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Abstract—This paper presents a fast and accurate state-space
model for synchronous machines taking into consideration the
machine geometry, material non-linearities and core losses. The
model is first constructed by storing the solutions of multiple static
finite element (FE) simulations into lookup-tables (LUTs) to express
the stator flux linkages as functions of the state variables, i.e., the
winding currents and the rotor position. Different approaches are
discussed to include the core loss into the model. A novel approach is
presented for constructing a pre-computed LUT for the core loss as
a function of the state variables and their time derivatives so that the
loss can be directly interpolated when time-stepping the state-space
model. The Simulink implementation of the proposed core-loss
model shows a good match with time-stepping FE results with a
120-fold speedup in computation. In addition, comparison against
calorimetric loss measurements for a 150-kVA machine operating
under both sinusoidal and pulse-width modulated voltage supplies
is presented to validate the model accuracy.

Index Terms—Core loss, lookup-tables, state-space model,
synchronous machine.

I. INTRODUCTION

FAST and accurate models for electrical machines are indis-
pensable, especially when an iterative controller design and

validation process is involved or conducting a long drive-cycle
simulation is required. For example, in the electric vehicle
drive-cycle simulation, it is required to run the motor for around
10 to 30 minutes [1]. For such long simulations, the model has
to be fast enough, and at the same time, sufficiently accurate [2].
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There are many techniques in the literature for motor mod-
eling. The conventional dq0 model with constant inductances
is a good choice for machine modeling from the computation
time point of view. However, it ignores the effects of geo-
metrical structures (i.e. stator slotting and rotor core shape),
material non-linearities and losses, which leads to inaccura-
cies in the results [3], [4], [5]. There are some extensions
for the model to include these non-idealities, but such mod-
els are no longer simple and need a lot of time to be con-
structed [6], [7], [8]. On the other hand, finite element (FE)
models yield highly accurate results taking into consideration
geometrical effects and material non-linearities. However, these
models are very time consuming and not feasible for long
simulations.

FE based state-space models are a good choice to simulate
the synchronous machine in the time domain. These models are
based on solving multiple static FE simulations and using these
results to build lookup-tables (LUTs) to replace an analytical
machine model. As these LUTs are based on FE solutions, they
can yield accuracy comparable to FE simulations with shorter
computation time.

The FE based state-space models can be divided into two
categories based on how the model is developed. The first
category uses the machine inductances to construct the LUTs.
The authors in [3] build the model by storing the winding
inductance matrix as a function of rotor position only, ne-
glecting the saturation effects. A similar procedure is followed
in [9] where the inductance and torque matrices are stored as
functions of the rotor angle and stator currents. It has been
reported in the literature that constructing the inductance matrix
is a time consuming process and needs a large number of
LUTs [4], [10].

The second category directly uses the current vs. flux-linkage
relationship instead of machine inductances. In [4], the stator
flux linkages are stored as functions of the stator currents and
rotor position taking into consideration material non-linearity.
The same approach is followed in [10] to build the flux-
linkage LUTs for a synchronous generator using the stator
current space vector instead of the actual phase currents to
reduce the LUT size. However, the authors assume that the
generator operates only in the third quadrant which does not
fully represent the whole operating range of the machine.
The authors in [11] propose using a state-space model where
the stator currents are stored as functions of the stator flux
linkages.
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In the aforementioned works, the state-space models are
built without considering the machine core loss. Accurate
computation of the core loss requires the transient flux-
density distribution in the core, whose computation is very
time consuming when transient FE simulations are used [12],
[13].

