
Calculating Function Sensitivity for Synthetic Data Algorithms

Downloaded from: https://research.chalmers.se, 2024-08-17 11:44 UTC

Citation for the original published paper (version of record):
Pettersson, M., Ekeroth, J., Russo, A. (2024). Calculating Function Sensitivity for Synthetic Data
Algorithms. PROCEEDINGS OF THE 2023 35TH SYMPOSIUM ON IMPLEMENTATION AND
APPLICATION OF FUNCTIONAL LANGUAGES, IFL 2023.
http://dx.doi.org/10.1145/3652561.3652567

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

Calculating Function Sensitivity for Synthetic Data Algorithms
Markus Pettersson

∗

markus.pettersson1998@gmail.com

Göteborg, Sweden

Johannes Ljung Ekeroth
†

johannes.ljung@gmail.com

Göteborg, Sweden

Alejandro Russo

russo@chalmers.se

Chalmers University

DPella AB

Göteborg, Sweden

ABSTRACT
Differential privacy (DP) provides a robust framework for ensur-

ing individual privacy while analyzing population data. To achieve

DP, statistical noise is added to query results before publication,

but accurately determining the required noise is challenging, es-

pecially for user-defined functions. Existing approaches often rely

on limited pre-defined functions with known sensitivities, limiting

the expressivity of DP systems. In this paper, we present a novel

embedded domain-specific language (eDSL) in Haskell to automati-

cally approximate the sensitivity of user-defined linear functions

commonly used in synthetic data generation. Our approach lever-

ages Haskell’s expressive type system and generic programming

principles to infer function ranges, enabling us to approximate sen-

sitivities efficiently. We demonstrate the effectiveness of our eDSL

by integrating it into the Multiplicative Weights Exponential Mech-

anism (MWEM) for synthetic data generation. Our solution guides

users when updating functions, ensuring proper sensitivity consid-

eration, enhancing the robustness and reliability of synthetic data

algorithms. By adopting this straightforward yet effective approach,

we streamline the sensitivity calculation process for user-defined

functions, making it more accessible and user-friendly. The con-

tributions of our work include an eDSL capable of approximating

sensitivity for linear functions and its evaluation within the context

of MWEM workloads.

CCS CONCEPTS
• Security and privacy → Data anonymization and sanitization; •
Theory of computation→ Program analysis; Type structures.

KEYWORDS
Partial evaluation, Differential Privacy, Synthetic data, eDSL,

Haskell

ACM Reference Format:
Markus Pettersson, Johannes Ljung Ekeroth, and Alejandro Russo. 2023.

Calculating Function Sensitivity for Synthetic Data Algorithms. In The
35th Symposium on Implementation and Application of Functional Languages

∗
This work was done as part of the author’s master studies at Chalmers in collaboration

with DPella AB.

†
This work was done as part of the author’s master studies at Chalmers in collaboration

with DPella AB.

This work is licensed under a Creative Commons Attribution-NonCommercial

International 4.0 License.

IFL 2023, August 29–31, 2023, Braga, Portugal
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1631-7/23/08

https://doi.org/10.1145/3652561.3652567

(IFL 2023), August 29–31, 2023, Braga, Portugal. ACM, New York, NY, USA,

12 pages. https://doi.org/10.1145/3652561.3652567

1 INTRODUCTION
Differential privacy (DP) is a mathematical definition of privacy

that tackles the challenge of extracting informative insights from

a population while protecting the privacy of each individual. The

standard approach to achieving DP involves computing the desired

analysis in a dataset and then adding calibrated statistical noise

to the results before their publication [8]. This simple idea has

spawned a series of works (e.g., [12, 22, 25, 26, 33]) focused on de-

signing programming languages that enable analysts to implement

differentially-private consults when accessing sensitive informa-

tion. At the backbone of every DP programming language resides

the noise-calibration mechanism, which determines the amount

of noise necessary to mask a person’s inclusion in the population.

This calibration depends on the desired level of privacy, determined

by parameters (𝜖, 𝛿), as well as the global sensitivity of the query.

The sensitivity quantifies the extent to which a function’s outputs

can vary due to modifications in its inputs.

The task of automatically calculating the global sensitivity of

arbitrary functions are known to be challenging. As a result, de-

signers of DP systems have conventionally relied on supporting

a limited set of pre-defined functions that have a known global

sensitivity. Although this approach has enabled several compelling

analyses, it significantly restricts the range of queries that can be

expressed. To address this limitation, Reed and Pierce developed

Fuzz [27], a functional programming language that employs linear

indexed types to track a programs’ sensitivity. This approach has

been extended in subsequent works [10, 11, 26, 32], incorporat-

ing additional language features such as partial evaluation, linear,

and modal types, to enhance Fuzz’s expressivity. However, these

features are not mainstream and usually require designing a new

language from scratch, which can pose significant barriers to adop-

tion for non-experts in programming languages. Moreover, complex

language features like linear and modal types are not commonly

known outside academic circles, further impeding their adoption.

Recent studies [1, 21] suggest that linear and complex types in gen-

eral are not strictly needed for the task of determining programs’

sensitivity.

One application of Differential Privacy is in the generation of

synthetic data. For instance, the MultiplicativeWeights Exponential

Mechanism (MWEM) [14] is a simple and practical algorithm for

differentially private data release. MWEM is capable of producing

synthetic datasets that respect any set of linear queries, which are

queries that apply a function 𝑓 : 𝐷 → [−1, 1] to each record from

an universe 𝐷 , and then aggregates the result for the whole dataset.

Users can define their custom set of queries, which is called a

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1145/3652561.3652567
https://doi.org/10.1145/3652561.3652567
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3652561.3652567&domain=pdf&date_stamp=2024-06-19

IFL 2023, August 29–31, 2023, Braga, Portugal Markus Pettersson, Johannes Ljung Ekeroth, and Alejandro Russo

workload. After given a privacy parameter and a workload, MWEM

can be used to generate the synthetic dataset by learning from the

original data distribution with a differentially private algorithm.

Numerous synthetic data algorithms follow workflows similar to

MWEM with user-defined functions guiding the generation of data.

In this paper, we focus on addressing the challenge faced by

synthetic data algorithms when dealing with user-defined func-

tions’ sensitivity. Specifically, we aim to provide solutions that

accurately determine the sensitivity of these functions, ensuring

the proper application of differential privacy techniques during

data generation. Additionally, our solution is capable of assisting

users when they update their functions, ensuring they are informed

about the correct sensitivity values to be used with the synthetic

data algorithms. Users may inadvertently overlook the sensitivity

considerations when introducing new functions, which can lead to

privacy breaches and compromised data protection. By providing

effective sensitivity calculation methods and guidance for func-

tion updates, we aim to enhance the robustness and reliability of

synthetic data algorithms.

By focusing on the scenario of synthetic data generation, we

show that sophisticated language features (e.g., linear types) are

not essential for effectively determining the sensitivity of user-

defined functions. Instead, we propose a novel idea of obtaining
the range of linear functions by leveraging Haskell’s type system,
which in turn enables us to approximate their sensitivity. This work
presents an embedded domain-specific language (eDSL) in Haskell

capable to approximate the sensitivity of linear functions commonly

used in synthetic data generation, such as k-way marginals. Our

eDSL makes use of generic programming principles and harnesses

Haskell’s expressive type system to automatically infer the range of

functions—especially on functionswhich perform pattern-matching

(i.e., branch) on input data. An essential aspect of our work is

that the eDSL is designed as a library, eliminating the need for

modifications to the Haskell compiler or language itself. Our eDSL is

lightweight and consists of only 322 lines of code. The contributions

of our work are:

(1) an eDSL in Haskell capable of approximating (by typing) the

sensitivity of linear functions commonly used in synthetic

data generation.

(2) Evaluation of our technique by integrating it into user-

defined workloads for MWEM.

(3) As a by-product of our work, the technique that we have

developed can be seen as an improved version of the partial

evaluation technique known as “The Trick” [16].

By adopting this more straightforward yet effective approach, we

aim to streamline the sensitivity calculation process for user-defined

functions, making it more accessible and user-friendly. Accompa-

nying code to this work can be found at https://github.com/dpella/

isensitivity.git.

