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Lp-POLARITY, MAHLER VOLUMES, AND THE ISOTROPIC CONSTANT

BO BERNDTSSON, VLASSIS MASTRANTONIS AND YANIR A. RUBINSTEIN

This article introduces Lp versions of the support function of a convex body K and associates to
these canonical Lp-polar bodies Kı;p and Mahler volumes Mp.K/. Classical polarity is then seen
as L1-polarity. This one-parameter generalization of polarity leads to a generalization of the Mahler
conjectures, with a subtle advantage over the original conjecture: conjectural uniqueness of extremizers
for each p 2 .0;1/. We settle the upper bound by demonstrating the existence and uniqueness of an
Lp-Santaló point and anLp-Santaló inequality for symmetric convex bodies. The proof uses Ball’s Brunn–
Minkowski inequality for harmonic means, the classical Brunn–Minkowski inequality, symmetrization,
and a systematic study of the Mp functionals. Using our results on the Lp-Santaló point and a new
observation motivated by complex geometry, we show how Bourgain’s slicing conjecture can be reduced
to lower bounds on the Lp-Mahler volume coupled with a certain conjectural convexity property of the
logarithm of the Monge–Ampère measure of the Lp-support function. We derive a suboptimal version
of this convexity using Kobayashi’s theorem on the Ricci curvature of Bergman metrics to illustrate this
approach to slicing. Finally, we explain how Nazarov’s complex-analytic approach to the classical Mahler
conjecture is instead precisely an approach to the L1-Mahler conjecture.
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1. Introduction

The polar Kı and the support function hK of a convex body K are fundamental objects in functional and
convex analysis. The Mahler and Bourgain conjectures have motivated an enormous amount of research
in those fields over the past 85 years. One of the goals of this article is to point out that Kı and hK are
L1-versions of a more general one-parameter family of objects

Kı;p and hp;K ;
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introduce the associated one-parameter generalization of the Mahler volume Mp and conjectures, and
establish some of their fundamental properties. As we explain in detail and back up with explicit
computations, minimizers should be unique (see Figure 3 and the discussion surrounding it). This is a
subtle, but perhaps crucial, advantage, as compared to Mahler’s original conjecture. To quote [Tao 2007]
(see also [Błocki 2015, p. 90]),

In my opinion, the main reason why this conjecture is so difficult is that unlike the upper bound,
in which there is essentially only one extremiser up to affine transformations (namely the ball),
there are many distinct extremisers for the lower bound. . .

As an application of the theory of Lp-polarity, we develop a connection between these new objects
(Lp-support functions and Lp-Mahler volumes) and Bourgain’s slicing conjecture, e.g., making contact
with Kobayashi’s theorem on the Ricci curvature of Bergman metrics. Finally, we explain how Nazarov’s
and Błocki’s work on a complex-analytic approach to the classical Mahler conjecture fits in, being
precisely an approach to the L1-Mahler conjecture.

Our approach is loosely motivated by complex geometry, but the article in its entirety can be read
with no knowledge of complex methods. As is probably clear from the text, the authors are novices in
the study of the Mahler and Bourgain conjectures and are sorry for any omission in accrediting results
properly. The motivation for this article lies not so much in the particular results as in showing the link
between complex geometry and this beautiful area. It should also be stressed that the list of references is
far from complete. We have tried to make the text accessible to both convex and complex analysts and so
perhaps included a bit more background than usual.

1A. Motivation from Bergman kernels. Denote by

Kı WD fy 2 Rn W hx; yi � 1 for all x 2Kg (1-1)

the polar body associated to a convex body (compact and convex with nonempty interior) K � Rn. A key
step in Nazarov’s complex-analytic approach to the Bourgain–Milman inequality [1987, Theorem 1] is a
bound on the Mahler volume

M.K/ WD nŠ jKjjKıj (1-2)

of a symmetric (i.e., �KDK) convex bodyK from below by a multiple of the Bergman kernel KTK .z; w/
of the tube domain TK WD RnC

p
�1K over K, evaluated on the diagonal at the origin [Nazarov 2012,

p. 338]. This was generalized by Hultgren [2013, Lemma 11] and two of us [Mastrantonis and Rubinstein
2022, Proposition 6] to any convex body K:

�njKj2KTK .
p
�1b.K/;

p
�1b.K//�M.K � b.K//; (1-3)

where
b.K/ WD

Z
K

x
dx
jKj

is the barycenter of K.
This article, however, is not about Bergman kernels (though we come back to Bergman kernels in

Sections 1F and 6E). Nonetheless, the Lp-Mahler volumes introduced below are partly motivated by (1-3).
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In order to prove (1-3) one uses Jensen’s inequality together with an explicit formula for the Bergman
kernels of tube domains evaluated on the diagonal, due to [Rothaus 1960, Theorem 2.6; Korányi 1962,
Theorem 2; Hsin 2005, (1.2)], that as observed recently can be expressed as [Mastrantonis and Rubinstein
2022, Remark 36]

KTK .0; 0/D
1

.4�/n

Z
Rn
e�h1;K.y/

dy
jKj

; (1-4)

where, following [Mastrantonis and Rubinstein 2022, Definition 13], we denote by

h1;K.y/ WD log
Z
K

ehx;yi
dx
jKj

(1-5)

the logarithmic Laplace transform of the convex indicator function 11K (11K is 0 on K and 1 other-
wise). Therefore, the left-hand side of (1-3) becomes �njKj

R
Rn
e�h1;K�b.K/.y/ dy, bearing a curious

resemblance to the standard formula for the Mahler volume (1-2),

M.K/D jKj

Z
Rn
e�hK.y/ dy (1-6)

(see (4-2) below), where

hK.y/ WD sup
x2K

hx; yi (1-7)

is the (classical) support function of K.

1B. Lp-support function, -polarity, and -Mahler volume. Motivated by the preceding discussion and
[Mastrantonis and Rubinstein 2022, Remark 36], we introduce the Lp-support function of a compact
body (compact with nonempty interior) K � Rn for all p > 0,

hp;K.y/ WD log
�Z
K

ephx;yi
dx
jKj

�1
p

; y 2 Rn; (1-8)

unifying and interpolating between (1-5) and (1-7) (notice that h1;K WD limp!1 hp;K D hK by
Corollary 2.7). These are convex functions in y, monotone increasing in p, and take the Cartesian
product of bodies to the sum of the respective Lp-support functions (Lemma 2.2). Less obviously, they
also enjoy a convexity property in p (Lemma 2.4), and a “concavity” property in K (Lemma 2.5).

Generalizing (1-6), we introduce the Lp-Mahler volume,

Mp.K/ WD jKj

Z
Rn
e�hp;K.y/ dy: (1-9)

The functional Mp shares many (but not all) of the properties of M DM1 (by Corollary 2.7), e.g.,
invariance under the action of GL.n;R/ (Lemma 4.7), tensoriality (Remark 2.3), existence and uniqueness
of a Santaló point (Proposition 1.5), and a Santaló inequality for symmetric bodies (Theorem 1.6).

It is natural to ask whether there is an analogue of (1-2) for Mp , i.e., is there a canonically associated
body to K for which Mp can be expressed as the volume of a product body in R2n? We answer this
affirmatively. To that end, we introduce the following:
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Figure 1. The Lp-polars of the square B21 WD Œ�1; 1�
2 (left), the diamond B21 WD .B

2
1/
ı

(middle), the 2-simplex centered at the origin (right) for p D 1
2

(green), p D 1 (orange),
p D 10 (red) and p D 100 (blue).

Definition 1.1. Let K � Rn. Define the Lp-polar body of K by

Kı;p WD

�
y 2 Rn W

Z 1
0

rn�1e�hp;K.ry/ dr � .n� 1/Š
�
: (1-10)

Our first result answers the aforementioned question.

Theorem 1.2. Let p 2 .0;1�. For a convex bodyK �Rn, Kı;p is convex, closed, has nonempty interior,
and

Mp.K/D nŠ jKjjK
ı;p
j: (1-11)

It is compact (bounded) if and only if 0 2 intK. For K symmetric, Kı;p is symmetric.

Theorem 1.2 justifies the notation

kykKı;p WD

�
1

.n� 1/Š

Z 1
0

rn�1e�hp;K.ry/ dr
�� 1

n

(1-12)

(the power serves to homogenize), and Kı;p D fy 2 Rn W kykKı;p � 1g. For p D1 one recovers the
usual polar body, i.e., Kı;1 D Kı (Lemma 3.6). The case p D 0 is treated in Section 3B1. Figure 1
illustrates some explicit examples.

As p approaches 0, the Lp-polars of all three of the bodies pictured in Figure 1 increase to R2. In fact,
for any convex body K � Rn„ Kı;p increases to fy W hy; b.K/i � 1g as p! 0 (Proposition 3.7), so we
define Kı;0 to be exactly that (Definition 3.10). In particular, Kı;0 is either R2 or a half-space depending
on whether or not b.K/ vanishes. By Example 3.11, we may plot a few of the Lp-polars of the standard
simplex on the plane (1-14); see Figure 2. Note that �ı;02 is a half-space since b.�2/¤ 0.

The proof of Theorem 1.2 has several parts. To obtain (1-11) we rely on a result of Ball (Theorem 5.20)
that implies that (1-12) has all the properties of a norm, except that it is, in general, only positively
1-homogeneous, i.e., k�ykKı;p D �kykKı;p for � > 0. If K is symmetric then k � kKı;p is fully
1-homogeneous, i.e., a norm (then Kı;p is also symmetric). For completeness, we include a detailed and
self-contained proof of Ball’s result in the Appendix. In particular, k � kKı;p is convex and so is Kı;p.
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Figure 2. The boundary of .�2/ı;p for p D 0 (green), p D 2 (orange), p D 10 (red),
and p D1 (blue).

Equality (1-11) follows from a standard formula relating the volume of a convex body to the surface
integral of k�k�nKı;p over the unit sphere (see (3-2)). Nonemptiness of the interior follows fromKı�Kı;p

(Lemma 3.6). This inclusion also implies that Kı;p is unbounded when 0… intK. The converse is slightly
more subtle: when 0 2 intK one has a small cube Œ�"; "�n �K. For classical polarity this would be the
end of the argument; yet unlike classical polarity, Lp-polarity does not invert inclusions, so we cannot
simply argue that Kı;p � .Œ�"; "�n/ı;p. Instead, we use the existence of a small cube inside of K to
obtain a lower bound on hp;K in terms of hp;Œ�";"�n (see (3-8)), which then induces an upper bound on
Kı;p by a multiple of .Œ�"; "�n/ı;p. The latter can be shown to be bounded (Claim 3.4), from which the
boundedness of Kı;p follows by using yet another key estimate (Lemma 2.6).

1C. Lp-Mahler conjectures and uniqueness of minimizers. For q > 0, denote by

Bnq WD fx 2 Rn W jx1j
q
C � � �C jxnj

q
� 1g (1-13)

the (closed) n-dimensional q-ball, and denote by

�n WD fx 2 Œ0;1/
n
W x1C � � �C xn � 1g (1-14)

the standard simplex in Rn. We propose a 1-parameter generalization of Mahler’s conjectures. Mahler’s
original conjectures [1939a; 1939b, p. 96] amount to setting p D1 in the following statements.

Conjecture 1.3. Let p 2 .0;1�. For a symmetric convex body K � Rn,

Mp.Œ�1; 1�
n/�Mp.K/�Mp.B

n
2 /:

Conjecture 1.4. Let p 2 .0;1�. For a convex body K � Rn,

inf
x2�n

Mp.�n� x/�Mp.K/:

By Proposition 1.5 below, the infimum in Conjecture 1.4 is attained by a unique point.
By the Bourgain–Milman inequality [1987, Corollary 6.1], there is c > 0 independent of dimension

so that M.K/� cn for all convex bodies K � Rn. By Lemma 3.12 below, this induces a lower bound
on Mp for all p with the constant only depending on p. The best known constant for M in dimensions
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n � 4 with K symmetric is c D � [Kuperberg 2008, Corollary 1.6; Berndtsson 2021, Theorem 2.1].
The sharp bound c D 4 is due to [Mahler 1939a, (2)] in dimension nD 2 and [Iriyeh and Shibata 2020,
Theorem 1.1] in dimension nD 3 (see also [Fradelizi et al. 2022]). For generalK, the best known constant
is c D 2 for n D 3 and c D �

2
for n � 4 by the symmetric bound and a symmetrization trick (see, for

example, [Mastrantonis and Rubinstein 2022, Corollary 55]). In dimension nD 2 the sharp bound is due
to [Mahler 1939a, (1)]. One may also formulate other versions of Mahler’s original conjecture, e.g., to
zonoids [Reisner 1986] or unconditional bodies [Saint-Raymond 1981, §4] and generalize these to all p,
but in this article we focus on Conjectures 1.3 and 1.4. In the special case p D 1, using (1-4) one can
show that the lower bound of Conjecture 1.3 is equivalent to a conjecture of Błocki [2014, p. 56], while
Conjecture 1.4 reduces to a conjecture of [Mastrantonis and Rubinstein 2022, Conjecture 10], both stated
in terms of Bergman kernels of tube domains.

Conjectures 1.3 and 1.4 for all p 2 .0;1/ imply Mahler’s conjectures, as we show in Lemma 3.12. On
the surface, the former look harder to deal with. However, there is a subtle, perhaps crucial, advantage in
the “regularized” version of the symmetric Mahler conjecture (Conjecture 1.3 for p 2 .0;1/) compared
to the classical version (p D1) of that conjecture. This has to do with the nonuniqueness of minimizers
in the classical symmetric Mahler conjecture which has been pointed out by experts [Tao 2008, §1.3;
2007] (see, in particular, the comments in the latter) as one of the main obstacles to tackling it (see also
the quote by Tao in the Introduction). Let us elaborate on that.

Indeed, tensoriality of M DM1 together with its invariance under classical polarity leads to the
conjectured nonuniqueness of symmetric minimizers, referred to as Hanner polytopes (nonuniqueness
here is in the strong sense: after taking the quotient by GL.n;R/, i.e., there are minimizing bodies that
are in different GL.n;R/-orbits). Hanner polytopes are symmetric convex polytopes that are defined
inductively: Œ�1; 1� is the unique Hanner polytope in dimension nD 1. In higher dimensions, a Hanner
polytope is given either as the Cartesian product of two lower-dimensional Hanner polytopes, or as the
polar of such [Hanner 1956, Theorems 3.1–3.2, 7.1; Hansen and Lima 1981, Corollary 7.4]. For example,
in dimension nD 3 there are precisely two non-GL.n;R/ equivalent Hanner polytopes: the cube Œ�1; 1�3,
as the product of lower-dimensional Hanner polytopes, and its polar B31 [Hanner 1956, pp. 86–87].

By contrast, our Lp-polarity operation (1-10) is no longer a duality, i.e., .Kı;p/ı;p ¤K in general.
In fact, the Lp-polar always has a smooth boundary for p 2 .0;1/, and hence Lp-polarity is never a
duality operation among polytopes. By (1-11) this means Mp is not invariant under Lp-polarity. We
conjecture that for all p 2 .0;1/, up to the action of GL.n;R/, Mp is uniquely minimized by the cube
among symmetric convex bodies, and by the simplex, appropriately repositioned, among general convex
bodies. If true, this would give some motivation for studying Mp and show that the original Mahler
conjecture has (for better and for worse) additional invariance absent from our Lp-Mahler conjectures.
Figure 3 illustrates this symmetry-breaking property of Mp in nD 3:

We emphasize that the above discussion pertains to the symmetric case, since in the nonsymmetric
case, the simplex, appropriately repositioned, is already conjectured to be the unique (up to GL.n;R/)
minimizer for the classical nonsymmetric Mahler conjecture [Tao 2007]. That is, M should be minimized
by �n � b.�n/, where b.�n/ coincides with the Santaló point of �n. Note that .�n � b.�n//ı is
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a GL.n;R/ image of �n� b.�n/, so polarity does not produce a non-GL.n;R/ equivalent minimizer in
this case. The conjectured uniqueness of the minimizer in the nonsymmetric case (regardless of p) is
perhaps related to the fact that �n cannot be expressed as a product of polytopes of lower dimension.

1D. Lp-Santaló theorem. For a function f W Rn! R[f1g, denote by

V.f / WD

Z
Rn
e�f .x/ dx and b.f / WD

1

V.f /

Z
Rn
xe�f .x/ dx

its volume and barycenter respectively. This terminology is motivated by V.hK/D nŠ jKıj (see (4-2)),
and b.hK/ D .nC 1/b.Kı/ (see (4-1)). By Theorem 1.2, V.hp;K/ D nŠ jKı;pj. However, lacking
homogeneity, it is not clear how b.hp;K/ can be directly related to b.Kı;p/ (Section 4). Our next result
generalizes the Santaló point.

Proposition 1.5. Let p 2 .0;1�. For a convex body K � Rn there exists a unique xp;K 2 Rn with

Mp.K � xp;K/D inf
x2Rn

Mp.K � x/;

which is also the unique point such that b.hp;K�xp;K /D 0. Moreover, xp;K 2 intK.

Part of the proof of Proposition 1.5 is almost identical to Santaló’s proof [1949, §2] of the existence and
uniqueness of Santaló points. The idea is to show that the function x 7!Mp.K � x/ is1 for x … intK
(Lemma 4.2), and smooth and strictly convex for x 2 intK (Lemma 4.4). This forces the existence of a
unique minimum. The main difference is that we study

R
Rn
e�hp;K.y/ dy under translations of K, while

Santaló [1949, (1.1)] studied the surface integral
R
@Bn2

hK.u/
�n du.

One of our main results is a generalization of Santaló’s theorem, verifying the upper bound in
Conjecture 1.3:

Theorem 1.6. Let p 2 .0;1�. For a symmetric convex body K � Rn,

Mp.K/�Mp.B
n
2 /:

In particular, by taking p !1, one recovers Santaló’s inequality [1949, (1.3)] M.K/ �M.Bn2 /

(though, of course, for this purpose alone there are direct, easier, proofs, e.g., [Saint-Raymond 1981,
Theorem 14]).
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The Lp-polarKı;p (1-10) is central to the proof of Theorem 1.6. One idea behind the proof is standard:
for u 2 @Bn2 , the Steiner symmetrization with respect to a hyperplane through the origin

u? WD fx 2 Rn W hx; ui D 0g;

increases the volume of the Lp-polar j.�uK/ı;pj � jKı;pj (Proposition 5.1). Yet proving this seems
nonstandard and rather nontrivial. We achieve it by proving the estimate

1
2
.Kı;p \ .u?C tu//C 1

2
.Kı;p \ .u?� tu//� .�uK/

ı;p
\ .u?C tu/ for all t 2 R, (1-15)

which compares the slices of K and those of �uK over u?, and then using the (classical) Brunn–
Minkowski inequality. To obtain (1-15) we use Ball’s Brunn–Minkowski inequality for harmonic means
(Theorem 5.20), together with the convexity of x 7! log

�
1
t

sinh.t/
�

(Claim 5.19).

Remark 1.7. Theorem 1.6 is different from the Lp Santaló inequalities of Lutwak and Zhang, who
introduced the symmetrized Lp-centroid body �pK with support function given by

h�pK.y/ WD

�
1

cn;p

Z
K

jhx; yijp
dx
jKj

�1
p

(where cn;p is a constant that depends on n and p determined by �pBn2 D B
n
2 ) for which they proved

jKjj.�pK/
ıj� jBn2 j

2 [Lutwak and Zhang 1997]. Their construction is restricted to symmetric bodies since
�pK is always symmetric (regardless of whetherK is), and the large p limit does not recover the polar body
but rather the reflection body: limp!1 �pK DK [ .�K/ (since limp!1 h�pK.y/D supx2K jhx; yij).
Subsequently, Ludwig and Haberl–Schuster extended this to nonsymmetric bodies [Ludwig 2005, p. 4195;
Haberl and Schuster 2009, §3] introducing the Lp-centroid body MpKC whose support function is

hMpKC.y/ WD

�
Cn;p.nCp/

Z
K

maxfhx; yi; 0gp dx
�1
p

:

Note that as p!1, we have Kı;p!Kı (Lemma 3.6), while MpKC!K [Haberl and Schuster 2009,
p. 9]. Yet for fixed p, it is not apparent to us if there is a precise relation between MpKC and our Kı;p

(though the polar of former are “isomorphic” to the latter — see Remark 3.14). They seem to be distinct.
For example, �2K is the Legendre ellipsoid of the convex body; thus bounding jKjj.�2K/ıj from below
by a bound of the form cn, where c is a constant independent of dimension, would imply Bourgain’s
conjecture (Conjecture 1.8) [Lutwak and Zhang 1997, p. 14]. On the contrary, by Lemma 3.12 below, the
Bourgain–Milman inequality implies bounds of this type for Mp for all p > 0. It would be interesting
to investigate relations between these constructions and ours, as well as relations to the level-sets of
the logarithmic Laplace transform (see Remark 3.14), e.g., as in [Klartag and Milman 2012; Latała and
Wojtaszczyk 2008].

