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Adaptive meshing strategies for nanophotonics
using a posteriori error estimation
ALBIN J. SVÄRDSBY AND PHILIPPE TASSIN

Department of Physics, Chalmers University of Technology, SE-41296 Göteborg, Sweden

Abstract: As nanophotonic devices become increasingly complex, computer simulations of such
devices are becoming ever more important. Unfortunately, computer simulations of nanophotonic
devices are computationally expensive, especially if many simulations are necessary, e.g., when
optimizing or inverse designing a device. Here we study adaptive mesh refinement for finite-
element method simulations using an a posteriori error estimation method. We demonstrate that
the use of adaptive meshing leads to faster convergence with lower memory footprint for complex
three-dimensional nanophotonic structures. Nevertheless, one needs to be careful to avoid a
mesh propagation effect for adaptive mesh refinement to be a successful strategy.

© 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Since first conceived by Courant in 1941 [1], the finite element method has been developed
into a mature method for solving partial differential equations and it is extensively used to solve
problems in physics, chemistry, and engineering. In nanophotonics, finite-element simulations
are often used to simulate the optical response of resonant structures. With ever increasing
complexity of nanophotonic devices, inverse design—the computer-aided selection of a device
geometry with a desired optical response—is gaining traction. This requires a large number
of successive simulations in gradient-descent optimization techniques [2–5] or an even larger
number of independent simulations in data-driven inverse design using machine learning [6–8].
The training data needed to achieve desired performance in such inverse design methods often
requires tens of thousands of samples [9–12], in line with the number of samples typically
needed for training generative adversarial network models on images [13] and with the number of
samples in the CIFAR dataset [14] used in the seminal paper on generative adversarial networks
[15]. Performing such a large number of simulations is on the edge of the possible for realistic
nanophotonic devices. Speeding up such simulations will therefore have a positive impact on
the usability of inverse design methods in nanophotonics as well as allow for more accurate
simulations and simulation of larger devices such as gradient-phase metasurfaces [16–18].

When performing finite-element simulations, it is imperative to verify that the solution
has converged. This can be achieved in two distinct ways. In h-FEM, the mesh elements
are successively refined, whereas in p-FEM the degree of the polynomial basis functions is
successively increased [19]. Szabó and Babuška have shown that exponential convergence can
be achieved by allowing refinement of both the mesh size and the order of the polynomial basis
functions in a process designated as hp-FEM [20–22] and methods to optimally decide between
h- and p-refinement have been studied [23]. Further insights to hp-adaptive FEM for Maxwell’s
equations are provided in Ref. [24]. Here we want to perform adaptive mesh refinement in a
simulation package commonly used in the nanophotonics field, necessarily limiting us to h-FEM,
for which we can expect polynomial convergence at best. For the adaptive refinement of the
mesh elements to work, some form of error estimation is needed. A posteriori error estimation
was first developed for mechanics [25–27] and a number of ways to achieve a posteriori error
estimation for Maxwell’s equations were developed starting with the work of Monke [28] and
Beck et al. [29]. A good overview of adaptive error estimation for finite-element simulations for
nanophotonics can be found in Ref. [30].
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In this article, we will study adaptive mesh refinement for electromagnetics simulations in
COMSOL [31], a popular finite-element package used in the nanophotonics field. Adaptive
mesh refinement opens up the possibility to simulate bigger structures by means of more clever
resource allocation where we ensure that sections in the geometry are not overly resolved with a
too fine mesh, resulting in unnecessary degrees of freedom to solve for. Alternatively, it allows to
speed up simulations by reducing the number of degrees of freedom, which is particularly helpful
in optimization and inverse design of photonic structures. We will compare three adaptive mesh
refinement techniques: one based on an a posteriori error calculation for the Maxwell equations
[32,33], a second technique using the built-in calculation of the L2 norm error estimate [34], and
we compare this with the benchmark of uniform mesh refinement. We will apply these three
mesh refinement techniques to three different systems: a realistic 3D simulation of an optical
metasurface, a simpler Fabry-Perot cavity, and a surface plasmon propagating on a 2D material.
Through these comparisons, we present scenarios these adaptive techniques are suitable for.

2. Adaptive mesh refinement

We focus here on h-FEM, where we keep the polynomial degree of the vector elements constant.
Convergence is achieved by refining the mesh. Calling the exact solution of the electric field E
and the FEM approximation EFEM, we seek the computational error

e = E − EFEM. (1)

If we integrate the norm of the error over each mesh cell, we get the relative contribution of
each mesh cell to the error of the finite-element solution, which we can then use to determine the
mesh cell refinement.

