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Abstract
We study cover times of subsets of Z

2 by a two-dimensional massive random walk
loop soup. We consider a sequence of subsets An ⊂ Z

2 such that |An| → ∞ and
determine the distributional limit of their cover times T (An). We allow the killing rate
κn (or equivalently the “mass”) of the loop soup to depend on the size of the set An

to be covered. In particular, we determine the limiting behavior of the cover times for
inverse killing rates all the way up to κ−1

n = |An|1−8/(log log |An |), showing that it can
be described by a Gumbel distribution. Since a typical loop in this model will have
length at most of order κ

−1/2
n = |An|1/2, if κ−1

n exceeded |An|, the cover times of all
points in a tightly packed set An (i.e., a square or close to a ball) would presumably be
heavily correlated, complicating the analysis. Our result comes close to this extreme
case.

Keywords Random walk loop soup · Cover times · Killing rates

Mathematics Subject Classification 60K35 · 60G50

1 Introduction

In this paper we are considering a covering problem for the massive randomwalk loop
soup in Z

2. Covering problems can be traced back to Dvoretzky (see [1]) who in 1956
studied the problem of covering the circle with a collection of randomly placed arcs of
prescribed lengths. Many variants of this problem were later studied, and we mention
in particular Janson’s work [2]. Informally, Janson fixed a set K ⊂ R

d and asked
for the first time when sets of small diameter arriving according to a Poisson process
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cover K completely. In particular, Janson determined the asymptotic distribution of
this cover time as the diameter of the covering sets shrinks to 0.

Later, Belius [3] took a step in a new direction when he studied a variant of the
problem in which the sets used to cover K are unbounded. Concretely, Belius fixed
a set K ⊂ Z

d and considered so-called random interlacements arriving according
to a Poisson process with unit rate. These random interlacements can informally be
understood as bi-infinite random walk trajectories (see [4] for more on this model).
For this reason, the questions were posed for d ≥ 3, as otherwise the random walks
are recurrent. The use of unbounded sets in the covering means that the cover times
of any two points x, y ∈ K are dependent regardless of the distance between x and
y. A similar problem was then studied by Broman and Mussini (see [5], which also
contains references to other papers on coverage problems), where now K ⊂ R

d and
the objects used to cover K are bi-infinite cylinders. In [5], the fact that K ⊂ R

d is
(in general) not a finite nor a discrete set poses a new set of challenges.

In the present paper, we restrict our attention to Z
2 and consider the so-called

massive randomwalk loop soup. The termmassive comes from the connection between
loop soups and field theory, particularly the Gaussian free field. A random walk loop
soup with a non-zero killing rate corresponds to a Gaussian free field with a non-zero
mass term. The loops are here generated by a random walk on Z

2 which at every step
has a positive probability of being killed (or landing in a cemetery state). As long
as this killing rate is strictly positive, it keeps very large loops from appearing near
the origin and ensures a nontrivial cover time; in contrast, with a zero killing rate
every vertex in Z

2 would be instantly covered. In this sense, our current project is
very much related to the work of [3], as we again study the trajectory of a random
walk, but we are introducing a killing in order to keep our walks from becoming too
long. One could also study the (somewhat easier) case of finite portions of trajectories
generated by killed random walks that do not form loops, but the random walk loop
soup seems more natural and interesting, in particular because of its deep connection
to the Gaussian free field and to other models of statistical mechanics (see e.g., [6]
and references therein). Aside from this connection, the random walk loop soup is
also an object of intrinsic interest as a prototypical example of a Poissonian system
amenable to rigorous analysis thanks to the vast body of knowledge on the behavior
of the random walk in two dimensions. We remark that while the usual set-up for the
random walk loop soup is for the case of finite graphs (see for instance [7] and [8]),
the only thing which is really needed is for the Green’s function to be finite. In our
full-space setting, i.e. on Z

2, this is accomplished by having a non-zero killing rate κ ,
see further the remark in Sect. 2.

We will give a precise definition of the massive random walk loop soup in Sect. 2,
but in order to present our main results we give here a short informal explanation. We
will consider a measure μ on the set of all loops (i.e., finite walks on Z

2 ending at the
same vertex where they started). Because of the non-zero killing rate, the measure μ

does not give much weight to very long loops. In particular, μ(�x ) < ∞ where �x

denotes the set of loops containing x ∈ Z
2. Furthermore, this measure is translation

invariant so that, in particular, μ(�x ) = μ(�o) for every x ∈ Z
2, where o denotes the

origin of the square lattice. Since the quantity μ(�o) will play a central role, we point
out already here that it is a function of the Green’s function at 0 of a random walk
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with killing rate κ . Furthermore, as our main result (Theorem 1.1 below) concerns the
case where κ goes to 0 with the sizes of the sets we are covering, it follows that μ(�o)

implicitly depends on the sizes of the sets we are covering.
The model that we study here is then a Poisson process ω on � × [0,∞), where

� = ⋃
x∈Z2 �x is the set of all loops. Furthermore, a pair (γ, s) ∈ ω is a loop γ along

with a “time-stamp” s denoting the time at which loop γ arrives. We can then define
the cover time of the set A ⊂ Z

2 by letting

T (A) := inf

⎧
⎨

⎩
t > 0 : A ⊂

⋃

(γ,s)∈ω:s≤t

γ

⎫
⎬

⎭
,

where we abuse notation somewhat and identify the loop γ with its trace, i.e., the
vertices x ∈ Z

2 that it encounters. Our main result concerns the asymptotic cover time
of a growing sequence of sets (An)n≥1, as follows.

Theorem 1.1 Consider a sequence of finite subsets An ⊂ Z
2 such that |An| ↑ ∞.

Furthermore, assume that the killing rates κn are such that, for every n, exp(e32) ≤
κ−1
n ≤ |An|1−8/(log log |An |). We then have that for n large enough

sup
z∈R

|P(μ(�o)T (An) − log |An| ≤ z) − exp(−e−z)| ≤ 12|An|−
1

800μ(�o) (1.1)

and therefore

μ(�o)T (An) − log |An| −→
n→∞ G in distribution, (1.2)

where G is a Gumbel distributed random variable.

Remarks It may seem that the bound on the right hand side of (1.1) does not depend
on the killing rates κn . However, equations (3.13) and (3.14) show that, for κ−1

n large,
μ(�o) is such that |μ(�0)− log log κ−1

n | < 2 (where the constant 2 is rather arbitrary).
Furthermore, the remark after the proof of Lemma 5.1 indicates that it may not be
possible to drastically improve on the rate of convergence in (1.1), at least not by
using the methods of this paper.

We assume the lower bound on κ−1
n in the statement of Theorem 1.1 out of con-

venience, and we claim that this can be relaxed (at least somewhat) by adding further
details to our proofs. However, as we deem it natural to let κn → 0 as |An| → ∞,

we do not think it worthwhile to make the paper more technical than it is in order to
improve on this lower bound.

Furthermore, the upper bound on κ−1
n cannot be easily improved, at least not sub-

stantially. Indeed, the discussion after the proof of Lemma 5.4 indicates that while it
may be possible to improve the upper bound by replacing the number 8 with a slightly
lower number, improving it further would require new ideas, if at all possible (see
further the discussion below).
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We continue this section with a more in depth discussion of our main result and of its
proof.