1E. Relation to the isotropic constant and Bourgain’s slicing conjecture. The Lp-support function
hp;K is related to the covariance matrix of a convex body (Lemma 6.3),

Covij .K/ WD
Z
K

xixj
dx
jKj
�

Z
K

xi
dx
jKj

Z
K

xj
dx
jKj

(1-16)
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via the identity
r
2hp;K.0/D p Cov.K/: (1-17)

This turns out to have an interesting connection to the slicing problem. Set

C.K/ WD
jKj2

det Cov.K/
: (1-18)

Note
C.K/D

1

L2nK
; (1-19)

where LK is the isotropic constant [Brazitikos et al. 2014, Definition 2.3.11]. Bourgain [1986, Remark,
p. 1470; 1991, (1.9)] conjectured the following.

Conjecture 1.8. There exists a constant c > 0 independent of dimension such that C.K/ � cn for all
n 2 N and all convex bodies K � Rn.

Let B > 0. We introduce the following convexity hypothesis:

uB;K WD log detr2h1;K CBh1;K is convex: (�B )

Note here that h1;K is twice differentiable (Lemma 4.4). We restrict to p D 1 since property (�B ) is
equivalent to a similar convexity property on hp;K (see Remark 6.15).

Theorem 1.9. Let K � Rn be a convex body for which (�B ) holds for some B > 0. Then:

(i) There is xK 2 intK with

C.K/�
M 1

B
.K � xK/

2

M 1
2B
.K � xK/

�
2

eB

�n
:

(ii) There is xK 2 intK with

C.K/�
M.K � xK/

e2nBn
�

�
�

2e2B

�n
:

(iii) If K is symmetric,

C.K/�
M.K/

enBn
�

�
�

eB

�n
:

Theorem 1.9 has the following consequence for Bourgain’s slicing conjecture.

Corollary 1.10. If there is a constant B > 0 independent of dimension such that (�B ) holds for all convex
bodies in all dimensions, then Conjecture 1.8 holds.

In this direction, we have the following partial progress:

Theorem 1.11. Property .�nC1/ holds for all convex bodies K � Rn.

As an immediate corollary of Theorems 1.9 and 1.11 we recover the so-called “folklore” bound on the
isotropic constant due to [Milman and Pajor 1989, p. 96].

Corollary 1.12. For a convex body K � Rn,

C.K/�
�

�

2e2n

�n
:



2188 BO BERNDTSSON, VLASSIS MASTRANTONIS AND YANIR A. RUBINSTEIN

Corollary 1.12 is equivalent to an upper bound on the isotropic constant,

LK � C
p
n (1-20)

for C D e
p
2=� , and hence is far from optimal: (1-20) holds with C D 2�e by Milman and Pajor,

LK � Cn
1=4 logn by [Bourgain 1991, Theorem 1.6], and LK � Cn1=4 by [Klartag 2006, Corollary 1.2],

while very recently Chen [2021] obtained LK � C1eC2
p

log.n/
p

log log.3n/ (in particular, LK � Cn" for
all " > 0); see also [Klartag and Lehec 2022, (1)]. On these foundations several authors improved this
to LK � C.log.n//q for various values of q [Klartag and Lehec 2022; Jambulapati et al. 2022; Klartag
2023]; Conjecture 1.8 remains open.

The proof of Theorem 1.9 starts with the observation (1-17). The convexity assumption (�B ) allows
for the application of Jensen’s inequality with respect to any probability measure �. Because of (1-17)
this will only be useful if � is centered at the origin, i.e.,

b.�/ WD

Z
Rn
y d�.y/D 0 2 Rn:

We use the family of log-concave measures given by the 1
p

-support functions,

�p;K WD
e�h1=p;K.y/dyR

Rn
e�h1=p;K.y/ dy

D
e�ph1;K.y/dyR

Rn
e�ph1;K.y/ dy

; (1-21)

and optimize over p (the equality in (1-21) follows from Lemma 2.2(i) below). Proposition 1.5 is crucial
here, since it ensures that K may be translated to a position for which b.�p;K/D 0 (Corollary 4.5). After
applying Jensen’s inequality for the measures �p;K , it remains to bound

R
Rn

log detr2h1;K d�p;K.y/
and

R
Rn
h1;K.y/ d�p;K.y/; this is done in Lemmas 6.10 and 6.13 respectively. The Lp-Mahler volumes

Mp figure quite prominently throughout the proofs.
The proof of Theorem 1.11 is based upon an explicit computation

log detr2hp;K.y/D�p.nC 1/hp;K.y/C log .y/; (1-22)

 being the determinant of a positive-definite matrix. This relies on writing detr2hp;K as the determinant
of the .nC1/� .nC1/ Gram matrix M of the first moments of the measure

ephx;yi

ephp;K.y/

11K .x/ dx
jKj

:

Each entry of M then involves an e�php;K.y/ term; thus detr2hp;K D detM D e�.nC1/php;K for a
positive  > 0. Taking the logarithm gives (1-22). For the remaining terms,  , being the sum of products
of nC 1 integrals over K, can be written as an integral over KnC1,

 .y/D C

Z
KnC1

j�.z/j2ephz;.y;:::;y/i dz;

from which the convexity of log can be deduced (Lemma 6.16), and hence the claim of Theorem 1.11.
Finally, we generalize Theorem 1.11 to the setting of a general probability measure — this is formulated

in Theorem 6.19. In this generality, we show that the constant BDnC1 is actually optimal. In Section 6E



Lp -POLARITY, MAHLER VOLUMES, AND THE ISOTROPIC CONSTANT 2189

we give a completely different proof of both theorems using, surprisingly, Kobayashi’s theorem on the
Ricci curvature of Bergman metrics, coming back full circle to the point of departure of this article in
Section 1A: Bergman kernels.

1F. Perspective on the work on Nazarov and Błocki. Having presented Lp-polarity, it is perhaps worth-
while to revisit our original motivation for developing this theory: [Nazarov 2012; Blocki 2014; 2015].

Nazarov applied the theory of Bergman kernels of tube domains to tackle the symmetric Mahler
conjecture. The constant he obtained c D �3

16
in the inequality M.K/ � cn for symmetric convex

bodies K � Rn was suboptimal compared to the conjectured value of c D 4 (see Section 1C) but the
possibility remained open that perhaps a better choice of holomorphic L2 function and weight function
in Hörmander’s N@-technique would allow to tackle the Mahler conjectures, or that perhaps, as Nazarov
[2012, p. 337] suggested

. . . in order to get the Mahler conjecture itself on this way, one would have to work directly with
the Paley–Wiener space by either finding a good analogue of the Hörmander theorem allowing
to control the Paley–Wiener norm of the solution, or by finding some novel way to construct
decaying analytic functions of several variables.

Nazarov’s approach was subsequently revisited by Błocki [2014; 2015], Hultgren [2013], and ourselves
[Berndtsson 2022; Mastrantonis and Rubinstein 2022]. It became plausible after [Błocki 2015, p. 96] that
Nazarov’s approach might not yield Mahler’s conjectures. In view of the results in the present article (e.g.,
Lemma 3.12) it is now clear why this is so, and exactly how Nazarov’s approach fits in our story: it is an
approach to the case pD1 of Conjectures 1.3–1.4. It is a beautiful coincidence thatL1-Mahler volumes can
be expressed in terms of Bergman kernels (see Section 1A and [Mastrantonis and Rubinstein 2022, (42)]),

M1.K � b.K//D .4�/
n
jKj2KTK .

p
�1b.K/;

p
�1b.K//I (1-23)

but even if one had a complete understanding of the variation of such kernels among tube domains,
solving the classical Mahler conjectures would still require bridging the gap between L1 and L1.

Finally, we touch upon an observation encountered in [Błocki 2015, p. 96]:

This shows (although only numerically) that the Bergman kernel for tube domains does not
behave well under taking duals.

Indeed, the theory of Bergman kernels of tube domains corresponds to M1 and L1-polarity and the lack
of homogeneity of h1;K leads to incompatibility with L1-polarity, i.e., with classical polarity/duality.

Organization. In Section 2A basic properties of hp;K are laid out, namely the convexity of hp;K
(Lemma 2.1), its behavior under affine transformations ofK, Cartesian products, and its monotonicity with
respect to p (Lemma 2.2). Convexity properties of hp;K with respect to p or K are studied in Section 2B.
In Section 2C, an upper bound to the support function hp in terms of hp;K for bodies with barycenter at
the origin b.K/D 0 is given. Section 2D is dedicated to the explicit computation of hp;Œ�1;1�n for the
cube. In Section 3A the Lp-polar Kı;p is introduced, for which Mp.K/D nŠ jKjjK

ı;pj, Kı �Kı;p

and
T
p>0K

ı;p DKı. Inequalities relating M to Mp are established in Section 3C, and Section 3D is
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dedicated to computing Mp.Œ�1; 1�
n/. In Section 3E, the Lp-support of the diamond Bn1 is explicitly

computed in all dimensions and for all p (Lemma 3.17). Section 4 establishes the existence and uniqueness
of Santaló points for Mp (Proposition 1.5), and in Section 5 we prove a Santaló inequality for Mp for
symmetric convex bodies, showing that the 2-ball Bn2 is the maximizer (Theorem 1.6). In Section 6, we
study the isotropic constant and the relations between hp;K , Mp , and Bourgain’s conjecture. In particular,
we prove Theorem 1.9, Theorem 1.11, and its generalization, Theorem 6.19. We conclude by giving an
alternative proof of the latter using Bergman kernel methods and Kobayashi’s theorem. In the Appendix,
we verify that Kı;p is a convex body by proving Proposition A.1, and provide a detailed proof of Ball’s
Brunn–Minkowski inequality for the harmonic mean (Theorem 5.20).

2. Lp support functions

In this section we lay out basic properties for hp;K . In Section 2A we show convexity of y 7! hp;K.y/

(Lemma 2.1) and list several properties in Lemma 2.2, e.g., how hp;K transforms under affine transforma-
tions of K or with respect to Cartesian products. In Section 2B we study convexity properties of hp;K in
terms of convex combinations of p (Lemma 2.4) or K (Lemma 2.5). An upper bound for the support
function hK by hp;K for bodies with barycenter at the origin b.K/D 0 is given in Section 2C. Finally, in
Section 2D we carry out explicit computations for the cube.

2A. Basic properties of hp;K . The functions hp;K defined by (1-8) are convex, even if the underlying
body K is only compact.

Lemma 2.1. Let p 2 .0;1/. For a compact body K � Rn, hp;K.y/ is a convex function of y.

Proof. Let y; z 2 Rn and � 2 .0; 1/. By Hölder’s inequality,

hp;K..1��/yC�z/D
1

p
log
�Z
K

ephx;.1��/yC�zi
dx
jKj

�
D
1

p
log
�Z
K

.ephx;yi/1��.ephx;zi/�
dx
jKj

�
�
1

p
log
��Z

K

ephx;yi
dx
jKj

�1���Z
K

ephx;zi
dx
jKj

���
D
1��

p
log
�Z
K

ephx;yi
dx
jKj

�
C
�

p
log
�Z
K

ephx;zi
dx
jKj

�
D .1��/hp;K.y/C�hp;K.z/: �

Next, we list some properties of Lp-support functions that will be useful throughout.

Lemma 2.2. Let 0 < p < q <1. For compact bodies K � Rn, L� Rm, and A 2 GL.n;R/, a 2 Rn:

(i) hp;K.y/D 1
p
h1;K.py/.

(ii) hp;K�a.y/D hp;K.y/� ha; yi.

(iii) hp;AK.y/D hp;K.AT y/.
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(iv) hp;K�L.y; z/D hp;K.y/C hp;L.z/, y 2 Rn, z 2 Rm.

(v) hp;K � hq;K � hK .

Proof. (i) By definition,

hp;K.y/D
1

p
log

Z
K

ephx;yi
dx
jKj
D
1

p
log

Z
K

ehx;pyi
dx
jKj
D
1

p
h1;K.py/:

(ii) Changing variables x D u� a for x 2K � a, u 2K, and dx D du,

hp;K�a.y/D
1

p
log
�Z
K�a

ephx;yi
dx
jK � aj

�
D
1

p
log
�Z
K

ephu�a;yi
du
jKj

�
D
1

p
log
�Z
K

ephu;yi
du
jKj

e�pha;yi
�
D hp;K.y/� ha; yi:

(iii) For x D Au, dx D jdetAjdu,

hp;AK.y/D
1

p
log
�Z
AK

ephx;yi
dx
jAKj

�
D
1

p
log
�Z
K

ephAu;yi
jdetAjdu
jdetAjjKj

�
D
1

p
log
�Z
K

ephu;A
T yi du
jKj

�
D hp;K.A

T u/:

(iv) By Tonelli’s theorem [Folland 1999, §2.37; Mastrantonis and Rubinstein 2022, Claim 22],

hp;K�L.y; z/D
1

p
log
�Z
K�L

eph.x;u/;.y;z/i
dxdu
jK �Lj

�
D
1

p
log
�Z
K�L

ephx;yiephz;ui
dxdu
jKjjLj

�
D
1

p
log
��Z

K

ephx;yi
dx
jKj

��Z
L

ephz;ui
du
jLj

��
D
1

p
log
�Z
K

ephx;yi
dx
jKj

�
C
1

p
log
�Z
L

ephz;ui
du
jLj

�
D hp;K.y/C hp;L.z/:

(v) By (1-7),

hq;K.y/ WD
1

q
log
�Z
K

eqhx;yi
dx
jKj

�
�
1

q
log
�Z
K

eqhK.y/
dx
jKj

�
D
1

q
log eqhK.y/ D hK.y/:

By Hölder’s inequality (note q
p
> 1),

hp;K.y/D
1

p
log
�Z
K

ephx;yi
dx
jKj

�
�
1

p
log
��Z

K

e
q
p
phx;yi dx

jKj

�p
q
�Z
K

dx
jKj

�1�p
q
�

D
1

p

p

q
log
�Z
K

eqhx;yi
dx
jKj

�
D hq;K.y/: �



2192 BO BERNDTSSON, VLASSIS MASTRANTONIS AND YANIR A. RUBINSTEIN

Remark 2.3. One may wonder why we have a factor of nŠ in (1-2) and (1-11). The first reason is that
then one has (1-6) and (1-9). The second, more important, reason is that then Mp is tensorial. Indeed, by
Lemma 2.2(iv) and (1-9),

Mp.K �L/ WD jK �Lj

Z
Rn�Rm

e�hp;K�L.y;z/ dy dz

D jKjjLj

Z
Rn�Rm

e�hp;K.y/e�hp;L.z/ dy dz DMp.K/Mp.L/:

2B. Additional convexity properties. Lemma 2.1 states that y 7! hp;K.y/ is convex regardless of the
convexity of K. Regarding p and K as the variables, we show two more properties: Lemma 2.4 describes
convexity in p, and Lemma 2.5 shows an asymptotic (in p) concavity in K. These two lemmas are not
used elsewhere in the article and we state them for their independent interest.

Lemma 2.4. Let p; q 2 .0;1/. For a convex body K � Rn and � 2 .0; 1/,

h.1��/pC�q;K �
.1��/p

.1��/pC�q
hp;K C

�q

.1��/pC�q
hq;K :

Proof. By Hölder’s inequality,

h.1��/pC�q;K.y/D
1

.1��/pC�q
log
�Z
K

e..1��/pC�q/hx;yi
dx
jKj

�
D

1

.1��/pC�q
log
�Z
K

e.1��/phx;yie�qhx;yi
dx
jKj

�
�

1

.1��/pC�q
log
��Z

K

ephx;yi
dx
jKj

�1���Z
K

eqhx;yi
dx
jKj

���
D

.1��/p

.1��/pC�q

1

p
log
�Z
K

ephx;yi
dx
jKj

�
C

�q

.1��/pC�q

1

q
log
�Z
K

eqhx;yi
dx
jKj

�
D

.1��/p

.1��/pC�q
hp;K.y/C

�q

.1��/pC�q
hq;K.y/: �

Lemma 2.5. Let p 2 .0;1/. For convex bodies K;L� Rn and � 2 .0; 1/,

hp;.1��/KC�L � .1��/hp;K C�hp;L�
1

p
log
�
j.1��/KC�Lj

jKj1��jLj�

�
:

Proof. Fix y 2 Rn. Note that

1.1��/KC�L..1��/xC�z/eph.1��/xC�z;yi � .1K.x/ephx;yi/1��.1L.z/ephz;yi/�

for all x; z 2 Rn. Therefore, by the Prékopa–Leindler inequality [Prékopa 1973, Theorem 3],Z
.1��/KC�L

ephx;yi dx �
�Z
K

ephx;yi dx
�1���Z

L

ephx;yi dx
��
:
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As a result,

hp;.1��/KC�L.y/D
1

p
log
�Z

.1��/KC�L

ephx;yi
dx

j.1��/KC�Lj

�
�
1

p
log
��Z

K

ephx;yi dx
�1���Z

L

ephx;yi dx
�� 1

j.1��/KC�Lj

�
D
1

p
log
��Z

K

ephx;yi
dx
jKj

�1���Z
L

ephx;yi
dx
jLj

��
jKj1��jLj�

j.1��/KC�Lj

�
D .1��/hp;K.y/C�hp;K.y/�

1

p
log
�
j.1��/KC�Lj

jKj1��jLj�

�
;

as claimed. �

2C. A reverse inequality. By Lemma 2.2(v),
hp;K � hK

regardless of the position of K. A reverse inequality holds when the barycenter is at the origin:

Lemma 2.6. Let p 2 .0;1/. For a convex body K � Rn with b.K/D 0, and � 2 .0; 1/,

hK.y/� hp;K

�
y

�

�
�
n

p
log.1��/:

Proof. Let x 2K, y 2 Rn and � 2 .0; 1/. The aim is to use Jensen’s inequality to get an upper bound on
hx; yi. Since b.K/D 0,

hx; yi D

�
�x;

y

�

�
D

�
�xC .1��/b.K/;

y

�

�
D

�
�xC .1��/

Z
K

u
du
jKj

;
y

�

�
D

Z
K

�
�xC .1��/u;

y

�

�
du
jKj

: (2-1)

By convexity, .1� �/xC �u lies in K as x; u 2 K. Therefore, by (2-1), Jensen’s inequality, and the
change of variables v D �xC .1��/u,

hx; yi D log ehx;yi � log
�Z
K

eh�xC.1��/u;
y
�
i du
jKj

�
D log

�Z
�xC.1��/K

ehv;
y
�
i .1��/

�ndv
jKj

�
D log

�
1

.1��/n

Z
�xC.1��/K

ephv;
y
p�
i dv
jKj

�
� log

�
1

.1��/n

Z
K

ephv;
y
p�
i dv
jKj

�
D php;K

�
y

p�

�
�n log.1��/:

A supremum over x 2K gives hK.y/� phK;p
� y
p�

�
�n log.1��/. By a change of variable, hK.py/�

phK;p
�y
�

�
�n log.1��/. The lemma now follows from homogeneity of hK . �

Corollary 2.7. Let q 2 .0;1�. For a convex body K � Rn,

lim
p!q

hp;K.y/D hq;K.y/:
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Proof. First, let q 2 .0;1/. Since K is bounded, there exists M > 0 with jxj �M for all x 2 K. In
particular, ephx;yi � e2qM jyj for all x 2K and p� 2q. By dominated convergence [Folland 1999, §2.24],

lim
p!q

Z
K

ephx;yi
dx
jKj
D

Z
K

eqhx;yi
dx
jKj

:

Therefore,

lim
p!q

hp;K.y/D lim
p!q

�
1

p
log

Z
K

ephx;yi
dx
jKj

�
D
1

q
log

Z
K

eqhx;yi
dx
jKj
D hq;K.y/:

Next, consider qD1. By Lemma 2.2(v), hp;K.y/ is monotone increasing in p, with hp;K.y/�hK.y/.
Thus the limit exists with limp!1 hp;K.y/ � hK.y/; equivalently, limp!1Œhp;K.y/� hy; b.K/i� �
hK.y/� hy; b.K/i. By Lemma 2.2(ii), this is

lim
p!1

hp;K�b.K/.y/� hK�b.K/.y/:

On the other hand, as b.K � b.K//D 0, Lemma 2.6 applies:

hK�b.K/.y/D
hK�b.K/.�y/

�
�
hp;K�b.K/.y/

�
�
n

�p
log.1��/;

where we used the homogeneity of hK (here � can be taken as any fixed value in .0; 1/). Letting first
p!1 and then �! 1,

hK�b.K/.y/� lim
p!1

hp;K�b.K/.y/:

In conclusion, hK�b.K/.y/D limp!1 hp;K�b.K/.y/ and using Lemma 2.2(ii) again we obtain hK.y/D
limp!1 hp;K.y/. �

2D. The cube. We explicitly compute the Lp-support functions and Lp-Mahler volumes of the cube
Œ�1; 1�n. This will be useful in proving Lemma 4.2 later.

