenly makes cognitive activity tracking

more an HCI research problem, rather than a psychology,

human factors, medical engineering, or machine learning

problem. Consequently, more researchers will soon have

access to devices that can take such measures about people,

and people will have unprecedented access to new forms of

cognitive data about themselves. Furthermore, society will

have to navigate social, privacy, ethics, and trust issues as

consumer neurotechnology becomes involved in domains

such as medicine and care, driving and insurance, and

indeed its use in the workplace. Below, we discuss how

maturing neurotechnology will change HCI.
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3 Looking forward: implications for

HCI

This sectionunpacks the implications ofmaturing consumer

neurotechnology for the field of human-computer interac-

tion over the next 20 years. To structure this exploration, we

draw upon the seven types of HCI implications as derived

by van Berkel and Hornbæk9 from HCI literature, encom-

passing implications for methodology, theory, design, prac-

tice, policy, and society, in the order they are presented in

the original work. Implications for the HCI community are

discussed throughout all subsections.

3.1 Implications for methodology – an
unstable period of method change

The rigour behind current research using advanced neu-

rotechnology has developed standards over time that speak

to the validity of research results. These standards were

developed to build confidence and trust in research that is

developing a technology and “proving” that it can accurately

measure cognitive activity or detect changes. Once the accu-

racy of such devices is assumed, we expect there will be

a period where new community norms will develop for

how such tools can be reliably integrated into user stud-

ies alongside othermethods. For example, Pike et al. studied

whether fNIRS can be used alongside the think-aloud pro-

tocol as a popular qualitative approach to gaining insight

into what people are thinking.50 As with any new method,

therefore, we expect that studies will be published that use

cognitive measurements before we, as a community, have

developed expectations for research quality.

Perhaps more importantly, in the case of measur-

ing cognitive activity, we expect that a large amount of

research will begin to publish findings before we really

understand what they mean. We can ask questions now,

for example, about whether cognitive activity should be

“high” or “low” if people are good at doing their job? While

many aspects of cognitive activity have been studied exten-

sively in psychology in controlled conditions, we do not yet

know what data will be captured from participants in less

controlled scenarios and what we should expect to see in all

forms of interaction.

We also expect to see a shift in what we learn as

we move from subjective measures that cause peo-

ple to reflect on their experiences, to what might be

considered unbiased objective data from people during

experiences. In many respects, maturing neurotechnology

will allow us to evaluate the difference between what is

observed about cognitive activity during experiences, and

what people say about them afterwards. For example, the

think-aloud method has been discussed for whether it adds

cognitive burden to users as a secondary task.51 Thus, it has

been debated whether it accurately reflects the difficulty of

doing a task, or instead reflects the difficulty of discussing

what people are doing during a task. Another common con-

cern for assessing cognitive overload is when participants

are no longer able to think aloud or forget to provide mid-

task subjective ratings (e.g. ISA31). In these cases, it is typ-

ically considered that at these moments, participants have

a very high mental workload and thus are unable to carry

out these secondary tasks.52 In this case, performance in

a secondary task is often used to measure spare cognitive

capacity.53 Overall, we expect research to be in flux while it

decides whether it can accurately detect the samemoments,

whether these subjective and qualitative methods are still

needed, and whether important qualitative context is lost

fromno longer asking participants to reflect on experiences.

3.2 Implications for theory – learning from
long-term real-world data

Given that devices and systems to measure cognitive activ-

ity will become widely available and affordable research

tools, we expect these measures to become mainstream for

HCI studies (alongside other methods). Through increased

research, we will gain a more in-depth understanding of

many theoretical concepts related to cognition, such as

stress, attention, fatigue, or memory.

Unobtrusive consumer neurotechnologywill also allow

researchers to gather long-term data and data from a

huge variety of situationswith reduced need for supervis-

ing participants.Whether users are alreadywearing devices

that will start to collect data about cognitive activity, such as

smartwatches, orwhether researchers provide participants

with devices to wear, we can expect more studies to ask

people to collect cognitive data in different parts of our

everyday lives in in-the-wildmethodologies.Data collected

in natural situations will enrich our understanding of

theoretical concepts often biased by laboratory conditions,

such as attention and interruption management, productiv-

ity research, or stress management.