2 MOTIVATING EXAMPLE
We consider the Adult data set, which is one of the most popular

datasets from the UCI Machine Learning Repository [7], to con-

cretely show the motivation behind our work. This dataset is widely

used in other papers concerning the evaluation of synthetic data

algorithms like MWEM [14, 19]. The dataset was acquired from US

Census data (1994) and contains more than 30000 records, each with

15 associated attributes (columns). For simplicity, we focus on the

generation of synthetic data that respects 4 out of the available 15

attributes. The 4 attributes of interest are sex, race, work class and

working hours per week. They are all modeled as an enumeration

data type in Haskell.

-- Sex: two options
data Sex = Male | Female
-- Race: five options
data Race = White | Black | Asian | Eskimo | Other
-- Workclass: nine options
data Workclass = Private | SelfEmployed | ...

| Unknown
-- HoursPerWeek: 100 options
data HoursPerWeek = Zero | One | Two | ...

| NinetyNine

type Adult = (Sex, Race, Workclass, HoursPerWeek)

At this point, a user who wants to use MWEM needs to start pro-

viding linear queries to the workload. For instance, such a function

could be counting the number of unemployed black females (q1),
the number of entrepreneur white females working regular hours

(q2), and the gender difference between white males and white

females in the federal government with regular working hours (q3).

q1 :: Adult -> Int
q1 (Female, Black, Unknown, Zero) = 1
q1 _ = 0

q2 :: Adult -> Int
q2 (Female, White, SelfEmployed, Forty) = 1
q2 _ = 0

q3 :: Adult -> Int
q3 (Male, White, FederalGov, Forty) = -1
q3 (Female, White, FederalGov, Forty) = 1
q3 _ = 0

From now on, we use linear query and query as interchangeable

terms. The user could then put all these functions into a workload

and pass it to MWEM to generate synthetic data respecting (as

much as possible) the quantities returned by such functions when

applied to the rows of the original dataset. As an example, we show

two potential workloads using the queries mentioned above.

type Workload row = [row -> Int]

w1 :: Workload Adult
w1 = [q1, q2, q3]

w2 :: Workload Adult
w2 = [q1, q2]

Sensitivity of queries. What are the sensitivity of workload w1
and w2? One way to answer that question is to approximate the
sensitivity of each function into the workload by its range and

taking the maximum. If we could statically obtain all the possible

values that a query can return, we could approximate its sensitivity

by the difference between its maximum and minimum values. From

https://github.com/dpella/isensitivity.git
https://github.com/dpella/isensitivity.git

Calculating Function Sensitivity for Synthetic Data Algorithms IFL 2023, August 29–31, 2023, Braga, Portugal

the examples above, we have that the ranges for q1, q2, and q3
are [0, 1], [0, 1], and [−1, 1] which yield sensitivity 1, 1, and 2,

respectively—using the 𝐿1 norm1
. In this light, the sensitivity for

w1 is 2. Analogously, the sensitivity of w2 is 1.
How can the range of queries be statically obtained automati-

cally? Functions q1, q2, and q3 pattern-match on the input to deliver

a result; and pattern-matching is a deeply rooted language feature

and therefore the entire mechanism and the techniques used to

accomplish it take place at the language level, behind the curtains.

This means that a function utilizing pattern matching cannot be

distinguished from other functions by just inspecting its static type.

Analyzing the case of expression in Haskell is fundamentally hard

since information about each pattern is not accessible at the lan-

guage level. Instead, one way to extract the range, if the domain is

finite, is to apply the function to all possible inputs. This technique

has been named The Trick by N. Jones et al. [16] and comes from

partial evaluation literature. The biggest caveat with this technique

is that it needs to enumerate the entire domain. For instance, The

Trick needs to try with 2 × 9 × 5 × 100 = 9000 possible values to

obtain the range of each function in the workloads above, which

may become infeasible with large workloads.

Another alternative is to embed case of expressions as data in

our eDSL. The benefit of that is to have good control over what

information will be part of a program’s AST—assuming a deep

embedded encoding. As a simple example, consider the following

basic eDSL for expressing pattern matching on Haskell values.

data CaseDSL p a where
Case :: p -> [(Alt p, a)] -> CaseDSL p a

-- A pattern in a pattern matching expression.
data Alt a where

Pat :: Eq a => a -> Alt a
Wildcard :: Alt a

instance Eq (Alt a) where
(Pat a) == (Pat b) = a == b
Wildcard == Wildcard = True
_ == _ = False

naiveTrick :: CaseDSL p a -> [a]
naiveTrick (Case p arms) = map snd arms

However, the merits of this approach pretty much stop here. From

a usability perspective, the eDSL does not reuse the Haskell native

case of expression and thus might seem foreign even to Haskell-

programmers.

We note that incorporating modern compilation features like

Template Haskell [29] (TH) or GHC plugins can enhance the feasibil-

ity and flexibility of eDSLs in Haskell. These tools offer mechanisms

to bridge the gap between shallow embeddings, like native Haskell

syntax, and deep embeddings, which can encode eDSLs properties

directly into Haskell’s type system. For instance, by leveraging TH

we could inspect code containing native case of expressions and

derive corresponding deep eDSL values. It could be also possible to

1
Also known as the Manhattan distance. In a one-dimensional space the distance

between two points 𝑥1 and 𝑥2 is defined as |𝑥1 − 𝑥2 | .

create a GHC plugin that performs static analysis on case of ex-

pressions to extract relevant information for the eDSL, facilitating

the generation of deeply embedded values. However, we decide to

rely as little as possible on such compilation features and leverage

as much as possible Haskell’s type-system instead.

In our approach, the queries q1, q2, and q3 can be rewritten as

follows.

q1' :: QueryT Adult -> Int
q1' =

fourAttr $ \case
(Female_, Black_, Unknown_, Zero_) -> lit 1
_ -> lit 0

q2' :: QueryT Adult -> Int
q2' =

fourAttr $ \case
(Female_, White_, SelfEmployed_, Forty_) -> lit 1
_ -> lit 0

q3' :: QueryT Adult -> Int
q3' =

fourAttr $ \case
(Male_, White_, FederalGov_, Forty_) -> lit 1
(Female_, White_, FederalGov_, Forty) -> lit (-1)
_ -> lit 0

To deduce the range of each function, we develop a new version

of The Trick—which we called trick'—capable to obtain the ranges
of each function by applying elements of the domain that contribute

to unique outputs rather than trying with all of them.

For instance, to deduce the range of q1', trick' only tries with

2
4 = 16, which is a much lesser number than 9000!

Observe that our eDSL uses the native pattern matching from

Haskell \case2.
The attentive reader has noticed the underscore in each con-

structor, e.g., Male_. We leave its detailed explanation for later (see

Section 4), but intuitively such constructors are given information

to the type-system about the constructor being pattern-matched.

The type-system then collects all that information and we can easily

obtain the range of functions with trick’:

ghci> trick' q1'
[0,1]

ghci> trick' q2'
[0,1]

ghci> trick' q3'
[0,-1,1]

In the rest of the paper, wewill explain how to implement trick'
and how it can be used to statically obtain ranges of linear queries so

that the synthetic data algorithm always uses the right information.

2\case{ p1 -> e1; ...; pN -> eN } is semantically equivalent to

\x-> case x of { p1 -> e1; ...; pN -> eN }, where x is a fresh variable.

https://en.wikipedia.org/wiki/Taxicab_geometry

IFL 2023, August 29–31, 2023, Braga, Portugal Markus Pettersson, Johannes Ljung Ekeroth, and Alejandro Russo

3 BACKGROUND
We consider a function to be 𝑘-sensitive (or have sensitivity 𝑘)

if it magnifies the distance of its inputs by a factor of at most 𝑘 .
Formally:

Definition 3.1 (Sensitivity [27]). Given two metric spaces (𝐴,𝑑𝐴)
and (𝐵,𝑑𝐵), a function 𝑓 : 𝐴 → 𝐵 is 𝑘-sensitive iff: ∀ 𝑥1, 𝑥2 ∈
𝐴. 𝑑𝐵 (𝑓 (𝑥1), 𝑓 (𝑥2)) ≤ 𝑘 ∗ 𝑑𝐴 (𝑥1, 𝑥2)

As expected, we define the range of a function 𝑓 , noted 𝑅𝑓 , as a

subset of its co-domain.