Lemma 2.8. For p 2 .0;1/,

hp;Œ�1;1�n.y/D
1

p

nX
iD1

log
�

sinh.pyi /
pyi

�
; y 2 Rn:

Proof. By Claim 2.9 below,

hp;Œ�1;1�n.y/D
1

p
log
�Z

Œ�1;1�n
ephx;yi

dx
jŒ�1; 1�nj

�
D
1

p
log
�
2n

nY
iD1

sinh.pyi /
pyi

1

2n

�
D
1

p

nX
iD1

log
�

sinh.pyi /
pyi

�
: �

Claim 2.9. For y 2 Rn, Z
Œ�1;1�n

ehx;yi dx D 2n
nY
iD1

sinh.yi /
yi

:
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Proof. This may be expressed as the product of integralsZ
Œ�1;1�n

ehx;yi dx D
nY
iD1

Z 1

�1

exiyi dxi ;

because ehx;yi D ex1y1 � � � exnyn and Œ�1; 1�n is the product of n copies of Œ�1; 1�. It is therefore enough
to take nD 1 and y 2 R. Suppose first that y ¤ 0. ThenZ 1

�1

exy dx D
�
exy

y

�1
xD�1

D
ey � e�y

y
D
2 sinh.y/

y
:

For y D 0, we have
R 1
�1 e

x�0 dx D 2. By L’Hôpital’s rule also

lim
y!0

2 sinh.y/
y

D lim
y!0

ey � e�y

y
D lim
y!0

ey C e�y

1
D 2;

verifying the formula for all y. �

3. Lp-polarity and Lp-Mahler volumes

In Section 3A, we motivate the definition of the Lp-polar body Kı;p (Definition 1.1) and prove
Theorem 1.2. In Section 3B, we establish the continuity of Kı;p in p (Lemma 3.6) and show that,
for p converging to 0, Kı;p converges either to Rn or a half-space (Proposition 3.7). In Section 3C we
generalize (1-3) to a lower bound of M in terms of Mp , for all p>0, for bodies with b.K/D0 (see (3-10)).
In Sections 3D and 3E calculations for Mp.Œ�1; 1�

n/ and hp;Bn1 are carried out and used to numerically
approximate Mp.B

3
1 /, providing evidence that Mp.Œ�1; 1�

3/ <Mp.B
3
1 / when p <1 (Figure 3).

3A. The Lp-polar body.

3A1. Motivating the definition. The support function of a convex body is convex and 1-homogeneous
and hence its sublevel set

Kı WD fy 2 Rn W hK.y/� 1g

defines a convex body such that M.K/DM1.K/D jKj
R

Rn
e�hK.y/ dy D nŠ jKjjKıj. This is special

for the case p D1. To see why, first recall the definition (1-9), Mp.K/ WD jKj
R

Rn
e�hp;K . Yet despite

the suggestive notation, for p 2 .0;1/, hp;K is not the support function of a convex body since it is
not 1-homogeneous. On the other hand, by Lemma 2.1, hp;K is convex and hence the sublevel set
fhp;K � 1g WD fy 2 Rn W hp;K.y/� 1g is a convex body. Nonetheless, the volume of fhp;K � 1g is not
related to Mp.K/ since despite havingZ

Rn
e�hp;K.x/ dx D

Z 1
�1

e�t jfhp;K � tgj dt I

without 1-homogeneity it is not clear how fhp;K � tg relates to fhp;K � 1g for all t .
In order to properly define the “Lp-polar” body we replace hp;K by a 1-homogeneous cousin. An

equivalent way of defining a convex body L is via its “norm”:

kxkL WD infft > 0 W x 2 tLg: (3-1)
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This is a norm only when L is symmetric, but it is always positively 1-homogeneous and subadditive
with LD fx 2 Rn W kxkL � 1g [Gruber 2007, Theorem 4.3]. Given such a “norm”, the volume of L can
be expressed as an integral over the sphere:

jLj D

Z
fx2RnWkxkL�1g

dx D
Z
f.r;u/2Œ0;1/�@Bn2 WkrukL�1g

rn�1 dr du

D

Z
@Bn2

Z 1=kukL

rD0

rn�1 dr duD
1

n

Z
@Bn2

du
kuknL

: (3-2)

Looking at (3-2) one may be able to recover the “norm” of a convex body by writing its volume as an
integral over @Bn2 . Our aim is to define a convex body Kı;p with volume jKı;pj D 1

nŠ

R
e�hp;K. Starting

from the volume we guess its norm: we need to write
R
e�hp;K as an integral on the sphere matching (3-2),

jKı;pj D
1

nŠ

Z
Rn
e�hp;K.y/ dy D

1

nŠ

Z
@Bn2

Z 1
0

e�hp;K.ru/rn�1 dr du

D
1

n

Z
@Bn2

du��
1

.n�1/Š

R1
0 rn�1e�hp;K.ru/ dr

�� 1
n
�n : (3-3)

This justifies the definition of k � kKı;p via (1-12) and Kı;p as the convex body associated to that “norm”
(Definition 1.1).

3A2. Proof of Theorem 1.2. In this subsection we conclude the proof of Theorem 1.2. We start with two
lemmas.

Lemma 3.1. Let 0 < p < q and recall (1-12). For a compact body K, k � kKı;p � k � kKı;q � hK. � /. In
particular, Kı �Kı;q �Kı;p.

Note the support function of a compact body coincides with the “norm” of the polar body (3-1),

hK. � /D k � kKı ; (3-4)

since y 2Kı if and only if hK.y/� 1 [Gruber 2007, p. 56]. Also, for convex bodies [Rockafellar 1970,
Corollary 13.1.1],

L�K if and only if k � kK � k � kL if and only if hKı. � /� hLı. � /: (3-5)

Lemma 3.2. Let p 2 .0;1�. For a convex body K � Rn, Kı;p is bounded (compact) if and only if
0 2 intK.

In particular, since Kı has nonempty interior [Rockafellar 1970, Corollary 14.6.1], Lemma 3.1 shows
that Kı;p is nonempty and has nonempty interior.

Before proving Lemmas 3.1 and 3.2, let us recall an integral formula regarding 1-homogeneous
functions that will be useful throughout.

Claim 3.3. Let k 2 N. For a 1-homogeneous function f W Rn! R and x 2 Rn with f .x/¤ 0,Z 1
0

rk�1e�f .rx/ dr D
.k� 1/Š

f .x/k
:
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Proof. By homogeneity of f , f .rx/D rf .x/ for all r > 0. Setting �D rf .x/,Z 1
0

rk�1e�f .rx/ dr D
Z 1
0

rk�1e�rf .x/ dr D
Z 1
0

�k�1

f .x/k�1
e��

d�
f .x/

D
1

f .x/k

Z 1
0

�k�1e�� d�D
.k� 1/Š

f .x/k
;

as claimed. �

Proof of Lemma 3.1. Let p � q. By Lemma 2.2(v), hp;K � hq;K . Thus by (1-12),

kxkKı;p D

�
1

.n� 1/Š

Z 1
0

rn�1e�hp;K.rx/ dr
�� 1

n

�

�
1

.n� 1/Š

Z 1
0

rn�1e�hq;K.rx/ dr
�� 1

n

D kxkKı;q : (3-6)

So, for x2Kı;q, kxkKı;p�kxkKı;q�1; thus x2Kı;p. In addition, by homogeneity of hK , Claim 3.3 gives

1

.n� 1/Š

Z 1
0

rn�1e�hK.rx/ dr D
1

hK.x/n
: (3-7)

Since by Lemma 2.2(v) hp;K � hK , and by (3-4), (3-7) and a computation similar to (3-6) kxkKı;p �
hK.x/D kxkKı , it follows that Kı �Kı;p by (3-5). �

For the proof of Lemma 3.2, it is useful to know that the Lp-polars of Œ�1; 1�n are bounded.

Claim 3.4. For p 2 .0;1�, we have .Œ�1; 1�n/ı;p is bounded.

Proof. Since b.Œ�1; 1�n/D 0, by Lemma 2.6, with �D 1
2

,

hŒ�1;1�n

�
ry

2

�
� hp;Œ�1;1�n.ry/C

n

p
log 2

for all y 2 Rn and r > 0. Thus by (1-12),

kyk.Œ�1;1�n/ı;p D

�
1

.n� 1/Š

Z 1
0

rn�1e�hp;Œ�1;1�n .ry/ dr
�� 1

n

�

�
1

.n� 1/Š

Z 1
0

rn�1e�hŒ�1;1�n.r
y
2
/e

n
p

log2 dr
�� 1

n

D e�
log2
p

�
1

hŒ�1;1�n
�y
2

�n�� 1n D e�
log2
p

2
hŒ�1;1�n.y/D

e�
log2
p

2
kyk.Œ�1;1�n/ı ;

by Claim 3.3, the homogeneity of hŒ�1;1�n , and (3-4). By (3-5),

.Œ�1; 1�n/ı;p � 2e
log2
p .Œ�1; 1�n/ı D 2e

log2
p Bn1 ;

which is bounded. �
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Proof of Lemma 3.2. Assume 0 2 intK and let r > 0 be such that Œ�r; r�n �K. Then,

hp;K.y/D
1

p
log
�Z
K

ephx;yi
dx
jKj

�
�
1

p
log
�Z

Œ�r;r�n
ephx;yi

dx
jKj

�
D
1

p
log
�Z

Œ�r;r�n
ephx;yi

dx
jŒ�r; r�nj

jŒ�r; r�nj

jKj

�
D hp;Œ�r;r�n.y/C

1

p
log

.2r/n

jKj
: (3-8)

Using this and (1-12),

kykKı;p �

�
1

.n� 1/Š

Z 1
0

rn�1e�hp;Œ�r;r�n .�y/�
1
p

log .2r/
n

jKj d�
�� 1

n

D
.2r/

1
p

jKj
1
np

kyk.Œ�r;r�n/ı;p :

Thus, by (3-5),

Kı;p �
jKj

1
np

.2r/
1
p

.Œ�r; r�n/ı;p;

which is bounded by Claim 3.4.
For the converse, we claim that if 0 … intK then Kı;p is unbounded. By Lemma 3.1, Kı �Kı;p so it

is enough to show Kı is unbounded. This is classical [Rockafellar 1970, Corollary 14.5.1]. �

Proof of Theorem 1.2. By Proposition A.1, k � kKı;p is positively 1-homogeneous and subadditive. The
nonemptiness of the interior of Kı;p follows from Lemma 3.1 since Kı has nonempty interior. It is also
closed and convex as the sublevel set of a continuous, convex function. Convexity of k � kKı;p follows
from its 1-homogeneity and subadditivity: for x; y 2 Rn and � 2 Œ0; 1�,

k.1��/xC�ykKı;p � k.1��/xkKı;p Ck�ykKı;p D .1��/kxkKı;p C�kykKı;p :

If K is symmetric, i.e., �K DK, then

hp;K.�y/D
1

p
log

Z
K

ephx;�yi
dx
jKj
D
1

p
log

Z
�K

eph�z;�yi
dz
jKj
D
1

p
log

Z
K

ephz;yi
dz
jKj
D hp;K.y/:

Therefore,

k� xkKı;p D

�Z 1
0

rn�1e�hp;K.�rx/ dr
�� 1

n

D

�Z 1
0

rn�1e�hp;K.rx/ dr
�� 1

n

D kxkKı;p ;

making k � kKı;p a norm, and Kı;p symmetric. Finally, (1-11) follows from (3-3) and the definition
of k � kKı;p . �

Remark 3.5. Ball showed that for a convex function � W Rn! R[f1g and q � 1, setting

kyk�;q WD

�Z 1
0

rq�1e��.ry/ dr
�� 1

q

defines a positively 1-homogeneous, subadditive function that is also a norm when � is even [Ball 1988,
Theorem 5]. Then, fy 2 Rn W kyk�;q � 1g defines a convex body (for even � [Ball 1988, Theorem 5], for
general � [Klartag 2006, Theorem 2.2]). In this notation, (1-12) reads kyknKı;p D .n�1/Š kyk

n
hp;K ;n

. For
a statement and proof of Ball’s theorem, see Proposition A.1 below.
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3B. Continuity of Mp and limiting cases. First, we translate (pointwise) convergence of Lp-support
functions to convergence of the norms of the Lp-polars.

Lemma 3.6. Let 0 < p < q �1. For a compact body K � Rn, Kı;p �Kı;q and

lim
p!q
kxkKı;p D kxkKı;q :

In particular,
T
0<p<q K

ı;p DKı;q .

Proof. By Corollary 2.7, hp;K increases to hq;K as p increases to q. Therefore, one may use the monotone
convergence theorem [Folland 1999, §2.14] to take the limit under the integral in the definition of hp;K ,

lim
p!1

kxkKı;p D lim
p!1

�
1

.n� 1/Š

Z 1
rD0

rn�1e�hp;K.rx/ dr
�� 1

n

D

�
1

.n� 1/Š

Z 1
rD0

lim
p!q

.rn�1e�hp;K.rx// dr
�� 1

n

D

�
1

.n� 1/Š

Z 1
rD0

rn�1e�hq;K.rx/ dr
�� 1

n

D kxkKı;q : �

3B1. The cases p D 0 and p D1. By Lemma 3.6, as p!1, Kı;p converges to the polar body Kı

in (1-1). In this subsection we focus on the other extreme case p D 0 and show that in the limit p! 0,
Kı;p converges either to Rn or to a half-space, depending on whether b.K/D 0 or not.

Proposition 3.7. For a compact body K � Rn,

lim
p!0
kykKı;p D hy; b.K/i

and [
p>0

Kı;p D fy 2 Rn W hy; b.K/i � 1g:

Proposition 3.7 and Lemma 3.6 imply the following inclusion for all Kı;p.

Corollary 3.8. For a compact body K � Rn, Kı;p � fy 2 Rn W hy; b.K/i � 1g for all p 2 .0;1�.

The statement of Corollary 3.8 is trivial when p D 1 because b.K/ 2 K; thus, by the definition
of the polar, hy; b.K/i � 1 for all y 2Kı. The proof of Proposition 3.7 follows from the fact that the
Lp-support functions converge to a linear function as p! 0.

Lemma 3.9. For a compact body K � Rn and y 2 Rn,

lim
p!0

hp;K.y/D hy; b.K/i:

Proof. Expanding the exponential,

hp;K.y/D
1

p
log

Z
K

ephx;yi
dx
jKj

D
1

p
log
�Z
K

1Cphx; yiCO.p2/
dx
jKj

�
D
1

p
log.1Cphy; b.K/iCO.p2//:
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By L’Hôpital’s rule,

lim
p!0

hp;K.y/D lim
p!0

log.1Cphy; b.K/iCO.p2//
p

D lim
p!0

hy; b.K/iCO.p/

1Cphy; b.K/iCO.p2/
D hy; b.K/i:

Alternative proof :

lim
p!0

hp;K.y/D lim
p!0

1

p
log

Z
K

ephx;yi
dx
jKj

D lim
p!0

R
Khx; yie

phx;yi dx
jKjR

K e
phx;yi dx

jKj

D

Z
K

hx; yi
dx
jKj
D hy; b.K/i;

again by L’Hôpital’s rule. �

Proof of Proposition 3.7. For y 2Rn with hy; b.K/i ¤ 0, by the monotone convergence theorem [Folland
1999, §2.14] and Lemma 3.9,

lim
p!0
kykKı;p D lim

p!0

�
1

.n� 1/Š

Z 1
0

rn�1e�hp;K.ry/ dr
�� 1

n

D

�
1

.n� 1/Š

Z 1
0

rn�1e�rhy;b.K/i dr
�� 1

n

D hy; b.K/i;

where Claim 3.3 was used on the 1-homogeneous y 7! hy; b.K/i. If hy; b.K/i D 0, similarly,

lim
p!0
kykKı;p D

�
1

.n� 1/Š

Z 1
0

rn�1 dr
�� 1

n

D 0D hy; b.K/i: �

Proposition 3.7 motivates the following definition.

Definition 3.10. For a compact body K � Rn, let

Kı;0 WD fy 2 Rn W hy; b.K/i � 1g:

For a set A� Rn, denote by
coA

its convex hull defined as the smallest convex set in Rn containing A.

Example 3.11. The polar body of the standard 2-dimensional simplex �2 is given by the intersection of
two half-spaces

�ı2 D f.x; y/ 2 R2 W x � 1 and y � 1g:

That is because �2D cof.0; 0/; .1; 0/; .0; 1/g; thus .x; y/ 2�ı if and only if xD h.x; y/; .1; 0/i � 1 and
y D h.x; y/; .0; 1/i � 1. In addition, j�2j D 1

2
; thus the x-coordinate of the barycenter of �2 is

1

j�2j

Z
�2

x dx dy D 2
Z 1

xD0

Z 1�x

yD0

x dy dx D 2
Z 1

0

x.1� x/ dx D 1

3
:

Similarly, 1
j�2j

R
�2
y dy D 1

3
, and hence b.�2/D

�
1
3
; 1
3

�
. As a result,

�ı;0 D f.x; y/ 2 R2 W xCy � 3g:
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By Lemma 3.6, fx � 1g\ fy � 1g � .�2/ı;p � fxCy � 3g for all p � 0. By direct calculation,

hp;�2.x; y/D
1

p
log
� epx�1

px
�
epy�1
py

p x�y
2

�
;

from which we get Figure 2 in the Introduction. By Lemma 2.2(ii),

hp;�2�b.�2/.y/D hp;�2 � h.x; y/; b.�2/i D
1

p
log
� epx�1

px
�
epy�1
py

p x�y
2

�
�
x

3
�
y

3
;

leading to Figure 1, right, in the Introduction.

3C. Inequalities between Mp and M. By Lemma 2.2(v), hp;K � hK for all p; thus

M.K/�Mp.K/: (3-9)

In view of Lemma 2.6, a reverse inequality holds under the extra assumption of b.K/D 0.

Lemma 3.12. Let p 2 .0;1/. For a convex body K � Rn with b.K/D 0,�
p

.1Cp/1C
1
p

�n
Mp.K/�M.K/:

Hence, limp!1Mp.K/DM.K/.

Remark 3.13. Lemma 3.12 generalizes the Bergman kernel inequality (1-3) (recall (1-23)).

Proof. Assume b.K/D 0. Lemma 2.6 applies to give

M.K/D jKj

Z
Rn
e�hK.y/ dy � .1��/

n
p jKj

Z
Rn
e�hp;K.

y
�
/ dy

D .1��/
n
p �njKj

Z
Rn
e�hp;K.y/ dy D ..1��/

1
p �/nMp.K/: (3-10)

It remains to maximize f .�/ WD .1��/1=p�. The derivative

f 0.�/D�
1

p
.1��/

1
p
�1�C .1��/

1
p D .1��/

1
p
�1

�
�
�

p
C 1��

�
(3-11)

is positive for � 2
�
0; p
pC1

�
and nonpositive for � 2

� p
pC1

; 1
�
, so plugging �D p

pC1
in (3-10) proves the

claim.
Finally, note

lim
p!1

p

.1Cp/1C
1
p

D lim
p!1

�
1

.1Cp/
1
p

�
1

.1Cp/1C
1
p

�
D 1I

thus limp!1Mp.K/DM.K/. �

Remark 3.14. For convex K � Rn with b.K/D 0, and any � 2 .0; 1/,

hK.y/D

�
1

.n� 1/Š

Z 1
0

rn�1e�hK.ry/ dr
�� 1

n

�

�
1

.n� 1/Š

Z 1
0

rn�1e�hp;K.
ry
�
/C n

p
log.1��/ dr

�� 1
n

D
kykKı;p

.1��/
1
p �
;
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where we used Lemma 2.6 and Claim 3.3. So,

Kı �Kı;p �
1

.1��/
1
p �
Kı �

.1Cp/1C
1
p

p
Kı

(optimizing over � as in the proof of Lemma 3.12). This yields inclusions independent of K or the
dimension. Thus for convex bodies with b.K/D 0, all the Lp-polars Kı;p are “isomorphic” to (each
other and to) the classical polar body Kı. They are also “isomorphic” to the sublevel sets of h1;K ; see
[Klartag and Milman 2005, Lemma 2.2; 2012, p. 16]. Furthermore, the latter (at least in the symmetric
case) are “isomorphic” to the Lutwak–Zhang centroid bodies from Remark 1.7 [Klartag and Milman
2012, Lemma 2.3]. Nonetheless, “isomorphic” in this context means that inclusions in both directions
exist by dilations independent of dimension. Consequently, such equivalences are not typically helpful
when one is concerned with sharp lower bounds as in the Mahler conjectures. Given Lemma 3.12 and
the remarks in the Introduction, we believe that our Lp-polars could be helpful in the pursuit of sharp
bounds, e.g., as in the Mahler conjectures.

3D. The cube. The next lemma computes the Lp-Mahler volume of the cube.

Lemma 3.15. For p 2 .0;1/,

Mp.Œ�1; 1�
n/D 4n

�
1

p

Z 1
0

�
y

sinh.y/

�1
p

dy
�n
:

Note that
Mp.Œ�1; 1�

n/D .Mp.Œ�1; 1�//
n;

in agreement with Remark 2.3.

Proof. By Lemma 2.8,

Mp.Œ�1; 1�
n/D jŒ�1; 1�nj

Z
Rn
e�hp;Œ�1;1�n .y/ dy D 2n

Z
Rn

nY
iD1

�
pyi

sinh.pyi /

�1
p

dy

D 2n
nY
iD1

Z
R

�
pyi

sinh.pyi /

�1
p

dy D 2n
�Z

R

�
py

sinh.py/

�1
p

dy
�n
:

The claim follows from the evenness of py=sinh.py/ and the change of variables z D py. �

In the notation of Section 1A, Błocki [2014, (7)]. obtained

jŒ�1; 1�nj2KTŒ�1;1�n .0; 0/D
�
�
4

�n
:

This agrees with our next corollary as M1.K/D .4�/
njKj2KTK .0; 0/ by (1-4).