Many attempts have been discussed in the literature to include
the core-loss calculation in the state-space models. In [7], the
core loss is included based on the open-circuit and short-circuit
tests, and the loss at any other operation point is estimated
from an analytical formula. However, the employed loss model
considers only for the fundamental component of the loss due
to its reliance on the Steinmetz formula. The authors in [14]
represent the core loss with a parallel resistance as a LUT in
the equivalent circuit. However, the evaluation of the resistance
values is based on directly storing measured data into a LUT,
and specific iron-loss models are not discussed. Additionally,
the validation of the model is limited to the no-load condition.
The work in [15] follows the same procedure, and the machine
model including core loss is implemented into a real-time FPGA
simulator. In [16], the core loss is included in the state-space
model by considering the actual flux-density distribution in the
core which was resolved with FE analysis. However, only the
eddy current loss is included with the assumption of quadratic
dependency on the time derivative of the flux density. This
approach is not applicable to general non-linear power loss
models.

In this paper, a non-linear state-space model for synchronous
machines is built using the winding currents and rotor position as
the state variables. This model will be called current based state-
space model (CBSSM) for the rest of the paper. A new approach
is proposed for efficiently including general post-processing
core-loss models into the CBSSM. The approach is suitable
for any non-linear iron-loss model where the instantaneous loss
density can be expressed as a function of the flux density and its
time derivative. One of such expressions is identified against
iron-loss data produced with a 1-D numerical model of the
hysteresis, eddy-current and excess losses in a single core lami-
nation. The core-loss density in the FE integration points is then
pre-calculated as a function of the state variables and their time
derivatives. Pre-computed integrals of the loss density over the
core volume are stored in LUTs to allow efficient and fast evalu-
ation of the core loss during the transient simulation. The model
is implemented in MATLAB / Simulink and verified against
both time-stepping FE simulations and calorimetric core-loss
measurements.

This paper is organized as follows: Subsection II-A describes
the state-space model derivation. Subsection II-B explains the
employed core-loss model, while Subsection II-C illustrates the
identification process for the model parameters. Subsection II-D
discusses three different implementation approaches for the loss
model in Simulink. Section III validates the proposed core-loss
model against the FE model and the measurements under grid
supply and inverter supply with 1-kHz and 6-kHz switching
frequencies. Finally, Section IV concludes the main points of
the paper.

II. METHODS

A. State-Space Model

The phase voltage equations of a three-phase synchronous
machine are given by

uabc = Rsiabc +
dψabc

(
iabc(f), α

)
dt

, (1)

where uabc and ψabc are column vectors containing the stator
phase voltages and flux linkages, respectively, iabc(f) contains
the phase currents and possibly the field current in case of a
wound-field machine, Rs is the stator phase resistance and α
is the electrical rotor position angle. In this paper, we focus
on a wound-field synchronous machine which is excited with
constant field current, so that dif/dt = 0. The field current
dependency is thus neglected from the following derivations for
brevity. In the isolated star connection, the sum of the three
phase currents is zero. This can be formulated in a matrix
form as

iabc =K
Tiab, Kuabc = QU 123, (2)

where U 123 contains the line-to-line voltages andK andQ are
connection matrices [17] given by

Q =

[
0 0 −1

−1 0 −1

]
, K =

[
1 0 −1
0 1 −1

]
. (3)

The electromagnetic torque τ and the phase flux linkages are
calculated with a 2-D static FE solver as functions of stator cur-
rents and rotor position, and stored in LUTs. The time derivative
of the flux linkage can be expressed as a function of the model
state variables using the chain rule as

dψabc

dt
=

∂ψabc

∂iab(f)

diab(f)

dt
+

∂ψabc

∂α
ω, (4)

where ω = dα/dt is the rotor electrical speed. The partial
derivatives in (4) are calculated by differentiating the phase
flux-linkage LUTs obtained from the static FE simulation with
respect to the state variables.

Substituting (4) into (1) using (2) and (3) leads to the state-
space form of the stator currents as

diab

dt
=

(
∂(Kψabc)

∂iab

)−1 [
QU123 −RsKK

Tiab

−K ∂(Kψabc)

∂α
ω

]
. (5)

The matrixK in (5) is multiplied into the flux-linkage vector
before the differentiation to reduce the number of the required
LUTs.