With users becoming more aware of their cognition

and systems that can react to cognition, there is a growing

need to rethink assumptions about theory in HCI. This evo-

lution may redefine how people perceive and interact with

everyday technology. As our understanding of cognitive pro-

cesses deepens and integrates with technological systems,

the traditional frameworks and theories in HCI are likely to

undergo significant transformations. This change is not just

a matter of technological advancement, but also a shift in
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the user’s self-awareness and the system’s responsiveness to

cognitive states. Thus, it will potentially lead to questioning

of how we design, use, and think about technology in our

daily lives.

3.3 Implications for design – towards
real-world cognition-aware systems

With an increased understanding of cognitive processes

during the interaction with intelligent systems, we expect

to see a rise in designing adaptive technologies based on

cognitive performance or states. As discussed in Section 3.1,

having real-time insights into users’ cognition during their

interaction with technology can offer new insights into

user-centred design processes. Neurotechnologywill enable

more evidence-based design decision through effectively

informing design processes.54

Cognition-aware systems represent a sophisticated

evolution in context-aware computing,55 extending

beyond traditional input dimensions like location and

physical activity to encompass the cognitive context

of the user. This cognitive context includes mental

information processing aspects such as attention

allocation,56 perception,57 memory encoding, storage

and retrieval,58,59 and learning.60

Today, knowledge workers process a wealth of infor-

mation while engaging in continuous learning. Here, the

first challenge involves technologies that rarely consider

users’ fluctuating attention levels, receptiveness, or cog-

nitive capacities throughout the day. Recent years have

brought significant advancements in context-aware sys-

tems like Cybre-Minder,61 which supports users inmanaging

reminders by utilising rich contexts such as time and loca-

tion. Nonetheless, there remains a gap in technology’s abil-

ity to adapt to users’ cognitive states and physiological

correlates, e.g. circadian rhythms.

Secondly, the prevalent issue in mobile computing is

the distracting nature of reminders and alerts, which often

ignore the user’s current context. Despite research on delay-

ing notifications, little has been implemented in consumer

products. Context-aware reminding systems like the Jogger

prototype62 and smart home applications63 show promise

in utilizing probabilistic models and context information to

predict opportune moments for reminder delivery, thereby

reducing disruptions and improving task flow.

Third, another opportunity for design with neurotech-

nologies lies in adjusting information complexity to

align with users’ cognitive capacities. Current user inter-

faces seldom adapt to varying states of sustained atten-

tion. Research on adaptive UIs that respond to attentional

states is essential for improving task efficiency. The need

for UIs that can dynamically adjust to attention fluctua-

tions is echoed in studies exploring sensor-driven adap-

tive reminder systems,64 context-aware approaches for

behaviour analysis65 and adjustments of surrounding task-

irrelevant information across the Mixed Reality contin-

uum.56,66,67

Lastly, the availability of cognition-aware systems fur-

ther provides opportunities for enhanced inclusivity.

With easier access to data on users’ current cognitive capac-

ities and concurrent visualisation, information, or interac-

tion adaptations68 it will be easier to include and design for

individuals with diverse abilities and needs. Prior research

emphasised the need to include the neurodivergent popula-

tion in the research discussions.69,70 Yet, to date, there is lit-

tle research on the potential of consumer neurotechnology

for these groups and the associated expectations, needs, and

design requirements.