Corollary 3.16. M1.Œ�1; 1�
n/D �2n.

Proof. Setting p D 1 in Lemma 3.15,

M1.Œ�1; 1�
n/D

�
2

Z
R

y

sinh.y/
dy
�n
D

�
4

Z 1
0

y

sinh.y/
dy
�n
;
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Figure 4. Mp.Œ�1; 1�/ for p 2 .0; 100/ compared to M.Œ�1; 1�/D 4.

because y= sinh.y/ is even. Using .1� x/�1 D
P1
kD0 x

k for 0 < x < 1, expand the integrand

y

sinh.y/
D

2y

ey � e�y
D

2ye�y

1� e�2y
D 2ye�y

1X
kD0

e�2ky D

1X
kD0

2ye�.2kC1/y :

Therefore, by integration by partsZ 1
0

y

sinh.y/
dy D

1X
kD0

Z 1
0

2ye�.2kC1/y dy D
1X
kD0

2

2kC 1

Z 1
0

e�.2kC1/y dy

D 2
X
kD0

1

.2kC 1/2
D 2

� 1X
kD1

1

k2
�

1X
kD1

1

.2k/2

�

D 2

� 1X
kD1

1

k2
�
1

4

1X
kD1

1

k2

�
D
3

2

1X
kD0

1

k2
D
3

2

�2

6
D
�2

4
;

and hence

M1.Œ�1; 1�
n/D

�
4

Z 1
0

y

sinh.y/
dy
�n
D �2n: �

A numerical approximation of Mp.Œ�1; 1�/ gives Figure 4.

3E. Cube, diamond, and uniqueness of minimizers. Let Bn1 D Œ�1; 1�
n and Bn1 D .B

n
1/
ı be the cube

and diamond (recall (1-13)). The Lp-support function of the cube was computed in Lemma 2.8 and its
Lp-Mahler volume is given by Lemma 3.15. Lemma 3.17 below is the considerably harder computation
of the Lp-support function of the diamond.

Lemmas 3.15 and 3.17 allow the comparison of the Lp-Mahler volumes of the cube and the diamond.
We carried this out numerically for nD 3 and those computations lead to Figure 3 from the Introduction.
As discussed in Section 1C, this provides evidence that the cube is the unique minimizer for Conjecture 1.3.

Lemma 3.17. For p 2 .0;1/,

hp;Bn1 .y/D
1

p
log
�
nŠ

pn

nX
jD1

yn�2j .epyj C .�1/ne�pyj /

.y2j �y
2
1/ � � � .y

2
j �y

2
j�1/.y

2
j �y

2
jC1/ � � � .y

2
j �y

2
n/

�
: (3-12)
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The special case p D 1 of (3-12) was stated by Błocki [2015, pp. 96–97] in terms of Bergman kernels
without proof.

For the proof of Lemma 3.17 we require the following claim.

Claim 3.18. For n� 2, and distinct y1; : : : ; yn 2 R,

nX
jD1

ykj

.yj �y1/ � � � .yj �yj�1/.yj �yjC1/ � � � .yj �yn/
D

�
0; 0� k < n� 1;
1; k D n� 1:

Proof. Consider the rational function

f W C! C[f1g; z 7!
zk

.z�y2/ � � � .z�yn/
C

nX
jD2

ykj

.yj � z/.yj �y2/ � � � .yj �yn/
;

i.e., think of y1 as a complex variable.
The claim is that f is a polynomial. It is enough to show that its poles at y2; : : : ; yn are removable

singularities. By symmetry, it is enough to do it for y2. There are only two terms involving .z�y2/ in
the denominator. Write their sum as

zk

.z�y2/ � � �.z�yn/
C

yk2
.y2�z/ � � �.y2�yn/

D

�
zk

.z�y3/ � � �.z�yn/
�

yk2
.y2�y3/ � � �.y2�yn/

��1 1

z�y2
:

We claim the numerator can be written in the form .z�y2/p.z/ for some polynomial p. Indeed,

zk

.z�y3/ � � � .z�yn/
�

yk2
.y2�y3/ � � � .y2�yn/

D
zk

.z�y3/ � � � .z�yn/
�

yk2
.z�y3/ � � � .z�yn/

C
yk2

.z�y3/ � � � .z�yn/
�

yk2
.y2�y3/ � � � .y2�yn/

D
.z�y2/.z

k�1C � � �Cyk�12 /

.z�y3/ � � � .z�yn/
�yk2

.z�y3/ � � � .z�yn/� .y2�y3/ � � � .y2�yn/

.z�y3/ � � � .z�yn/.y2�y3/ � � � .y2�yn/

D
.z�y2/.z

k�1C � � �Cyk�12 /

.z�y3/ � � � .z�yn/
�yk2

.z�y2/p.z/

.z�y3/ � � � .z�yn/.y2�y3/ � � � .y2�yn/

D
zk�1C � � �Cyk�12

.z�y3/ � � � .z�yn/
�yk2

p.z/

.z�y3/ � � � .z�yn/.y2�y3/ � � � .y2�yn/
;

where p.z/ is a polynomial such that

.z�y3/ � � � .z�yn/� .y2�y3/ � � � .y2�yn/D .z�y2/p.z/;

since the left-hand side is a polynomial that vanishes at y2. In sum, f is a polynomial. In addition,

lim
z!1

f .z/D

�
0; k < n� 1;

1; k D n� 1;

proving, by Liouville’s theorem [Ahlfors 1978, p. 122], that f is constant (as a bounded, entire function)
and equal to 0 when 0 < k < n� 1, or 1 when k D n� 1. �
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Proof of Lemma 3.17. Since Bn1 is the union of 2n simplices of volume 1=.nŠ/, jBn1 j D 2
n=.nŠ/. In

addition, by splitting the integral into 2n integrals over the simplex,

e
php;Bn

1
. y
p
/
D

Z
Bn1

ehx;yi
dx
jBn1 j

D nŠ

Z
�n

cosh.x1y1/ � � � cosh.xnyn/ dx: (3-13)

The rest of the proof is by induction on n.
For nD 2, by (3-13),

e
ph
p;B2

1
. y
p
/
D 2

Z
�2

cosh.x1y1/ cosh.x2y2/ dx1 dx2

D 2

Z 1

0

cosh.x1y1/
Z 1�x1

0

cosh.x2y2/ dx2 dx1 D
Z 1

0

cosh.x1y1/
sinh..1� x1/y2/

y2
dx1

D
1

y2

�
y1 sinh.y1x1/ sinh..1� x1/y2/Cy2 cosh.x1y1/ cosh..1� x1/y2/

y21 �y
2
2

�1
x1D0

D
cosh.y1/� cosh.y2/

y21 �y
2
2

D
cosh.y1/
y21 �y

2
2

C
cosh.y2/
y22 �y

2
1

;

whereZ
cosh.axC c/ sinh.bxC d/ dx D

a sinh.axC c/ sinh.bxC d/� b cosh.axC c/ cosh.bxC d/
a2� b2

CC

was used.
For n� 2, by (3-13),

e
ph
p;B

nC1
1

. y
p
/

.nC 1/Š
D

Z
�nC1

cosh.x1y1/ � � � cosh.xnC1ynC1/ dx

D

Z 1

xnC1D0

cosh.xnC1ynC1/
Z
.1�xnC1/�n

cosh.x1y1/ � � � cosh.xnyn/ dx

D

Z 1

xnC1D0

cosh.xnC1ynC1/
e
php;Bn

1
.
.1�xnC1/y

p
/

nŠ
.1� xnC1/

n dxnC1 (3-14)

because by (3-13) and changing variables,Z
.1�xnC1/�n

cosh.x1y1/ � � � cosh.xnyn/ dx

D

Z
�n

cos..1� xnC1/z1y1/ � � � cosh..1� xnC1/znyn/.1� xnC1/n dz

D
e
php;Bn

1
.
.1�xnC1/y

p
/

nŠ
.1� xnC1/

n:

By induction,

e
php;Bn

1
.
.1�xnC1/y

p
/
D
nŠ

pn

nX
jD1

� .1�xnC1/yj
p

�n�2
.e.1�xnC1/yj C .�1/ne�.1�xnC1/yj /�1�xnC1

p

�2.n�1/
.y2j �y

2
1/ � � � .y

2
j �y

2
j�1/.y

2
j �y

2
jC1/ � � � .y

2
j �y

2
n/

D
nŠ

.1� xnC1/n

nX
jD1

yn�2j .e.1�xnC1/yj C .�1/ne�.1�xnC1/yj /

.y2j �y
2
1/ � � � .y

2
j �y

2
j�1/.y

2
j �y

2
jC1/ � � � .y

2
j �y

2
n/
: (3-15)
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Therefore, by (3-14) and (3-15),

e
ph
p;B

nC1
1

. y
p
/

.nC 1/Š
D

nX
jD1

yn�2j

R 1
0 cosh.xnC1ynC1/.e.1�xnC1/yj C .�1/ne�.1�xnC1/yj / dxnC1
.y2j �y

2
1/ � � � .y

2
j �y

2
j�1/.y

2
j �y

2
jC1/ � � � .y

2
j �y

2
n/

: (3-16)

To complete the proof, computeZ 1

0

cosh.xnC1ynC1/e.1�xnC1/yj dxnC1 D eyj
Z 1

0

cosh.xnC1ynC1/e�xnC1yj dxnC1

D
1

2
eyj

Z 1

0

exnC1.ynC1�yj /C e�xnC1.ynC1Cyj / dxnC1

D
1

2
eyj

�
eynC1�yj � 1

ynC1�yj
�
e�.ynC1Cyj /� 1

ynC1Cyj

�
D
1

2

�
eynC1 � eyj

ynC1�yj
�
e�ynC1 � eyj

ynC1Cyj

�
D
yj e

yj �yj cosh.ynC1/�ynC1 sinh.ynC1/
y2j �y

2
nC1

; (3-17)

and hence, replacing yj by �yj in (3-17),Z 1

0

cosh.xnC1ynC1/e�.1�xnC1/yj dxnC1 D
�yj e

�yj Cyj cosh.ynC1/�ynC1 sinh.ynC1/
y2j �y

2
nC1

: (3-18)

Therefore, by (3-17) and (3-18),Z 1

0

cosh.xnC1/.e.1�xnC1yj /C .�1/ne�.1�xnC1/yj / dxnC1

D
yj e

yj C .�1/nC1yj e
yj

y2j �y
2
nC1

�
.1� .�1/n/yj cosh.ynC1/

y2j �y
2
nC1

�
.1C .�1/n/ynC1 sinh.ynC1/

y2j �y
2
nC1

: (3-19)

By (3-16), (3-19) and Claim 3.18,

1

.nC1/Š
e
ph
p;B

nC1
1

. y
p
/
D

nX
jD1

yn�2j

R 1
0 cosh.xnC1ynC1/.e.1�xnC1/yjC.�1/ne�.1�xnC1/yj /dxnC1

.y2j �y
2
1/ � � �.y

2
j �y

2
j�1/.y

2
j �y

2
jC1/ � � �.y

2
j �y

2
n/

D

nX
jD1

yn�1j .eyjC.�1/nC1e�yj /

.y2j �y
2
1/ � � �.y

2
j �y

2
j�1/.y

2
j �y

2
jC1/ � � �.y

2
j �y

2
n/.y

2
j �y

2
nC1/

�.1�.�1/n/

nX
jD1

yn�1j cosh.ynC1/

.y2j �y
2
1/ � � �.y

2
j �y

2
j�1/.y

2
j �y

2
jC1/ � � �.y

2
j �y

2
n/.y

2
j �y

2
nC1/

�.1C.�1/n/

nX
jD1

yn�2j ynC1 sinh.ynC1/

.y2j �y
2
1/ � � �.y

2
j �y

2
j�1/.y

2
j �y

2
jC1/ � � �.y

2
j �y

2
n/.y

2
j �y

2
nC1/
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D

nX
jD1

yn�1j .eyjC.�1/nC1e�yj /

.y2j �y
2
1/ � � �.y

2
j �y

2
j�1/.y

2
j �y

2
jC1/ � � �.y

2
j �y

2
n/.y

2
j �y

2
nC1/

C.1�.�1/n/cosh.ynC1/
yn�1nC1

.y2nC1�y
2
1/ � � �.y

2
nC1�y

2
n/

C.1C.�1/n/sinh.ynC1/
yn�1nC1

.y2nC1�y
2
1/ � � �.y

2
nC1�y

2
n/

D

nX
jD1

yn�1j .eyjC.�1/nC1e�yj /

.y2j �y
2
1/ � � �.y

2
j �y

2
j�1/.y

2
j �y

2
jC1/ � � �.y

2
j �y

2
n/.y

2
j �y

2
nC1/

C.eyC.�1/nC1e�y/
yn�1nC1

.y2nC1�y
2
1/ � � �.y

2
nC1�y

2
n/
;

as desired. �

Therefore, in dimension nD 3, for distinct values of x; y and z,

hp;B31
.x; y; z/D

1

p
log
�
6

p3

�
x sinh.px/

.x2�y2/.x2� z2/
C

y sinh.py/
.y2� x2/.y2� z2/

C
z sinh.pz/

.z2� x2/.z2�y2/

��
;

which smoothly extends to R3. In particular,

hp;B31
.x; y; z/D

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
:

1

p
log
�
6

p3

�
p cosh.px/
2.x2� z2/

�
x2C z2

.x2� z2/2
sinh.px/
2x

C
z sinh.pz/
.x2� z2/2

��
; x D y ¤ z;

1

p
log
�
6

p3

�
p cosh.px/
2.x2�y2/

�
x2Cy2

.x2�y2/2
sinh.px/
2x

C
y sinh.py/
.x2�y2/2

��
; x D z ¤ y;

1

p
log
�
6

p3

�
p cosh.py/
2.y2� x2/

�
y2C x2

.y2� x2/2
sinh.py/
2y

C
x sinh.px/
.y2� x2/2

��
; y D z ¤ x;

1

p
log
�
6

p3

�
xp cosh.px/� sinh.px/C x2p2 sinh.px/

8x3

��
; x D y D z ¤ 0;

0; x D y D z D 0:

4. The Lp-Santaló point

In this section, we prove Proposition 1.5.
First, let us elucidate the similarities and differences from the case p D1. The Santaló point [1949,

(2.3)] of K is the unique point x1;K 2 intK for which b..K � x1;K/ı/ D 0. This is equivalent to
b.hK�x1;K /D 0 since

b.hK/D .nC 1/b.K
ı/: (4-1)

However, since hp;K is not 1-homogeneous for p <1, it is not in general true that b.Kı;p/ vanishes
when b.hp;K/ does. To verify (4-1), first compute V.hK/. Since hK is 1-homogeneous and hK D k �kKı ,
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by Claim 3.3 and (3-2),

V.hK/D

Z
Rn
e�hK.y/ dy D

Z
@Bn2

Z 1
0

rn�1e�hK.ru/ dr duD .n� 1/Š
Z
@Bn2

du
hK.u/n

D nŠ jKıj: (4-2)

Another way to see (4-2) is to start with (1-9) and (1-11), i.e.,

V.hp;K/D nŠ jK
ı;p
j; (4-3)

and take p!1.
For the barycenters, compute in polar coordinates,

b.Kı;p/D
1

jKı;pj

Z
fkykKı;p�1g

y dy

D
1

jKı;pj

Z
f.r;u/2.0;1/�@Bn2 WkrukKı;p�1g

rurn�1 dr du

D
1

jKı;pj

Z
@Bn2

Z 1=kukKı;p

rD0

rnu dr du

D
1

jKı;pj

1

nC 1

Z
@Bn2

u

kuknC1Kı;p

du

D
1

nC 1

1

jKı;pj

Z
@Bn2

u

�
1

.n� 1/Š

Z 1
0

rn�1e�hp;K.ru/ dr
�nC1

n

du: (4-4)

In addition, by (4-3),

b.hp;K/D
1

V.hp;K/

Z
Rn
ye�hp;K.y/ dy D

1

jKı;pj

1

nŠ

Z
@Bn2

u

Z 1
0

rne�hp;K.ru/ dr du: (4-5)

For p D1, since h1;K D hK is homogeneous. Claim 3.3 gives�
1

.n�1/Š

Z 1
0

rn�1e�hK.ru/ dr
�nC1

n

D

�
1

hK.u/n

�nC1
n

D
1

hK.u/nC1
D
1

nŠ

Z 1
0

rne�hp;K.ru/ dr; (4-6)

so (4-1) follows from (4-4)–(4-6), but without homogeneity such a relation does not hold.

Remark 4.1. While (4-1) does not hold for all p, one can show a weaker inequality of the form�
1

.n� 1/Š

Z 1
0

rn�1e�hp;K.ru/ dr
�nC1

n

� .nC 1/
ke�hp;Kk

1
n
1

.nŠ/
1
n

1

nŠ

Z 1
0

rne�hp;K.ru/ dr;

by using [Brazitikos et al. 2014, Lemma 2.2.4].

The proof of Proposition 1.5 is based on three key lemmas, proved in Sections 4A and 4B.

Lemma 4.2. Let p 2 .0;1�. For a convex body K � Rn, Mp.K � x/ <1 if and only if x 2 intK.

Lemma 4.3. Let p 2 .0;1�. For a convex body K � Rn and x0 2 @K,

lim
x!x0

Mp.K � x/D1:
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Lemma 4.4. Let p 2 .0;1�. For a convex body K � Rn, x 7! Mp.K � x/, x 2 intK, is twice
differentiable and strictly convex with rxMp.K � x/DMp.K � x/b.hp;K�x/.

Proof of Proposition 1.5. Since, by Lemmas 4.2 and 4.4, x 7!Mp.K � x/ is strictly convex in intK and
blows up on Rn n intK, it must have a unique minimum at some xp;K 2 intK. This is a critical point and
therefore, by Lemma 4.4,

0DrxMp.K � xp;K/DMp.K � xp;K/b.hp;K�xp;K /:

Thus b.hp;K�xp;K /D 0. �

We call xp;K the Lp-Santaló point of K. For future reference we record its characterization:

Corollary 4.5. Let p 2 .0;1�. For a convex body K � Rn, there exists a unique xp;K 2 Rn such that
b.hp;K�xp;K /D 0.

It is not clear to us how to directly prove Corollary 4.5 if not by Proposition 1.5. In general, for a
convex function � W Rn! R[f1g with b.�/ 2 Rn, it is not hard to see that there is an x 2 Rn such that
under the translation

Tx W R
n
! Rn; y 7! y � x;

the pull-back of �
T �x �.y/ WD �.y � x/

has its barycenter at the origin, b.T �x �/D 0. This is because

b.T �x �/D

Z
Rn
ye�T

�
x �.y/

dy
V.�/

D

Z
Rn
ye��.y�x/

dy
V.�/

D

Z
Rn
.yC x/e��.y/

dy
V.�/

D b.�/C x;

so it is enough to choose x D �b.�/. However, functional translation of hp;K does not correspond
to the translation of the body. That is, in general, T �x hp;K ¤ hp;K�x . In fact, by Lemma 2.2(ii),
hp;K�x.y/D hp;K.y/� hy; xi, and hence

b.hp;K�x/D

Z
Rn
ye�hp;K�x.y/

dy
V.hp;K�x/

D

Z
Rn
ye�hp;K.y/ehy;xi

dy
V.hp;K�x/

;

from which is not clear what x should be so that b.hp;K�x/D 0.

Remark 4.6. While we discuss lack of translation-invariance of some quantities, it will be helpful to note
how Mp transforms under the GL.n;R/-action. For p > 0, a convex body K � Rn, and A 2 GL.n;R/,
by Lemma 2.2(iii),

kxk.AK/ı;p WD

�Z 1
0

rn�1e�hp;AK.rx/ dr
�� 1

n

D

�Z 1
0

rn�1e�hp;K.rA
T x/ dr

�� 1
n

D kAT xkKı;p I

hence
.AK/ı;p D .A�1/TKı;p: (4-7)

In sum:

Lemma 4.7. Let p 2 .0;1�. For a compact body K � Rn and A 2 GL.n;R/, Mp.AK/DMp.K/.
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This GL.n;R/-invariance will be useful in several places, e.g., in the proof of Claim 4.8 below and in
proving Theorem 1.6 when we deal with Steiner symmetrization.

4A. Finiteness of Mp. Lemma 4.2 follows from the following two claims.

Claim 4.8. Let p 2 .0;1�. For a convex body K � Rn with 0 2 intK, and r > 0 such that Œ�r; r�n �K,

Mp.K/�
jKj1C

1
p

.2r/nC
n
p

Mp.Œ�1; 1�
n/:

In particular, Mp.K/ <1.

Proof. Since 0 2 intK, there is r > 0 such that Œ�r; r�n � intK. By (3-8),

Mp.K/ WD jKj

Z
Rn
e�hp;K.y/ dy

� jKj

Z
Rn
e�hp;Œ�r;r�n .y/

jKj
1
p

.2r/
n
p

dy D
jKj1C

1
p

.2r/nC
n
p

.2r/n
Z

Rn
e�hp;Œ�r;r�n .y/ dy

D
jKj1C

1
p

.2r/nC
n
p

Mp.Œ�r; r�
n/D

jKj1C
1
p

.2r/nC
n
p

Mp.Œ�1; 1�
n/;

where we used Lemma 4.7. By Lemma 3.12, since b.Œ�1; 1�n/D 0,

Mp.Œ�1; 1�
n/�

�
.1Cp/1C

1
p

p

�n
M.Œ�1; 1�n/D

�
.1Cp/1C

1
p

p

�n
4n;

concluding the proof. �

Claim 4.9. Let p 2 .0;1�. For a convex body K � Rn with 0 … intK, Mp.K/D1.