The method of adaptive mesh refinement we will use is based on the a posteriori error
estimation method developed by Izsak et al. [33], building on earlier work by Ainsworth and
Oden [32]. This method uses an a posteriori calculation of the computational error e, i.e., after
having performed an initial FEM simulation.

We construct the following bilinear form over a mesh cell K

BK(e, v) ≡ [(∇×e) · (∇×v)] − k2(e · v), (2)

where the subscript K indicates integration over the mesh cell, v is an arbitrary vector field, and k
is the local wavenumber. Expanding the error e using Eq. (1) yields

BK(e, v) = (∇×E) · (∇×v) − k2 (E · v)
− (∇×EFEM) · (∇×v) + k2 (EFEM · v) .

(3)

Partial integration of Eq. (3) gives

BK(e, v) =
[︁
(∇ × ∇×E) · v − k2 (E · v)

−BK
(︁
EFEM · v

)︁ ]︁
K

+
[︁ (︁

n × (∇×E)
)︁
·
(︁
n × (n × v)

)︁ ]︁
∂K ,

(4)

where []K and []∂K denote integration over the domain K and its boundary, ∂K, respectively. The
bilinear form in Eq. (4) can be simplified by writing it in terms of the current density, J, which is
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known:
BK(e, v) = [J · v − BK (EFEM · v)]K

+
[︁ (︁

n × (∇×E)
)︁
·
(︁
n × (n × v)

)︁ ]︁
∂K .

(5)

Since we do not know the exact solution, we have to approximate ∇×E by the average of the
tangential traces on each side of the mesh element boundary ∂K [33], as illustrated in Fig. 1:

[n × (∇×E)]∂K ≈
1
2

n ×
(︁
∇×EFEM, up + ∇×EFEM, down

)︁
. (6)

For this approximation to work, bubble functions are used as shape functions for the calculation
of the computational error [32].

EFEM,up
nEFEM,down

Fig. 1. Schematic illustration of a mesh element with the tangential traces of the electric
field.

Solving Eq. (5), we get the error e. To obtain a scalar measure for the error, we need to take
the norm of e. The norm on a Banach space can be chosen in different ways and can also include
derivatives. Following Ref. [33], we choose the curl norm, but we add a correction term in front
of the curl term to ensure correct dimensions. This results in the final error:

| |e| |curl,K =

(︄
| |e| |2 +

(︃
c0

2π√ϵrf

)︃2
| | ∇× e| |2

)︄1/2

. (7)

We can now identify the first term as the error on the electric field and the second term as the
error on the magnetic field, since ∇×e = ∇×E − ∇×EFEM ∝ B − BFEM. The choice of the curl
norm therefore ensures that the electromagnetic energy is resolved, irrespective of whether the
energy is stored in the electric or the magnetic field.

3. Adaptive meshing of a Fabry-Perot cavity

In the remainder of this article, we will asses the a posteriori meshing method and use it for
adaptive meshing of 3D structures. We start with a rather simple Fabry-Perot cavity, for which
we know that it exhibits complete transmission if the frequency of the incident light is tuned to
one of the resonance frequencies. The geometry is shown in Fig. 2, where the middle section is
made of a material with a large index of refraction. At resonance, a large electric field is built up
in the middle section. We simulate the transmission of light through the cavity by allowing a
plane wave to travel perpendicular to the material interface. The simulations are performed using
COMSOL Multiphysics [31], in which we also implement the a posteriori error calculation.

We will compare the adaptive meshing using the following three meshing methods:

• Uniform meshing: the maximum element size is determined by the wavelength divided
by the refractive index and multiplied with a swept scaling factor: λ/n ∗ rs;
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(a) (b)

Fig. 2. A Fabry-Perot cavity with a dielectric slab in the middle and air to the left and the
right. The length of the middle section is tuned so we excite a resonance and achieve total
transmission. (a) shows the schematic dimensions of the cavity where the plane wave is
exciting it from the left, with periodic boundary conditions perpendicular to the propagation
direction, whereas (b) shows the full 3D structure. The indices of refraction used are n1 = 1
and n2 = 2.