It is straightforward to determine (see the start of Sect. 4) that the expected number of
uncovered vertices x ∈ An at time log |An |

μ(�o)
is exactly 1, and this is why the distributional

limit in Theorem 1.1 may exist at all. Furthermore, it is easy to show (see (7.1)) that
μ(�o)T (o) is an exponentially distributed random variable with parameter 1. By
using the well known fact that the maximum of independent exponentially distributed
random variables (with parameters all equal to 1) converges to a Gumbel distribution,
we see that (1.1) very much corresponds to the situation where the vertices of An

are covered independently. Indeed, (1.2) means that T (An) ≈ log |An |+G
μ(�o)

and, since

limκ→0 μ(�o) = ∞, we see that the cover time will be concentrated around log |An |
μ(�o)

with extremely small fluctuations of size G
μ(�o)

.
Ourmain result is not surprising for large killing rates (such as when κn is constant).

This is because in such a regime large loops are strongly suppressed, which makes
our model look similar to those studied in [3, 5] and [2], where similar results are
obtained. The main difference in our work is that we let the killing rate κn go to 0 as
the size of the set that needs to be covered diverges.

In this situation, we expect that the behavior may depend on the geometry (to be
more precise, on the sparsity) of the sets An, as well as on how fast the killing rates
κn go to 0. To see this, assume first that we are in the “compact” case where An is (as
close as possible to) a ball of radius

√
n, and consider the following situations.

(i) If κn approaches zero very quickly, then for n large, the diameter of a typical loop
intersecting An is vastly larger than the linear size of An . It is then natural to expect
that the first loop that arrives and touches An will in fact cover An completely, and
the re-scaled cover timewill simply be an exponential randomvariable as n → ∞.
We give further support to this claim in Sect. 7 which includes a longer discussion
along with two simple examples (Examples 7.1 and 7.3) further mentioned below.

(ii) If instead κn = |An|−α for some α < 1, then for n large, the diameter of a
typical loop intersecting An is much smaller than the linear size of An . This will
create enough independence for the re-scaled cover time to converge to a Gumbel
distribution as indeed Theorem 1.1 shows.

(iii) If instead κn → 0 at a rate which is in between the two cases above, then the
diameter of a typical loop may still be larger than An, but it will most likely not
cover the entirety of An . It is not clear to us how the cover time will behave in
this intermediate case.

If An is sparser or stretched (say in the form of a line of length n), then the potential
different phases described above may simply occur at other thresholds. However, if
we allow the separation between points to depend on the killing rate, we can easily
create an example (see Example 7.4) in which the limit of the cover time is always a
Gumbel.

Having argued that one expects a different type of behavior for high and low killing
rates, it is natural to ask where the threshold between those two regimes lies. For
the “compact” case illustrated above, one may guess that the threshold could be when
κn ∼ |An|−1, so that the linear size of An in this case is of the sameorder as the diameter
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of a typical large loop, which essentially corresponds to the correlation length of the
system (the separation distance at which two parts of the system become roughly
independent). We remark that our main result comes very close to this supposed
threshold. It may of course also be the case that the correct threshold corresponds to
an even quicker rate at which κn → 0, but if so, other methods than the ones employed
in this paper will be needed to get close to the threshold.

We note that, if one takes a scaling limit, re-scaling space by 1/
√
An and time by

1/An , κn = |An|−1 corresponds to the near-critical regime and leads to a massive
Brownian loop soup (see [6]). In contrast to this, if κn = |An|−α for some α < 1 one
expects the scaling limit to be trivial (meaning that no macroscopic loops survive),
while if α > 1 one expects to obtain the critical (i.e. scale invariant) Brownian loop
soup (see [6] for further discussion).

We briefly mention Examples 7.1 and 7.3, both considering sets An consisting of
only two points. In Example 7.1 the two points are vastly separated, and the re-scaled
cover time is shown to be the maximum of two independent exponential random
variables. In contrast, Example 7.3 deals with two points that are neighbors, and the
re-scaled cover time is shown to be a single exponential randomvariable. This provides
some additional support for the discussion above concerning the potential different
phases.

The overall strategy of the proof of Theorem 1.1 can be informally described as
follows. At a time just before the expected cover time, i.e. at time (1 − ε)

log |An |
μ(�o)

, the
not yet covered region should consist of relatively few and well separated vertices (see
Proposition 5.7). These separated verticeswill then be covered “almost independently”
as the distances between them are so large that we will not see many loops that are
large enough to hit two such vertices. The main work will go into establishing the
first of these two steps, for which we will need to perform an involved and detailed
second moment estimate. Although the general strategy that we will follow has been
used in [3] and [5], the main part of the work and challenges here are different. This
is intimately connected to the fact that the methods must be fine-tuned in order for
Theorem 1.1 to work as close as possible to the case κ−1

n = |An|.
We end this introduction with an outline of the rest of the paper. In Sect. 2 we

will define and discuss the random walk loop soup. In Sect. 3 we will obtain various
estimates on the Green’s function. However, to avoid breaking the flow of the paper,
many of the calculations used in this sectionwill be deferred to an appendix (Appendix
A). The results of Sect. 3 will then be used in Sect. 4 in order to obtain estimates on
the probabilities involved in our second moment estimate. The latter is done in Sect. 5
and in turn, these results are used in Sect. 6 to prove our main result. Finally, Sect. 7
contains the three examples and the discussion mentioned above.

2 The Loop Soup

The purpose of this section is twofold. Firstly, it will serve to introduce necessary
notation and definitions. Secondly, it will serve as a brief introduction to random walk
loop soups in the particular case that we study in this paper. See also [6–9] for an
overview of the model studied in this paper.
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We consider a discrete time simple symmetric random walk loop soup in Z
2 with

killing rate κ > 0. In this setting, a walker positioned at x at time n will move to a
neighbor y with probability 1/(4+ κ), and it will be killed (or equivalently moved to
a cemetery state) with probability κ/(4+ κ). Next, γr is a loop rooted at the vertex x0
and of length |γr | = N if

γr = ((γr )0, . . . , (γr )N−1) = (x0, x1, . . . , xN−1),

for any sequence of neighboring vertices x0, . . . , xN−1 where xN−1 is a vertex neigh-
boring x0. As usual (see [7] or [8]), we only consider non-trivial loops, i.e. only loops
with N ≥ 2.

We note that while the alternative notation γr = (x0, x1, . . . , xN−1, x0) may seem
more natural (as it “closes the loop”), it would be more cumbersome when we want
to consider time-shifts of the loops. One could of course also define the loop in terms
of the edges traversed, but as we consider the cover times for vertices, this seems less
natural.

Since we are considering loops in Z
2, we must have that |γr | is an even number.

The rooted measure μr of a fixed rooted loop γr is then defined to be

μr (γr : |γr | = 2n, (γr )0 = x0, (γr )1 = x1, . . . , (γr )2n−1 = x2n−1)

= 1

2n

(
1

4 + κ

)2n

,

for n ≥ 1. We see that μr (γr ) is the probability of the corresponding killed random
walk onZ

2 multiplied by the factor 1/(2n). Intuitively, the reason for this modification
is that (most) loops have 2n possible starting points and will therefore contribute 2n
times in the Poissonian construction below.