Proof. By convexity of K, since 0 … intK, there is a hyperplane through the origin

u? WD fx 2 Rn W hx; ui D 0g

such that K � fx 2 Rn W hx; ui � 0g. In particular, hx;�ui � 0 for all x 2K, and hence

c WD

Z
K

ephx;�ui
dx
jKj

< 1:

If it was exactly equal to 1, then hx; ui D 0 for all x 2 K, that is, K � u?, which is a contradiction
because K has nonempty interior. Let U � @Bn2 be an open neighborhood of �u such thatZ

K

ephx;vi
dx
jKj
�
1C c

2
< 1 for all v 2 U:

For r � 1 and v 2 U , x 2K, since phx; vi< 0, we have rphx; vi � phx; vi. ThusZ
K

erphx;vi
dx
jKj
�

Z
K

ephx;vi
dx
jKj
�
1C c

2
< 1; v 2 U; r � 1: (4-8)
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In polar coordinates, by (4-8),

Mp.K/D jKj

Z
Rn
e�hp;K.y/ dy D jKj

Z
Rn

dy�R
K e

phx;yi 1
jKj

dx
� 1
p

D jKj

Z
@Bn2

Z 1
0

rn�1 dr dv�R
K e

rphx;vi 1
jKj

dx
� 1
p

� jKj

Z
U

Z 1
1

rn�1 dr dv�R
K e

rphx;vi 1
jKj

dx
� 1
p

� jKj

�
1C c

2

�� 1
p
Z
U

Z 1
1

rn�1 dr D1: �

Proof of Lemma 4.3. As hp;K � hK (Lemma 2.2(v)), j.K � x/ı;pj � j.K � x/ıj for all x 2 Rn and
p 2 .0;1�. It is therefore enough to prove the claim for p D1. By Lemma 4.2, M.K � x/D1 for
x … intK. Hence, we may further restrict our attention to x 2 intK.

By rotating K we may take �en as the outward-pointing unit normal of K at x0. For x 2 intK, let
"D ".x/ > 0 such that K�x � fxn ��"g. Since K is bounded, there exists M >0 such that K �MBn2 .
Now, .K � x/ı contains the cone

C WD

�
.�; yn/ 2 Rn�1 �R W j�j �

1C "yn

M
; yn 2 Œ0;�"

�1�

�
� .K � x/ı:

The volume of the cone is given by

jC j D

Z 0

� 1
"

Z
. 1C"yn

M
/Bn�12

d� dyn D
jBn�12 j

M n�1

Z 0

� 1
"

.1C "yn/
n�1 dyn D

jBn�12 j

nM n�1"
:

As x! x0, "D ".x0/! 0C; hence j.K � x/ıj !1. �

4B. Smoothness and convexity of Mp.

Proof of Lemma 4.4. Denote by e1; : : : ; en the standard basis of Rn. For x 2 intK there is r > 0 such
that xC 2rBn2 � intK. Using Lemma 2.2(ii), for 0 < " < r ,

nŠ j.K � x� "ei /
ı;pj �nŠ j.K � x/ı;pj

"
D
1

"

Z
Rn
e�hp;K�x�"ei .y/� e�hp;K�x.y/ dy

D
1

"

Z
Rn
e�hp;K�x.y/eh"ei ;yi� e�hp;K�x.y/ dy

D

Z
Rn

e"yi � 1

"
e�hp;K�x.y/ dy: (4-9)

For 0 < " < r ,ˇ̌̌̌
e"yi � 1

"

ˇ̌̌̌
�

1X
mD1

"m�1jyi j
m

mŠ
�

1X
mD1

rm�1jyi j
m

mŠ
D
1

r

1X
mD1

rmjyi j
m

mŠ
�
1

r
erjyi jI



2212 BO BERNDTSSON, VLASSIS MASTRANTONIS AND YANIR A. RUBINSTEIN

hence ˇ̌̌̌
e"yi � 1

"
e�hp;K�x.y/

ˇ̌̌̌
�
1

r
erjyi je�hp;K�x.y/;

and Z
Rn

1

r
erjyi je�hp;K�x.y/ D

1

r

Z
Rn�1

�Z 1
0

eryi C

Z 0

�1

e�ryi
�
e�hp;K�x.y/ dy

�
1

r

Z
Rn
eryi e�hp;K�x.y/ dyC

1

r

Z
Rn
e�ryi e�hp;K�x.y/ dy

D
1

r

�
nŠ j.K � x� rei /

ı;p
jCnŠ j.K � xC rei /

ı;p
j
�

is finite by Lemma 4.2 as x C rei and x � rei are both in the interior of K. Therefore, dominated
convergence applies to (4-9):

lim
"!0

nŠ j.K � x� "ei /
ı;pj �nŠ j.K � x/ı;pj

"
D lim
"!0

Z
Rn

e"yi � 1

"
e�hp;K�x.y/ dy

D

Z
Rn

lim
"!0

e"yi � 1

"
e�hp;K�x.y/ dy

D

Z
Rn
yie
�hp;K�x.y/ dy:

That is, x 7! j.K � x/ıj, or equivalently x 7!Mp.K � x/, is differentiable in intK with gradient

rxMp.K � x/D jKj

Z
Rn
ye�hp;K�x.y/ dy DMp.K � x/b.hp;Kx /;

as

b.hp;K�x/D

Z
Rn
ye�hp;K�x.y/

dy
V.hp;K�x/

D
1

nŠ j.K � x/ı;pj

Z
Rn
ye�hp;K�x.y/ dy:

Similarly, one can show that the second-order derivatives exist and are continuous. Differentiating
under the integral sign,

@2

@xi @xj
Mp.K � x/D jKj

Z
Rn
yiyj e

�hp;K�x.y/ dy:

Therefore, for v 2 Rn,

vTr2xMp.K � x/v D jKj

nX
i;jD1

Z
Rn
vivjyiyj e

�hp;K�x.y/ dy D jKj
Z

Rn
hv; yi2e�hp;K�x.y/ dy � 0;

with equality if and only if hy; vi D 0 for almost all y, or equivalently v D 0, proving strict convexity. �

5. The upper bound on Mp

This section is dedicated to proving the Lp-Santaló theorem, Theorem 1.6. As expected, we use
symmetrization. However, there are a number of intricate details that need to be carefully dealt with, since
Lp-polarity is a highly nonlocal operation compared to classical polarity. On the surface of it though,
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as in the case p D1, the key estimate we need to prove is the monotonicity of volume under Steiner
symmetrization:

Proposition 5.1. Let p 2 .0;1�. For a symmetric convex body K � Rn and u 2 @Bn2 , let �uK be the
Steiner symmetral of K (Definition 5.5). Then, j.�uK/ı;pj � jKı;pj.

5A. Outline of the proof of Proposition 5.1. Proposition 5.1 is proved in Section 5G. For n D 1,
�uK DK if K D�K. Thus, take n > 1 for the rest of the section. We follow a classical proof for the
case p D1 [Gruber 2007, Proposition 9.2; Artstein-Avidan et al. 2015, Proposition 1.1.15] and make
the appropriate modifications to p 2 .0;1/. This involves comparing the volume of the “slices” of the
polar body perpendicular to the vector used for Steiner symmetrization. For a convex body K � Rn, and
xn 2 R, denote by

K.xn/ WD f� 2 Rn�1 W .�; xn/ 2Kg (5-1)

the slice of K at height xn. By Tonelli’s theorem [Folland 1999, §2.37], the volume of a convex body
may be expressed as an integral of the volume of its slices,

jKj D

Z
f.�;xn/2Rn�1�RW�2K.xn/g

d� dxn D
Z 1
�1

jK.xn/j dxn: (5-2)

In view of (5-2), Proposition 5.1 follows from the next lemma. Denote by e1; : : : ; en the standard basis
of Rn.

Lemma 5.2. Let p 2 .0;1�. For a symmetric convex body K � Rn, j.�enK/
ı;p.xn/j � jK

ı;p.xn/j for
all xn 2 R.

Lemma 5.2, in turn, follows from the Brunn–Minkowski inequality and the following monotonicity
property of the average of antipodal slices under Steiner symmetrization.

Lemma 5.3. Let p 2 .0;1�. For a convex body K � Rn,

Kı;p.xn/CK
ı;p.�xn/

2
�
.�enK/

ı;p.xn/C .�enK/
ı;p.�xn/

2
D .�enK/

ı;p.xn/: (5-3)

The equality on the right-hand side holds because �enK, and hence .�enK/
ı;p (Lemma 5.17), are by

construction symmetric with respect to e?n . Nonetheless, note that no symmetry on K is assumed for
Lemma 5.3, in contrast to Lemma 5.2. Applying the Brunn–Minkowski inequality on Lemma 5.3 gives

j.�enK/
ı;p.xn/j

1
n�1 �

1
2
jKı;p.xn/j

1
n�1 C

1
2
jKı;p.�xn/j

1
n�1 :

Without any symmetry assumption on K, jKı;p.xn/j and jKı;p.�xn/j may be unrelated. For symmetric
convex bodies, Kı;p.�xn/D�Kı;p.xn/ (Claim 5.14) and hence jKı;p.�xn/j D jKı;p.xn/j, justifying
the symmetry assumption in Lemma 5.2. See Figure 5.

In order to obtain the inclusion of Lemma 5.3, we first obtain an inequality relating the norms before
and after symmetrization:��C � 02

; xn

�
.�enK/

ı;p

�
k.�; xn/kKı;p Ck.�

0;�xn/kKı;p

2
: (5-4)
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K.h/

K.�h/

.�enK/.h/

.�enK/.�h/

Figure 5. Comparing the slices.

For p D1, by (3-4), (5-4) reads

h�enK

�
�C � 0

2
; xn

�
�
hK.�; xn/C hK.�

0;�xn/

2
; (5-5)

which is classical and simple to prove: any element of �enK is of the form
�
z; t�s

2

�
for .z; t/; .z; s/ 2K,

so ��
�C � 0

2
; xn

�
;

�
z;
t � s

2

��
D

�
�C � 0

2
; z

�
C xn

t � s

2

D
h�; ziC xnt

2
C
h� 0; zi � xns

2

D
h.�; xn/; .z; t/i

2
C
h.� 0;�xn/; .z;�s/i

2

�
hK.�; xn/C hK.�

0;�xn/

2
;

and (5-5) follows. One of our key estimates in this section is a 3-parameter (p; s; t ) family generalization
of (5-5):

Lemma 5.4. Let p 2 .0;1�, and K � Rn a convex body. For �; � 0 2 Rn�1, xn 2 R and r; t; s > 0 with
2
r
D

1
t
C
1
s

,

hp;�enK

�
r
�C � 0

2
; rxn

�
�

s

t C s
hp;K.t�; txn/C

t

t C s
hp;K.s�

0;�sxn/:

For pD1, Lemma 5.4 is equivalent to (5-4). Lacking homogeneity, for p 2 .0;1/ this is no longer the
case. Notwithstanding, Lemma 5.4 is exactly the condition necessary to apply Ball’s Brunn–Minkowski
inequality for harmonic means (Theorem 5.20, proven in the Appendix) from which we deduce (5-4).
The next step in the proof of Proposition 5.1 is to use (5-4) to obtain Lemma 5.3. Finally, Lemma 5.3 and
a symmetry property for antipodal slices of symmetric bodies (Corollary 5.16) give Lemma 5.2 from
which Proposition 5.1 follows by (5-2).

The proof of Proposition 5.1 is organized as follows. Sections 5B and 5C are preparatory. In Section 5B
we recall a few basics of Steiner symmetrization. In Section 5C, Lemma 5.11 establishes the continuity
of Mp in the Hausdorff topology (Definition 5.9). Section 5D establishes several symmetries between
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antipodal slices for symmetric convex bodies. Section 5E is dedicated to proving Lemma 5.4, and
Section 5F to proving Lemmas 5.3 and 5.2. In Section 5G, we complete the proofs of Proposition 5.1 and
Theorem 1.6.

5B. Steiner symmetrization. For a vector u 2 @Bn2 denote by

u? WD fx 2 Rn W hx; ui D 0g

the hyperplane through the origin that is normal to u. Let, also,

�u? W R
n
! u?; x 7! x� hx; uiu;

be the projection onto u?. Given u 2 @Bn2 , one may foliate any convex body K by a family of straight
line segments parametrized by a hyperplane u?. The Steiner symmetral �uK is the unique such foliation
for which the line segments have their midpoints in u? [Steiner 1838, pp. 286–287] (see also [Gruber
2007, §9; Artstein-Avidan et al. 2015, Definition 1.1.13]):

Definition 5.5. For K � Rn a convex body and u 2 @Bn2 , the Steiner symmetral in the u direction is
given by

�u.K/ WD
˚
xC tu W x 2 �u?.K/ and jt j � 1

2
jK \ .xCRu/j

	
:

Steiner symmetrization produces a convex body that is symmetric with respect to u?.

Definition 5.6. A convex body K � Rn is symmetric with respect to a hyperplane u? if for all x 2K

x� 2hx; uiu 2K:

Equivalently, K remains invariant under reflection with respect to u?. Steiner symmetrization also
preserves volume and convexity [Gruber 2007, Proposition 9.1]:

Lemma 5.7. For a convex body K � Rn and u 2 @Bn2 , �u.K/ is a convex body, symmetric with respect
to u?, with j�u.K/j D jKj.

Orthogonal transformations preserve volume and, by (4-7), commute with Lp-polarity. The following
lemma then justifies working with uD en throughout.

Lemma 5.8. For a convex body K � Rn, u 2 @Bn2 , and A 2O.n/,

�u.K/D A
�1�Au.AK/:

In particular, j�u.K/j D j�Au.AK/j.

Proof. SinceA2O.n/ is invertible, it is enough to showA�1�Au.AK/��u.K/. Let xCtAu2�Au.AK/
with

x 2 �.Au/?.AK/ and jt j � 1
2
j.AK/\ .xCRAu/j:

First,
�.Au/?.AK/D A�u?.K/: (5-6)
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Indeed, for z 2 Rn,

�.Au/?.Az/D Az� hAz;AuiAuD Az� hz; uiAuD A.z� hz; uiu/D A�u?.z/;

because, since A 2O.n/, we have hAz;Aui D hz; ATAui D hz; ui.
Second,

.AK/\ .xCRAu/D A.K \ .A�1xCRu//: (5-7)

That is because, y 2 .AK/ \ .x C RAu/ if and only if y 2 AK and y D x C sAu, x 2 K, s 2 R.
Equivalently, A�1y 2K and A�1y D A�1xC su 2 A�1xCRu, i.e., A�1y 2K \ .A�1xCRu/.

Using (5-7) and as A 2 O.n/ preserves volume, jK \ .A�1xCRu/j D j.AK/\ .xCRAu/j. Thus
A�1.x C tAu/ D A�1x C tu is such that A�1x 2 A�1�.Au/?.AK/ D A�1.A�u?.K// D �u?.K/

(using (5-6)), and jt j � 1
2
j.AK/ \ .x C RAu/j D 1

2
jK \ .A�1x C Ru/j, that is, A�1.x C tAu/ D

A�1xC tu 2 �u.K/. �

Recall the definition of the Hausdorff metric.

Definition 5.9. For K;L� Rn two compact bodies, let

dH .K;L/ WD inff" > 0 WK � LC "Bn2 and L�KC "Bn2 g

be the Hausdorff distance between K and L.

Repeated Steiner symmetrizations Hausdorff converge to a 2-ball [Gross 1917; Gruber 2007, Theo-
rem 9.1].

Lemma 5.10. For a convex body K � Rn, there is � > 0 and a sequence of vectors uj 2 @Bn2 such that if
Kj WD �uj .Kj�1/, where K0 WDK, then Kj ! �Bn2 in the Hausdorff metric.

5C. Hausdorff continuity of Mp. The aim of this subsection is to verify that Mp is continuous under
Hausdorff convergence (Lemma 5.11).

By Lemma 5.10, iterated applications of Steiner symmetrization dH -converge to a 2-ball. Therefore,
in order to obtain Theorem 1.6, it is necessary to show that Mp is dH -continuous.

Lemma 5.11. Let p 2 .0;1� and fKj gj�1 � Rn be a sequence of convex bodies dH -converging to a
convex body K � Rn with jKı;pj<1. Then, Mp.Kj /!Mp.K/.

Lemma 5.11 follows from the next two claims. First, the volume of convex bodies is continuous under
the Hausdorff metric. Note this is not true without the convexity assumption, e.g., for space-filling curves.
Denote by

1K.x/ WD
�
1; x 2K;

0; x …K

the indicator function of K.

Claim 5.12. Let fKj gj�1 � Rn be a sequence of convex bodies dH -converging to K � Rn. Then,
jKj j ! jKj.
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Proof. Since dH .Kj ; K/!0, there are "j >0 such thatKj �KC"jBn2 andKC"jBn2 �Kj , with "j!0.
In particular, f"j gj�1 is bounded. For simplicity, take "j �1. In particular,Kj �KC"jBn2 �KCB

n
2 ; thus

1Kj � 1KCBn2 for all j . This allows for the use of dominated convergence. It is therefore enough to show

lim
j!1

1Kj .x/D 1K.x/; x 2 .intK/[ .Rn nK/: (5-8)

Then, by dominated convergence,

lim
j!1

jKj j D lim
j!1

Z
Rn

1Kj D
Z

Rn
lim
j!1

1Kj D
Z

Rn
1K D jKj:

For (5-8), let x 2 intK. There is " > 0 such that xC "Bn2 �K. Since "j ! 0, there is j0 � 1 such that
"j < " for all j � j0. Therefore, xC "Bn2 �K �Kj C "jB

n
2 �Kj C "B

n
2 . By the cancellation law for

the Minkowski sum of convex bodies [Gruber 2007, Theorem 6.1(i)], fxg �Kj , i.e., x 2Kj . Therefore,
1Kj .x/D 1D 1K.x/ for all j � j0.

For x 2 Rn nK, since K is closed, Rn nK is open. Thus there is " > 0 such that xC 2"Bn2 � Rn nK,
i.e., .xC 2"Bn2 /\K D∅. Let j0 � 1 with "j < " for all j � j0. Then, Kj �KC "Bn2 and hence

.xC "Bn2 /\Kj � .xC "B
n
2 /\ .KC "B

n
2 /D∅;

because, for y 2 .xC "Bn2 /\ .KC "B
n
2 /, we have y D xC "uD zC "v for u; v 2 Bn2 and z 2K. That

is, z D xC ".u� v/ 2 xC 2"Bn2 ; thus z 2K \ .xC 2"Bn2 /D∅, a contradiction. Therefore, x …Kj for
all j � j0, i.e., 1Kj .x/D 0D 1K.x/ for all j � j0, proving (5-8). �

Second, the volume of the Lp-polars is also continuous under Hausdorff convergence given that the
limit is a convex body with finite Mp volume.

Claim 5.13. Let p 2 .0;1� and fKj gj�1 � Rn be a sequence of convex bodies dH -converging to a
convex body K with jKı;pj<1. Then, jKı;pj j ! jK

ı;pj.

Proof. Since dH .Kj ; K/! 0, there are "j > 0 such that Kj � K C "jBn2 and K � Kj C "jBn2 with
"j ! 0. In particular, f"j gj�1 is bounded. For simplicity, take "j � 1

2
. In particular,

Kj �KC "jB
n
2 �KCB

n
2 ;

so Kj are uniformly bounded. Let M > 0 such that jxj �M for all x 2Kj and all j . For y 2 Rn,

ˇ̌
jKj je

php;Kj .y/�jKjephp;K.y/
ˇ̌
D

ˇ̌̌̌Z
Kj

ephx;yi dx�
Z
K

ephx;yi dx
ˇ̌̌̌

�

Z
.Kj nK/[.KnKj /

ephx;yi dx � j.Kj nK/[.KnKj /jepM jyj: (5-9)

Note that

1.Kj nK/[.KnK/.y/D j1Kj .y/� 1K.y/j;
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which converges to 0 almost everywhere by (5-8). By dominated convergence, j.Kj nK/[.K nKj /j! 0.
Taking j !1 in (5-9), jKj je

php;Kj .y/! jKjephp;K.y/. By Claim 5.12, jKj j ! jKj; thus

lim
j!1

hp;Kj .y/D hp;K.y/; y 2 Rn; (5-10)

establishing the pointwise convergence.
The aim is to use dominated convergence on e�hp;Kj , for which a uniform (independent of j ) and

integrable upper bound is necessary. By assumption jKı;pj<1, or equivalently, by Lemma 4.2, 02 intK.
That is, there is r >0 such that Œ�2r; 2r�n�K. Therefore, for large enough j0>0, we have Œ�r; r�n�Kj
for all j � j0. In addition, by Claim 5.12, jKj j ! jKj > 0; thus there is M 0 > 0 with jKj j �M 0 for
all j . As a result,

hp;Kj .y/D
1

p
log

Z
Kj

ephx;yi
dx
jKj j

�
1

p
log

Z
Œ�r;r�n

ephx;yi
dx
M 0
D hp;Œ�r;r�n.y/C log

.2r/n

M 0
;

and hence
e
�hp;Kj .y/ �

M 0

.2r/n
e�hp;Œ�r;r�n .y/:

The right-hand side is integrable since by (4-7)Z
Rn
e�hp;Œ�r;r�n .y/ dy D

Mp.Œ�r; r�
n/

jŒ�r; r�nj
D

1

.2r/n
Mp.Œ�1; 1�

n/;

which is finite by Lemma 3.12. The claim now follows from (5-10) and the dominated convergence
theorem. �

Proof of Lemma 5.11. By Claims 5.12–5.13, jKj j ! jKj and jKı;pj j ! jK
ı;pj; thus by (1-11),

limj!1Mp.Kj /D limj!1 nŠ jKj jjK
ı;p
j j D nŠ jKjjK

ı;pj DMp.K/: �

5D. Slice analysis of symmetric convex bodies.