Yet, all opportunities also present significant challenges

as the intersection of various fields introduces a complex

learning curve for researchers and designers aiming to inte-

grate physiological signals into their studies and interac-

tive systems. This multidisciplinary challenge necessitates

a broad understanding and mastery of concepts spanning

from biology to computer science, complicating the devel-

opment process of cognition-aware systems.71

Firstly, seamlessly incorporating basic psychophysio-

logical theory into system design is essential for creating

meaningful user interactions that accurately reflect psycho-

logical states. This requires a large interdisciplinary effort

as mapping a physiological signal to a specific user state

requires an understanding of psychophysiological infer-

ence and how physiological signals might differently react

over time and show different responsitivity to various stim-

uli.72

Secondly, the identification of signal processing

requirements is critical for the accuracy and reliability

of cognitive state assessments, demanding the design and

implementation of device-independent software tools.

These challenges highlight the need for sophisticated

methodologies to accurately interpret and respond

to the complex spectrum of human cognition. Here,

data protection rights should be considered, allowing

users to retain formal and legal control over their

psychophysiological data. This stipulates that any third

party should receive access to such information solely

with the user’s explicit approval.73 Here, privacy-by-design

approaches should be considered74 and privacy-preserving

mechanisms should be ensured. Here, federated learning

presents an innovative solution by allowing for the

training of models without the need to centralize sensitive
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physiological data, thus ensuring privacy and regulatory

compliance.75

Third, we need to consider challenges from a user

interaction level, such as user acceptance and trust. Users

may have concerns about the implications of systems that

monitor and respond to their cognitive states if the data

presented is incorrect or inaccurate. Moreover, the inte-

gration of neurotechnology at such a scale into people’s

everyday lives could lead to an overreliance on technol-

ogy. As an effect, overreliance could potentially diminish

users’ perceived agency and subjective intuition. Designers

must be cautious not to let technology override human-

centred design principles. Balancing the assessments of neu-

rotechnologies with human introspection, self-awareness,

and decision-making is crucial to prevent over-dependence

and ensure that technology serves as a tool to enhance,

rather than dictate, user experience.

3.4 Implications for practice – responsible
integration into application contexts

The increasing use of neurotechnology has the potential

to influence various fields of practice in significant ways

(e.g. in the workplace). Here, HCI researchers play a cru-

cial role in navigating the introduction of neurotechnology

into daily practices, ensuring that these developments are

approached thoughtfully. It is important that the potential

repercussions of introducing neurotechnology in new

contexts are studied in-depth and that the findings are

communicated effectively, reaching beyond the academic

realm to inform real-world applications. HCI practition-

ers must actively translate insights from other disciplines,

such as neuroscience and psychology, into usable and eth-

ical designs that leverage neurotechnology. This interdis-

ciplinary approach is essential for creating neurotechnol-

ogy applications that are not only technically sound but

also socially responsible and beneficial. Moreover, it is cru-

cial for HCI experts to bridge the gap between theoreti-

cal research and practical implementation. Researchers

have to ensure that the integration of neurotechnology

across application domains is seamless, user-friendly, and

enhances rather than detracts from human experience and

productivity.

For instance, we hypothesise that for knowledge work-

ers, the introduction of neurotechnologymay bring changes

in monitoring cognitive processes and emotional states of

employees. In the educational sector, neurotechnology can

support the learning process, as research has already shown

the application of cognitive data in teaching and learn-

ing analytics.76,77 Pedagogical experts, teachers, and HCI

scholars need to work together to understand the expe-

riential aspects of these technologies. They should iden-

tify practical applications while carefully considering

any negative aspects, especially for vulnerable groups

like children and neurodivergent individuals. Similarly,

in the healthcare sector, neurotechnology offers promis-

ing avenues for enhancing patient care and treatment

methods. This advancement could potentially provide a

more nuanced understanding of neurological and psy-

chological conditions, leading to more tailored treatment

approaches. However, healthcare professionals, along with

HCI researchers, must thoughtfully assess how to imple-

ment such technologies in clinical settings, taking into

account patient care, privacy, and treatment efficacy. The

implications for practice are considerable, requiring

professionals to stay updated and adapt to the changing

intersection of technology and human health.

