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Abstract—Integrated sensing and communications (ISAC) is
poised to be a native technology for the forthcoming Sixth
Generation (6G) era, with an emphasis on its potential to enhance
communications performance through the integration of sensing
information, i.e., sensing-assisted communications (SAC). Never-
theless, existing research on SAC has predominantly confined
its focus to scenarios characterized by minimal clutter and
obstructions, largely neglecting indoor environments, particularly
those in industrial settings, where propagation channels involve
high clutter density. To address this research gap, background
subtraction is proposed on the monostatic sensing echoes, which
effectively addresses clutter removal and facilitates detection
and tracking of user equipments (UEs) in cluttered indoor
environments with SAC. A realistic evaluation of the introduced
SAC strategy is provided, using ray tracing (RT) data with the
scenario layout following Third Generation Partnership Project
(3GPP) indoor factory (InF) channel models. Simulation results
show that the proposed approach enables precise predictive
beamforming largely unaffected by clutter echoes, leading to
significant improvements in effective data rate over the existing
SAC benchmarks and exhibiting performance very close to the
ideal case where perfect knowledge of UE location is available.

Index Terms—Indoor factory, ISAC, 6G, sensing-assisted com-
munications, background subtraction.

I. INTRODUCTION

In recent years, wireless communication systems, especially
Fifth Generation (5G), has played a crucial role in meeting the
diverse and demanding requirements of the Fourth Industrial
Revolution, commonly known as Industry 4.0 [1]. Industry
4.0 strives to create adaptable and efficient smart factories
by integrating applications of industrial internet of Things
(IIoT). These applications are used in various areas such as
logistics, including motion control, smart transportation for
inventory management, and collaborative intelligent robots for
manufacturing [2]. These operations frequently occur in indoor
scenarios with numerous machines and metallic surfaces,
which might pose challenges for wireless connectivity.

Indoor factory (InF) environments can be more demanding
than other indoor deployments [3]. The presence of obstacles
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results in multiple reflections, leading to a large number of
Multipath Components (MPCs). Consequently, establishing
high-directional communication may depend on accurately
localizing the user’s position [4], [5]. Moreover, localization
can benefit from exploiting characteristics associated with
frequency bands [6], which could be an additional feature
using the same radio frequency (RF) resources.

Within the new era of Sixth Generation (6G), numerous
studies exist on high-resolution localization and sensing [7],
[8]. Following this burgeoning interest, novel technologies
are poised to emerge, significantly enhancing communication
systems through precise localization. One such groundbreak-
ing concept is integrated sensing and communications (ISAC)
systems [9]. ISAC is an enabling technology that thrives on the
coexistence between sensing and communication capabilities.
It is based on the fundamental premise that a sensing system
can be seamlessly adapted to multiple radio technologies
and diverse environments [10]. The convergence of these
functionalities promises a host of benefits, including the ability
for a communication system to act as a sensor or sensing-
assisted communications (SAC) [11].

One of the earliest contributions of SAC is in [12], where
sensing serves communication with novel predictive beam-
forming (beam tracking). This solution was introduced to mit-
igate the time overhead caused by downlink and uplink pilots
in the conventional channel state information (CSI) process.
The authors also proposed a simple method to handle beam
association of multi-vehicle tracking. A parallel endeavor is
evident in [13], which proposes an ID association technique
to efficiently predict the state of multiple vehicles. This
technique leverages the Kullback-Leibler divergence (KLD) to
discern which ID corresponds to each vehicle without needing
feedback at every time. Both contributions consider a reflected
echo per vehicle for simplicity, an assumption that may not
work in cluttered environments.

Another SAC contribution is introduced in [14], which pro-
poses dynamic predictive beamforming. This concept involves
the adaptation of the beamwidth to track extended vehicle.
While this approach might fully illuminate the vehicle as
needed, rather than a pencil-sharp beam, the authors leave
the scenario geometry out of scope in terms of channel
characterization in the system model. In research focused on



Fig. 1: InF sub-scenario with high clutter density (Dense High). The red
square represents the base station (BS), and the yellow square represents the
user equipment (UE).

ISAC systems, which depend on a thorough comprehension of
the scenario, it is advisable to employ realistic assumptions in
channel modeling, such as the inclusion of multipath channels.
Although all aforementioned works have contributed to shed
light on SAC systems, they have all employed an analytical
channel model.