Definition 3.2 (Range of a function). Given a function 𝑓 : 𝜏1 → 𝜏2,

the range 𝑅𝑓 can be defined as:

𝑅𝑓 = {𝑓 𝑥 | 𝑥 ∈ 𝜏1}

It is easy to see that if a function has a finite range, where the

elements are ordered, then the function is 𝑑𝐵 (min 𝑅𝑓 ,max 𝑅𝑓)-
sensitive.

3.1 Proxy types
A proxy type is a specialized construct that does not store any data

itself but includes a phantom parameter of arbitrary type [20].

data Proxy a = Proxy

Its primary purpose is to convey type information, even in situa-

tions where an actual value of that type is either unavailable or

too expensive to create. Imagine that a function waits for a proxy

parameter.

f :: Proxy t -> [t]

Then, when the function is called, type information gets provided

by an explicitly typing annotation.

e = f (Proxy :: Proxy Int)

3.2 SOP library
The Sum-of-Products library [23] provides a datatype-generic pro-

gramming interface to define programs in such a way that they

automatically work for a large class of data types.

3.2.1 N-ary products. This library provides n-ary products of type

NP f ts for a given functor f3 and a type-level list ts.
Intuitively, this type allows to implement heterogeneous lists, i.e.,

lists where elements can be of different types [17]. More specifically,

a n-product of type NP f [t1,t2,t3,...,tn] should be thought as a list

of elements [x1,x2,x3,...,xn] where x1 :: f t1, x2 :: f t2, and

so on. Values of n-products are built with constructors Nil and :*.

npExample1 :: NP Maybe [Int,Char]
npExample1 = Just 42 :* Just 'a' :* Nil

npExample2 :: NP Maybe [Int,Char]
npExample2 = Nothing :* Just 'b' :* Nil

The library allows to write generic functions on n-ary products.

The next example produces a string for each element of an optional

value.

3
The requirement for f to be a functor comes from the Sum-of-Products library.

npString :: All Show ts => NP Maybe ts -> [String]
npString Nil = []
npString (Nothing :* np) = npString np
npString (Just v :* np) = show v : npString np

For npString to work, it requires that every possible type in ts has
an instance of the Show type-class. The constraint All Show ts
requests precisely that. We can now run our generic function.

ghci> npString npExample1
["42", "'a'"]
ghci> npString npExample2
["'b'"]

The SOP library provides many utilities for doing generic pro-

gramming. One of the features relevant to our work is the function

hcpure4.

hcpure :: All c ts
=> Proxy c -> (forall a. c a => f a) -> NP f ts

This function is used to create an n-ary product NP f ts based solely
on type-level information found in ts. For that, hcpure applies a

method of a given type class c (forall a. c a => f a). For in-
stance, the next example shows the type-class SomeValue that pro-

vides examples of values based on their type via the method values.

class SomeValue a where
values :: [a]

instance SomeValue Int where
values = [42]

instance SomeValue Char where
values = ['x','y']

npValues :: All SomeValue ts => NP [] ts
npValues = hcpure (Proxy :: Proxy SomeValue) values

If we apply npValues to any type-level list, we will get an n-ary

product with example values for such types.

ghci> npValues @[Int,Int,Char]
[42] :* [42] :* "xy" :* Nil

3.2.2 N-ary sums. SOP also supports n-ary sums by providing

the type NS f [t1, t2, ..., tn], which encodes a value of type f ti

for some type ti appearing in the type-level list. For instance, the

value v :: NS Maybe [Int,Char] can encode either a value of

type Maybe Int or Maybe Char. N-ary sums are represented by a

well-typed index into the list ts. The index must fall within the

length of the type-level list. Furthermore, each index 𝑖 must contain

an element of type f ti. The constructors of indexes are as follows.

Z :: f t -> NS f (t : ts)
S :: NS f ts -> NS f (t : ts)

The following examples are valid indexes of a n-ary sum of type

NS Maybe [Int,Char].

v1 :: NS Maybe [Int,Char]
v1 = Z (Just 42)

4hcpure type is more general but here we present a specialized version for NP to

simplify the exposition.

Calculating Function Sensitivity for Synthetic Data Algorithms IFL 2023, August 29–31, 2023, Braga, Portugal

v2 :: NS Maybe [Int,Char]
v2 = S (Z (Just 'a'))

Observe that Z (Just '1a') is ill-typed—the first position of

the type-level list is of type Maybe Int, not of type Maybe Char!

4 A NEW TRICK
We outline our main result capable of implementing trick' as

described in Section 2.

Our solution includes different key ideas that we will proceed to

present incrementally.

4.1 Lifting pattern-matches to the type level
Our first step is to find away that information about what a function

pattern-matches upon gets reflected at the type level. To be concrete,

we take the following running example of a sum type and a partial

function.

data T = T0 | T1 | T2 | T3

foo :: T -> Int
foo T0 = 10
foo T2 = 5

The type T does not reflect over which constructors the function

pattern-matches. What would be a good type capable of capturing

pattern-matching options? Would such a type still work when

adding/removing pattern-matching options?

We propose the idea to consider a type-level list that encodes

all the possible options of T, i.e., [t0, t1, t2, t3] where ti is

either a type variable or the unit type (). Each position in the

type-level list corresponds to a constructor in T. If ti is a type-

variable, it means that no pattern-matching has been done on the

ith-constructor. Instead, if ti is the unit type (), then a pattern-

matches is performed on the ith-constructor.

For instance, the type-level list associated with the function foo
is [(),t1,(),t3] where t1, and t3 are type-variables.

Let’s rewrite foo with this new type representation in mind.

For simplicity, we use a Proxy type to wrap the type-level list.

So, we propose foo' to have the following type.

foo' :: Proxy [(),t1,(),t3] -> Int

We then proceed to introduce constructors—in the form of pattern

synonym—that make sure that their corresponding position in the

type-level list gets set to ().

pattern T0_ :: Proxy [(),t1,t2,t3]
pattern T0_ = Proxy

pattern T1_ :: Proxy [t0,(),t2,t3]
pattern T1_ = Proxy

pattern T2_ :: Proxy [t0,t1,(),t3]
pattern T2_ = Proxy

pattern T3_ :: Proxy [t0,t1,t2,()]
pattern T3_ = Proxy

We complete the definition of foo' with our new constructors.

foo' T0_ = 10
foo' T2_ = 5

If we ask for the type of foo', the type-system infers in which

constructors the function has pattern-matched.

ghci> :t foo'
foo' :: Proxy [(),t1,(),t3] -> Int

Observe that if we add (or remove) pattern-matches to foo', the
type-system will automatically update the type-level list of the

matches done by the function.

foo' T0_ = 10
foo' T2_ = 5
foo' T1_ = 0

ghci> :t foo'
foo' :: Proxy [(),(),(),t3] -> Int

Observe that if the type signature of foo' were to be written ex-

plicitly, it would restrict future changes to the function in tedious

ways. Instead, we rely on Haskell’s type inference to deduce the

constructors foo' pattern-matches upon. Although function foo
and foo' have different types, they are isomorphic (see Section 4.5

for a explicit connection among them).

We note that foo' is not executable in the same sense as foo: it
receives a type annotation rather than a value of type T. However,
this is just for the sake of presentation—Section 4.3 refines our idea

of using patterns synonyms and Section 4.5 shows how to execute

functions with values of the original type T.

4.2 Synthesizing matches at the term-level
The new version of The Trick that we propose, called trick', needs
as an input the exact constructors that the function has pattern-

matched upon. As shown in the previous Section, that informa-

tion has been collected by the Haskell’s type inference. We need

to synthesize term-level constructors that the analyzed function

pattern-matches on in order for trick' to invoke the function

only on them. For instance, we would like a function that when

given the type-list [(),t1,(),t3], it synthesizes the list of options
[T0_,T2_]. To implement such a function, the challenge relies on

how to deduce if a type is either () or a type-variable. There is no
mechanism to explicitly ask the type-system if a type is a variable

or a concrete type. Nevertheless, we found a manner to achieve

that, which constitutes our second key idea.