5D1. Symmetry with respect to a hyperplane. Antipodal slices are related when �K DK: � 2K.�xn/
if and only if .�;�xn/ 2K or �.�;�xn/D .��; xn/ 2K, i.e., if and only if �� 2K.xn/. In sum:

Claim 5.14. For a symmetric convex body K � Rn, K.�xn/D�K.xn/ for all xn 2 R.

If, instead, one assumes K to be symmetric with respect to the hyperplane e?n , then antipodal slices are
exactly equal: note that � 2K.xn/ if and only if .�; xn/ 2K, which by the symmetry of K with respect
to e?n is equivalent to .�;�xn/ 2K or � 2K.�xn/. Thus:

Claim 5.15. For a convex body K � Rn symmetric with respect to e?n , K.�xn/DK.xn/ for all xn 2 R.

5D2. Lp-polarity preserves symmetries.

Corollary 5.16. Let p2 .0;1�. For a symmetric convex bodyK, Kı;p.�xn/D�Kı;p.xn/ for all xn2R.

Proof. By Theorem 1.2, Kı;p is symmetric. Thus, by Claim 5.14, Kı;p.�xn/D�Kı;p.xn/. �

In addition, Kı;p inherits symmetries with respect to hyperplanes from K.

Lemma 5.17. Let p 2 .0;1�; u 2 @Bn2 and K a convex body symmetric with respect to u?. Then, Kı;p

is symmetric with respect to u?.
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Proof. By symmetry with respect to u?, �u?.K/ D K \ u
?. There is concave f W K \ u?! Œ0;1/

such that
K D fxC tu W x 2K \u? and jt j � f .x/g:

For y 2K \u?, s 2 R,

hp;K.yC su/D
1

p
log
�Z
K

ephz;yCsui
dz
jKj

�
D
1

p
log
�Z

x2K\u?

Z f .x/

tD�f .x/

ephxCtu;yCsui
dt dx
jKj

�
D
1

p
log
�Z

x2K\u?
ephx;yi

Z f .x/

tD�f .x/

epts
dt dx
jKj

�
D
1

p
log
�Z

x2K\u?
ephx;yi

Z f .x/

�D�f .x/

e�p�s
d� dx
jKj

�
D hp;K.y � su/;

by the change of variables � D�t . As a result, kyC sukKı;p D ky� sukKı;p , and hence yC su 2Kı;p

if and only if y � su 2Kı;p as desired. �

By Lemma 5.7, �enK is symmetric with respect to e?n ; thus, by Lemma 5.17, .�enK/
ı;p also is.

Therefore, by Claim 5.15 its antipodal slices are equal.

Corollary 5.18. Let p 2 .0;1�. For a convex body K � Rn, .�enK/
ı;p.xn/ D .�enK/

ı;p.�xn/ for
all xn 2 R.

5E. Proof of Lemma 5.4. The only two ingredients required for the proof of Lemma 5.4 are Hölder’s
inequality and the log-convexity of sinh.t/=t (Claim 5.19 below).

Proof of Lemma 5.4. Let f; g W �e?n .K/! R; g � f , so that

K D f.�; xn/ 2 �e?n .K/�R W g.�/� xn � f .�/g:

Then,
�enK D

˚
.�; xn/ 2 �e?n .K/�R W jxnj �

1
2
.f .�/�g.�//

	
:

In the integrals below it will be convenient to use slice-coordinates

.�; yn/ 2 �enK ; with � 2 .�enK/\ e
?
n ; yn 2 R:

Since j�enKj D jKj and .�enK/\ e
?
n D �

?
en
.K/,

hp;�enK

�
r
�C � 0

2
; rxn

�
D
1

p
log
�Z

�enK

ephr
�C�0

2
;�ieprxnyn

d� dyn
j�enKj

�
D
1

p
log
�Z

�2.�enK/\e
?
n

Z f.�/�g.�/
2

ynD�
f.�/�g.�/

2

eprh
�C�0

2
;�ieprxnyn

dyn d�
jKj

�
D
1

p
log
�Z

�
e?n
.K/

eprh
�C�0

2
;�i e

prxn
f.�/�g.�/

2 � e�prxn
f.�/�g.�/

2

prxn

d�
jKj

�
D
1

p
log
�Z

�
e?n
.K/

eprh
�C�0

2
;�i 2

prxn
sinh

�
prxn

f .�/�g.�/

2

�
d�
jKj

�
: (5-11)
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Also,

hp;K.t�; txn/D
1

p
log
�Z
K

epht�;�ieptxnyn
d� dyn
jKj

�
D
1

p
log
�Z

�
e?n
.K/

Z f .�/

ynDg.�/

epth�;�ieptxnyn
dyn d�
jKj

�
D
1

p
log
�Z

�
e?n
.K/

epth�;�i
1

pxnt
.epxntf .�/� epxntg.�//

d�
jKj

�
D
1

p
log
�Z

�
e?n
.K/

epth�;�i
2

pxnt
epxnt

f.�/Cg.�/
2 sinh

�
pxnt

f .�/�g.�/

2

�
d�
jKj

�
; (5-12)

because
epxntf .�/� epxntg.�/ D epxnt

f.�/Cg.�/
2 .epxnt

f.�/�g.�/
2 � e�pxnt

f.�/�g.�/
2 /

D 2epxnt
f.�/Cg.�/

2 sinh
�
pxnt

f .�/�g.�/

2

�
:

Similarly,

hp;K.s�
0;�sxn/

D
1

p
log
�Z

�
e?n
.K/

ephs�
0;�i 2

p.�sxn/
e�pxns

f.�/Cg.�/
2 sinh

�
p.�sxn/

f .�/�g.�/

2

�
d�
jKj

�
D
1

p
log
�Z

�
e?n
.K/

epsh�
0;�i 2

pxns
e�pxns

f.�/Cg.�/
2 sinh

�
pxns

f .�/�g.�/

2

�
d�
jKj

�
: (5-13)

By (5-12)–(5-13) and Hölder’s inequality,

s

t C s
hp;K.t�; txn/C

t

t C s
hp;K.s�

0;�sxn/

D
1

p
log
��Z

�
e?n
.K/

epth�;�i
2

pxnt
epxnt

f.�/Cg.�/
2 sinh

�
pxnt

f .�/�g.�/

2

�
d�
jKj

� s
tCs

�

�Z
�
e?n
.K/

epsh�
0;�i 2

pxns
e�pxns

f.�/Cg.�/
2 sinh

�
pxns

f .�/�g.�/

2

�
d�
jKj

� t
tCs
�

�
1

p
log
�Z

�
e?n
.K/

ep
ts
tCs
h�;�i

�
2

pxnt

� s
tCs

epxn
ts
tCs

f.�/Cg.�/
2

�
sinh

�
pxnt

f .�/�g.�/

2

� s
tCs
�

� ep
ts
tCs
h�0;�i

�
2

pxns

� t
tCs

e�pxn
ts
tCs

f.�/Cg.�/
2

�
sinh

�
pxns

f .�/�g.�/

2

� t
tCs
�

d�
jKj

�
D
1

p
log
�Z

�
e?n
.K/

ep
ts
tCs
h�C�0;�iJ.�; t/

s
tCs J.�; s/

t
tCs

d�
jKj

�
D
1

p
log
�Z

�
e?n
.K/

eprh
�C�0

2
;�iJ.�; t/

s
tCs J.�; s/

t
tCs

d�
jKj

�
; (5-14)
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where

J.�; t/ WD
2

pxnt
sinh

�
pxnt

f .�/�g.�/

2

�
:

By Claim 5.19 below, logJ is convex in t , and therefore

J.�; t/
s
tCs J.�; s/

t
tCs � J

�
�;

s

t C s
t C

t

t C s
s

�
D J

�
�;
2ts

t C s

�
D J.�; r/; (5-15)

because 2ts
tCs
D r . Therefore, by (5-11), (5-14) and (5-15),

s

t C s
hp;K.t�; txn/C

t

t C s
hp;K.s�

0;�sxn/

�
1

p
log
�Z
K\e?n

eprh
�C�0

2
;�i 2

pxnr
sinh

�
pxnr

f .�/�g.�/

2

�
d�
jKj

�
D hp;�enK

�
r
�C � 0

2
; rxn

�
;

as desired. �
Claim 5.19. For any x > 0, t 7! log

�
1
t

sinh.tx/
�
, t > 0, is convex.

Proof. Write

f .t/ WD log
�
1

t
sinh.tx/

�
D log.sinh.tx//� log t:

Compute the derivatives

f 0.t/D x
cosh.tx/
sinh.tx/

�
1

t

and

f 00.t/D x2
sinh.tx/
sinh.tx/

� x2
.cosh.tx//2

.sinh.tx//2
C
1

t2
D x2

�
1�

.cosh.tx//2

.sinh.tx//2
C

1

.tx/2

�
D x2

�
1�

1C .sinh.tx//2

.sinh.tx//2
C

1

.tx/2

�
D x2

�
1

.tx/2
�

1

.sinh.tx//2

�
� 0;

because sinh.y/� y for all y � 0. �

5F. Slice analysis of Kı;p under Steiner symmetrization.

5F1. A monotonicity property for the average of antipodal slices. For the proof of Lemma 5.3, we first
prove (5-4). The aim is to apply the following theorem due to [Ball 1986, Theorem 4.10] for F;G;H
appropriate exponentials of the Lp-support functions.

Theorem 5.20. Let F;G;H W .0;1/! Œ0;1/ be measurable functions, not almost everywhere 0, with

H.r/� F.t/
s
tCsG.s/

t
tCs for all

2

r
D
1

t
C
1

s
: (5-16)

Then, for q � 1,

2

�Z 1
0

rq�1H.r/ dr
�� 1

q

�

�Z 1
0

tq�1F.t/ dt
�� 1

q

C

�Z 1
0

sq�1G.s/ ds
�� 1

q

:
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For the reader’s convenience, we give a proof in the Appendix. Applying Theorem 5.20 to prove (5-4)
becomes possible by Lemma 5.4.

Proof of Lemma 5.3. Set

F.t/ WD e�hp;K.t�;txn/; G.s/ WD e�hp;K.s�
0;�sxn/; H.r/ WD e�hp;�enK.r

�C�0

2
;rxn/:

By Lemma 5.4, for any t; s > 0 with 2
r
D

1
t
C
1
s

,

H.r/� F.t/
s
tCsG.s/

t
tCs I

thus, by Theorem 5.20 for q D n,��C � 02
; xn

�
.�enK/

ı;p

D

�
1

.n� 1/Š

Z 1
0

rn�1e�hp;�enK.r
�C�0

2
;rxn/ dr

�� 1
n

�
1

2

�
1

.n� 1/Š

Z 1
0

tn�1e�hp;K.t�;txn/ dt
�� 1

n

C
1

2

�
1

.n� 1/Š

Z 1
0

sn�1e�hp;K.s�
0;�sxn/ ds

�� 1
n

D
1

2
k.�; xn/kKı;p C

1

2
k.� 0;�xn/kKı;p :

verifying (5-4).
For � 2 .Kı;p/.xn/ and � 0 2 .Kı;p/.�xn/, by definition (5-1), .�; xn/ 2Kı;p and .� 0;�xn/ 2Kı;p,

i.e., k.�; xn/kKı;p � 1 and k.� 0;�xn/kKı;p � 1. By (5-4),��C � 02
; xn

�
.�enK/

ı;p

�
k.�; xn/kKı;p Ck.�

0;�xn/kKı;p

2
� 1;

i.e.,
� �C�0
2
; xn

�
2 .�enK/

ı;p or �C�
0

2
2 .�enK/

ı;p.xn/. Finally, by Corollary 5.18, .�e?n K/
ı;p.xn/ D

.�e?n K/
ı;p.�xn/; hence we have the equality in the right-hand side of (5-3). �

5F2. Monotonicity of the volume of slices under Steiner symmetrization.

Proof of Lemma 5.2. By the Brunn–Minkowski inequality and Lemma 5.3,

j.�enK/
ı;p.xn/j

1
n�1 �

jKı;p.xn/CK
ı;p.�xn/j

1
n�1

2

�
jKı;p.xn/j

1
n�1 CjKı;p.�xn/j

1
n�1

2
D jKı;p.xn/j

1
n�1 ;

because K is symmetric thus, by Corollary 5.16, Kı;p.�xn/D�Kı;p.xn/, and hence their volumes are
equal jKı;p.�xn/j D jKı;p.xn/j. �

5G. Proof of Theorem 1.6. We now complete the proofs of Proposition 5.1 and Theorem 1.6.

Proof of Proposition 5.1. Take for a moment uD en. By (5-2) and Lemma 5.2,

j.�enK/
ı;p
j D

Z 1
�1

j.�enK/
ı;p.xn/j dxn �

Z 1
�1

j.Kı;p/.xn/j dxn D jKı;pj: (5-17)
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In general, for u2 @Bn2 , there is A2O.n/ such that AuD en. By Lemma 5.8, �uK DA�1.�Au.AK//D
A�1.�en.AK//. By (4-7), .�uK/ı;p D .A�1�en.AK//

ı;p D AT .�en.AK//
ı;p. Thus by (5-17),

j.�uK/
ı;p
j D jdetAT jj.�en.AK//

ı;p
j

� jdetAT jj.AK/ı;pj D jAT .AK/ı;pj D jKı;pj;

because, again by (4-7), AT .AK/ı;p D .A�1AK/ı;p DKı;p. �

Theorem 1.6 follows from Proposition 5.1 and the fact that repeated Steiner symmetrizations converge
to a dilated 2-ball (Lemma 5.10).

Proof of Theorem 1.6. There is � > 0 and a sequence fuj gj�1 � @Bn2 such that for

K0 WDK; Kj WD �ujKj�1;

Kj ! �Bn2 in the Hausdorff metric [Artstein-Avidan et al. 2015, Theorem 1.1.16]. By Proposition 5.1,

Mp.Kj /D nŠ jKj jjK
ı;p
j j D nŠ jKjjK

ı;p
j j

� nŠ jKjj.�ujC1Kj /
ı;p
j D nŠ jKjjK

ı;p
jC1j DMp.KjC1/:

In particular, Mp.K/ �Mp.Kj / for all j . Sending j !1, Kj ! �Bn2 in the Hausdorff metric, and
hence, by Lemmas 4.7 and 5.11, Mp.Kj /!Mp.�B

n
2 /DMp.B

n
2 /; thus Mp.K/�Mp.B

n
2 /. �

6. A connection to Bourgain’s slicing problem

In this section we explore the relationship between the Lp support functions hp;K (1-8) and the slicing
problem (Conjecture 1.8). The aim is to prove Theorem 1.9 and then illustrate how it implies a suboptimal
upper bound on the isotropic constant (Corollary 1.12) originally due to Milman and Pajor. We also
explain some interesting connections to and motivations from complex geometry.

In Section 6A2 we recall the definitions of the covariance matrix and the isotropic constant, and
relate these to hp;K (Lemma 6.3). In Section 6A3 we recall the definition of the Monge–Ampère
measure and its basic properties. Theorem 1.9 is proved in Section 6B. The proof consists of two parts:
using Jensen’s inequality to bound

R
log detr2h1;K (Lemma 6.10), and then bounding

R
Rn
h1;K d�p;K

(Lemma 6.13). In Section 6C, we show log detr2hp;KCp.nC1/hp;K is convex, proving Theorem 1.11.
From Theorems 1.9 and 1.11 we then obtain an upper bound on the isotropic constant of order O.

p
n/

(Corollary 1.12). In Section 6D, we define the Lp support functions of compactly supported probability
measures and show that Theorem 1.11 cannot be improved in that setting (Example 6.20). Finally, in
Section 6E we explain some novel connections of our work to complex geometry, in particular to Ricci
curvature, Fubini–Study metrics, Bergman metrics, Kobayashi’s theorem, and holomorphic line bundles.

6A. Preliminaries.

6A1. Affine-invariance of C. The isotropic constant is an affine invariant (e.g., [Brazitikos et al. 2014,
p. 77]); hence so is C. As we could not find precisely the following lemma in the literature, we include its
proof for completeness.
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Lemma 6.1. For K � Rn and A 2 GL.n;R/, b 2 Rn,

Cov.AKC b/D ACov.K/AT

where Cov.K/ is defined in (1-16).

Proof. Write AD ŒAji �
n
i;jD1, b D .b1; : : : ; bn/ and T .x/DAxC b. The Einstein summation convention

of summing over repeated indices is used. Changing variables y D T �1x D A�1x � A�1b, dy D
jdetA�1jdx D jdetAj�1dx,

Covij .AKC b/D
Z
T.K/

xixj
dx
jT .K/j

�

Z
T.K/

xi
dx
jT .K/j

Z
T.K/

xj
dx
jT .K/j

D

Z
K

.AyCb/i .AyCb/j
jdetAj dy
jAKC bj

�

Z
K

.AyCb/i
jdetAj dy
jAKC bj

Z
K

.AyCb/j
jdetAj dy
jAKC bj

D

Z
K

.Aki ykC bi /.A
l
jyl C bj /

dy
jKj
�

Z
K

.Aki ykC bi /
dy
jKj

Z
K

.Aljyl C bj /;
dy
jKj

D Aki A
l
j

Z
K

ykyl
dy
jKj
C bjA

k
i

Z
K

yk
dy
jKj
C biA

l
j

Z
K

yj
dy
jKj
C bibj

�Aki A
l
j

Z
K

ykyl
dy
jKj
� bjA

k
i

Z
K

yk
dy
jKj
� biA

l
j

Z
K

yl
dy
jKj
� bibj

D Aki A
l
j

�Z
K

ykyl
dy
jKj
�

Z
K

yk
dy
jKj

Z
K

yl
dy
jKj

�
D Aki A

l
j Covkl.K/;

proving the claim. �

Let A 2 GL.n;R/ and b 2 Rn. By Lemma 6.1,

C.AKC b/D
jAKC bj2

det Cov.AKC b/
D

.detA/2jKj2

det.ACov.K/AT /
D

.detA/2jKj2

.detA/2 det Cov.K/
D C.K/;

proving:

Corollary 6.2. C is an affine invariant.

6A2. Lp-support functions and the isotropic constant. Next, we relate the functional C (1-18) to hp;K
(1-8) (for p D 1 see [Klartag 2006, Lemma 3.1]).

Lemma 6.3. Let p > 0. For a convex body K � Rn, we have r2hp;K.0/D p Cov.K/ and

C.K/D
pnjKj2

detr2hp;K.0/
:

Proof. By direct calculation,

@

@yi
hp;K.y/D

R
K xie

phx;yi dxR
K e

phx;yi dx
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and

@2

@yi@yj
hp;K.y/D

p
R
K xixj e

phx;yi dx
R
K e

phx;yidx�p
R
K xie

phx;yi dx
R
K xj e

phx;yi dx�R
K e

phx;yi dx
�2 :

Since for y D 0,
R
K e

phx;0i dx D jKj,

@2hp;K

@yi@yj
.0/D p

Z
K

xixj
dx
jKj
�p

Z
K

xi
dx
jKj

Z
K

xj
dx
jKj
D p Covi;j .K/

and

detr2hp;K.0/D det.p Cov.K//D pn det Cov.K/D pn
jKj2

C.K/
;

as claimed. �

6A3. The Monge–Ampère measure. We review some basic details concerning the Monge–Ampère mea-
sure, following [Rauch and Taylor 1977]. Legendre duality is defined by f �.y/ WD supx2Rn Œhy; xi�f .x/�.

Definition 6.4 [Rockafellar 1970, p. 215]. For a convex function � W Rn! R[ f1g and x 2 Rn, the
subdifferential of � at x is

@�.x/ WD fy 2 Rn W �.z/� �.x/Chy; z� xi for all z 2 Rng:

Lemma 6.5 [Rockafellar 1970, Theorem 23.5]. For � W Rn! R convex, @�.Rn/� f�� <1g.