The introduction of neurotechnology into various sec-

tors is a complex scenariomarked by both potential benefits

and challenges. While these technologies can bring about

substantial advancements in new application contexts, they

also present opportunities for researchers to gain a deeper

understanding of the technologies themselves. Utilisingneu-

rotechnology as a research tool, HCI researchers can explore

their full spectrum of capabilities and limitations. How-

ever, this exploration should encompass more than the per-

spectives of HCI researchers alone. A comprehensive con-

textual understanding is crucial, highlighting the need for

involvement from the target population in the research

process. Involving end-users ensures that the research is

grounded in practical realities and addresses the actual

needs and concerns of those interacting with these tech-

nologies. This inclusive approach is essential. It ensures a

balanced evaluation of the potential benefits and risks of

neurotechnology, guiding them towards their responsible

and ethical application. We note that the risk of exploita-

tion, particularly through constant performance monitor-

ing, is a significant concern as neurotechnology becomes

more integrated into everyday life. These tools may infringe

on personal privacy or exert undue pressure on individu-

als, especially in workplace settings where performance is

closely scrutinized. Thus, it is imperative to establish strong

ethical guidelines and regulatory frameworks for interac-

tion design practice to protect individual rights. It is crucial

that we ensure that the advancement of neurotechnology

aligns with societal values and respects the dignity of all

users.
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3.5 Implications for policy – ethics and
mental privacy

Unlike our body, face, fingerprints, and speech, which have

been subject to tracking for a certain time by now, our

mental processes have remained private. At the current

stage of research, it is unclear what information could

be derived from large real-world data sets of cognitive

data. The discussion ofNeuroEthics is slowly finding its way

into HCI (cf.78 – 80) to prepare us for the same future we

predict here. In lieu of wide-scale access to neurotechnol-

ogy, discussions of NeuroEthics have had to remain largely

speculative about how cognitive personal informatics data

might be used and misused.79,81 The news has reported a

small number of specific cases where e.g. employers have

incorporated neurotechnology into work-wear and profited

from managing their workforce using this data. This eth-

ical discussion has already been taken up by researchers

(cf.82). We expect that we will rapidly encounter many eth-

ical, privacy, and trust issues as such examples become

morewidespread, and employers choose to try and increase

business profits in this way. Other potentially critical cases

include the detection ofmedical conditions in large data sets

that have been found in laboratory conditions using medi-

cal grade EEG, such as epilepsy,83 cognitive impairment,84

developmental disorders in children,85 and substance abuse

disorders.86 It is unclear if these signal differences could

be reliably identified using consumer devices in real-world

settings.

One challenge research we will face also relates to

how such data is treated in frameworks such as the

General Data Protection Regulation (GDPR):2 whether

data from neurotechnology is medical data, personal data,

or protected data. Furthermore, certain types of cognitive

data, such as brainwaves collected by EEG devices, can

be used to uniquely identify individuals87 and have been

shown to function as an authentication method with an

accuracy of more than 99 %.88 We consider it an important

starting point for HCI to help users understand what cog-

nitive data is being collected, what information could

be drawn from it, and for what purpose it is used. In

that regard, it is critical to also discuss the conflict between

the commercial application of neurotechnologies and its use

in research. The objectives of neurotechnology companies

can conflictwith the ethical standards of academic research,

particularly in terms of user consent, data usage, privacy,

and transparency. Policies should enforce transparency

requirements for neurotechnology of both academic and

2 GDPR: https://gdpr.eu/.

commercial origin. We need to ensure that consent is

informed and freely given as well as clear communication

about data practices and privacy.

Regulatory bodies have already become active in the

topic (e.g. by the UNESCO3). Yet, the integration of ethi-

cal concerns surrounding neurotechnology into exist-

ing digital ethics frameworks (e.g. data ethics, AI ethics)

remains an open issue. Parallels can be drawn to con-

siderations from other emerging technologies, such as

AI (cf.78). Similarly to how challenges are addressed in

this complex field, the governance of neurotechnology

should involve multidisciplinary collaboration, including

experts from technology, ethics, law, and social sciences.