The partial derivatives of the phase flux linkages with respect
to the phase currents in (5) can be expressed using the stator
current space vector. By knowing the following relationships

iαβ = T iabc = TK
Tiab, (6a)

I2 = ‖iαβ‖2 , (6b)

tan θ =
iβ

iα
, (6c)
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Fig. 1. State-space model block diagram with the pre-computed core-loss LUT (Approach 3 described in Section II-D).

where iαβ contains the α and β components of the current
space vector in the stator frame of reference, T is the Clarke
transformation matrix

T =
2

3

[
1 −1

2
−1
2

0
√
3
2

−√
3

2

]
, (7)

and I and θ are the current space vector magnitude and angle,
the first term in (5) can be written as

∂(Kψabc)

∂iab
=

[
∂(Kψabc)

∂I2
dI2

diαβ
+

∂(Kψabc)

∂θ

dθ

diαβ

]
diαβ

diab
,

(8)
where

dI2

diαβ
= 2iTαβ and

dθ

diαβ
=

[−iβ iα]

I2
. (9)

Fig. 1 shows the block diagram of the state-space model which
will be implemented in Simulink.

B. Core-Loss Model

Core-loss models similar to those discussed in [18] and [19]
are considered. These models express the power loss density p in
a core lamination as a function of the flux density vectorB and
its time derivative as p(B, ∂B/∂t). Examples of such models
are the so-called loss-surface model [18] and the homogenized
dynamic lamination model [19].

A modified version of the model in [19] is used to express
the irreversible magnetic field H irr as a function of B and
∂B/∂t as

H irr

(
B,

∂B

∂t

)
= p1

⎛
⎜⎜⎝1 +

p2√
p23 +

∥∥∥∂B∂t
∥∥∥2

⎞
⎟⎟⎠ ‖B‖p4

∂B

∂t
,

(10)

where pk are material parameters to be identified. The instanta-
neous core-loss density can then be calculated as

p

(
B,

∂B

∂t

)
=H irr

(
B,

∂B

∂t

)
· ∂B
∂t

. (11)

A separate LUT for the B distribution is built while running
the static FE solver. This LUT contains the flux-density vector
Bi in all FE integration points i at each value of the state
variables. By knowing Bi and ∂Bi/∂t in the FE integration
points of the core region Ω, the total core loss is obtained as

P =

∫
Ω

p

(
B,

∂B

∂t

)
dΩ =

∑
i

wip

(
Bi,

∂Bi

∂t

)
, (12)

where i sums over the FE integration points and wi are the inte-
gration weights. In this paper, the iron-loss model is evaluated
a posteriori andH irr is not included in the field solution.

Since the flux density distribution in the core is a function
of the state variables, Bi(iab(f), α), its time derivative can be
expressed as

∂Bi

∂t
=

∂Bi

∂iab(f)

diab(f)

dt
+

∂Bi

∂α
ω. (13)

Similar to (8), (13) can be re-written in terms of I , θ and α using
the chain rule as

∂Bi

∂t
=

(
∂Bi

∂I2
dI2

diαβ
+

∂Bi

∂θ

dθ

diαβ

)
TKT diab

dt
+

∂Bi

∂α
ω.

(14)

C. Core-Loss Model Parameter Identification

Parameters pk are identified using the dynamic 1-D lami-
nation model presented in [20]. Only the static major hystere-
sis loop, electrical conductivity and excess-loss coefficient are
needed as inputs to the 1-D model. A brief description of this
model is presented here.

By placing an infinitely large lamination with thickness d
parallel to the xy-plane, the 1-D diffusion equation can be
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written as

∂2h(z, t)

∂z2
= σ

∂b(z, t)

∂t
, (15)

where σ is the electrical conductivity, and h and b are the
field strength and flux density, respectively. The solution of this
equation can be written as a cosine Fourier series expansion of
the flux density with Nb terms

b(z, t) =

Nb−1∑
n=0

bn(t)cos

(
2πnz

d

)
. (16)

The magnetic field strength is approximated in the same manner
using a series expansion, ensuring that (15) is exactly satisfied.
Due to the finite number of terms employed in the approxima-
tion, material properties are satisfied only in a weak sense by en-
forcing the orthogonality of the error between the approximated
field strength and the actual field strength with respect to the
cosine functions. This weak formulation leads to the following
system of equations for the surface field strength hs:⎡

⎢⎣
hs(t)
0
...