Proof. By definition of the subgradient, for y 2 @�.x/, we have �.z/� �.x/Chy; z� xi for all z 2 Rn,
i.e., hy; xi ��.x/� hy; zi ��.z/. Taking supremum over all z 2 Rn,

��.y/� hy; xi ��.x/ <1;

as claimed. �

Corollary 6.6. For all p 2 .0;1/,

@hK.R
n/�K and @hp;K.R

n/�K:

Proof. Since h�K D 11K , by Lemma 6.5, @hK.Rn/ � f11K <1g DK. Similarly, since hp;K � hK , the
Legendre transform satisfies 11K D h

�
K � h

�
p;K ; thus, by Lemma 6.5,

@hp;K.R
n/� fh�p;K <1g� f1

1
K <1gDK: �

Definition 6.7 [Rauch and Taylor 1977, Definition 2.6]. For a convex function �, let

.MA�/.U / WD j@�.U /j;

where the right-hand side denotes the Lebesgue measure of @�.U / in Rn.

Lemma 6.8. MAhp;K.Rn/� jKj.

Proof. By definition, MAhp;K.Rn/D j@hp;K.Rn/j � jKj because @hp;K.Rn/�K by Corollary 6.6. �

Remark 6.9. In fact, equality holds in Lemma 6.8. In particular, hp;K is a smooth, strictly convex function
with rhp;K.Rn/ D intK (see [Klartag 2006, Lemma 3.1] for the case p D 1). By the smoothness of
hp;K we also know the density of MAhp;K equals detr2hp;K .
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6B. Conditional lower bounds on the isotropic constant. The proof of Theorem 1.9 relies on the
following observation. Assume that K satisfies (�B ) for some B > 0, i.e.,

uB;K.y/ WD log detr2h1;K.y/CBh1;K.y/

is convex. Note that h1;K.0/D 0; thus uB;K.0/D log detr2h1;K.0/. By Lemma 6.3,

C.K/D
jKj2

det Cov.K/
D

jKj2

detr2h1;K.0/
D jKj2e�uB;K.0/: (6-1)

Since uB;K is convex by assumption, for a probability measure � with b.�/D 0, by Jensen’s inequality,

uB;K.0/D uB;K

�Z
Rn
y d�.y/

�
�

Z
Rn
uB;K.y/ d�.y/

D

Z
Rn

log detr2h1;K.y/ d�.y/CB
Z

Rn
h1;K.y/ d�.y/: (6-2)

By (6-1) and (6-2), in order to get bounds on C.K/ it is enough to bound
R

log MAh1;K d� andR
Rn
h1;K d�, for a suitable probability measure �.

Here, we consider the probability measures (1-21) for which we obtain the desired bounds (Lemmas 6.10
and 6.13). By Corollary 4.5, we may translate K to a suitable position in order to obtain estimates onR

Rn
log MAh1;K.y/ d�p;K.y/ (Lemma 6.10(ii) and (iii)).

6B1. A bound on
R

log detr2h1;K in terms of Lp-Mahler volumes.

Lemma 6.10. Let p > 0. For a convex body K � Rn, and �p;K as in (1-21):

(i) We have Z
Rn

log detr2h1;K.y/ d�p;K.y/� log
�
jKj2

M 1
2p
.K/

M 1
p
.K/2

pn

2n

�
:

(ii) If b.�p;K/D 0, thenZ
Rn

log detr2h1;K.y/ d�p;K.y/� log
�

jKjenR
Rn
e�ph1;K.y/ dy

�
:

(iii) If b.K/D 0, thenZ
Rn

log detr2h1;K.y/ d�p;K.y/� log
�

jKjR
Rn
e�ph1;K.y/ dy

�
:

For the proof of Lemma 6.10 we need the following.

Claim 6.11. Let p > 0. For a convex body K � Rn,Z
Rn

log detr2h1;K.y/ d�p;K.y/� log
�
jKj

R
Rn
e�2ph1;K.y/ dy�R

Rn
e�ph1;K.y/ dy

�2�:
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Proof. By Jensen’s inequality and Cauchy–Schwarz,Z
Rn

log detr2h1;K.y/ d�p;K.y/D 2
Z

Rn
log.detr2h1;K.y//

1
2 d�p;K.y/

� 2 log
Z

Rn
.detr2h1;K.y//

1
2 d�p;K.y/

D 2 log
Z

Rn
.detr2h1;K.y//

1
2

e�ph1;K.y/R
Rn
e�ph1;K.y/ dy

dy

� 2 log
�Z

Rn
detr2h1;K.y/ dy

R
Rn
e�2ph1;K.y/ dy�R

Rn
e�ph1;K.y/ dy

�2�12
� log

�
jKj

R
Rn
e�2ph1;K.y/ dy�R

Rn
e�ph1;K.y/ dy

�2�;
because by Lemma 6.8 and Remark 6.9,

R
Rn

detr2h1;K.y/ dy DMAh1;K.Rn/� jKj. �

Proof of Lemma 6.10. (i) In view of Claim 6.11, it is enough to compute the following two integrals,Z
Rn
e�2ph1;K.y/ dy D

1

.2p/n

Z
Rn
e�2ph1;K.

y
2p
/ dy D

1

.2p/n

Z
Rn
e�h1=.2p/;K.y/ dy D

1

.2p/n

M 1
2p
.K/

jKj1C2p
;

because by Lemma 2.2(i), 2ph1;K
� y
2p

�
D h1=.2p/;K.y/. Similarly,Z

Rn
e�ph1;K.y/ dy D

1

pn

M 1
p
.K/

jKj1Cp
:

Therefore,

jKj

R
Rn
e�2ph1;K.y/ dy�R

Rn
e�ph1;K.y/ dy

�2 D jKj M 1
2p
.K/

.2p/njKj1C2p
p2njKj2C2p

M 1
p
.K/2

D jKj2
pn

2n

M 1
2p
.K/

M 1
p
.K/2

: (6-3)

The claim follows from (6-3) and Claim 6.11.

(ii) Since b.�p;K/D b.ph1;K/D 0, by Lemma 6.12 below, ph1;K.y/�ph1;K.0/�nD�n. Therefore,Z
Rn
e�2ph1;K.y/ dy D

Z
Rn
e�ph1;K.y/e�ph1;K.y/ dy � en

Z
Rn
e�ph1;K.y/ dy: (6-4)

The claim follows directly from (6-4) and Claim 6.11.

(iii) Since b.K/D 0,
R
Khx; yi dx D 0 for all y 2 Rn. As a result, by Jensen’s inequality,

h1;K.y/D log
Z
K

ehx;yi
dx
jKj
�

Z
K

log ehx;yi
dx
jKj
D

Z
K

hx; yi
dx
jKj
D 0;

i.e., h1;K.y/� 0. Therefore, for p > 0, 2ph1;K.y/� ph1;K.y/ and henceZ
Rn
e�2ph1;K.y/ dy �

Z
Rn
e�ph1;K.y/ dy: (6-5)

The claim follows directly from (6-5) and Claim 6.11. �
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In the previous proof we made use of the following estimate of [Fradelizi 1997, Theorem 4], stated with-
out proof. We include a proof for the reader’s convenience (see also [Brazitikos et al. 2014, Theorem 2.2.2]).

Lemma 6.12. For a convex function � W Rn! R[f1g,

inf
x2Rn

�.x/� �.b.�//�n:

Proof. To begin with, it is enough to consider � to be smooth, strictly convex, and bounded from
below by C jxj2 for large jxj. That is because for a smooth, nonnegative, compactly supported mollifier
� WRn! Œ0;1/ we know that

�".x/ WD
1

"n

Z
Rn
�.x�y/�

�
y

"

�
dy

is smooth, convex and decreases to � as "! 0. Let

�j;".x/ WD �".x/C
1

j

jxj2

2
;

smooth, convex functions that decrease to � as "! 0C and j !1 [Klimek 1991, Theorem 2.5.5]. In
addition, �j;".x/�C jxj2 for large enough jxj, since �" can be estimated by a linear term due to convexity,
that is, �".x/� �".0/Chr�".0/; xi. By monotone convergence, b.�j;"/! b.�/ as "! 0 and j !1.
By convexity, �.x/� �.b.�//Ch@�.b.�//; x� b.�/i for all x, so if the claim holds for �j;", then

�j;".y/� �j;".b.�j;"//�n

� �.b.�j;"//�n

� �.b.�//Ch@�.b.�//; b.�j;"/� b.�/i �n;

because �j;" � �. Taking j !1 and "! 0 yields �.y/� �.b.�//�n.
For � smooth, strictly convex with �.x/� C jxj2 for large jxj, by Jensen’s inequality,

�.b.�//D �

�Z
Rn
xe��.x/

dx
V.�/

�
�

Z
Rn
�.x/e��.x/

dx
V.�/

: (6-6)

By convexity, for all x; y 2Rn, �.y/��.x/Chr�.x/; y�xi; thus, integrating with respect e��.x/ dx
V.�/

,

�.y/�

Z
Rn
�.x/e��.x/

dx
V.�/

C

Z
Rn
hr�.x/; y � xie��.x/

dx
V.�/

D

Z
Rn
�.x/e��.x/

dx
V.�/

C

nX
iD1

Z
Rn

@�

@xi
.x/.yi � xi /e

��.x/ dx
V.�/

D

Z
Rn
�.x/e��.x/

dx
V.�/

�

nX
iD1

Z
Rn

@

@xi
.e��.x//.yi � xi /

dx
V.�/

D

Z
Rn
�.x/e��.x/

dx
V.�/

�

nX
iD1

Z
Rn
e��.x/

dx
V.�/

D

Z
Rn
�.x/e��.x/

dx
V.�/

�n; (6-7)
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because, by integration by parts,Z
R

@

@xi
.e��.x//.yi � xi / dx D 0�

Z
R

e��.x/ dx;

since
lim
jxi j!1

e��.x/jyi � xi j � lim
xi!1

e�C jxj
2

jy � xj D 0:

By (6-6) and (6-7), �.b.�//� �.y/Cn for all y 2 Rn, from which the claim follows. �

6B2. A bound on
R

Rn
h1;K d�p;K .

Lemma 6.13. Let p > 0. For a convex body K � Rn,Z
Rn
h1;K.y/ d�p;K.y/�

n

p
:

Proof of Lemma 6.13. By Lemma 2.2(v), hp;K increases to hK with p. Therefore, by Lemma 2.2(i),

F.p/ WD log
Z

Rn
e�hp;K.y/ dy D log

Z
Rn
e�

1
p
h1;K.py/ dy

D log
Z

Rn
e�

1
p
h1;K.y/

dy
pn
D log

Z
Rn
e�

1
p
h1;K.y/ dy �n logp

is decreasing with p, and hence, its derivative must be nonpositive,

0�
dF
dp
D

R
Rn
e�

1
p
h1;K.y/h1;K.y/ dy

p2
R

Rn
e�

1
p
h1;K.y/ dy

�
n

p
D

1

p2

Z
Rn
h1;K.y/ d� 1

p
.y/�

n

p
;

and the lemma follows. �

6B3. Proof of Theorem 1.9.

Claim 6.14. Let p > 0. For a convex body K � Rn with 0 2 intK and jKj D 1,Z
Rn
e�ph1;K.y/ dy �

M.K/

pn
:

Proof. Since hp;K � hK , by homogeneity of hK ,Z
Rn
e�ph1;K.y/ dy �

Z
Rn
e�phK.y/ dy D

Z
Rn
e�hK.py/ dy

D

Z
Rn
e�hK.v/

dv
pn
D
nŠ jKıj

pn
D

M.K/

pn
;

because jKj D 1; thus M.K/ WD nŠ jKjjKıj D nŠ jKıj. �

Proof of Theorem 1.9. By assumption, (�B ) holds. Thus (6-2) applies for probability measures with
barycenter at the origin.

(i) In order to apply the estimate (6-2), it is necessary to have a measure with barycenter at the origin.
By Corollary 4.5, we may translate K so that b.�p;K/D b.h1=p;K/D 0. By Corollary 6.2, this does not
affect C.K/. By (6-2) and Lemmas 6.13 and 6.10(i),

uB;K.0/� log
�
jKj2

M 1
2p
.K/

M 1
p
.K/2

pn

2n

�
C
Bn

p
:
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As a result, by (6-1),

C.K/�
M 1

p
.K/2

M 1
2p
.K/

2n

pn
e�

Bn
p :

Choosing p D B ,

C.K/�
M 1

B
.K/2

M 1
2B
.K/

2n

Bn
e�n:

(ii) Similarly, to apply (6-2) we need a measure with barycenter at the origin. By Corollary 4.5, we may
translate K so that b.�p;K/D b.h1=p;K/D 0. Also, rescale so that jKj D 1. By Corollary 6.2 this does
not affect C.K/. By (6-2), Lemmas 6.13 and 6.10(ii),

uB;K.0/� log
�

enR
Rn
e�ph1;K.y/ dy

�
C
Bn

p
� log

�
enpn

M.K/n

�
C
Bn

p
;

where we used Claim 6.14 for the last inequality. As a result, by (6-1), since jKj D 1,

C.K/D e�uB;K.0/ �
M.K/

enpn
e�

Bn
p : (6-8)

We can now optimize over all p on the right-hand side. Setting

f .p/ WD pne.1C
B
p
/n

gives

f 0.p/D enC
nB
p �

�
npn�1�pn �

nB

p2

�
D nenCn

B
p pn�2.p�B/;

and the second derivative gives

f 00.p/D nenC
nB
p Œ�nBp�2pn�2.p�B/C .n� 2/pn�3.p�B/Cpn�2�

D nenC
nB
p pn�4Œ�nB.p�B/C .n� 2/p.p�B/Cp2�;

so f 00.B/ D ne2nBn�2 > 0 as long as B > 0. This confirms p D B is a minimum. Thus, choosing
p D B in (6-8),

C.K/�
M.K/

e2nBn
:

(iii) Since K is symmetric, b.K/D b.�p;K/D 0. Rescale K so that jKj D 1. C.K/ remains invariant
under rescaling by Corollary 6.2. By (6-2), Lemmas 6.13 and 6.10(iii), and Claim 6.14,

uB;K.0/� log
�

1R
Rn
e�ph1;K.y/ dy

�
C
Bn

p
� log

�
pn

M.K/

�
C
Bn

p
:

As a result, by (6-1), since jKj D 1,

C.K/D e�uB;K.0/ �
M.K/

pn
e�

Bn
p :

Thus, choosing p D B ,

C.K/�
M.K/

enBn
;

concluding the proof of Theorem 1.9 �
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Remark 6.15. It is enough to formulate Theorem 1.9 in terms of h1;K : By Lemma 2.2(i),

hp;K.y/D
1

p
h1;K.py/:

Therefore r2hp;K.y/D pr2h1;K.py/. As a result,

log detr2hp;K.y/CpBhp;K.y/D log detr2h1;K.py/CBh1;K.py/Cn logp:

Thus, log detr2hp;K.y/CpBhp;K.y/ is convex if and only if log detr2h1;K.y/CBh1;K.y/ is.

6C. A suboptimal bound. We prove Theorem 1.11, i.e., we show that log detr2hp;K Cp.nC 1/hp;K
is convex. Corollary 1.12 then follows from Theorem 1.9(ii).

Proof of Corollary 1.12. By Theorems 1.9(ii) and 1.11,

C.K/�
M.K/

e2n.nC 1/n
�

�
�

2e2

�n 1

.nC 1/n
:

By tensorization (replacing .nC 1/�n by n�n [Mastrantonis and Rubinstein 2022, Appendix A]),

C.K/�
�

�

2e2n

�n
: �

Proof of Theorem 1.11. Recall by the proof of Lemma 6.3,

r
2hp;K.y/D p

�Z
K

xixj d�y.x/�
Z
K

xi d�y.x/
Z
K

xj d�y.x/
�
i;j

; (6-9)

where

d�y.x/ WD
ephx;yiR

K e
phx;yi dx

jKj

11K .x/dx
jKj

;

a probability measure that depends on y. Consider the .nC1/� .nC1/ matrix

M WD

26664
1

R
K x1 d�y.x/ � � �

R
K xn d�y.x/R

K x1 d�y.x/
:::R

K xn d�y.x/

�R
K xixj d�y.x/

�n
i;jD1

37775 :
By row reduction and (6-9),

detM D p�n detr2hp;K :

Note that for i; j 2 f0; 1; : : : ; ng, we have Mij D hxi ; xj iL2.d�y/, where x0 D 1. For

�.x.0/; : : : ; x.n// WD det

2641 x
.0/
1 � � � x

.0/
n

:::
:::

: : :
:::

1 x
.n/
1 � � � x

.n/
n

375 ;
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by Andréief’s formula [Forrester 2019, (1.7)],

detM D
1

.nC 1/Š

Z
KnC1

0B@det

2641 x
.0/
1 � � � x

.0/
n

:::
:::

: : :
:::

1 x
.n/
1 � � � x

.n/
n

375
1CA
2

d�y.x.0// � � � d�y.x.n//

D
1

.nC 1/Š

Z
KnC1

j�j2
ephx

.0/;yiR
K e

phx.0/;yi dx.0/
d�.x.0// � � �

ephx
.n/;yiR

K e
phx.n/;yi dx.n/

d�.x.n//

D
1

.nC 1/Š

1�R
K e

phx;yi dx
�nC1 Z

KnC1
j�j2eph

Pn
jD0 x

.j/;yi dx.0/ � � � dx.n/:

Therefore,

log detr2hp;K.y/D n logpC log detM

D n logp� log.nC 1/Š� .nC 1/ log
Z
K

ephx;yi dxC log�.y/

D n logp� log.nC 1/Š�p.nC 1/hp;K.y/C log�.y/;

where

�.y/ WD

Z
KnC1

j�j2eph
Pn
jD0 x

.j/;yi dx.0/ � � � dx.n/:

Since log� is convex (Lemma 6.16 below), and

log detr2hp;K.y/Cp.nC 1/hp;K.y/D n logp� log.nC 1/ŠC log�.y/;

the claim follows. �

Lemma 6.16. Let K � Rn be a convex body, m 2 N, and f W Rnm! Œ0;C1/ a measurable function.
Then,

�.y/ WD log
Z
Km

f .x1; : : : ; xm/e
hx1C���Cxm;yi dx1 � � � dxm; y 2 Rn;

is convex.

Proof. Write x D .x1; : : : ; xm/ 2 Rnm and let � 2 .0; 1/; y1; y2 2 Rn. Since

f .x/ehx1C���Cxm;.1��/y1C�y2i D .f .x/ehx1C���Cxm;y1i/1��.f .x/ehx1C���Cxm;y2i/�;

by Hölder’s inequality for p D 1
1��

and q D 1
�

,Z
Km

f .x/ehx1C���Cxm;.1��/y1C�y2i dx �
�Z
Km

f .x/ehx1C���Cxm;y1i dx
�1��

�Z
Km

f .x/ehx1C���Cxm;y2i dx
��
:

Taking logarithms yields �..1��/y1C�y2/� .1��/�.y1/C��.y2/. �
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6D. More general probability measures and sharpness of B D n C 1. As just discussed, Theorem 1.11
falls short of proving the slicing conjecture because the best constant B we currently obtain is nC 1. It is
interesting to note that while in the setting of the uniform measure on K this constant could potentially
be improved, many of the results in this section extend to general probability measures and then the
constant nC 1 is in fact optimal. The purpose of this subsection is to spell this out.

Throughout this section the only properties of the measure

11K
dx
jKj

used to obtain the estimates in Lemmas 6.10 and 6.13 were that it is a probability measure that is supported
on K. As a result, it may be replaced by any probability measure

�

that is supported onK, i.e., for any measurableA�RnnK, �.A/D0, so that, in addition, co supp.�/DK.
For example, (6-2) was already obtained for any probability measure with barycenter at the origin. For a
convex body K � Rn and a probability measure � whose convex hull of its support is K, let

hp;�.y/ WD
1

p
log

Z
K

ephx;yi d�.x/:

As in Lemma 6.3,

1

p
r
2hp;�.0/D Cov.�/ WD

�Z
K

xixj d�.x/�
Z
K

xi d�.x/
Z
K

xj d�.x/
�n
i;jD1

:

For p > 0, let

�p;� WD
e�ph1;�.y/dyR

Rn
e�ph1;�.y/ dy

: (6-10)

Then, Claim 6.11, Lemmas 6.10 and 6.13 generalize.

Lemma 6.17. Let p > 0. For a convex body K � Rn, � a probability measure with co supp.�/DK, and
�p;� as in (6-10):

(i) We have Z
Rn

log detr2h1;�.y/ d�p;�.y/� log
�
jKj

R
Rn
e�2ph1;�.y/ dy�R

Rn
e�ph1;�.y/ dy

�2�:
(ii) If b.�p;�/D 0, thenZ

Rn
log detr2h1;�.y/ d�p;�.y/� log

�
jKjenR

Rn
e�ph1;�.y/ dy

�
:

(iii) If b.�/D 0, thenZ
Rn

log detr2h1;�.y/ d�p;�.y/� log
�

jKjR
Rn
e�ph1;�.y/ dy

�
:



2234 BO BERNDTSSON, VLASSIS MASTRANTONIS AND YANIR A. RUBINSTEIN

Lemma 6.18. Let p > 0. For a convex body K � Rn and a probability measure � with co supp.�/DK,Z
Rn
h1;�.y/ d�p;�.y/�

n

p
:

Theorem 1.11 also generalizes.

Theorem 6.19. Let p > 0. For a probability measure � on Rn such that supp.�/ is a convex body, the
function

log detr2hp;�.y/Cp.nC 1/hp;�.y/

is convex.