• A posteriori meshing: the mesh is refined based on the computational error of each mesh
element using the method described in Sec. 2;

• L2 meshing: the mesh is refined using the L2 norm of the field [31]. The L2 indicator
used over domain K and area A is

eL2,norm =
⎛⎜⎝
∫
K

∑︂
l

s−2
l h2ql |pl |

2dA⎞⎟⎠
1/2

, (8)

where sl is a scaling factor (here sl = 1), pl is the residual in the l:th equation, ql is the
stability estimate derivative order (here ql = 2), and h is the local mesh element size. The
local error indicator for the mesh element used is

eelement =
∑︂

l
s−2
l h2ql |τl |

2A, (9)

where A is the size of the mesh element (volume in 3D, area in 2D, length in 1D), and τl is
the l:th residual for each element.

In order to achieve a fair comparison, we tune the three mesh refinement methods so that each
method increases with approximately the same number of mesh elements for a given iteration.
This is reflected in Fig. 3(a), where we plot the degrees of freedom of the finite-element model
for successive iterations of the mesh refinement.

We then plot the calculated transmission as a function of the degrees of freedom of the model
in Fig. 3(b). We observe that all refinement methods converge to the exact solution. Upon
closer inspection (see Figs. 3(c) and 3(d)), we see that uniform mesh refinement converges
faster initially, but the refinement method based on the a posteriori error estimation overtakes
the uniform refinement method for smaller mesh sizes. This is not entirely surprising, since
the field is uniform in the middle section of the Fabry-Perot cavity and uniform refinement is
therefore quite effective for the Fabry-Perot cavity problem. At later iterations, the space before
and after the Fabry-Perot resonator, with smaller index of refraction, gets meshed too dense, and
the smarter adaptive mesh refinement methods can overtake the uniform mesh refinement.

Finally, we compare the total wall-clock time for the three mesh refinement methods in Fig. 3(e)
and 3(f). We observe that all three methods take roughly the same time to converge, with a
small advantage for the L2 mesh refinement method for finer resolutions. We note that this is
not surprising, since uniform mesh refinement provides a mesh that correlates with the energy
density for the Fabry-Perot cavity.
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(a) (b)

(c) (d)

(e) (f)

Fig. 3. Comparison of the performance of the three mesh refinement methods for a
Fabry-Perot cavity. (a) shows the degrees of freedom vs. iteration steps in the refinement.
(b) shows the transmission amplitude of the Fabry-Perot cavity as a function of degrees of
freedom. (c) and (d) are zoomed-in versions containing the beginning and end, respectively,
and (e) and (f) show the transmission as a function of the total simulation time.
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4. Adaptive mesh refinement of a complex meta-atom

Having investigated the geometry of the Fabry-Perot cavity in Sec. 3, we now move to a
nanophotonic structure with stronger field localization and more complicated geometry. The
system we consider here is a periodic metasurface illuminated by a plane monochromatic wave.
The unit cell of the metasurface is shown in Fig. 4(a) and was created by a machine-learning-based
inverse design method [9].

(a) Unmeshed geometry

(b) Mesh 1st iteration (c) Mesh 20th iteration

Fig. 4. Meta-atom consisting of different materials to showcase a scenario with complex
geometry, in the form of a metasurface. (a)–(c) show different iterations of mesh refinement.
The length of the quadratic base is 0.38λ and the minimum feature size of the geometry has
a length of 0.02λ.

The meshes at two different iterations are shown in Fig. 4. We observe that the mesh adaptation
refines regions with smaller geometries and higher refractive indices (the substrate and the
patterned layer). As before, we tuned the methods so that the three methods increase the degrees
of freedom at the same rate (see Fig. 5(a)).

From Figs. 5(b)–5(d), we can see that the two adaptive mesh refinement methods converge
faster than the uniform refinement method in terms of degrees of freedom. Out of the two
adaptive methods described in this paper, L2 and a posteriori perform similarly, with a slight
initial advantage for the a posteriori mesh refinement method. This is in line with what can
be expected, since the method based on a posteriori error estimation calculates the error from
Maxwell’s equations, while the L2-norm method can only compare the change in the fields
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(a)
(b)

(c) (d)

(e) (f)

Fig. 5. Comparison of the performance of the three mesh refinement methods for a
metasurface with complex geometry. (a) shows the degrees of freedom as a function of
iteration step, in the refinement. (b) shows the transmission amplitude of the Fabry-Perot
cavity as a function of degrees of freedom. (c) and (d) are zoomed-in versions containing
the beginning and end, respectively. (e) and (f) show the transmission as a function of the
total simulation time.
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between iterations. The method based on a posteriori error estimation has, therefore, better
guidance for its mesh refinement in structures with localized electromagnetic fields.