⎤
⎥⎦ =

1

d

∫ d/2

−d/2

h(b(z, t))

⎡
⎢⎣
α0(z)
α1(z)

...

⎤
⎥⎦ dz

+ σd2C
d

dt

⎡
⎢⎣
b0(t)
b1(t)

...

⎤
⎥⎦ (17)

where C is a constant matrix.
For a known average flux density b0(t), the system in (17)

can be used to solve for the flux density distribution b(z, t)
and surface field hs(t). The constitutive law comprises a static
hysteretic relationship and an excess-loss contribution and is
written as

h(b) = hhy(b) + cex

∣∣∣∣∂b∂t
∣∣∣∣
−0.5

∂b

∂t
(18)

where cex is the excess loss coefficient.
The local magnetization power and the eddy-current and

excess loss densities are obtained as

phy (z, t) = hhy
∂b(z, t)

∂t

pcl(z, t) = σd2
Nb−1∑
m=0

Nb−1∑
n=0

Cmn
dbm(t)

dt

dbn(t)

dt

pex (z, t) = cex

∣∣∣∣∂b(z, t)∂t

∣∣∣∣
1.5

. (19)

By averaging (19) over the lamination thickness and the
fundamental period in steady state, the total average iron-loss
density can be calculated. The densities simulated at different
excitations b0(t) can then be compared against the analytical
expression (10) and (11) to identify the parameters pk.

The loss model is identified for M600-50 A electrical steel
sheets. The static hysteresis loops are measured with a standard
Epstein frame setup with 300 mm × 30 mm samples and a DC
hysteresisgraph. The lamination conductivity is 3 MS/m and the

Fig. 2. Comparison of power loss density obtained from the dynamic 1-D
lamination model and fitting parameters pk .

TABLE I
IDENTIFIED pk PARAMETERS

excess loss coefficient is 0.718 W/m3(s/T)1.5 [21]. Loss data is
produced for sinusoidally varying average flux densities with
amplitudes of 0.1... 2 T and frequencies of 50... 2000 Hz. The
parameters pk are then identified by fitting the analytical model
(10)–(11) against this loss data using the non-linear least squares
method. A comparison between the simulated and fitted losses is
shown Fig. 2. The values of the fittedpk parameters are presented
in Table I.

D. Simulink Implementation

In order to include the core loss in the CBSSM, three different
approaches are introduced to implement the loss model (12)
into Simulink. Approach 1 is to implement the loss model (10)
and the numerical integration (12) in Simulink using the built-in
blocks. The time derivative of the flux density is calculated using
(14). This requires to pre-compute and store the derivatives of
Bi with respect to I, θ and α. The drawback of this approach is
that the computational burden of the interpolations is large as it
needs to interpolate forBi and its partial derivatives ∂Bi/∂I

2,
∂Bi/∂θ and ∂Bi/∂α for all integration points i.

Approach 2 is similar to the previous one with the exception
that the time derivative of the flux density is obtained by nu-
merical differentiation using the built-in time-derivative block
in Simulink. This approach interpolates only the flux-density
dataBi, which makes it faster than Approach 1.

Approach 3, which is the main contribution of this paper, is
to pre-calculate the loss and store it in a separate LUT as shown
in Fig. 1. Equation (12) shows that the core loss can be written



ABBAS et al.: FAST AND ACCURATE NON-LINEAR MODEL FOR SYNCHRONOUS MACHINES INCLUDING CORE LOSSES 2563

Fig. 3. Finite element model of the 200-kW machine. (a) FE mesh of 1/8 segment of the machine with 1476 elements and 871 nodes. (b) Flux-density distribution
(T) of the machine.