This collaborative approach can ensure that technological

advancements are aligned with societal values and ethical

principles.

3.6 Implications for society – balancing
performance quantification and mental
health

The advent of emerging neurotechnology, particularly in

the realm of cognitive personal informatics, poses profound

societal implications that extend well beyond the field of

HCI. Currently, it is already common to track and share

physical activity data (e.g. from running, cycling, or hik-

ing) as a form of motivation or social sharing, even if not

for the explicit purpose of showcasing achievements. How-

ever, the landscape of cognitive personal informatics is

filled with uncertainties, especially regarding the social

and privacy norms that might develop once tracking and

sharing cognitive activity becomes as accessible as physical

activity tracking.

Key questions arise: Will the norms established for

sharing physical activity data translate seamlessly to cogni-

tive activity data? How comfortable will individuals be in

sharing information about such intimate and internal activ-

ities? The potential for shared accountability in cognitive

data could offer benefits, but it also raises questions about

what kind of cognitive ‘achievements’ peoplemight share or

broadcast.

As research in this field progresses, we anticipate a

shift from hypothetical inquiries about how people might

feel sharing hypothetical cognitive data, to empirical stud-

ies examining the actual behaviours and attitudes sur-

rounding the sharing of real neurotechnology data. This

3 UNESCO draft report on the ethical issues of neurotechnology, last

updated June 30th, 2023 – https://www.unesco.org/en/articles/risks-

and-challenges-neurotechnologies-human-rights.

https://gdpr.eu/
https://www.unesco.org/en/articles/risks-and-challenges-neurotechnologies-human-rights
https://www.unesco.org/en/articles/risks-and-challenges-neurotechnologies-human-rights
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shift will undoubtedly include exploring individuals’ reac-

tions to requests for sharing their cognitive data with oth-

ers. The outcomes of such research will not only inform

the development of the technologies themselves. They will

also shape our understanding of their broader societal

impact, particularly in terms of privacy, social interac-

tion, and our conceptualisation of cognitive health and

achievement.

In light of these technological advancements, another

critical concern is how societymight re-conceptualise the

notion of ‘achievement’. The prospect of tracking cogni-

tion on a larger scale prompts us to rethink what achieve-

mentmeans beyond the physical realm. In return,we expect

it to lead to a more nuanced understanding that recognizes

the concept’s complexities and subjective meaning. Such

measurements might illuminate traditionally overlooked

aspects of cognitive prowess and mental well-being. How-

ever, alongside these potential insights, there are significant

risks of negative repercussions. For instance, the ability

to quantify ‘achievement’ in cognitive terms could lead to

misuse, especially in contexts like the workplace, where

cognitive metrics might be inappropriately used to assess

performance. This raises concerns about a societal shift

towards valuing only what can be numerically mea-

sured, sidelining important qualitative aspects of human

experience. These considerations underscore the need for a

careful, ethical approach to developing and applying neu-

rotechnology to ensure they enhance understanding and

well-being without becoming tools for narrow, potentially

harmful quantification of human capabilities.

Looking ahead, it is crucial to understand the impact of

emerging neurotechnologies on the daily routines of every-

day users becomes a key concern. While topics such as

tracking obsession or digital addiction have already been

researched inHCI and related fields (cf.89,90), this topic could

also become relevant in the field of neurotechnologies.

This is particularly the case when these technologies are

integrated with gamified mobile applications that promote

the gaining of points, streaks, and awards. While poten-

tially beneficial in specific contexts, such engaging features

could lead to overuse and an unhealthy preoccupation

with tracking and quantifying mental states.91 Designing

these technologies with a balanced approach is essential to

positively contribute to users’ mental health and well-being

without encouraging detrimental usage habits.