Proceeding, we find that the total rooted measure of all loops rooted at x0 of length
2n becomes

μr ({γr : |γr | = 2n, (γr )0 = x0}) = L2n

2n

(
1

4 + κ

)2n

,

where L2n denotes the number of loops rooted at o and of length 2n.
In order to define the (unrooted) loop measure we start by defining equivalence

classes of loops by saying that the rooted loops γr , γ
′
r are equivalent if we can obtain

one from the other by a time-shift. More formally, if |γr | = 2n, then γr ∼ γ ′
r if there

exists some 0 ≤ m < 2n such that

((γr )0, . . . , (γr )2n−1) = ((γ ′
r )m, . . . , (γ ′

r )2n−1, (γ
′
r )0, . . . , (γ

′
r )m−1).

We see that the equivalence class of γr contains exactly 2n
mult(γr )

rooted loops. Here,
mult(γr ) is the largest k such that γr can be written as the concatenation of k identical
loops. We will think of an equivalence class as an unrooted loop (i.e. as a sequence of
vertices with a specified order but with no specified first vertex), and we shall denote
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such a loop by γ . We will occasionally write γr ∈ γ to indicate that the rooted loop
γr is a member of the equivalence class γ .

We then define the (unrooted) measureμ on loops by lettingμ(γ ) equal the weight
of the rooted measure for a member of the equivalence class of γ, multiplied by the
number of members in this equivalence class. That is,

μ(γ ) =
∑

γr∈γ

μr (γr ) =
∑

γr∈γ

1

2n

(
1

4 + κ

)2n

= 1

2n

(
1

4 + κ

)2n 2n

mult(γ )
=

(
1

4 + κ

)2n 1

mult(γ )
, (2.1)

where mult(γ ) = mult(γr ) for any (and therefore every) γr ∈ γ . Equation (2.1) thus
defines our measureμ. We choose to work with unrooted loops and the corresponding
measure because this is the canonical choice (see [7, 8]) leading to the Brownian loop
soup in the scaling limit [9].

We now let�2n
x denote the set of all unrooted loops γ such that x ∈ γ and |γ | = 2n.

Then, we define

�x =
∞⋃

n=1

�2n
x .

We observe that

μ(�o) =
∞∑

n=1

∑

γ∈�2n
o

μ(γ ) =
∞∑

n=1

∑

γ∈�2n
o

(
1

4 + κ

)2n 1

mult(γ )
. (2.2)

It will turn out that the quantity μ(�o) will play an essential role in the rest of the
paper. However, while (2.2) gives a concrete and easily understandable expression for
μ(�o) it is not the most useful, and we will instead use (2.5) below.

Returning to our measure μ we now let ω denote a Poisson point process on � ×
[0,∞) with intensity measure μ× dt . Here, � = ⋃

x∈Z2 �x simply denotes the set of
all unrooted loops in Z

2. We shall think of a pair (γ, t) ∈ ω as a loop γ along with a
“time-stamp” t which corresponds to the time at which the loop arrived. We also let

ωt := {γ ∈ � : (γ, s) ∈ ω for some s ≤ t},

so thatωt is the collection of loops that have arrived before time t . It will be convenient
to introduce the notation

Ct = {x ∈ Z
2 : x ∈ γ for some γ ∈ ωt },

so that Ct is the covered region at time t > 0.
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6 Page 8 of 54 E. I. Broman, F. Camia

Remark In this section, and in the rest of the paper, we will use equations such as
(2.3) below from [7] and [8] involving the Green’s function. This requires a comment,
since in [7] and [8], those equations are derived working with finite graphs, while we
consider the infinite square lattice. The use of finite graphs in [7] and [8] is largely a
matter of convenience ( [10]), since it allows us to write explicit formulas in terms of
determinants of finitematrices. Nevertheless, the final formulas in terms of theGreen’s
function are valid whenever the Green’s function is well defined.

To see this why this is the case in the specific example of the massive random walk
loop soup on the square lattice, the reader can think of coupling a massive loop soup
on Z

2 and a loop soup on [−L, L]2 ∩ Z
2, obtained from the first one by removing all

loops that exit [−L, L]2. If one focuses on the restrictions of the two processes to a
finite window [−L0, L0]2∩Z

2, for any fixed L0, and sends L → ∞, the presence of a
positive killing rate implies that the restriction of the second process to [−L0, L0]2∩Z

2

converges to that of the first. On the other hand, for the second process, one can use
the formulas from [7] and [8] for any finite L . Moreover, the expressions in those
formulas converge as L → ∞ because the Green’s function stays finite in that limit,
due to the positive killing rate.

As just remarked, there is a close connection between the loop soup and the Green’s
function for the killed simple symmetric random walk on Z

2. It is known (see (4.18)
on p. 74 of [8] or p. 45 of [7]) that (for the simple symmetric random walk with killing
rate κ)

P(x ∩ Cu = ∅) = P(�γ ∈ ωu : o ∈ γ ) = exp(−uμ(�o))

=
(

1

(4 + κ)g(o, o)

)u

(2.3)

where the first equality follows from the construction of the Poisson process and
translation invariance.

Here, g(x, y) is a Green’s function given by (see [8] p. 9, (1.26))

g(x, y) =
∫ ∞

0

1

4 + κ
P(Xx

t = y)dt

where (Xx
t )t>0 is a continuous time random walk (started at x) which waits an expo-

nential time with parameter 1 and then picks any neighbor with probability 1/(4+ κ)

and is killed with probability κ/(4 + κ). Clearly, if Nt denotes the number of steps
that this random walk has taken by time t, we then have that

g(x, y) =
∫ ∞

0

1

4 + κ
P(Xx

t = y)dt

= 1

4 + κ

∫ ∞

0

∞∑

n=0

P(Xx
t = y|Nt = n)P(Nt = n)dt
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= 1

4 + κ

∞∑

n=0

∫ ∞

0
P(Sx,κn = y)

tn

n!e
−t dt

= 1

4 + κ

∞∑

n=0

P(Sx,κn = y)
∫ ∞

0

tn

n!e
−t dt = 1

4 + κ

∞∑

n=0

P(Sx,κn = y),

where Sx,κn denotes a discrete time random walk started at x and with killing rate κ .
Combining the above we obtain the formula

P(x ∩ Cu = ∅) = (Go,o)−u, (2.4)

where

Gx,y =
∞∑

n=0

P(Sx,κn = y).