Comparing the total simulation time in Figs. 5(e)–5(f), we observe that the traditional uniform
mesh refinement approach is quicker initially, but is then overtaken by the adaptive methods
when approaching finer mesh resolutions. The two adaptive methods perform similarly with a
slight advantage for the method with a posteriori error estimation for longer and higher-resolution
simulations.

5. Mesh propagation effect

Finally, we want to understand how the a posteriori mesh refinement method behaves under more
extreme circumstances. To that purpose, we simulate a surface plasmon propagating over the
2D material black phosphorous. Such plasmons are extremely well confined to the 2D material
surface and need therefore a very fine mesh in a few nanometers’ distance from the surface to
capture the exponential decay of the electromagnetic fields away from the surface.

The mesh for different iterations of the a posteriori mesh refinement procedure is shown in
Figs. 6 and 7 for the scenario where an incoming plane surface plasmon is injected from the left
using a boundary condition. Starting from a reasonably fine mesh, as seen in Fig. 6(a), the mesh
is then refined in a narrow volume close to the 2D material surface, creating a better resolution
where the fields are strongest. A uniform mesh strategy would perform much worse here as
it would mesh the space above and below the surface equally fine, leading to extremely large
models. It is in these scenarios with very strong field confinement that the mesh refinement based
on the a posteriori error estimation is most useful.

(a) 0:th iteration (b) 1:th iteration

Fig. 6. Mesh progression starting from a finer mesh. A horizontal surface charge is present
in the middle of the structure. Note that mesh refinement occurs along the entire surface
charge. The top part of each panel shows the mesh element error in logarithmic scale and
the bottom figures show the actual mesh.

However, when we start the same simulation from a much coarser mesh as seen Fig. 7(a) and
observe how the mesh is refined at the different iteration steps, detailed in Fig. 7, the plasmon
wave does initially not propagate all the way to the right in the discretized model until the mesh
has been sufficiently refined. In this scenario, strong local fields are created near the left-most
boundary, which results in mesh refinement only close to the left-most boundary. This, then,
hinders the surface plasmon to propagate to the right as it should. This leads us to the conclusion
that we cannot start from a too coarse mesh when using the adaptive mesh refinement method
based on a posteriori error estimation.
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(a) 0:th iteration (b) 1:st iteration

(c) 5:th iteration (d) 10:th iteration.

Fig. 7. Mesh progression starting from a very coarse mesh. A horizontal surface charge is
present in the middle of the structure. The mesh is not fine enough to propagate the plasmon
to the right, so the refinement gets stuck in the early iterations. The top part of each panel
shows the mesh element error in logarithmic scale and the bottom figures show the actual
mesh.

6. Conclusions

We have compared three mesh refinement methods for finite-element simulations in nanophotonics.
From our results, we conclude that mesh refinement based on a posteriori error estimation can
reduce the number of degrees of freedom and the total wall-clock time for the simulation of
nanophotonic devices, especially for devices with complex geometry or devices with strong
field localization. For simulations with smaller and less complex geometries, mesh refinement
based on the L2 norm may be a good alternative, as it is easier to implement (no additional
finite-element simulations for the error estimation is needed) and its performance is similar
in terms of memory usage, and only moderately slower in terms of wall-clock time. When
the energy density distribution is quasi-uniform, i.e., when no considerable light localization
takes place, uniform mesh refinement can be used. These conclusions and recommendations
for different use cases of adaptive meshing are also presented in Table 1. One must be careful,
however, not to start with a too coarse mesh when using mesh refinement based on a posteriori
error estimation, as this can lead to a mesh propagation effect that substantially slows down the
convergence of the mesh refinement process.
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Table 1. Table showing a recommendation of when to use different meshing techniques.

Meshing method Result Suitable scenario

A posteriori Fastest, lowest number of DOFs
Complex and resonant geometries
with strong light localization

L2
Slightly slower than with a
posteriori error estimation Smaller models with light localization

Uniform Slowest
Devices with quasi-uniform energy
distribution

We believe that use of automatic mesh refinement may allow to solve problems in nanophotonics
that currently cannot be solved on state-of-the-art computing infrastructure. It may also be used
in conjunction with the beam envelope method applied to larger optical devices, where the mesh
cells can be much larger except in points with strong reflections or strong field localization, where
a solution of Maxwell’s equations on the subwavelength scale is required. Here, very nonuniform
meshes created by a mesh refinement may be very useful. Finally, our approach can also be used
in the area of nonlinear optics, where field enhancement is often desired. Since the a posteriori
error estimation does not require solving large equation systems, the additional overhead one
would get in the simulation of nonlinear optical devices caused by the error estimation may be
negligible.
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