We start by introducing a datatype to answer if a match has

occurred.

data Matched a = Yes | No

We use that datatype for building a n-ary product NP Matched ts.
Intuitively, an element of type Matched () is going to be Yes in

the n-ary product. In contrast, an element of type Matched t, for a

given type-variable t, is going to be No. We introduce the type-class

HasBeenMatched to generate such answers.

class HasBeenMatched t where
answer :: Matched t

instance HasBeenMatched () where
answer = Yes

instance {-# INCOHERENT #-} HasBeenMatched a where
answer = No

The method answer produces Yes for unit types.

IFL 2023, August 29–31, 2023, Braga, Portugal Markus Pettersson, Johannes Ljung Ekeroth, and Alejandro Russo

ghci> answer @()
Yes

However, when answer is applied to a type variable, it will

produceNo.

ghci> let t' :: forall x. Matched x ; t' = answer @x in t'
No

The way that we achieve that is because when answer has type

HasBeenMatched x for a type-variable x, there is an ambiguity for

the GHC.

There are two possible instances that could match: the

generic instance HasBeenMatched a or the more specific one

HasBeenMatched () (x could unify later with ()).
We use the -## INCOHERENT ##- pragma that indicates that, in

our case of ambiguity, GHC chooses the more generic instance.

Sometimes type classes instances can overlap in a way that the

compiler cannot determine which one to use.

GHC typically prioritizes the most specific instance when re-

solving which instance to use for a given type class constraint.

This behavior ensures that the compiler selects the instance that

best matches the type and its context, aligning with the expected

semantics of the program. When you mark an instance with the

INCOHERENT pragma, we are telling the compiler to use that in-

stance even if there might be other more specific ones available.

This can lead to unexpected behavior, especially in cases where

the choice of instance affects program semantics. However, for our

purposes, it is the same GHC who tips us about using incoherent

instances when typing t':

src/TypeLift/Trick.hs:138:6: error:
• Overlapping instances for HasBeenMatched x

arising from a use of ‘answer’
Matching instances:

instance HasBeenMatched a
-- Defined at src/TypeLift/Trick.hs:41:10

instance HasBeenMatched ()
-- Defined at src/TypeLift/Trick.hs:38:10

(The choice depends on the instantiation of ‘x’
To pick the first instance above, use IncoherentInstances
when compiling the other instance declarations)

• In the expression: answer @x
In an equation for ‘t'’: t' = answer @x

|
138 | t' = answer @x

| ^^^^^^^^^

We write a function that collects all the answers in a n-ary product and

provide an example of its use.

defined :: All HasBeenMatched ts => NP Matched ts
defined = hcpure (Proxy :: Proxy HasBeenMatched) answer

matches :: forall t1 t3. NP Matched [(),t1,(),t3]
matches = defined @[(),t1,(),t3]

ghci> matches
Yes :* No :* Yes :* No :* Nil

Once we obtained the list of yeses and noes, we write another function

that converts all the yeses into indexes in the type-level list, so effectively

indicating the constructors that have been matched.

indexes :: forall ts . NP Matched ts -> [NS Matched ts]
indexes Nil = []
indexes (No :* rs) = map S (indexes rs)
indexes (Yes :* rs) = Z Yes : map S (indexes rs)

Observe the use of n-ary sums. As an example, the list of indexes for matches
contains zero and two as expected.

ghci> indexes matches
[Z Yes,S (S (Z Yes))]

In summary, to detect if a type variable has been unified with () we rely

on INCOHERENT instances.

The INCOHERENT pragma gets only exercised by the function defined,
which is not part of the surface syntax of the DSL. Hence, there are no risks

of misusing INCOHERENT instances to break type soundness in our library.

4.3 Connecting patterns with the original type
We define patterns synonyms as indexes into the type-level list of potential

constructors to be matched upon.

pattern T0_ :: NS Matched [(),t1,t2,t3]
pattern T0_ = Z Yes

pattern T1_ :: NS Matched [t0,(),t2,t3]
pattern T1_ = S (Z Yes)

pattern T2_ :: NS Matched [t0,t1,(),t3]
pattern T2_ = S (S (Z Yes))

pattern T3_ :: NS Matched [t0,t1,t2,()]
pattern T3_ = S (S (S (Z Yes)))

As the patterns are generic, these can be not only associated with the type

T but also with any other isomorphic data type with four constructors, e.g.,

data W = W0 | W1 | W2 | W3.
So, having the patterns for T and W, a function could match, for instance,

on both T_1 and W0_.
To avoid such behavior, we introduce a new data type that connects the

original type with the patterns being introduced by our technique and adapt

the definitions of patterns accordingly.

data PatternsOf t ts where
Constructor :: NS Matched ts -> PatternsOf t ts

pattern T0_ :: PatternsOf T '[(),t1,t2,t3]
pattern T0_ = Constructor (Z Yes)

pattern T1_ :: PatternsOf T '[t0,(),t2,t3]
pattern T1_ = Constructor (S (Z Yes))

pattern T2_ :: PatternsOf T '[t0,t1,(),t3]
pattern T2_ = Constructor (S (S (Z Yes)))

pattern T3_ :: PatternsOf T '[t0,t1,t2,()]
pattern T3_ = Constructor (S (S (S (Z Yes))))

We can now rewrite foo' with our new pattern synonyms and ask for

its type.

foo' T0_ = 10
foo' T2_ = 5
foo' T1_ = 0

ghci> :t foo'
foo' :: PatternsOf T '[(),(),(),t3] -> Int

4.4 Implementing the trick'
We can now present the definition of the trick'.

trick' :: forall t ts r . All HasBeenMatched ts
=> (PatternsOf t ts -> r) -> [r]

trick' f = map (f. Constructor) matches
where matches = indexes (defined @ts)

Calculating Function Sensitivity for Synthetic Data Algorithms IFL 2023, August 29–31, 2023, Braga, Portugal

It takes a function f that pattern-matches on the pattern synonyms

associated to the type T (PatternsOf t ts -> [r]), and returns the

list of the possible results ([r]). We can observe that the trick' sim-

ply obtains the indexes that have been pattern-matched by invoking

indexes (defined @ts), and then it proceeds to apply them to f with

map.
Applying the trick' to foo' outputs information that can be used to

compute its range.

ghci> trick' foo'
[10,5,0]

4.5 Running functions
We have seen that users writing functions with our patterns synonyms

and proposed types enable the use of the trick' to obtain the range of

functions—and thus approximated its sensitivity. However, the function to

be executed should operate on the datatype t rather than PatternsOf t

ts. With this in mind, we defined the following type class which gives an

injection between the original datatype and our generated patterns.

class Reifyable t ts where
reify :: t -> PatternsOf t ts

With the method reify, function convert translate functions written with

our pattern synonyms into functions working on the original data type.

convert :: (PatternsOf t ts -> r) -> t -> r
convert f = f . reify

Obtaining instances for Reifyable t ts is straightforward as shown by the

following examples.

instance Reifyable T [(),(),(),()] where
reify t = case t of

T0 -> T0_
T1 -> T1_
T2 -> T2_
T3 -> T3_

It is easy to see that convert foo' is equivalent to the function foo.
We note that function convert forces all the elements of the type-level

list to be of type unit. Hence, it should be called after trick' has been

used since it will unify all the type-variables (representing unmatched

constructors) to().

Removing boilerplate. Every new simple sum type that we would like to

apply the trick' to will require a unique collection of pattern synonyms.

For instance, a type T with a hundred constructors will require to write

hundred pattern synonyms with the right type-level information. To avoid

such undesirable overhead, we use TH to generate this code automatically

since it follows a clear pattern. The details of our TH pipeline are not

of any interest with regard to the technique described here. Therefore,

they are omitted here. From the user perspective, we provide the function

mkTCBoiler that is responsible for automatically generating the patterns

specific to a given sum type T.

data T = T0 | T1 | T2 | T3

$(mkTCBoiler ''T)

foo' T0_ = 10
foo' T2_ = 5
foo' T1_ = 0

4.6 Wildcards
Until this point, we have successfully built a framework for analyzing

pattern-matching of enumeration types at the type-level. However, we have

omitted wildcard matches, which are an integral part of pattern matching.