We note also that from (2.3) and (2.4) we have that e−μ(�o) = 1
Go,o and so

μ(�o) = logGo,o. (2.5)

As mentioned above, this equation will turn out to be much more useful for us than
(2.2). Observe that ωu ∩ �x ∩ �y is the set of loops in ωu which intersect both x and
y. We have (according to [7], p. 45) that

P(ωu ∩ �x ∩ �y = ∅)

= exp(−uμ(�x ∩ �y)) =
(

1 −
(
g(x, y)

g(o, o)

)2
)u

=
(

1 −
(
Gx,y

Go,o

)2
)u

.(2.6)

We conclude that

P({x, y} ∩ Cu = ∅) = exp(−uμ(�x ∪ �y))

= exp(−2uμ(�x ) + uμ(�x ∩ �y))

= P(x ∩ Cu = ∅)2

P(�γ ∈ ωu : x, y ∈ γ )

=
( 1
Go,o

)2u

(
1 − (Gx,y

Go,o

)2)u

(
1

(Go,o)2 − (Gx,y)2

)u

. (2.7)

Much of the effort of this paper will be focused around obtaining good estimates for
(2.7), and for other similar quantities. For this reason we shall need to study some
aspects of the Green’s function Gx,y in detail, and then use these results to obtain
good estimates of probabilities such as P({x, y} ∩ Cu = ∅). In order to structure this,
we choose to devote Sect. 3 exclusively to results concerning Green’s functions. These
results are then used in Sect. 4 to obtain our estimates for relevant probabilities.

123
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3 Green’s Function Estimates

We will write Sn in place of S
o,o
n and we start by observing that

Go,x =
∞∑

n=0

P(So,κn = x) =
∞∑

n=|x |

(
4

4 + κ

)n

P(Sn = x)

=
∞∑

n=|x |

(
1

4 + κ

)n

Wo,x
n (3.1)

where Wo,x
n denotes the number of walks of length n starting at the origin and ending

at x . In (3.1) and in the rest of the paper, for x = (x1, x2) ∈ Z
2, |x | denotes |x1|+ |x2|.

It is clear from (2.7) that in order to bound P({x, y}∩Cu = ∅) we should strive to find
good estimates for Go,o,Go,x and the difference

Go,o − Go,x =
∞∑

n=0

(
1

4 + κ

)n

Wo,o
n −

∞∑

n=|x |

(
1

4 + κ

)n

Wo,x
n , (3.2)

and this is the main purpose of this section. The main results of the current section
are Propositions 3.3 and 3.7. Proposition 3.3 will give estimates on (3.2) for small and
moderate values of |x |, while Propositions 3.7 will provide estimates onGo,x for large
values of |x |. We mention that Propositions 3.7 is somewhat specialized to work for
large values of κ−1.

To avoid breaking theflowof the paper, the proofs of elementary lemmas concerning
the number of walks Wo,x

n , and estimates on partial sums of (3.1), are deferred to
Appendix A.

We will now focus on Proposition 3.3, which will be proved through two lemmas.
Firstly, Lemma 3.1 will allow us to estimate Go,o − Go,x in terms of partial sums
of Go,o. Then, we will use Lemma 3.2 to quantify these bounds. In order to prove
Proposition 3.7 we will use a consequence (Lemma 3.6) of the local central limit
theorem, along with Lemmas 3.1 and 3.4.

We can now state our first lemma which is proved in Appendix A.

Lemma 3.1 For any x ∈ Z
2 such that |x | is even, we have that

Wo,x
2n ≤ Wo,o

2n

for every n ≥ 0.

Our second lemma (again proved in Appendix A) provides lower bounds on the
partial sums of

Go,o =
∞∑

n=0

(
1

4 + κ

)2n

Wo,o
2n .
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Lemma 3.2 For any κ > 0 and any N ≥ 1 we have that

N−1∑

n=0

(
1

4 + κ

)2n

Wo,o
2n ≥ 1 + log N

π
− Nκ

π
− 1

3π
. (3.3)

Furthermore,

Go,o ≥ log κ−1

π
+ 1 − 4

3π
. (3.4)

We are now ready to state and prove our first result concerning the difference (3.2).
Proposition 3.3 will be “basic” in the sense that the statements are not the strongest
possible, but they are sufficient for our purposes. Later, we will prove Proposition 3.7
which will be more specialized.

Proposition 3.3 For any κ > 0 we have that

lim|x |→∞Go,x = 0. (3.5)

For any |x | ≥ 1 we have that

Go,o − Go,x ≥ 3

4
. (3.6)

If 4 ≤ |x | ≤ 2κ−1, and κ−1 ≥ 2, we have that

Go,o − Go,x ≥ log |x |
π

. (3.7)

Proof The first result, i.e., (3.5), is an immediate consequence of (3.1) since we clearly
have that

Go,x =
∞∑

n=|x |

(
4

4 + κ

)n

P(Sn = x) ≤
∞∑

n=|x |

(
4

4 + κ

)n

→ 0,

as |x | → ∞.
We now turn to (3.7) and we will also assume (momentarily) that |x | is an even

number. We have that

Go,o − Go,x =
∞∑

n=0

(
1

4 + κ

)2n

(Wo,o
2n − Wo,x

2n ) ≥
|x |
2 −1∑

n=0

(
1

4 + κ

)2n

Wo,o
2n , (3.8)

by using Lemma 3.1 and the fact that Wo,x
2n = 0 for n ≤ |x |/2 − 1. We can then use

(3.3) with N = |x |/2 to see that
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6 Page 12 of 54 E. I. Broman, F. Camia

Go,o − Go,x ≥ 1 + log(|x |/2)
π

− κ|x |/2
π

− 1

3π

≥ log |x |
π

+ 1 − log 2

π
− 1

π
− 1

3π
≥ log |x |

π
,

where we used the assumption that |x | ≤ 2κ−1 in the second inequality. This proves
(3.7) in the case when |x | is even.

We will have to take some extra care when |x | is odd. Therefore, assume that
x = (2l + 1, 2k) with 5 ≤ |x | ≤ 2κ−1 and observe that by (3.1),

Go,(2l+1,2k) =
∞∑

n=0

(
1

4 + κ

)n

Wo,(2l+1,2k)
n

=
∞∑

n=0

(
1

4 + κ

)n (
Wo,(2l,2k)

n−1 + Wo,(2l+2,2k)
n−1 + Wo,(2l+1,2k−1)

n−1

+Wo,(2l+1,2k+1)
n−1

)

= 1

4 + κ

(
Go,(2l,2k) + Go,(2l+2,2k) + Go,(2l+1,2k−1) + Go,(2l+1,2k+1)

)
.

We then conclude that

Go,o − Go,(2l+1,2k)

≥ 1

4

(
4Go,o − Go,(2l,2k) − Go,(2l+2,2k) − Go,(2l+1,2k−1) − Go,(2l+1,2k+1)

)

≥ 1

2

(|x |−1)/2−1∑

n=0

(
1

4 + κ

)2n

Wo,o
2n + 1

2

(|x |+1)/2−1∑

n=0

(
1

4 + κ

)2n

Wo,o
2n ,

since at most two of the neighbors of x are closer to o than x . By again using (3.3) we
now see that

Go,o − Go,(2l+1,2k)

≥ 1

2

(

1 + log(|x | − 1) − log 2

π
− (|x | − 1)κ

2π
− 1

3π

)

+1

2

(

1 + log(|x | + 1) − log 2

π
− (|x | + 1)κ

2π
− 1

3π

)

= log(|x |2 − 1)

2π
+ 1 − log 2

π
− |x |κ

2π
− 1

3π
.
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Furthermore, we have that y2 − 1 ≥ 8y2

9 for every y ≥ 3 and therefore,

Go,o − Go,(2l+1,2k) ≥ log 8
9 + log |x |2
2π

+ 1 − log 2

π
− |x |κ

2π
− 1

3π

≥ log |x |
π

+ 1 + log 8 − log 9 − log 4

2π
− 1

π
− 1

3π
≥ log |x |

π
,

(3.9)

where we used that |x | ≤ 2κ−1 in the penultimate inequality. By symmetry, the same
estimate holds whenGo,(2l+1,2k) is replaced byGo,(2l,2k+1), and this establishes (3.7).