Another relevant aspect concerning users’ well-being

focuses on specific well-being support such technologies

could provide. Currently, commercial neurotechnologies

provide features such as tracking brain activity, facilitating

meditation training, managing stress, providing feedback

through visualisations, and offering descriptive metrics like

“calm,” “neutral,” and “active” (see Muse3). However, the

societal impact (and the direction of such an impact) of

these technologies is partly dependent on the clarity and

significance of these metrics, which often remain ambigu-

ous. For instance, while a “calm” state might positively cor-

relate with a normal heart rate in physiological terms, its

implications when associated with brain activity are not as

straightforward. This lack of clarity in interpreting cogni-

tive states could potentially lead to widespread unhealthy

usage patterns or negative thought cycles across society.

Therefore, these technologies need to provide clear, contex-

tually relevant information to support informed decisions

about mental wellness, ensuring they enhance rather than

compromise the well-being of users on a societal scale. To

summarise, how these technologies address and commu-

nicate complex cognitive states will significantly influ-

ence societal perceptions of mental health and well-

being, potentially reshaping our collective understanding

of what it means to be mentally healthy or stressed.

4 Conclusions

The advent of consumer neurotechnology marks a signifi-

cant shift in the landscape of human-computer interaction

research. Previously confined to the realms of expensive

neuroscience laboratories and specialised human factors

research, these tools are now transitioning intomore afford-

able and accessible formats. In this paper, we unpacked

the implication of these maturing neurotechnologies for

the field of human-computer interaction, providing start-

ing points for discussions on HCI methods, theory, design,

practice, policy, society, and theHCI community at large. The

opportunities and challenges for each of these implications

in Table 1. Over thenext 20 years,we expect that researchers

can, and likely will, involve cognitive measures in more

forms of research. HCI researchers increasingly recognise

the need to explore the rich body of knowledge accumulated

in disciplines experiencedwith neurotechnology.4 However,

as with the onset of consumer VR/AR headsets, new con-

sumer neurotechnology may emerge in the market with-

out fully appreciating the full extent of prior knowledge.

We consider it critical for HCI to harness this expertise to

conceptualise interactive systems that effectively translate

complex neurotechnological insights into formats usable by

everyday individuals. As these technologies become more

prevalent in non-laboratory settings, they not only serve

as tools for advanced research but also emerge as sub-

jects of study within HCI. HCI should provide the means

to shift focus towards designing systems that democratise
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Table 1: Summary of opportunities and challenges of neurotechnology in HCI and for the HCI community for the seven implication types.

Type Opportunities Challenges

Methodology Development of new community norms for integrating

neurotechnology in user studies; move from reliance

on subjective data to objective measurements of high

temporal and spatial resolution.

Understanding and interpreting new types of data;

maintaining research quality amidst methodological shifts.

Theory Enriched understanding of cognitive processes through

long-term and varied situational data; reduced bias

through data collection in natural situations.

Users’ awareness of cognitive processes will impact

interaction with technology and might require

transformations of existing HCI frameworks and theories.

Design Creation of cognition-aware systems; enhanced

user-centric design informed by real-time cognitive

data; increased application of evidence-based design

processes; inclusivity through cognition-aware design.

Physiological inference, signal processing, modelling &

privacy, user acceptance, trust overreliance & in

neurotechnologies

Practice Introduction of neurotech into daily practice, leading to

an improved understanding of the technology itself.

Translation of interdisciplinary insights into usable designs;

responsible integration in various fields; navigating ethical

and privacy concerns; user-centred and inclusive design

process needed; balancing technology benefits with human

well-being.

Policy Increased awareness and understanding of cognitive

data; development of ethical frameworks.

Uncertainty on what can be derived from large real-world

data sets; privacy concerns; ethical use of neuro data;

integrating neurotechnology with existing regulations like

GDPR; trust and transparency requirements for safe use.

Society Potential for enhanced understanding and tracking of

cognitive health and achievements; facilitation of users’

mental health if designed and deployed properly.

Risk of quantifying human abilities narrowly; need for careful

design of meaningful metrics for cognitive data; uncertainty

around societal shifts in perception of achievement and

mental well-being.

the sophisticated data generated by neurotechnology, mak-

ing them comprehensible and applicable for daily use by a

broader audience.
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