In terms of multipath channels, authors in [15] model a
theoretical channel considering Line of Sight (LoS) and Non
Line of Sight (NLoS) paths, focusing on the quantification of
SAC overhead reductions. A more elaborate channel model-
ing is introduced in [16], which considers Third Generation
Partnership Project (3GPP) geometry-based stochastic model
(GBSM) for the communication channel and multiple-input
multiple-output (MIMO) radar multipath channel for sensing
one. Even though the latter contribution may be closer to real-
istic performance, spatial consistency and correlation between
sensing and communication channels are inherent features that
deterministic channel models (e.g., ray tracing (RT) dataset)
may naturally include. Moreover, the previous contributions
only focus on vehicle-to-anything (V2X) communication,
where environments are ”cleaner” with fewer obstructions.
Most likely, in more clutter-dense scenarios, detecting the user
among obstacles may be challenging, as in InF, as shown
in Fig. 1. In industrial environments, where the reliability of
communication is paramount for IIoT applications, the clutter
in the scenario can directly impact the LoS communication.
Thus, sensing could play a crucial role in precisely locating
the user in such environments.

This paper proposes background subtraction as a possible
method to facilitate user detection and improve predictive
beamforming in SAC systems in cluttered indoor environ-
ments. This work aims to take a step towards a realistic evalu-
ation of the ISAC system by obtaining realistic measurements
from a RT tool. In order to reveal how beam misalignment
can be affected by the number of passive scatterers in the
InF environment, signal-to-noise ratio (SNR) and effective
date rate are selected as key performance indicator (KPI). To
establish a comparison, several benchmarks are considered,
including SAC approaches and communication-only systems.

II. SYSTEM MODEL AND PERFORMANCE METRICS

A downlink communications scenario is considered for an
InF environment with a multiple-antenna BS and a single-
antenna UE. The BS transmits data symbols to the UE while
collecting the backscattered signals via a multiple-antenna co-

located radar receiver for detecting and tracking the UE to
enable beam tracking leveraging the principles of SAC.

A. Sensing Signal Model

The BS operates with MIMO uniform linear array (ULA),
which has NT transmit antennas and NR receive antennas.
Given a precoder f , the backscattered signal across N subcar-
riers can be formulated as:

ysen
n = Hnfxn + zsn ∈ CNR×1 , (1)

where xn is the Orthogonal frequency Division Multiplexing
(OFDM) transmitted signal considering a transmitted power
P ; zsn denotes the additive white Gaussian noise (AWGN)
with zero mean with a variance σ2

N , and

Hn =

K∑
k=1

αs
ke

−j2πn∆fτs
kaR(θ

s
k)a

⊤
T(θ

s
k) ∈ CNR×NT , (2)

where ∆f denotes subcarrier spacing, αs
k is the complex

channel gain, θsk is the angle-of-departure (AoD) (equal to
the angle-of-arrival (AoA)), and τsk is the delay. The transmit
steering vector is the same as the receive steering vector
given by the monostatic sensing configuration (i.e., transmitter
(Tx) and receiver (Rx) are co-located on the same hardware).
Thus, both steering vectors, namely aT(θ

s
k) and aR(θ

s
k) can

be denoted as:

a(θsk) = [1, e−jπ sin(θs
k), . . . , e−jπ(NT−1) sin(θs

k)]⊤, (3)

considering half-wavelength antenna spacing.

B. Communication Signal Model

Assuming a multiple input single output (MISO) downlink
communication, the received signal at the UE can be written
as

ycomn = (hcom
n )⊤fxn + zcn ∈ C , (4)

where

hcom
n =

K̃∑
k=1

αc
ke

−j2πn∆fτc
kaT(θ

c
k) ∈ CNT×1. (5)

C. KPI Selection

The goal of this work is to design the communication
precoders of the form

f = a∗T(θ) ∈ CNT×1, (6)

for a certain beamforming angle θ. The selection of the
beamforming angle depends on the specific method. Discrete
frames with duration T are considered, comprising beam
training and data transmission. After beam training, a vector
f is determined.

The SNR at the UE achieved after the beam training period
can be written as

SNRr,n =
P |(hcom

n )⊤f |2

σ2
N

. (7)

The effective data rate is then formulated as

Reff =

(
T −D

T

) N∑
n=1

log2(1 + SNRr,n), (8)



where D is the time needed for beam training.

III. BEAM TRAINING METHODS

The UE moves over discrete time t, and at each time t,
a downlink precoder should be designed. When possible, the
time index is removed to lighten the notation.