For (3.6), consider first the case when x = (1, 0) and observe that, as above,

Go,o − Go,(1,0) ≥ 1

4

(
4Go,o − Go,o − Go,(2,0) − Go,(1,1) − Go,(1,−1)

)
≥ 3

4
,

where we used (3.8) to conclude that Go,o − Go,x ≥ Wo,o
0 = 1 whenever |x | ≥ 2

is even. The statement then follows for all |x | = 1 by symmetry. Next, if x such that
|x | ≥ 2 is even, we again observe that by (3.8) Go,o − Go,x ≥ Wo,o

0 = 1. For odd
values of |x | ≥ 3 we can sum over the neighbors to reach the same conclusion. ��

Our next lemma will give upper bounds on the tails of the sums in Go,o. The first
part (i.e. (3.10)) will be used to prove Proposition 3.7, while the second part (i.e.
(3.11)) will be used to prove Propositions 3.5 and 3.7, and the last part (i.e. (3.12))
will be used in later sections. The proof is again deferred until Appendix A.

Lemma 3.4 For any 0 < κ < 1, and any N ∈ {1, 2, . . .} such that Nκ < 1, we have
that

∞∑

n=N+1

(
1

4 + κ

)2n

Wo,o
2n ≤ log(Nκ)−1

π
+ 1

6πN
+ 4. (3.10)

On the other hand, if Nκ ≥ 1/2, then

∞∑

n=N+1

(
1

4 + κ

)2n

Wo,o
2n ≤ 4e−Nκ/4. (3.11)

Furthermore,

Go,o ≤ log κ−1

π
+ 2. (3.12)

Our next proposition is elementary and presumably far from optimal, but useful nev-
ertheless.
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Proposition 3.5 Assume that |x | ≥ 2κ−1 and that κ−1 ≥ e30. Then we have that

Go,x ≤ Go,o

2
.

Proof Assume first that |x | is even. By (3.1) and Lemma 3.1 we then have that

Go,x =
∞∑

n=|x |

(
1

4 + κ

)n

Wo,x
n =

∞∑

n= |x |
2

(
1

4 + κ

)2n

Wo,x
2n ≤

∞∑

n= |x |
2

(
1

4 + κ

)2n

Wo,o
2n .

Using this, and then applying (3.11) with N = |x |/2−1 so that Nκ = (|x |/2−1)κ =
(κ−1 − 1)κ ≥ 1 − κ ≥ 1/2 (using our assumptions on |x | and κ−1) we have that,

Go,x ≤
∞∑

n= |x |
2

(
1

4 + κ

)2n

Wo,o
2n ≤ 4e−(|x |/2−1)κ/4 ≤ 4e−(κ−1−1)κ/4 ≤ 4

again, since we assume that |x | ≥ 2κ−1 and κ−1 ≥ e30.
If instead |x | is odd, we can sum over the neighbors y ∼ x of x and use Lemma

3.1 to see that

Go,x =
∞∑

n=|x |

(
1

4 + κ

)n

Wo,x
n =

∞∑

n=|x |

(
1

4 + κ

)n ∑

y∼x

Wo,y
n−1

=
∞∑

n=|x |−1

(
1

4 + κ

)n+1 ∑

y∼x

Wo,y
n = 1

4 + κ

∑

y∼x

∞∑

n=|x |−1

(
1

4 + κ

)n

Wo,y
n

= 1

4 + κ

∑

y∼x

∞∑

n= |x |−1
2

(
1

4 + κ

)2n

Wo,y
2n ≤ 1

4 + κ

∑

y∼x

∞∑

n= |x |−1
2

(
1

4 + κ

)2n

Wo,o
2n

= 4

4 + κ

∞∑

n= |x |−1
2

(
1

4 + κ

)2n

Wo,o
2n ≤

∞∑

n= |x |−1
2

(
1

4 + κ

)2n

Wo,o
2n .

Using this and (3.11) we then see that

Go,x ≤
∞∑

n= |x |−1
2

(
1

4 + κ

)2n

Wo,o
2n ≤ 4e−((|x |−1)/2−1)κ/4 ≤ 4e−(κ1−3/2)κ/4 ≤ 4.

Furthermore, by (3.4) we have that

Go,o ≥ log κ−1

π
+ 1 − 4

3π
≥ 10,

since κ−1 ≥ e30 by assumption, and so the statement follows. ��
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For future reference, we note that by (3.12) and (2.5), we have that

μ(�o) = logGo,o ≤ log

(
log κ−1

π
+ 2

)

. (3.13)

Similarly, by using (3.4) in place of (3.12) we have that

μ(�o) = logGo,o ≥ log

(
log κ−1

π
+ 1 − 4

3π

)

. (3.14)

Intuitively, it should be the case that for x to have a “decent chance of being hit”
by a walk of length n starting at the origin o, then n should be of size of order close to
|x |2 or larger. Therefore, we see from (3.1) that the contribution to Go,x from walks
which are considerably shorter than |x |2 should be small. This is made precise in our
next lemma (again the proof is deferred to Appendix A) where the first statement
(3.15) shows that the total contribution to Go,x coming from walks that are shorter
than |x |2/ log |x | is negligible as |x | → ∞. Both statements of this lemma will be
useful in order to obtain a good estimate for Go,x in Proposition 3.7.

Lemma 3.6 For every |x | large enough, we have that
⌊

|x |2
2 log |x |

⌋

∑

n=|x |

(
1

4 + κ

)n

Wo,x
n ≤ 3|x |−1, (3.15)

and that

|x |2∑

n=
⌊ |x |2
2 log |x |

⌋
+1

(
1

4 + κ

)n

Wo,x
n ≤ 2

(

1 − κ

4 + κ

) |x |2
2 log |x |

. (3.16)

Using this result, we can now prove the following proposition.

Proposition 3.7 Assume that e9 ≤ κ−1 ≤ |A|. For large enough |A|, we then have
that

Go,x ≤ |A|− 1
2μ(�o)

for every x ∈ Z
2 such that

|x | ≥ |A| 1
μ(�o) κ−1/2.

Proof Using (3.15) we have that
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Go,x =
∞∑

n=|x |

(
1

4 + κ

)n

Wo,x
n

≤ 3|x |−1 +
|x |2∑

n=
⌊ |x |2
2 log |x |

⌋
+1

(
1

4 + κ

)n

Wo,x
n +

∞∑

n=|x |2+1

(
1

4 + κ

)n

Wo,x
n .