TABLE II
PARAMETERS OF THE MACHINE UNDER STUDY

as a function of the state variables and their time derivatives as

P = f

(
I, θ, α,

dI

dt
,
dθ

dt
, ω

)
, (20)

implying that P can be pre-calculated and expressed as a LUT
of six independent variables. The integration over Ω in (12) is
computed in the pre-processing stage. The values of I, θ and α
are the same as the values used to build LUTs of the state-space
model. In addition, the values of their time derivatives are chosen
so that they cover the entire operating range. In this case, (20) can
be directly applied during the solution of the state-space model
(5) as a separate LUT with minimal effect on the simulation
time.

III. APPLICATION AND RESULTS

A. FE Validation and Computational Performance

The CBSSM model is first verified against a 2-D time-
stepping FE simulation in case of a 200-kW wound-field syn-
chronous motor meant for electric vehicle application. The
model is supplied with both sinusoidal and pulse-width mod-
ulated (PWM) voltage supplies and constant field current. In-
house MATLAB-based FE solvers are used for the static and
time-stepping simulations. Table II lists the parameters of the
machine under study. The FE mesh of one symmetry sector of
the machine is presented in Fig. 3(a). Fig. 3(b) illustrates the
flux density distribution under rated conditions.

TABLE III
DISCRETIZATION OF VARIABLES FOR THE MACHINE MODEL LUTS

TABLE IV
COMPARISON OF THE CBSSM AND FE MODELS WITHOUT CORE-LOSS

MODELS

TABLE V
DISCRETIZATION OF VARIABLES FOR THE CORE-LOSS MODEL

Table III shows the number of data points used to build the
model LUTs using the static FE solver. The rotor electrical
position angle discretization takes the form of 12k + 1, where
k is an integer and 12 is the number of slots per pole pair. The
current range is chosen to surely cover all realistic operation
points.

Fig. 4 compares the phase currents obtained from the CB-
SSM and FE models under sinusoidal (Fig. 4(a)) and PWM (b)
voltage supplies. Fig. 4(c) shows the current harmonic spectrum
comparison between the two models in case of PWM supply.
Table IV compares the RMS current, average torque and average
simulation time per time step for both models with no core-loss
model implemented. It is obvious that the computation time is
greatly reduced while the accuracy is maintained.
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Fig. 4. Comparison of phase currents from the FE and CBSSM models with
different voltage supplies. (a) Sinusoidal voltage supply. (b) PWM voltage sup-
ply (10 kHz switching frequency). (c) Current harmonic spectrum comparison
at PWM supply.

Table V shows the number of data points used to discretize
the state variables’ time derivatives to pre-calculate the core loss
according to (20). The ranges of these variables are obtained by
running the model at different operating points under both sinu-
soidal and PWM supplies and observing the ranges of variation.
It is worth noting that the number of static FE simulations needed
to build up the LUTs for ψ, τ andBi does not change from the
values reported in Table III even if the discretization for the state
variables’ time derivatives is changed.

Table VI compares the different core-loss implementation
approaches to the FE model with the sinusoidal and the PWM
supplies. These results are obtained at the rated operating point

TABLE VI
COMPARISON BETWEEN THE FE MODEL AND THE CBSSM MODEL WITH

DIFFERENT CORE-LOSS IMPLEMENTATION APPROACHES UNDER SINUSOIDAL

AND PWM SUPPLIES

TABLE VII
PARAMETERS OF THE EXPERIMENTAL MACHINE

of the machine. The table clearly shows the superiority of
Approach 3 over the other approaches in terms of simulation
time. For a simulation with 1000 time steps per fundamental
period, it takes only 150 ms to simulate the full period. This
is much less than the 18 seconds taken by the FE model.
Comparison of the average simulation times per time step in
Tables IV and VI shows that inclusion of the core loss us-
ing Approach 3 doesn’t affect the computation time, which
proves the advantage of the proposed method. In terms of
speed, the proposed method is 120 times faster than the FE
model and 185 and 33 times faster than Approaches 1 and 2,
respectively.