A. Conventional Beam Training

Conventional beam training [17] has been selected as the
baseline method (i.e., communication-only system) to compare
proposal one. The algorithm aims to find the optimal receiving
beamforming weight by looping the best SNR among all
sampling angle directions. Consider a set of M beamforming
directions Θ = {θ1, . . . , θM} with corresponding precoders
fm = a∗T(θm). Considering the channel is static during each
time t, the corresponding received vector at the UE can be
denoted as:

ycomn,m = (hcom
n )⊤fmxn,m + zcn,m. (9)

The optimal precoder is selected by maximizing the received
power:

m̂ = argmax
m

N∑
n=1

|ycomn,m|2, (10)

θ̂c = θm̂, (11)

which is then used in (6) for beamforming for communication.
This process occupies a certain amount of time D = M/∆f .
Better estimation would be obtained as more time and re-
sources are used to transmit the beams for scanning. However,
this process could introduce a high overhead since, in each
transmitted frame, the BS sends downlink pilots for beam
training and then the data transmission.

B. Proposed Method

According to the localization literature [18], obtaining a
coarse estimate of the parameter and using it as a starting
point for the process is essential. In this step, monostatic
sensing can offer significant assistance without consuming
communication resources. Nevertheless, estimating parameters
can be complex for scenarios with many obstacles, such as InF,
as the echoes from the user need to be more distinguishable
from the rest of the echoes in the scenario. To this end, the
background subtraction is proposed as a subroutine in the
proposed method.
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Fig. 2: Beam selection estimation based on background subtraction.

1) Background Subtraction
The estimation of the AoD or AoA based on background

subtraction proceeds as follows:
• Step 1 (Learning stage): The scenario is previously

sensed without the UE. The received measurement echo
signal at the BS can be expressed as:

yref
n,m = H̃nfmxn,m + zsn,m ∈ CNR×1 , (12)

where H̃n is the sensed channel without considering the
UE, i.e., considering echoes only from the rest in the
scenario. The pairs (fm,yref

n,m) are stored in a database.
The selected beamforming directions cover a fine grid of
angles.

• Step 2 (Inference stage): Assuming that BS transmits with
a precoder f , the received signal can be formulated as in
(1).

– Step 2a (background subtraction): Find the index m
for which fm is as close as possible to the current
precoder f , i.e.,

m̂ = argmin
m

∥f − fm∥. (13)

From the database, the corresponding yref
n,m̂ is se-

lected to compute the subtracted signal:

ysub
n = ysen

n − yref
n,m̂. (14)

– Step 2b: Finally, conventional beamforming is ap-
plied to estimate AoD/AoA at monostatic sensing.
The best beam to transmit is selected in the angular
range θ ∈ [−π/2, π/2]. The best angle is obtained by
maximizing the subtracted measurement signal ysub

n ,
as

θ̂sub = argmax
θ

N∑
n=1

|aHR (θ)ysub
n |2, (15)

where aR(θ) is the steering vector defined in (3).
To give a visual evaluation, Fig. 2 shows the background
subtraction. The optimal angle is obtained as input for the
following time step to construct the predictive beamforming.

2) Predictive Beamforming
Since the UE is moving along a linear trajectory, the Kalman

Filter (KF) algorithm can be applied to track the dynamic
state information. This enables the precise prediction of the
state of the UE, and this information might be utilized in
constructing the predictive beamforming. To delve deeper into
the process, it is essential to establish an initial state. In this
context, the estimated AoD obtained from conventional beam
training at t = 1 (Section III-A) is considered the initial state
as x̂t = (θ̂c, v), where x is the state vector filtered in every
time step, and v is a preset constant velocity.

The state error covariance matrix should also be deter-
mined at the startup. Hence, it can be defined initially as
P = diag(σ̄2

θ , σ̄
2
v), which would be naturally updated in

every tth step. Then, the state vector is predicted using
the state evolution model, which in this case is denoted as
x̂t|t−1 = Fx̂t−1, where F is the transition matrix defined
by the system dynamics where acceleration has been ignored
for simplicity. Next, the process noise covariance matrix is



related to the uncertainty of the predictive results, which can
be expressed as Q = diag(σ2

θ , σ
2
v).