(3.17)

Furthermore, by (3.13) and our assumptions on κ−1, it is easy to verify that μ(�o) ≤
log log |A|. Therefore,

|A| 1
μ(�o) ≥ |A| 1

log log |A| → ∞ as |A| → ∞, (3.18)

and so we note that, by using the lower bound on |x |, and that κ1/2 ≤ e9/2 by
assumption,

3|x |−1 ≤ 3|A|− 1
μ(�o) κ1/2 ≤ |A|− 1

μ(�o) , (3.19)

for |A| large enough. Next we observe that by (3.16)

|x |2∑

n=
⌊ |x |2
2 log |x |

⌋
+1

(
1

4 + κ

)n

Wo,x
n ≤ 2

(

1 − κ

4 + κ

) |x |2
2 log |x |

≤ 2

(

1 − κ

4 + κ

)
|A|

2
μ(�o) κ−1

2 log

(

|A|
1

μ(�o) κ−1/2
)

by again using the lower bound on |x | in the last inequality, together with the fact
that the function x2/(2 log x) is increasing for x large. Furthermore, by using that
log(1 − x) ≤ −x for any 0 < x < 1, we see that

exp

⎛

⎜
⎝

|A| 2
μ(�o) κ−1

2 log
(
|A| 1

μ(�o) κ−1/2
) log

(

1 − κ

4 + κ

)
⎞

⎟
⎠

≤ exp

⎛

⎜
⎝

|A| 2
μ(�o) κ−1

2 log
(
|A| 1

μ(�o) κ−1/2
)
(
−κ

5

)
⎞

⎟
⎠ = exp

⎛

⎜
⎝− |A| 2

μ(�o)

10 log
(
|A| 1

μ(�o) κ−1/2
)

⎞

⎟
⎠ .

(3.20)

Using (3.14) we observe that μ(�o) ≥ 1 and so |A| 1
μ(�o) κ−1/2 ≤ |A|3/2 by our

assumption on κ . By also using (3.18) we can therefore conclude from (3.20) that, for
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|A| large enough,

exp

⎛

⎜
⎝

|A| 2
μ(�o) κ−1

2 log
(
|A| 1

μ(�o) κ−1/2
) log

(

1 − κ

4 + κ

)
⎞

⎟
⎠

≤ exp

⎛

⎝− |A| 2
log log |A|

10 log |A|3/2

⎞

⎠ ≤ exp (−2 log |A|) = 1

|A|2 ,

where the last inequality follows from elementary considerations and is not optimal.
Therefore,

|x |2∑

n=
⌊ |x |2
2 log |x |

⌋
+1

(
1

4 + κ

)n

Wo,x
n ≤ 2

|A|2 ≤ 1

|A| , (3.21)

for |A| large enough.
Next, assume that |x | is even and note that

∞∑

n=|x |2+1

(
1

4 + κ

)n

Wo,x
n =

∞∑

n=|x |2+2

(
1

4 + κ

)n

Wo,x
n

=
∞∑

n=|x |2/2+1

(
1

4 + κ

)2n

Wo,x
2n ≤

∞∑

n=|x |2/2+1

(
1

4 + κ

)2n

Wo,o
2n , (3.22)

where the first equality uses that since |x |2 is even, Wo,x
|x |2+1

= 0, and where the

inequality follows from Lemma 3.1. Next, we want to apply (3.11) with N = |x |2/2
to the right hand side of (3.22). For this we need to verify that Nκ ≥ 1/2, and indeed,

by our assumption on |x |,we here have that Nκ = |x |2κ/2 ≥ (κ−1/2|A| 1
μ(�o) )2κ/2 ≥

|A| 2
μ(�o) /2 ≥ 1/2. Applying (3.11) we can therefore conclude that (by again using our

assumption on |x |),
∞∑

n=|x |2/2+1

(
1

4 + κ

)2n

Wo,o
2n ≤ 4e−|x |2κ/8 ≤ 4e−|A|

2
8μ(�o) ≤ |A|−2, (3.23)

for |A| large enough. Inserting (3.19), (3.21) and (3.23) into (3.17) we get that

Go,x ≤ |A|− 1
μ(�o) + |A|−1 + |A|−2 ≤ |A|− 1

2μ(�o) , (3.24)

for |A| large enough, since μ(�o) ≥ 1 as before.
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Assume now that |x | is odd and observe that |x |2 ≥ |y|2/2 whenever y ∼ x and
|x | ≥ 3. We then sum over all y ∼ x and observe that

∞∑

n=|x |2+1

(
1

4 + κ

)n

Wo,x
n =

∞∑

n=|x |2+1

(
1

4 + κ

)n ∑

y∼x

Wo,y
n−1

≤
∞∑

n= |y|2
2 +1

(
1

4 + κ

)n ∑

y∼x

Wo,y
n−1

=
∞∑

n= |y|2
2

(
1

4 + κ

)n+1 ∑

y∼x

Wo,y
n

=
∞∑

n= |y|2
4

(
1

4 + κ

)2n+1 ∑

y∼x

Wo,y
2n

≤
∞∑

n= |y|2
4

(
1

4 + κ

)2n+1 ∑

y∼x

Wo,o
2n

≤
∞∑

n= |y|2
4

(
1

4 + κ

)2n

Wo,o
2n

≤ 4e−|y|2κ/16 ≤ 4e−|x |2κ/32 ≤ 4e−|A|
2

32μ(�o) ≤ |A|−2,

where we used (3.11) in the fourth inequality and that |y|2 ≥ |x |2/2 in the fifth (which
holds for y ∼ x and |x | ≥ 4). We see that (3.24) holds also for this case, which
concludes the proof. ��

4 Probability Estimates

Recall ourmain goal of obtaining estimates on the cover times of a sequence of growing
sets. In order to get to that point, we need to consider a generic set A, which one can
typically think of as being very large. Consider then

u∗ = log |A|
μ(�o)

, (4.1)

and note that u∗ = u∗(|A|, κ). The relevance of u∗ can be seen by first observing that
by (2.5)

(
1

Go,o

)u∗

= exp(−u∗μ(�o)) = |A|−1, (4.2)
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and then that it follows from (2.4) that the expected number of uncovered vertices at
time u∗ is 1. Informally, with enough independence, this is the intuition for why the
cover time of the generic set A should be around u∗ asmentioned in the discussion after
the statement of Theorem 1.1 in the Introduction. Of course, what constitutes enough
independence is hard to quantify, and is at the heart of the mentioned discussion as
well as that of Sect. 7.

Before we start presenting the results of this section, recall the discussion at the end
of the introduction. In short, we want to consider the covered set at time (1− ε)u∗ =
(1 − ε)

log |A|
μ(�o)

, which by the intuition above should be “just before coverage” when
ε > 0 is very small. We want to show that the set yet to be covered at that time consists
of relatively few well-separated points. This result is obtained in Sect. 5 (in particular
Proposition 5.7), using a second moment argument. In order to perform this, we need
to understand the probability that two points o, x both belong to the uncovered set.
This probability will of course be heavily dependent on the separation of o and x, and
the main purpose of this section is to understand this dependence in detail.

Our first result is the following.