It is part of every Haskell developer’s toolbox, and from the perspective of

range analysis, it could be considered one of the inputs to try to apply. For

instance, let us consider that function foo is instead written as follows.

foo :: T -> Int
foo T0 = 10
foo T2 = 5
foo _ = 20 -- wildcard

To be able to infer the range of the function, trick' needs to also hit

the wildcard with a constructor that is not matched explicitly, e.g., T3 or T1
in this case. The information about constructors not matched explicitly is

already present at the type-level as type variables. Consequently, during

the the call of indexes, all unmatched constructors will coincide with No
values—recall Section 4.2. It is then enough to convert one of such No values
into a Yes for the trick' to consider a constructor that will “hit” the wildcard.

The following function flips the first No into a Yes.

addWildcard :: All HasBeenMatched ts
=> NP Matched ts -> NP Matched ts

addWildcard Nil = Nil
addWildcard (No :* r) = Yes :* r
addWildcard (p :* r) = p :* addWildcard r

Notice how ts remains unchanged, even though we are now potentially

matching on yet another constructor. We can present now the adapted

version of the trick'.

trick' :: forall t ts r . All HasBeenMatched ts
=> (PatternsOf t ts -> r) -> [r]

trick' f = map (f. Constructor) matches
where matches = indexes (addWildcard (defined @ts))

We carefully insert addWildcard after bringing the type-level information

about explicitly matches constructors down to the term-level. From that

point on, the function indexes generates the constructors to be applied

by trick' only based on the Yes/No values—so, an unmatched constructor

will be considered in the mix.

foo' T0_ = 10
foo' T2_ = 5
foo' _ = 20 -- wildcard

ghci> trick' foo'
[10,20,5]

Because of the inclusion of a wildcard pattern, we require the user-

defined function to be exhaustive. If not, a function could throw a Non-
exhaustive patterns error at runtime when calling the trick'. We think

this is a reasonable demand for two reasons: from a correctness perspective,

we know that every input has been considered and handled appropriately,

and because it is the same requirement as other libraries implementing The

Trick [31]. Compared with the work by Valliappan et al. [31], our approach

only applies functions to arguments demanded by the pattern matching,

while Valliappan et al. apply functions to all the elements of their domain.

5 WRITING LINEAR QUERIES
With the technique in Section 4 at our disposal, we set out to implement a

DSL capable of approximating the sensitivity of user-defined linear queries.

To capture the notion of a query, we construct the Query DSL. Programs

in this DSL can be interpreted in two different ways: as a query which

execution is as expected or as a static analysis based on an interval-based

semantics—which we use to reason about the range of functions. In this

section, we will focus on the latter since the former is straightforward.

We start by defining a query that only matches one attribute of the data

set.

data Query t r where
OneAttr :: (All Matched ts, Reifyable t ts

, Num r, Ord r)

IFL 2023, August 29–31, 2023, Braga, Portugal Markus Pettersson, Johannes Ljung Ekeroth, and Alejandro Russo

=> (PatternsOf t ts -> r) -- User-defined query
-> Query t r

By restricting the results of the queries to numerical values (Ord r,
Num r), we can leverage one of the many libraries for Haskell which de-

fine arithmetic on intervals when defining the interval semantics of the

DSL[18, 24, 28]. We choose the library Numeric.Interval [18] for two

particular reasons: it defines infimum, supremum and the complex hull be-

tween two intervals; we did not need support for open intervals or rational

numbers, which are offered by other, more featureful interval libraries [28].

Once a user-defined query has been encapsulated inside the OneAttr
constructor, we can use the trick' from Section 4 to obtain its range.

import Numeric.Interval (hull
, width -- |max - min|
)

import NewTrick (trick')

intervalSem :: Query t r -> Interval r
intervalSem (OneAttr q) = foldl1 hull (trick' q)

sensitivity :: Num r => Query t r -> r
sensitivity = width . intervalSem

We use the primitive hull to create a convex, closed set of points from the

elements in the range of the query. Then, we approximate the sensitivity of

the query by the width of the interval.

Since workloads could include queries matching two attributes as well,

we proceed to also introduce a special constructor for such cases and extend

the interval semantics accordingly.

data Query t r where
OneAttr :: (All Matched ts, Reifyable t ts

, Num r, Ord r)
=> (PatternsOf t ts -> Interval r)
-> Query t r

TwoAttr :: (All Matched ts1, All Matched ts2
, Reifyable t1 ts1, Reifyable t2 ts2
, Num r, Ord r)

=> (PatternsOf t1 ts1 -> PatternsOf t2 ts2
-> Interval r)

-> Query (t1, t2) r

intervalSem :: Query t r -> Interval r
intervalSem (OneAttr q) = foldl1 hull (trick' q)
intervalSem (TwoAttr q) =

foldl1 hull (concatMap trick' (trick' q))

We provide an uncurried interface for the convenience of the developers.

oneAttr = OneAttr
twoAttr = TwoAttr . curry

In a similar way, we add constructors for queries that consider three and four

attributes—omitted here for brevity. We leave as future work to consider a

generic constructor that could work with 𝑛-attributes.

In what follows, we show an example to illustrate our DSL.

import TheNewTrick
import DSL

data T = T0 | T1 | T2 | T3

$(mkTCBoiler ''T)

bar :: Query T Int
bar = oneAttr $ \case

T1_ -> lit 1

T2_ -> lit 15
_ -> lit 30

bar' :: Query (T, T) Int
bar' = twoAttr $ \case

(T1_, T2_) -> lit 10
_ -> lit 20

ghci> intervalSem bar
(1 ... 30)

ghci> intervalSem bar'
(10 ... 20)

From here on, we can extend the functionality of the DSL to support

more expressive queries, such as comparisons and conditional branching.

However, at this stage, we have everything we need to achieve the main

purpose of this DSL: turn user-defined functions into a range of possible
output values. All that remains is to integrate this functionality into an

existing differential privacy system so that it can be used to approximate

the sensitivity of workloads.

6 CASE STUDY
We evaluate our technique with DPella’s implementation of MWEM applied

to the Adult dataset—DPella is a startup company located in Göteborg,

Sweden working on Differential Privacy solutions using Haskell
5
. We limit

this case study to queries on four out of the available fifteen attributes. This

decision is mainly for simplicity and to illustrate the generation process

of synthetic data with a reasonable subset of interesting attributes. The

attributes we focused on are sex, race, work-class and age. Sex, race and

work-class are all discrete attributes. They are modeled as an enumeration

data type in Haskell—recall Section 2.

The fourth attribute, age, is modeled as an integer but we discretize it

into nine distinct intervals to capture adults within the range from 0 to 99

years.

data Age
= Teens -- age < 20
| Twenties -- 20 <= age < 30
| Thirties -- 30 <= age < 40
| Fortys -- 40 <= age < 50
| Fiftys -- 50 <= age < 60
| Sixtys -- 60 <= age < 70
| Seventees -- 70 <= age < 80
| Eighties -- 80 <= age < 90
| Nineties -- 90 <= age < 100

We were given a workload of fifty linear queries that each discriminates

on two out of the four attributes of interest
6
. The queries cover all possible

domains that can be constructed by combining the four attributes in pairs

of two
7
. We have queries on the following forms:

𝑆𝑒𝑥 ×𝑊𝑜𝑟𝑘𝑐𝑙𝑎𝑠𝑠 → 𝑅𝑒𝑠𝑢𝑙𝑡

𝑆𝑒𝑥 × 𝐴𝑔𝑒 → 𝑅𝑒𝑠𝑢𝑙𝑡

𝑆𝑒𝑥 × 𝑅𝑎𝑐𝑒 → 𝑅𝑒𝑠𝑢𝑙𝑡

𝐴𝑔𝑒 × 𝑅𝑎𝑐𝑒 → 𝑅𝑒𝑠𝑢𝑙𝑡

𝐴𝑔𝑒 ×𝑊𝑜𝑟𝑘𝑐𝑙𝑎𝑠𝑠 → 𝑅𝑒𝑠𝑢𝑙𝑡

𝑅𝑎𝑐𝑒 ×𝑊𝑜𝑟𝑘𝑐𝑙𝑎𝑠𝑠 → 𝑅𝑒𝑠𝑢𝑙𝑡

Where the 𝑅𝑒𝑠𝑢𝑙𝑡 type is implemented as Haskell’s Double type. The im-

plementation of these queries is not important at this stage.