In fact, Theorem 6.19 is sharp: the next example shows B D nC 1 cannot be improved.

Example 6.20. Consider

� WD
ı0C ıe1 C � � �C ıen

nC 1
;

the probability measure on the standard simplex �n that assigns mass 1
nC1

to each vertex. Then,

log detr2hp;�.y/CpBhp;�.y/

is convex if and only if B � nC 1. To see this, compute

hp;�.y/D
1

p
log

Z
�n

ephx;yi d�.x/D
1

p
log

1C epy1 C � � �C epyn

nC 1
:

For the gradient, by the chain rule,

@hp;�

@yi
.y/D

1

p

nC 1

1C epy1 C � � �C epyn

@

@yi

�
1C epy1 C � � �C epyn

nC 1

�
D

epyi

1C epy1 C � � �C epyn
: (6-11)

Thus

rhp;�.y/D
.epy1 ; : : : ; epyn/

1C epy1 C � � �C epyn
:

For the Hessian, by the quotient rule on (6-11),

@2hp;�

@yi@yj
.y/D

pepyi ıij .1C e
py1 C � � �C epyn/� epyipepyj

.1C epy1 C � � �C epyn/2

D
p

1C epy1 C � � �C epyn

�
ıij e

pyi �
ep.yiCyj /

1C epy1 C � � �C epyn

�
:

Thus

r
2hp;�.y/D

p

1C epy1 C � � �C epyn

�
ıij e

pyi �
ep.yiCyj /

1C epy1 C � � �C epyn

�n
i;jD1

D
p

1C epy1 C � � �C epyn
.D� aaT /;
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where D D diag.epy1 ; : : : ; epyn/ and aD .1C epy1 C � � �C epyn/�1=2.epy1 ; : : : ; epyn/. Therefore,

detr2hp;�.y/D
pn

.1C ey1 C � � �C epyn/n
det.D� aaT /

D
pn

.1C ey1 C � � �C epyn/n
.1� hD�1a; ai/ detD

D
pn

.1C ey1 C � � �C epyn/n

�
1�

epy1 C � � �C epyn

1C epy1 C � � �C epyn

�
epy1C���Cpyn

D
pn

.1C ey1 C � � �C epyn/nC1
epy1C���Cpyn : (6-12)

Here we used the fact that, for u; v 2 Rn, det.I �uvT /D 1� hu; vi, which follows from row reduction

det
�
1 0T

0 ICxyT

�
D det

�
1 yT

0 ICxyT

�
D det

�
1 yT

�x I

�
D det

�
1Chx; yi 0T

�x I

�
:

As a result, by (6-12),

log detr2hp;�.y/CpBhp;�.y/D n log.p/Cpy1C � � �Cpyn� .nC 1/ log.1C epy1 C � � �C epyn/

CB log
1C epy1 C � � �C epyn

nC 1

D .B �n� 1/ log.1C epy1 C � � �C epyn/
Cpy1C � � �CpynCn logp�B log.nC 1/;

which is convex if and only if B � nC 1 (because log.1C epy1 C � � �C epyn/ is convex).
When B D nC 1 and p D 1 we get

log detr2h1;�C .nC 1/h1;� D y1C � � �Cyn� .nC 1/ log.nC 1/;

so that h1;� solves the Monge–Ampère equation

detr2h1;�.y/D
1

.nC 1/nC1
e�.nC1/h1;�ey1C���Cyn :

From here we can read off that

detr2h1;�.0/D
1

.nC 1/nC1
:

We next look at a generalized isotropic constant, by defining

C.�/ WD
jKj2

detr2h1;�.0/
: (6-13)

From the previous equation we then get, remembering that the volume of the unit simplex is 1=nŠ , that

C.�/D
.nC 1/nC1

.nŠ/2
:

The right-hand side here is of the order of magnitude cnn�n, so we see that the “suboptimal” bound of
Corollary 1.12 is optimal in this generality.
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Interpreted benevolently, Example 6.20 means that our method is optimal in the sense that the best
possible choice of B gives the correct estimate for C.�/. The natural question then arises, for which
measures � the constant B can be taken smaller so that we as a consequence get a better estimate of C.�/.
One simple case when this is so is when � is divisible, in the sense that we can write

�D � ? � ? � � �? � D �k?

as the k-fold convolution of another probability measure � with itself. In that case,

h1;� D kh1;� :

Applying Theorem 6.19 to h1;� we then get that

log detr2h1;� C .nC 1/h1;�

is convex, which implies that

log detr2h1;�C
nC 1

k
h1;�

is convex. This leads to the improved estimate

C.�/� cn
�
k

n

�n
:

This is however not so impressive since the same conclusion can be drawn directly from C.�/� cn=nn if
we note that the convex hull of the support of � is K

k
. This way we also see that it is not really necessary

that � can be written �k?; it is enough that �D f �k?, where f is bounded.

6E. A complex geometric approach to Theorems 1.11 and 6.19. In this section we outline a different
proof of Theorem 1.11 (and of its generalization, Theorem 6.19) which is a little more conceptual, but
presupposes a bit of complex geometry. It is based on a theorem by S. Kobayashi [1959, Theorem 4.4].
Kobayashi’s theorem deals with L2 spaces of holomorphic .n; 0/-forms on complex manifolds, but his
proof goes through in a much more general setting and applies in particular to the setting we will now
describe.

Let � be a compactly supported probability measure on Rn. Let

H� WD

�
Qf .z/ WD

Z
Rn
e
1
2
hz;tif .t/ d�.t/; z 2 Cn W f 2 L2.�/

�
:

H� is a space of entire functions on Cn and we give it an inner product

h Qf ; Qgi WD

Z
f .t/g.t/ d�.t/; (6-14)

making H� a Hilbert space, isomorphic to L2.�/.
We require that � is not supported in any proper linear subspace of Rn. This implies that for any

a 2 Rn there is a function f such thatZ
f d�D 0 and

Z
ha; tif .t/ d�.t/¤ 0:
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Indeed, if this were not the case, any function orthogonal to 1 in L2.�/ would also be orthogonal to ha; ti,
which would imply that ha; ti D c on the support on �, contrary to assumption. In terms of functions
in H�, this says that there is a function Qf which vanishes at the origin, with

P
aj @jf not vanishing

there. Then, replacing f by ehz0;ti=2f .t/ we see that the same thing goes for any point z0 in Cn. This
means that the conditions A.1 and A.2 in [Kobayashi 1959, pp. 271–2] are satisfied (we will see the
relevance of this shortly). Kobayashi’s condition A.1 says that for any point in Cn there is a function
in H� that does not vanish there — this is trivial in our case. Indeed, for z0 2 Cn, since � is compactly
supported, e�hz0;ti 2 L2.�/, andZ

e�hz0;tiehz0;ti d�.t/D
Z

d�.t/D 1;

because � is a probability measure.
The (diagonal) Bergman kernel for H� is defined as

B�.z/ WD sup
f Qf 2H�Wk Qf kD1g

j Qf .z/j2:

By condition A.1, the Bergman kernel does not vanish anywhere. It follows directly from the definitions
that for

K�.z; w/ WD
Z
eh
zC Nw
2
;ti d�.t/;

and Qf .z/D
R
ehz;ti=2f .t/ d�.t/ 2H�, by (6-14),

h Qf ;K�. � ; w/i D
Z
f .t/e

1
2
h Nw;ti d�.t/D

Z
f .t/e

1
2
hw;ti d�.t/D Qf .w/;

i.e., K� enjoys a reproducing property, in addition to being holomorphic in the first variable and antiholo-
morphic in the second. These three properties characterize Bergman kernels [Mastrantonis and Rubinstein
2022, §3.2]; thus K� is the Bergman kernel of H�. Therefore, on the diagonal, if z D xC iy,

B�.z/D K�.z; z/D
Z
ehx;ti d�.t/;

i.e., coming back full circle to the ideas in Section 1A,

logB� D h1;�: (6-15)

The Bergman metric associated to H� is the Kähler metric on Cn defined by

g
j Nk
WD

@2

@zj @ Nzk
logB�:

By (6-15), logB� is convex in x, hence plurisubharmonic in z, and the matrix gD Œg
j Nk
� is positive semidef-

inite, and it is a standard fact (that we omit) that the condition A.2 is precisely what is needed to make sure
it is strictly positive definite. (Alternatively, condition A.2 can verified by using (6-15), the computation
of Lemma 6.3, and the Cauchy–Schwarz inequality to note that hp;� is strongly convex.) Kobayashi’s
theorem says that the Ricci curvature Ricg of the Bergman metric is bounded from above by .nC 1/g.



2238 BO BERNDTSSON, VLASSIS MASTRANTONIS AND YANIR A. RUBINSTEIN

At this point we need to make use of a standard formula for the Ricci curvature, valid for any Kähler
metric. Let

� WD detŒg
j Nk
�

be the density of the volume form of the metric g. Then the Ricci curvature form of g is given by

R
j Nk
D�

@2

@zj @ Nzk
log�:

Hence, Kobayashi’s estimate
ŒRjk�� .nC 1/Œgjk�

translates to saying that
log�C .nC 1/ logB�

is plurisubharmonic. In our case, B� and log� depend only on x D Re.z/, so

log�C .nC 1/ logB�

is actually a convex function of x. Moreover, logB�D h1;� and �D 4�n detr2h1;� (in the last equality
we used the relation between the complex Hessian and the real one on functions depending only on the
real part). Therefore

log detr2h1;�C .nC 1/h1;�

is convex, i.e., (�B ) holds with B D nC 1, so we have proved Theorem 6.19, and, in particular, also
Theorem 1.11.

Appendix: A (near) norm associated to a convex function

In this section we give proofs for Proposition A.1 [Ball 1988, Theorem 5] and Theorem 5.20 [Ball 1986,
Theorem 4.10] (cf. [Busemann 1949; Milman and Pajor 1989, p. 90]). Let us start by using Theorem 5.20
to prove Proposition A.1.

Proposition A.1. For a convex function � W Rn! R[f1g with 0 <
R

Rn
e�� <1,

x 7!

�Z 1
0

rn�1e��.rx/ dr
�� 1

n

(A-1)

is positively 1-homogeneous and subadditive (it is also a norm if � is, in addition, even), and
1

n

Z
Rn
e��.x/ dx D jfx 2 Rn W kxk� � 1gj:

Proof of Proposition A.1. 1-homogeneity. Let x 2 Rn and � > 0. By changing variables �D �r ,

k�xk� WD

�Z 1
0

rn�1e��.r�x/ dr
�� 1

n

D

�Z 1
0

�n�1

�n�1
e��.�x/

d�
�

�� 1
n

D �

�Z 1
0

�n�1e��.�x/ d�
�� 1

n

D �kxk� :

Positivity of � is used in the last step.
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Subadditivity. Let x; y 2 Rn and r; t; s > 0 with 1
r
D

1
2

�
1
t
C
1
s

�
, or equivalently,

r

2t
C
r

2s
D 1: (6-2)

By (6-2) and convexity of �,

�.r.xCy//D �

�
r

2t
2txC

r

2s
2sy

�
�
r

2t
�.2tx/C

r

2s
�.2sy/D

s

t C s
�.2tx/C

t

t C s
�.2sy/: (6-3)

Set
H.r/ WD e��.r.xCy//; F .t/ WD e��.2tx/; G.s/ WD e��.2sy/:

By (6-3), H.r/� F.t/s=.tCs/G.s/t=.tCs/, so by Theorem 5.20 (with q D n),

kxCyk� D

�Z 1
0

rn�1e�H.r/ dr
�� 1

n

�
1

2

�Z 1
0

rn�1e�F.t/ dt
�� 1

n

C
1

2

�Z 1
0

rn�1e�G.s/ ds
�� 1

n

D
1

2
k2xk� C

1

2
k2yk� D kxk� Ckyk� ;

using the already established homogeneity of k � k� .

Volume equality. By (3-2),

jfx 2 Rn W kxk� � 1gj D
1

n

Z
@Bn2

du
kukn�

D
1

n

Z
@Bn2

Z 1
0

rn�1e��.ru/ dr du: (6-4)

Using polar coordinates this is 1
n

R
Rn
e��.x/ dx.

Norm. Assuming in addition that � is even, for x 2 Rn,

k� xk� D

�Z 1
0

rn�1e��.�rx/ dr
�� 1

n

D

�Z 1
0

rn�1e��.rx/ dr
�� 1

n

D kxk� :

Therefore, for � 2 R, k�xk� D kj�jxk� D j�jkxk� , making k � k� into a norm. This concludes the proof
of Proposition A.1. �

Next, we turn to proving Theorem 5.20. The proof involves three auxiliary lemmas. To begin with,
invert the variables; for t; s; r > 0, let

u WD
1

t
; v WD

1

�s
; and w WD

1

r

for some � >0 to be chosen later. In the inverted coordinates, the condition 2
r
D
1
t
C
1
s

becomeswD uC�v
2

.
Now, let

A.u/ WD F.u�1/u�.qC1/; B.v/ WDG.��1v�1/v�.qC1/ (6-5)

and

C.w/ WD

�
� C 1

2

�qC1
H.w�1/w�.qC1/: (6-6)

The reason behind the multiplication by
�
�C1
2

�qC1 will become apparent in the next lemma that translates
the (5-16) relation between F;G and H to one between A;B and C .
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Lemma 6.2. Let F;G;H as in Theorem 5.20, and � > 0. For A;B and C as in (6-5)–(6-6),

C

�
uC �v

2

�
� A.u/

u
uC�vB.v/

�v
uC�v for all u; v > 0:

A straightforward change of variables expresses the integrals of F;G, and H in terms of integrals of
A;B , and C :

Lemma 6.3. Let F;G;H as in Theorem 5.20 and � > 0. For A;B and C as in (6-5) and (6-6),Z 1
0

A.u/ duD
Z 1
0

tq�1F.t/ dt;Z 1
0

B.v/ dv D �q
Z 1
0

sq�1G.s/ ds;Z 1
0

C.w/ dw D
�
� C 1

2

�qC1 Z 1
0

rq�1H.r/ dr:

The following is a standard reduction:

Lemma 6.4. It is enough to prove Theorem 5.20 for F and G bounded.

Before proving Lemmas 6.2–6.4, let us show how they imply Theorem 5.20. For a function E W
.0;1/! Œ0;1/, changing the order of integration,Z 1

0

E.u/ duD
Z 1
0

Z E.u/

0

dz duD
Z kEk1
0

Z
fuWE.u/�zg

du dz D
Z kEk1
0

jE � zj dz; (6-7)

where kEk1 could potentially be infinite. Ball applies the 1-dimensional Brunn–Minkowski inequality
to the sets fE � zg.

Proof of Theorem 5.20. Step 1: the setup. Let

a WD

�Z 1
0

tq�1F.t/ dt
�1
q

; b WD

�Z 1
0

sq�1G.s/ ds
�1
q

; c WD

�Z 1
0

rq�1H.r/ dr
�1
q

:

The aim is to show 2
c
�
1
a
C
1
b

, or equivalently,

c �
2ab

aC b
: (6-8)

By Lemma 6.3 and (6-7),

aq D

Z 1
0

A.u/ duD
Z kAk1
0

jA� zj dz; (6-9)

.�b/q D

Z 1
0

B.v/ dv D
Z kBk1
0

jB � zj dz; (6-10)�
� C 1

2

�qC1
cq D

Z 1
0

C.w/ dw D
Z kCk1
0

jC � zj dz: (6-11)
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Step 2: comparing the superlevel sets. Lemma 6.2 allows us to compare the superlevel sets of A;B
and C , obtaining an inequality between a; b and c. In particular,

fC � zg �
1

2
fA� zgC

�

2
fB � zg; (6-12)

because for u 2 fA� zg and v 2 fB � zg,

C

�
uC �v

2

�
� A.u/

u
uC�vB.v/

�v
uC�v � z

u
uC�v z

�v
uC�v D z;

i.e., uC�v
2
2 fC � zg. By the 1-dimensional Brunn–Minkowski inequality,

jC � zj �
1

2
jA� zjC

�

2
jB � zj: (6-13)

By (6-7) and (6-13),�
� C 1

2

�qC1
cq D

Z kCk1
0

jC � zj dz � 1
2

Z kCk1
0

jA� zj dzC �
2

Z kCk1
0

jA� zj dz: (6-14)

Step 3: choosing � . By Lemma 6.2, kCk1 �minfkAk1; kBk1g. In view of (6-9), (6-10) and (6-14),
we would like kCk1 �maxfkAk1; kBk1g. The only way to achieve this is to have kAk1 D kBk1.
It is here that one needs to take F and G bounded so that kAk1 and kBk1 are finite. By Lemma 6.4,
there is no loss in making such an assumption. Choosing

� WD

�
supr>0 F.r/r

qC1

supr>0G.r/rqC1

� 1
qC1

;

gives

kAk1 D sup
r>0

F.r/rqC1 D sup
r>0

G.r/.� r/qC1

D sup
u>0

G.��1u�1/u�.qC1/ D kBk1:

Step 4: finishing the proof. By Lemma 6.2 and the choice of � , kCk1 � kAk1 D kBk1. By (6-9),
(6-10), and (6-14),�

� C 1

2

�qC1
cq �

1

2

Z kAk1
0

jA� zj dzC �
2

Z kBk1
0

jB � zj dz D
aqC �qC1bq

2
:

That is,

cq �

�
2

� C 1

�q� 1

1C �
aqC

�

1C �
.�b/q

�
�

�
2

� C 1

�q� 1

� C 1
aC

�

� C 1
�b

�q
;

because for q � 1, x 7! xq is convex and hence

.1��/xqC�yq � ..1��/xC�y/q
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for all x; y � 0 and � 2 Œ0; 1�. Finally,

c �
2.aC �2b/

.� C 1/2
D
2.aC b/.aC �2b/

.aC b/.� C 1/2
D 2

a2C �2abC abC �2b2

.aC b/.� C 1/2

D 2
.�2C 1/abC a2C �2b2

.aC b/.� C 1/2
D 2

.� C 1/2ab� 2�abC a2C �2b2

.aC b/.� C 1/2

D 2
.� C 1/2abC .a� �b/2

.aC b/.� C 1/2
D

2ab

aC b
C

2.a� �b/2

.aC b/.� C 1/2
�
2ab

aC b
;

as desired. This concludes the proof of Theorem 5.20, modulo the proofs of Lemmas 6.2–6.4, which are
given below. �

Proof of Lemma 6.2. For t; s; r > 0 with 2
r
D

1
t
C
1
s

, by assumption,

H.r/� F.t/
s
tCsG.s/

t
tCs D

�
A.t�1/t�.qC1/

� s
tCs
�
B.��1s�1/.�s/�.qC1/

� t
tCs

D A.u/
s
tCsB.v/

t
tCs
�
t
s
tCs .�s/

t
tCs
��.qC1/

: (6-15)

Since,
s

t C s
D

u

uC �v
and

t

t C s
D

�v

uC �v
;

by (6-15) and the weighted AM–GM,

A.u/
u

uC�vB.v/
�v
uC�v D A.u/

s
tCsB.v/

t
tCs �H.r/.t

s
tCs .�s/

t
tCs /qC1

�H.r/

�
ts

t C s
C
�st

t C s

�qC1
D

�
� C 1

2

�qC1
H.r/

�
2ts

t C s

�qC1
D

�
� C 1

2

�qC1
H.r/rpC1 D C

�
uC �v

2

�
; (6-16)

because 1
r
D

1
2t
C

1
2s
D

1
2
uC 1

2
.�v/D uC�v

2
. �

Proof of Lemma 6.3. By changing variables, uD 1
t
,Z 1

0

A.u/ duD
Z 1
0

u�.qC1/F.u�1/ duD
Z 1
0

tqC1F.t/
dt
t2
D

Z 1
0

tq�1F.t/ dt:

For v D 1
�s

,Z 1
0

B.v/ dv D
Z 1
0

v�.qC1/G.��1v�1/ dv D
Z 1
0

.�s/qC1G.s/
ds
�s2
D �q

Z 1
0

sq�1G.s/ ds:

Finally, for w D 1
r

,Z 1
0

C.w/ dw D
�
� C 1

2

�qC1 Z 1
0

w�.qC1/H.w�1/ dw

D

�
� C 1

2

�qC1 Z 1
0

rqC1H.r/
dr
r2
D

�
� C 1

2

�qC1 Z 1
0

rq�1H.r/ dr: �
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Proof of Lemma 6.4. For m 2 N, let

Fm.t/ WD F.t/1fF�mg.t/ and Gm.s/ WDG.s/1fG�mg.s/:

Then, Fm; Gm are both bounded by m. In addition, F � Fm and G � Gm, thus for t; s; r > 0 with
2
r
D

1
t
C
1
s

,

H.r/� F.t/
s
tCsG.s/

t
tCs � Fm.t/

s
tCsGm.s/

t
tCs :

Under the assumption that Theorem 5.20 holds for bounded functions,

2

�Z 1
0

rq�1H.r/ dr
�� 1

q

�

�Z 1
0

tq�1Fm.t/ dt
�� 1

q

C

�Z 1
0

sq�1Gm.s/ ds
�� 1

q

:

The claim follows from the monotone convergence theorem by taking m!1. �
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