Proposition 4.1 Let κ−1 > e30 and ε ∈ (0, 1). Then, for every x ∈ Z
2 we have that

P({o, x} ∩ C(1−ε)u∗ = ∅) ≤ |A|−(1−ε)

(
9

8

)−(1−ε)u∗

. (4.3)

Furthermore, for any x ∈ Z
2 such that 4 ≤ |x | ≤ 2κ−1 we have that

P({o, x} ∩ C(1−ε)u∗ = ∅) ≤ |A|−(1−ε)

(
log |x |

π

)−(1−ε)u∗

. (4.4)

If instead |x | ≥ 2κ−1, we have that

P({o, x} ∩ C(1−ε)u∗ = ∅) ≤ |A|−(1−ε)

(
log κ−1

2π

)−(1−ε)u∗

. (4.5)

Proof We start with the first statement. Use (2.7) to see that

P({o, x} ∩ C(1−ε)u∗ = ∅) =
(

1

(Go,o)2 − (Go,x )2

)(1−ε)u∗

= (
(Go,o + Go,x )(Go,o − Go,x )

)−(1−ε)u∗
. (4.6)

Then, we have from (3.6) that Go,o − Go,x ≥ 3
4 . There are now two cases. Either

Go,x ≥ Go,o

2 , in which case (Go,o + Go,x )(Go,o − Go,x ) ≥ 9
8G

o,o and so

P({o, x} ∩ C(1−ε)u∗ = ∅) ≤
(

Go,o 9

8

)−(1−ε)u∗

= |A|−(1−ε)

(
9

8

)−(1−ε)u∗

,

123



6 Page 20 of 54 E. I. Broman, F. Camia

by (4.2), or Go,x < Go,o

2 , in which case (Go,o + Go,x )(Go,o − Go,x ) ≥ Go,o Go,o

2 .

Furthermore, by (3.4) we have that Go,o ≥ log κ−1

π
≥ 30

π
≥ 9

4 , by our assumption on
κ, which proves (4.3).

For our second statement, we note that it follows from (4.6) that

P({o, x} ∩ C(1−ε)u∗ = ∅)

≤ (
Go,o)−(1−ε)u∗ (

Go,o − Go,x)−(1−ε)u∗ = |A|−(1−ε)
(
Go,o − Go,x)−(1−ε)u∗

,

(4.7)

so that by (3.7), we conclude that

P({o, x} ∩ C(1−ε)u∗ = ∅) ≤ |A|−(1−ε)

(
log |x |

π

)−(1−ε)u∗

,

which proves (4.4).
For the third statement, observe that by Proposition 3.5 we have thatGo,o−Go,x ≥

Go,o

2 . Then we can use (4.7) to see that

P({o, x} ∩ C(1−ε)u∗ = ∅) ≤ |A|−(1−ε)
(
Go,o − Go,x)−(1−ε)u∗

≤ |A|−(1−ε)

(
Go,o

2

)−(1−ε)u∗

≤ |A|−(1−ε)

(
log κ−1

2π

)−(1−ε)u∗

where we used (3.4) in the last inequality. ��
Proposition 4.1 together with Proposition 3.7 will suffice when proving our desired

secondmoment estimates.However,we shall also face the issue of covering a relatively
small number of well separated (i.e. close to the correlation length κ−1/2) vertices.
What we need is stated in Proposition 4.3 below, but in order to prove this we will first
establish a preliminary result, namely Lemma 4.2.

For any K ⊂ Z
2, let

�K := {γ : γ ∩ K �= ∅} =
⋃

x∈K
�x

and

�K1,K2 := �K1 ∩ �K2 .

Recall thatωu denotes the loop soup with intensity u so thatωu(�K1,K2) is the number
of loops γ ∈ ωu such that γ ∩ K1 �= ∅ and γ ∩ K2 �= ∅.
Lemma 4.2 Let K1, K2 ⊂ Z

2 be disjoint, and let E1, E2 be events that are determined
by ωu restricted to the sets K1 and K2 respectively. We have that

|P(E1 ∩ E2) − P(E1)P(E2)| ≤ 4P(ωu(�K1,K2) �= 0). (4.8)
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Proof Since the events E1, E2 are determined by the restrictions of ωu to the
subsets K1, K2 respectively, they are conditionally independent on the event that
ωu(�K1,K2) = 0. We then see that,

P(E1 ∩ E2)

= P(E1|ωu(�K1,K2) = 0)P(E2|ωu(�K1,K2) = 0)P(ωu(�K1,K2) = 0)

+P(E1 ∩ E2|ωu(�K1,K2) �= 0)P(ωu(�K1,K2) �= 0). (4.9)

Furthermore, writing

P(Ei ) = P(Ei |ωu(�K1,K2) = 0)P(ωu(�K1,K2) = 0)

+P(Ei |ωu(�K1,K2) �= 0)P(ωu(�K1,K2) �= 0)

for i = 1, 2 and using (4.9), we see that

|P(E1 ∩ E2) − P(E1)P(E2)|
≤ |P(E1|ωu(�K1,K2) = 0)P(E2|ωu(�K1,K2) = 0)P(ωu(�K1,K2) = 0)

−P(E1)P(E2)| + P(ωu(�K1,K2) �= 0)

= |P(E1|ωu(�K1,K2) = 0)P(E2|ωu(�K1,K2) = 0)P(ωu(�K1,K2) = 0)

−P(E1)P(E2|ωu(�K1,K2) = 0)P(ωu(�K1,K2) = 0)

+P(E1)P(E2|ωu(�K1,K2) �= 0)P(ωu(�K1,K2) �= 0)| + P(ωu(�K1,K2) �= 0)

≤ |P(E1|ωu(�K1,K2) = 0)P(E2|ωu(�K1,K2) = 0)P(ωu(�K1,K2) = 0)

−P(E1)P(E2|ωu(�K1,K2) = 0)P(ωu(�K1,K2) = 0)| + 2P(ωu(�K1,K2) �= 0))

≤ |P(E1|ωu(�K1,K2) = 0)P(E2|ωu(�K1,K2) = 0)

−P(E1)P(E2|ωu(�K1,K2) = 0)| + 2P(ωu(�K1,K2) �= 0))

= |P(E1|ωu(�K1,K2) = 0)P(E2|ωu(�K1,K2) = 0)

−P(E2|ωu(�K1,K2) = 0)P(E1|ωu(�K1,K2) = 0)P(ωu(�K1,K2) = 0)

+P(E2|ωu(�K1,K2) = 0)P(E1|ωu(�K1,K2) �= 0)P(ωu(�K1,K2) �= 0)|
+2P(ωu(�K1,K2) �= 0)

≤ P(E2|ωu(�K1,K2) = 0)P(E1|ωu(�K1,K2) = 0)(1 − P(ωu(�K1,K2) = 0))

+3P(ωu(�K1,K2) �= 0)

≤ 4P(ωu(�K1,K2) �= 0).

��
We are now ready to state and prove the following proposition mentioned before

Lemma 4.2.

Proposition 4.3 Let K ⊂ Z
2 and let {x1, . . . , x|K |} be an enumeration of the vertices

in K . Assume further that K is such that |xi − x j | ≥ |A| 1
μ(�o) κ−1/2 for every i �= j .
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Then we have that

|P(T (K ) ≤ u) − P(T (o) ≤ u)|K || ≤ 2|K |2u|A|− 1
μ(�o) ,

whenever u ≥ 1, e9 ≤ κ−1 ≤ |A| and |A| is large enough.