5
https://www.dpella.io

6
An exhaustive list of queries, i.e. a query on every combination of the two attributes,

would consist of 400 queries.

7
Also called 2-way marginals.

https://www.dpella.io

Calculating Function Sensitivity for Synthetic Data Algorithms IFL 2023, August 29–31, 2023, Braga, Portugal

The workloads are modeled using the following record data type.

data Workload row = Workload
{ getWorkload :: [row -> Double]
, getSensitivity :: Sensitivity
}

As we can see, the Workload is parameterized over a typerow, i.e., the type
of records in the data set.

In our case, row will get instantiated to Adult.

type Adult = (Sex,Race,Workclass,Age)

For all of the given queries to be bundled in the same workload, we need a

way of lifting each query from its two attributes input domain to work on

the whole Adult type—we omit these details since it is not hard to imagine

how to do it. Finally, we can encode the given workload as follows.

workload :: Workload Adult
workload = Workload

[query1, query2, . . . , query50] -- given queries
1.0 -- hard-coded sensitivity

6.1 Writing the workload using the Query DSL
We rewrite the given queries using our DSL.

$(mkTCBoiler ''Sex)
$(mkTCBoiler ''Race)
$(mkTCBoiler ''Workclass)
$(mkTCBoiler ''Age)

query1' :: Query (Sex, Race) Double
query1' = twoAttr $ \case

(Female_,Eskimo_) -> 1.0
_ -> 0.0

query2' :: Query (Sex, Workclass) Double
query2' = twoAttr $ \case

(Male_,Private_) -> 1.0
_ -> 0.0

... -- the rest of the queries

Once the adapted versions of the queries have been written with the Query
DSL, we need to construct a workload with them. When constructing a

workload we also need to include the sensitivity parameter, but this time it

gets computed automatically through the sensitivity function.

-- Converts a linear query in the DSL into
-- a query that works directly on the data set
extractFun :: Query a r -> a -> r
extractFun (OneAttr q) a = q (reify a)
extractFun (TwoAttr q) (a,b) = q (reify a) (reify b)

-- Put together queries written in our DSL into a workload
constructWL :: [Query Adult Double] -> Workload Adult

constructWL qs = Workload funs sen
where sen = maximum $ map sensitivity qs

funs = map extractFun qs

Observe how the sensitivity in the workload is now computed by the func-

tion sensitivity. We can now build a workload based on the queries

written in our DSL.

workload' :: Workload Adult
workload' = constructWL

[query1', query2', . . . , query50']

6.2 Evaluation
We have previously stated that MWEM runs on a workload (a set of queries),

but the algorithm requires more parameters than that.

• Epsilon: What is referred to as the privacy budget in the literature

[14, 19]. We will test the integration with standard 𝜖 values of 0.01,

0.1 and 1 [9].

• Iterations: The original paper suggests running the algorithm with

10 iterations [14]. This is not always optimal, but for our use case, it

will suffice [19].

• Workload row: The set of queries to run MWEM with. We will

produce the results using both the given workload and our adapted

workload' presented in Sections 6 and 6.1, respectively.

• Dataset rows: The underlying dataset that MWEM will try to ap-

proximate.

• Dataset universe: The entire universe of all possible records. In
this case, it is every combination of the 4 attributes sex, race, work

class and age.

The result of running MWEM is an approximate distribution of the

records in the underlying dataset. MWEM will try to replicate the character-

istics of the underlying dataset with respect to the queries in the supplied

workload. The result gives back the entire universe of records, where each

record has been coupled with a distribution 0 ≤ 𝑑 (𝑥𝑖) ≤ 1
8
. From this

distribution, one can synthesize an arbitrarily large dataset that respects

the characteristics
9
of the underlying dataset.

To evaluate our integration, we will run MWEM on workload with hard-

coded sensitivity as well as our adapted workload' where the sensitivity
is computed. As a baseline, we will run MWEM on the workload three

times for different values of 𝜖 . The resulting distributions are scaled up

by the number of records in the original dataset: 32561. Let us call these

synthesized datasets (A). Finally, we run every query on the original dataset

as well as the synthesized datasets (A). Since every query is a linear query,

we simply sum up the result of every query for all datasets. This allows us

to compare how well the synthesized datasets (A) perform, compared with

the original dataset, with respect to every query.

We then proceed by performing the same evaluation using our adapted

workload, i.e., workload'. The difference is that the sensitivity of the work-

load has been computed from the set of queries. What we want to find out

is if the newly synthesized datasets (B) perform as well as the previously

synthesized datasets (A).

Figure 1 presents a few results of running the MWEM algorithm, both

with workload and workload'. Each figure shows the result of running

each query to the raw data and two sets of synthetic data (A) and (B). The

information of interest in these figures is how well MWEMwith workload'
(marked with a cross) lines up with the one running with workload (the

red circle). A cross lined up perfectly inside a red circle means that the

algorithm produced the same result when run twice; one time using the

existing workload, and one time using the workload generated from queries

written by our DSL. The blue circles represent the result of applying the

queries to the raw data. However, we emphasize that we in this work are

not interested in how well the synthetic data mimics the raw data. We

can observe that the quality of the synthetic data, when generated with

our adapted workload, was not significantly different from what had been

synthesised using the existing workload.

7 RELATEDWORK
Sensitivity by Linear types. Several works have studied techniques to

reason about program sensitivity by typing, most of which are in the con-

text of differential privacy. An early approach is the work by Reed and

Pierce [27]. They designed an indexed linear type system for differential

8
The total sum of all distributions should equal 1.

9
Again, this is with respect to the queries on the dataset.

IFL 2023, August 29–31, 2023, Braga, Portugal Markus Pettersson, Johannes Ljung Ekeroth, and Alejandro Russo

Figure 1: Result of running the MWEM algorithm with dif-
ferent 𝜖

privacy where types explicitly track sensitivities thanks to types of the form

!𝑟𝐴 ⊸ 𝐵. In their work, this type can only be assigned to terms represent-

ing functions from 𝐴 to 𝐵 which have sensitivity less than 𝑟 . Functions of

these forms could be turned into differentially private programs by adding

noise carefully calibrated to 𝑟 . The type system by Reed and Pierce [27]

was implemented in the language Fuzz which was also extended with a

timed runtime to avoid side channels with respect to the differential privacy

guarantee [13]. Automated type inference for this type system was studied

by D’Antoni et al. [4], and its semantics foundation was studied by Azevedo

de Amorim et al. [6]. Fuzz was further extended in several directions: Eigner

and Maffei [10] extended Fuzz to reason about distributed data and differen-

tially private security protocols. Gaboardi et al. [11] extended Fuzz’s type

checker by means of a simple form of dependent types. Winograd-Cort

et al. [32] extended Fuzz type checker and runtime system to an adaptive

framework. Zhang et al. [34] extended the ideas of Fuzz to a three-level

logic for reasoning about sensitivity for primitives that are not captured

in Fuzz. Azevedo de Amorim et al. [5] add to Fuzz more general rules for

reasoning about the sensitivity of programs returning probability distribu-

tions. Departing from Fuzz’s line of work, our work does not require the

use of linear types; instead, we simply approximate sensitivity by the width
of functions’ ranges, which is an over-approximation for linear queries used

in synthetic data algorithms like MWEM [14].