Following the process of Algorithm 1, another important
aspect is the uncertainty information, also called measurement.
This information obtains the desired state to update the follow-
ing time steps. Since the uncertainty can be obtained through
an independent system [19], this is where the background
subtraction can be used. In this explanation, the estimated
AoD from the background subtraction (15) at each time step
is detonated as zt, where the noise covariance Rt is a scalar
determined by the variance of the ground truth data.

Algorithm 1: Predictive beamforming

1 t = 1, perform conventional beam training to obtain θ̂c.

2 Set the initial state as: x̂t =

[
θ̂c

v

]
3 for t ∈ 2, 3, ... do

State prediction:
4 x̂t|t−1 = Fx̂t−1

Predicted state covariance matrix:
5 Pt|t−1 = FPt−1F

⊤ +Qt−1

Kalman gain matrix:
6 Kt = Pt|t−1ht(h

⊤
t Pt|t−1ht +Rt)

−1

7 switch
8 case Proposed method
9 zt = θ̂sub

t

end
10 case Data association method
11 zt = argminj |zj,t − h⊤

t x̂t|t−1|
end

end
Innovation (pre-fit residual):

12 ỹt = zt − h⊤
t x̂t|t−1

Update/correct state:
13 x̂t = x̂t|t−1 +Ktỹt

Update covariance matrix:
14 Pt = (I−Ktht) +Pt|t−1

The transmit beamforming vector is constructed by:
15 ft = a∗T(θ̂

pre
t ) ∈ CNT×1, as (6) expressed, where

θ̂pre
t is the predicted angle obtained from
x̂t (line 13).

end

C. Data Association

For scenarios where background subtraction is not con-
sidered, tracking a single UE may be difficult. Given the
high clutter density in proposed sub-scenarios, multiple mea-
surements/uncertainties can arise within the area stemming
from multiple echoes. In a downlink scenario without uplink
feedback from the UE, the BS might need to associate those
UE echoes to the predictive state.

To this end, some extensions of linear KF [20] arise in con-
ventional sensing applications. The nearest neighbor method
[21] represents one of the simplest approaches, involving the
BS in calculating the Euclidean distance between measure-
ments and the predictive state. This method is also outlined in

Scenario layout
Sub-scenario Sparse High and Dense High
Room size (WxL) Small-hall → L = 120 m, W = 60 m
Ceiling height 10 m
BS antenna height 8 m
UE width, length, height 0.2 x 0.2 x 0.2 m

Clutter density Low clutter density: 20%
High clutter density 60%

Clutter height Low clutter density: 2 m
High clutter density: 6 m

Distance between clutter Low clutter density: 10 m
High clutter density: 2 m

UE Trajectory 10 m
Time steps 100

Configuration parameters
Carrier frequency 28 GHz
Bandwidth 100 MHz
Total transmit power P 21 dBm
Noise variance σ2

N 10−9

NT 64
Time frame T 1 ms

Algorithm 1 assumptions
σθ 1 [deg]
σv 0.01 [deg/s]
σ̄θ Based on 3dB beam width
σ̄v 0.01 [deg/s]

TABLE I: Indoor factory - simulation assumptions.

[12] as a beam association technique for multiple targets. Due
to its significant presence in the literature, this paper selects
it as a baseline method within the SAC framework to offer a
comprehensive comparison with the proposed approach. The
process begins by identifying the most suitable measurement
to achieve a reliable predictive state. Therefore, it is assumed
that the BS is capable of receiving multiple candidate mea-
surements zj,t from j = 1, ..., J at every t. These J candidate
measurements are chosen from the backscattered signal with
a constant false alarm rate (CFAR) threshold. In this way,
only measurements with similar and highest amplitudes are
considered to compute the Euclidean distance between the
current a priori prediction and the current observation. In
Algorithm 1, line 10 defines the aforementioned process as
a case, in which the closest measurement state would yield
the smallest Euclidean distance, as is described in line 11.

IV. ANALYSIS AND RESULTS

A. Scenario and Channel Model

From the RT tool, accurate channel parameters are derived
from detailed geometric data concerning scatterers and their
interactions within the environment. The scenario layout fol-
lows the recommendation of the 3GPP InF channel model in
Release 16 [22]. This version introduces new channel param-
eters categorized by their industrial geometric conditions. InF
channel model incorporates several sub-scenarios classified
according to antenna height and clutter density. Specifically,
the Sparse sub-scenarios signify a low clutter density and are
further divided into Sparse High and Sparse Low relating to
high and low BS antenna heights. On the other hand, the
Dense sub-scenario represents a high clutter density, with its
divisions based on antenna height as well, namely Dense High
and Dense Low. For this work, Sparse high and Dense high
sub-scenarios are considered since the UE detection might be
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Fig. 3: SNR performance for the proposed method and benchmark cases.
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Fig. 4: Error performances to give a visual correlation with the low levels of SNR.
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Fig. 5: Effective rate performance for the proposed method and benchmark cases.