Approaches 1 and 2 need to interpolateBi for all integration
points i, calculate its time derivative and then apply the loss
model in (11), which makes them slower than the proposed
approach (Approach 3). The accuracy of the proposed approach
can be further increased by increasing the number of the state
variables’ time derivative points in the loss pre-computation
stage.

B. Experimental Validation

To show that the chosen iron-loss model (10)-(11) is able to
provide a realistic estimate of the losses, a comparison against
calorimetric loss measurements of a 150-kVA wound-field syn-
chronous machine is made under both sinusoidal and PWM
supplies. The machine parameters and the FE mesh of one sym-
metry sector are shown in Table VII and Fig. 5, respectively. The
measurement setup is described in [21] and [22]. The CBSSM is
built for this machine following the same procedure as described
in Subsection III-A.

The study is performed for PWM switching frequencies of
1-kHz and 6-kHz besides the grid supply. The losses are mea-
sured at electrical powers of 25%, 50%, 75% and 100% of the
rated power with 0.8 capacitive displacement factor for each
supply. Fig. 6 and Table VIII compare the simulated core losses
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Fig. 5. Finite element model of the 150-kVA machine. (a) FE mesh of 1/4 segment of the machine with 1434 elements and 1024 nodes. (b) Flux-density
distribution (T) of the machine.

TABLE VIII
NUMERICAL VALUES OF THE MEASURED AND SIMULATED CORE LOSS WITH DIFFERENT APPROACHES, AND ERROR LIMITS FOR THE MEASURED LOSS

Fig. 6. Measured and simulated core loss with different approaches as a
function of loading under different types of voltage supply.

against the measurements for different loadings. The gray area
in the figure represents uncertainty range of the loss measured
with the calorimetric setup [22].

For the sinusoidal supply, the results from the three ap-
proaches and the FE model align well with the measure-
ments. The simulated results can be seen to be within the
measurement limits. Changing to a PWM supply with 6 kHz
switching frequency leads to increasing losses at various load-
ing points compared to the sinusoidal supply case. Neverthe-
less, the simulated losses still comply well with the measured
losses. Decreasing the switching frequency to 1 kHz leads
to a more significant increase in core loss. Still, the simu-
lated losses with the three approaches and the FE show good
agreement.

It is worth mentioning that the machine is equipped with rotor
damper bars, a skewed stator and conducting end-plates that are
included in the measured losses but not taken into account in
the Simulink models for this implementation, since the focus is
on efficient implementation of the core-loss model. However,
by performing another set of time-stepping FE simulations in
which the damper winding was considered, it was confirmed
that the effect of the damper winding on the iron loss itself
is negligible. This can be seen by comparing the iron-loss
values in the last two columns of Table VIII. The measure-
ments are thus considered as a reasonable validation for the
model.
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IV. CONCLUSION

A finite element based state-space model for synchronous ma-
chines including core losses is developed and verified against a 2-
D time-stepping FE model and calorimetric loss measurements.
The instantaneous loss density is represented as a function of the
flux density and its time derivative. Three different approaches
for including core loss to the state-space model are discussed.
The proposed approach based on pre-calculating and storing
the core loss in a lookup table is shown to be 120 times faster
than the FE calculations. The flux-density LUT construction
from the static FE simulations remains unchanged even if the
loss-model parameters are changed. Only the loss table (20)
need to be recalculated if the parameters change. The simulated
losses showed good correspondence with the calorimetric loss
measurement of a 150-kVA synchronous machine under differ-
ent voltage supplies.

This model can be best suited in detailed long driving-cycle
simulations of traction applications where high fidelity models
with computationally efficient calculations are essential for cor-
rect performance assessment. Moreover, the same implementa-
tion procedure can be extended for application in other magnetic
devices such as transformers and inductors.
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