Other type-based approaches. Near et al. [26] designed the language Duet
to support other notions of differential privacy. The Duet approach is based

on the design of a two-layer language. The underlying layer is similar to

Fuzz, and the other layer is a linear type system without annotations for

sensitivities. The second layer enables support for approximate differential

privacy and other relaxed forms of differential privacy by not imposing

constraints on the distance of elements, this approach does restrict the ca-

pacity of Duet to provide support for higher-order functions. Toro et al. [30]
further extended this approach by combining linear types with contextual

effects, resulting in a system that supports various notions of differential

privacy and higher-order functions. By incorporating contextual effects,

their system enables a detailed analysis of program sensitivity, particularly

when dealing with complex data structures. As a result, it allows for poten-

tially tighter bounds on the sensitivity of user-defined functions compared

to our work. However, this is only available for type systems with support

for tracking both linear and contextual effect information.

Another work aligned with our goal is Abuah et al.’s [1] system named

Solo. This system is a fully-fledged differentially-private language that

allows for tracking the sensitivity of programs without requiring linear

types. The authors’ main insight for eliminating the reliance on linearity

is that base types can be annotated with Fuzz’s sensitivity environments

from where the notion of 𝑘-sensitivity can be recovered. Their type system

is also embedded in Haskell and leverages polymorphism for some specific

parts of the implementation. In Solo’s, unfortunately, the type signature of

foldr (its only source of recursion) is unsound when computing sensitivity.

Solo presents MWEM as an example of what it can do. Different from our

work, however, Solo’s implementation is incomplete, e.g., out of the eleven

functions included in the standard library, nine are essentially defined as

undefined10—including those implementing MWEM. In contrast, our work

is presented as a ready-to-use Haskell library with a more focused scope.

Spar [21] is a work-in-progress Haskell library that allows for tracking the

sensitivity of programs by soundly using parametricity. Spar introduces a

programming language and aims to compute the sensitivity of advanced

DP algorithms (e.g., k-means, histograms, and CDFs). In contrast, our work

is more focused on synthetic data algorithms and requires less Haskell

“machinery” than Spar.

Program analysis. Other approaches to reason about program sensitivity

were based on program analysis. To reason about the continuity of programs,

Chaudhuri et al. [3] designed a program analysis tracking the usage of

variables and giving an upper bound on the program’s sensitivity. Johnson

et al. [15] proposed a static analysis to track sensitivities of queries in a SQL-

like system. Abuah et al. [2] designed a dynamic sensitivity analysis that

tracks sensitivity and metric information at the values level. This dynamic

analysis is used to guarantee differential privacy in an adaptive setting,

similar to the one explored in Adaptive Fuzz [32].

10
https://zenodo.org/record/7079930

https://zenodo.org/record/7079930

Calculating Function Sensitivity for Synthetic Data Algorithms IFL 2023, August 29–31, 2023, Braga, Portugal

8 FINAL REMARKS
In this paper, we presented a novel approach to approximate the sensitivity

for functions with pattern-matching on enumeration types. We introduced

a type-level representation of pattern-matching information and used it

to approximate the sensitivity of functions. Our technique allows us to

automatically identify the matched constructors and synthesize them at

the term level, enabling us to evaluate the function on all relevant inputs.

By leveraging Template Haskell, we provided a seamless integration of our

method into existing Haskell codebases. We demonstrated the effectiveness

of our approach through a case study which uses MWEM and involves a

workload of linear queries on the Adult dataset. Our technique not only

provides valuable insights into the sensitivity of functions but also paves the

way for more robust and accurate privacy analysis in differential privacy

systems implemented in Haskell. By automatically generating the necessary

pattern synonyms and handling wildcard patterns, we reduce the burden

on developers, facilitating the adoption of privacy-aware programming

practices in Haskell-based systems.

In future work, it could be interesting to explore how to extend the

trick' to support arguments beyond enumerations, e.g., non-discrete ones

with guards. Another interesting endeavor could be to provide wildcards

for certain attributes within a tuple, e.g.,

twoAttr $ \case
(Female_, _) -> 1.0
_ -> 0

Overall, our method contributes to enhancing the privacy guarantees and

usability of Haskell-based differential privacy solutions for synthetic data

generation.

9 FINAL REMARKS
In this paper, we presented a novel approach to approximate the sensitivity

for functions with pattern-matching on enumeration types. We introduced

a type-level representation of pattern-matching information and used it

to approximate the sensitivity of functions. Our technique allows us to

automatically identify the matched constructors and synthesize them at

the term level, enabling us to evaluate the function on all relevant inputs.

By leveraging Template Haskell, we provided a seamless integration of our

method into existing Haskell codebases. We demonstrated the effectiveness

of our approach through a case study which uses MWEM and involves a

workload of linear queries on the Adult dataset. Our technique not only

provides valuable insights into the sensitivity of functions but also paves the

way for more robust and accurate privacy analysis in differential privacy

systems implemented in Haskell. By automatically generating the necessary

pattern synonyms and handling wildcard patterns, we reduce the burden

on developers, facilitating the adoption of privacy-aware programming

practices in Haskell-based systems.

In future work, it could be interesting to explore how to extend the

trick' to support arguments beyond enumerations, e.g., non-discrete ones

with guards. Another interesting endeavor could be to provide wildcards

for certain attributes within a tuple, e.g.,

twoAttr $ \case
(Female_, _) -> 1.0
_ -> 0

Overall, our method contributes to enhancing the privacy guarantees and

usability of Haskell-based differential privacy solutions for synthetic data

generation.

ACKNOWLEDGMENTS
This work was funded by the Swedish Foundation for Strategic Research

(SSF) under the project Octopi (Ref. RIT17-0023) and by the Swedish research

agency Vetenskapsrådet.

REFERENCES
[1] Chiké Abuah, David Darais, and Joseph P. Near. 2022. Solo: A Lightweight Static

Analysis for Differential Privacy. Proc. ACM Program. Lang. 6, OOPSLA2, Article
150 (oct 2022), 30 pages. https://doi.org/10.1145/3563313

[2] Chike Abuah, Alex Silence, David Darais, and Joseph P. Near. 2021. DDUO:

General-Purpose Dynamic Analysis for Differential Privacy. In 34th IEEE Com-
puter Security Foundations Symposium, CSF 2021, Dubrovnik, Croatia, June 21-25,
2021. IEEE, 1–15. https://doi.org/10.1109/CSF51468.2021.00043

[3] Swarat Chaudhuri, Sumit Gulwani, and Roberto Lublinerman. 2012. Continuity

and robustness of programs. Commun. ACM 55, 8 (2012), 107–115.

[4] Loris D’Antoni, Marco Gaboardi, Emilio Jesús Gallego Arias, Andreas Haeberlen,

and Benjamin C. Pierce. 2013. Sensitivity analysis using type-based constraints.

In Proceedings of the 1st annual workshop on Functional programming concepts
in domain-specific languages, FPCDSL@ICFP 2013, Boston, Massachusetts, USA,
September 22, 2013, Richard Lazarus, Assaf J. Kfoury, and Jacob Beal (Eds.). ACM,

43–50. https://doi.org/10.1145/2505351.2505353

[5] Arthur Azevedo de Amorim, Marco Gaboardi, Justin Hsu, and Shin-ya Katsumata.

2019. Probabilistic Relational Reasoning via Metrics. In 34th Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2019, Vancouver, BC, Canada, June
24-27, 2019. IEEE, 1–19. https://doi.org/10.1109/LICS.2019.8785715

[6] Arthur Azevedo de Amorim, Marco Gaboardi, Justin Hsu, Shin-ya Katsumata, and

Ikram Cherigui. 2017. A semantic account of metric preservation. In Proceedings
of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages,
POPL 2017, Paris, France, January 18-20, 2017, Giuseppe Castagna and Andrew D.

Gordon (Eds.). ACM, 545–556. https://doi.org/10.1145/3009837.3009890

[7] Dheeru Dua and Casey Graff. 2017. UCI Machine Learning Repository. http:

//archive.ics.uci.edu/ml/datasets/adult

[8] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. 2006. Cali-

brating Noise to Sensitivity in Private Data Analysis. In Proceedings of the Third
Conference on Theory of Cryptography (New York, NY) (TCC’06). 265–284.