better performed with the antenna BS higher than the clutter
as a first assumption. Both sub-scenarios are constructed by
concrete material, where a metal small automated Guided
vehicles (AGV) is considered as a UE. The AGV follows
a straight-line trajectory of 10 meters in front of the BS in
LoS. The acceleration is neglected in these cases since the
simulations are snapshots at every time step. From this view,
the simulations are performed, and the RT channel dataset is
extracted. Table I summarizes the scenario layout and other
configuration parameters.
B. Results and Discussion

In order to provide a comparative analysis, several beam
training methods are presented in the following results. Con-
ventional beam training is the method explained in Sec-

tion III-A. SAC, proposed is related to Section III-B, where
background subtraction and predictive beamforming is con-
sidered. SAC, KF + data association is the benchmark of
predictive beamforming, which deals with multiple measure-
ments (Section III-C). In addition, Perfect knowledge is the
ideal case in which the BS can perfectly determine the UE
location, discarding the overhead of downlink and uplink pilots
in SAC systems. Finally, SAC, no KF + max peak determines
the optimal beams by finding the angle that maximizes the
output of the spatial matched filter applied to the backscattered
sensing signal in (1) at every time step without background
subtraction (i.e., θ̂sen = argmaxθ

∑N
n=1 |aHR (θ)ysen

n |2). The
latter method has been selected to illustrate the case of
misaligned beamforming without filtering since it estimates



the AoD without any predictive method.
Fig. 3 shows the level of SNR over the time steps for all

mentioned performances. In both sub-scenarios, the behavior
of Perfect knowledge and Conventional beam training exhibits
some similarities. In conventional communication, beam train-
ing aims to establish robust links using highly directional
beams that precisely align the transmitter beam with the UE.
However, this process may introduce high overhead that affects
the data transmission. On the other hand, it is anticipated
that SAC, no KF + max peak will yield low SNR levels. If
the optimal beam is selected by the highest power, it might
inadvertently capture echo information from a nearby obstacle,
such as the ground. This underscores the importance of
incorporating techniques such as predictive beamforming and
background subtraction to leverage the sensing information. In
addition, although the SAC, KF + data association obtains a
significant level of SNR, the SAC, proposed slightly overcomes
it. This behavior demonstrates that background subtraction
may leverage a strong link in SAC performance.

Key emphasis is that the SNR levels are directly related
to detection accuracy. This implies that the accuracy of the
information used to direct the transmitted beam should be
exceptionally high. Consequently, it is valuable to examine
the Error between the ground truth and estimated/predicted
information. In Fig. 4, there is a correlation between high
levels of error and low levels of SNR in both sub-scenarios.
Even though Dense High sub-scenario is the most affected,
SAC, proposed has lower error levels in more time steps than
SAC, KF + data association.

The overhead is another aspect to analyze. Fig. 5 shows the
effective data rate over time steps. Assuming the overhead of
conventional beam training should be considered at the first
time step, both SAC, KF + data association and the SAC,
proposed obtain high levels of effective data rate. They neglect
the overhead for the rest of the time step using predictive
beamforming.

V. CONCLUSION

The evolution of wireless communication systems, transi-
tioning from 5G to the promising realm of 6G, has under-
scored the significance of precise localization, especially in
challenging environments like Indoor factories (InFs). This
paper delved into the potential of ISAC systems, emphasizing
the coexistence of sensing and communication capabilities.
Our findings, derived from realistic measurements using a Ray
Tracing tool, highlighted the efficacy of background subtrac-
tion in enhancing user detection and predictive beamforming in
SAC systems. The results showcased that while conventional
beam training methods can introduce significant overhead,
SAC, especially with background subtraction, can achieve
superior SNR levels and effective data rates.

This paper has the potential to pioneer the use of back-
ground subtraction in various estimation algorithms under the
ISAC framework. Specifically, it could significantly impact
algorithms for detecting distance, velocity, and positioning.
Moreover, delving into real-life scenarios that involve multiple

users presents a promising avenue for substantial contributions
in forthcoming research endeavors.
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