[9] Cynthia Dwork, Aaron Roth, et al. 2014. The algorithmic foundations of differ-

ential privacy. Found. Trends Theor. Comput. Sci. 9, 3-4 (2014), 211–407.
[10] Fabienne Eigner and Matteo Maffei. 2013. Differential Privacy by Typing in

Security Protocols. In 2013 IEEE 26th Computer Security Foundations Symposium,
New Orleans, LA, USA, June 26-28, 2013. IEEE Computer Society, 272–286. https:

//doi.org/10.1109/CSF.2013.25

[11] Marco Gaboardi, Andreas Haeberlen, Justin Hsu, Arjun Narayan, and Benjamin C.

Pierce. 2013. Linear dependent types for differential privacy. In Proc. ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages.

[12] Marco Gaboardi, Michael Hay, and Salil Vadhan. 2020. A programming framework

for opendp. Manuscript, May (2020).

[13] Andreas Haeberlen, Benjamin C. Pierce, and Arjun Narayan. 2011. Differential

Privacy Under Fire. In Proc. of USENIX Security Symposium.

[14] Moritz Hardt, Katrina Ligett, and Frank McSherry. 2012. A simple and practical

algorithm for differentially private data release. Advances in neural information
processing systems 25 (2012).

[15] Noah M. Johnson, Joseph P. Near, Joseph M. Hellerstein, and Dawn Song. 2020.

Chorus: a Programming Framework for Building Scalable Differential Privacy

Mechanisms. In IEEE European Symposium on Security and Privacy, EuroS&P
2020, Genoa, Italy, September 7-11, 2020. IEEE, 535–551. https://doi.org/10.1109/

EuroSP48549.2020.00041

[16] Neil Jones, Carsten Gomard, and Peter Sestoft. 1993. Partial Evaluation and
Automatic Program Generation.

[17] Oleg Kiselyov, Ralf Lämmel, and Keean Schupke. 2004. HList: A Haskell Library

for Nested Datatypes and Heterogeneous Lists. In Proc. of the 2004 ACM SIGPLAN
workshop on Haskell. ACM, 2–3.

[18] Edward Kmett. 2021. intervals: Basic interval arithmetic. Available online
https://hackage.haskell.org/package/intervals (2021).

[19] Dan Josephus Knoors. 2018. Utility of Differentially Private Synthetic Data

Generation for High-Dimensional Databases. (2018). http://www.diva-portal.se/

smash/get/diva2:1252390/FULLTEXT01.pdf

[20] Daan Leijen and Erik Meijer. 1999. Domain-Specific Embedded Compilers. In 2nd
Conference on Domain-Specific Languages (DSL 99). USENIX Association, Austin,

TX. https://www.usenix.org/conference/dsl-99/domain-specific-embedded-

compilers

[21] Elisabet Lobo-Vesga. 2021. Let’s not Make a Fuzz about it. In 2021 IEEE/ACM 43rd
International Conference on Software Engineering: Companion Proceedings (ICSE-
Companion). 114–116. https://doi.org/10.1109/ICSE-Companion52605.2021.00051

[22] Elisabet Lobo-Vesga, Alejandro Russo, andMarco Gaboardi. 2020. A Programming

Framework for Differential Privacy with Accuracy Concentration Bounds (SP
’20). IEEE Computer Society.

[23] Andres Löh. [n. d.]. SOP NP (n-ary products). Available online
https://hackage.haskell.org/package/sop-core-0.5.0.2/docs/Data-SOP-NP.html
([n. d.]).

[24] Robert Massaioli. 2019. range: An efficient and versatile range library. Available
online https://hackage.haskell.org/package/range (2019).

https://doi.org/10.1145/3563313
https://doi.org/10.1109/CSF51468.2021.00043
https://doi.org/10.1145/2505351.2505353
https://doi.org/10.1109/LICS.2019.8785715
https://doi.org/10.1145/3009837.3009890
http://archive.ics.uci.edu/ml/datasets/adult
http://archive.ics.uci.edu/ml/datasets/adult
https://doi.org/10.1109/CSF.2013.25
https://doi.org/10.1109/CSF.2013.25
https://doi.org/10.1109/EuroSP48549.2020.00041
https://doi.org/10.1109/EuroSP48549.2020.00041
http://www.diva-portal.se/smash/get/diva2:1252390/FULLTEXT01.pdf
http://www.diva-portal.se/smash/get/diva2:1252390/FULLTEXT01.pdf
https://www.usenix.org/conference/dsl-99/domain-specific-embedded-compilers
https://www.usenix.org/conference/dsl-99/domain-specific-embedded-compilers
https://doi.org/10.1109/ICSE-Companion52605.2021.00051

IFL 2023, August 29–31, 2023, Braga, Portugal Markus Pettersson, Johannes Ljung Ekeroth, and Alejandro Russo

[25] Frank D. McSherry. 2009. Privacy integrated queries: an extensible platform for

privacy-preserving data analysis. In SIGMOD. ACM.

[26] Joseph P. Near, David Darais, Chike Abuah, Tim Stevens, Pranav Gaddamadugu,

Lun Wang, Neel Somani, Mu Zhang, Nikhil Sharma, Alex Shan, and Dawn Song.

2019. Duet: an expressive higher-order language and linear type system for

statically enforcing differential privacy. Proc. ACM Program. Lang. 3, OOPSLA
(2019), 172:1–172:30.

[27] Jason Reed and Benjamin C. Pierce. 2010. Distance makes the types grow stronger:

a calculus for differential privacy. In Proc. ACM SIGPLAN International Conference
on Functional Programming.

[28] Masahiro Sakai. 2021. data-interval: Interval datatype, inter-

val arithmetic and interval-based containers. Available online
https://hackage.haskell.org/package/data-interval (2021).

[29] Tim Sheard and Simon Peyton Jones. 2002. Template meta-programming for

Haskell. In Proceedings of the 2002 ACM SIGPLAN workshop on Haskell. 1–16.
[30] Matías Toro, David Darais, Chike Abuah, Joseph P. Near, DamiánÁrquez, Federico

Olmedo, and Éric Tanter. 2023. Contextual Linear Types for Differential Privacy.

ACM Trans. Program. Lang. Syst. 45, 2, Article 8 (may 2023), 69 pages. https:

//doi.org/10.1145/3589207

[31] Nachiappan Valliappan, Robert Krook, Alejandro Russo, and Koen Claessen.

2020. Towards Secure IoT Programming in Haskell. In Proceedings of the 13th
ACM SIGPLAN International Symposium on Haskell (Virtual Event, USA) (Haskell
2020). Association for Computing Machinery, New York, NY, USA, 136–150.

https://doi.org/10.1145/3406088.3409027

[32] Daniel Winograd-Cort, Andreas Haeberlen, Aaron Roth, and Benjamin C. Pierce.

2017. A framework for adaptive differential privacy. PACMPL 1, ICFP (2017),

10:1–10:29. https://doi.org/10.1145/3110254

[33] Dan Zhang, Ryan McKenna, Ios Kotsogiannis, Michael Hay, Ashwin Machanava-

jjhala, and Gerome Miklau. 2018. EKTELO: A Framework for Defining

Differentially-Private Computations. In Proc. International Conference on Man-
agement of Data.

[34] Hengchu Zhang, Edo Roth, Andreas Haeberlen, Benjamin C. Pierce, and Aaron

Roth. 2019. Fuzzi: a three-level logic for differential privacy. Proc. ACM Program.
Lang. 3, ICFP (2019), 93:1–93:28. https://doi.org/10.1145/3341697

https://doi.org/10.1145/3589207
https://doi.org/10.1145/3589207
https://doi.org/10.1145/3406088.3409027
https://doi.org/10.1145/3110254
https://doi.org/10.1145/3341697

	Abstract
	1 Introduction
	2 Motivating example
	3 Background
	3.1 Proxy types
	3.2 SOP library

	4 A new trick
	4.1 Lifting pattern-matches to the type level
	4.2 Synthesizing matches at the term-level
	4.3 Connecting patterns with the original type
	4.4 Implementing the trick'
	4.5 Running functions
	4.6 Wildcards

	5 Writing linear queries
	6 Case study
	6.1 Writing the workload using the Query DSL
	6.2 Evaluation

	7 Related work
	8 Final remarks
	9 Final remarks
	Acknowledgments
	References