Proof We start by noting that by (2.6)

P(ωu ∩ �o ∩ �x = ∅) =
(

1 −
(
Go,x

Go,o

)2
)u

≥ 1 − u

(
Go,x

Go,o

)2

where we used the elementary inequality (1 − x)u ≥ 1 − ux for 0 < x ≤ 1 and
u ≥ 1, together with the fact that Go,x

Go,o ≤ 1, which is an immediate consequence
of (3.6). Note that it follows from (3.14) and the assumption that κ−1 ≥ e9 that

Go,o ≥ log
(
log κ−1

π

)
≥ 1. For u ≥ 1 we can therefore use Proposition 3.7 (which

uses that |x | ≥ |A| 1
μ(�o) κ−1/2 and that |A| is large enough) to see that

P(ωu ∩ �o ∩ �x �= ∅) ≤ u

(
Go,x

Go,o

)2

≤ u
(
Go,x)2 ≤ u|A|− 1

μ(�o) (4.10)

for every x ∈ Z
2 such that |x | ≥ |A| 1

μ(�o) κ−1/2.
We then note that for any 1 ≤ i ≤ |K | and u, κ as in the assumptions, we have that

P
(
ωu ∩ �K\{xi } ∩ �xi �= ∅) ≤

∑

x j∈K\{xi }
P
(
ωu ∩ �x j ∩ �xi �= ∅)

≤ (|K | − 1) max
y∈K\{xi }

P
(
ωu ∩ �xi ∩ �y �= ∅) ≤ (|K | − 1)u|A|− 1

μ(�o) ,

since |y − xi | ≥ |A| 1
μ(�o) κ−1/2 by assumption on K , and where we used (4.10)

in the last inequality. Using this and Lemma 4.2 we see that (with K1 = {x1} and
K2 = K\{x1})

|P(T (K ) ≤ u) − P(T (o) ≤ u)P(T (K \ {x1}) ≤ u)|
= |P(T (K ) ≤ u) − P(T (x1) ≤ u)P(T (K \ {x1}) ≤ u)|
≤ 4P

(
ωu ∩ �K\{xi } ∩ �xi �= ∅) ≤ 4(|K | − 1)u|A|− 1

μ(�o) .

By iterating this we see that

|P(T (K ) ≤ u) − P(T (o) ≤ u)|K ||
≤ 4(|K | − 1)u|A|− 1

μ(�o) + P(T (o) ≤ u)|P(T (K \ {x1}) ≤ u)
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−P(T (o) ≤ u)|K |−1|
≤ 4(|K | − 1)u|A|− 1

μ(�o) + |P(T (K \ {x1}) ≤ u) − P(T (o) ≤ u)|K |−1|
≤ · · · ≤ ((|K | − 1) + (|K | − 2) + · · · + 1)4u|A|− 1

μ(�o)

= 4
(|K | − 1)|K |

2
u|A|− 1

μ(�o) ≤ 2|K |2u|A|− 1
μ(�o) ,

which concludes the proof. ��

5 SecondMoment Estimates

For ε ∈ (0, 1) we define

Aε := {x ∈ A : x ∩ C(1−ε)u∗ = ∅}, (5.1)

so that Aε is the set of vertices of A which are uncovered at time (1− ε)u∗. By using
(5.1), (2.4), (2.5) and the definition of u∗ (i.e. (4.1)) in that order, we see that for
x ∈ A,

P(x ∈ Aε) = P(x ∩ C(1−ε)u∗ = ∅) = (
Go,o)−(1−ε)u∗

= exp
(−(1 − ε)u∗μ(�o)

)

= exp(−(1 − ε) log |A|) = |A|−(1−ε). (5.2)

Therefore,

E[|Aε |] =
∑

x∈A

P(x ∈ Aε) = |A| exp(−(1 − ε)u∗μ(�x )) = |A|ε. (5.3)

In order to reach our end goal of this section, we shall need to establish a number
of inequalities dealing with summing P(x, y ∈ Aε) over various ranges of x, y. We
will have to consider the cases when the distances between x and y are small, inter-
mediate and large separately. In addition, in order to make the argument work for any

exp(e32) < κ−1 < |A|1− 8
log log |A| we will further have to divide the analysis into differ-

ent cases depending on the value of κ−1. In total we establish four lemmas (Lemmas
5.1, 5.2, 5.4 and 5.5) concerning such sums, and we then combine these results into
Proposition 5.6. We note that not all of these results require equally strong condi-
tions on κ−1 and ε. We prefer to write the actual conditions required in the respective
statements of each lemma, as this makes it easier to see where the constraints lie. We
also note that we will actually only use the results below for ε equal to 1

100μ(�o)
and

1
400μ(�o)

. It may therefore seem superfluous to introduce ε at all, but it will make the
text less technical in the end.
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Lemma 5.1 For any e9 ≤ κ−1 ≤ |A| we have that
∑

x,y∈A:1≤|x−y|≤(κ−1)
1

40μ(�o)

P(x, y ∈ Aε) ≤ |A|− 1
20μ(�o) , (5.4)

for every 0 < ε ≤ 1
100μ(�o)

and |A| large enough.
Proof In order to establish (5.4), we use (4.3) and the definition of u∗ in (4.1), together
with translation invariance to see that

∑

x,y∈A:1≤|x−y|≤(κ−1)
1

40μ(�o)

P(x, y ∈ Aε)

≤
∑

x,y∈A:1≤|x−y|≤(κ−1)
1

40μ(�o)

|A|−(1−ε)

(
9

8

)−(1−ε)u∗

=
∑

x,y∈A:1≤|x−y|≤(κ−1)
1

40μ(�o)

|A|−(1−ε) exp

(

−(1 − ε) log

(
9

8

)
log |A|
μ(�o)

)

=
∑

x,y∈A:1≤|x−y|≤(κ−1)
1

40μ(�o)

|A|−(1−ε)|A|−(1−ε) log
(
9
8

)
1

μ(�o)

≤ 4|A|
(
κ−1

) 1
20μ(�o) |A|−(1−ε)|A|−(1−ε) log

(
9
8

)
1

μ(�o)

≤ 4|A|ε
(
κ−1

) 1
20μ(�o) |A|− 1

9μ(�o) , (5.5)

where we used that

(1 − ε) log

(
9

8

)

≥
(

1 − 1

100μ(�o)

)

log

(
9

8

)

>
1

9

sinceμ(�o) ≥ 1 by (3.14) and the fact that κ−1 ≥ e9. Furthermore, by our assumption
on ε we see that

4|A|ε |A|− 1
9μ(�o) ≤ |A|− 1

10μ(�o) .

We conclude that

∑

x,y∈A:1≤|x−y|≤(κ−1)
1

40μ(�o)

P(x, y ∈ Aε)

≤
(
κ−1

) 1
20μ(�o) |A|− 1

10μ(�o) ≤ |A| 1
20μ(�o)

− 1
10μ(�o) = |A|− 1

20μ(�o) ,
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where we used that κ−1 ≤ |A| in the last inequality. This proves (5.4). ��

Remark Note that even if one replaced the upper bound
(
κ−1

) 1
40μ(�o) in the summation

with 1, the bound would not improve much. In fact one would obtain

4|A|ε |A|− 1
9μ(�o) ≤ |A|− 1

10μ(�o) ,

at the end of (5.5), leading only to a slight improvement on the current bound of

|A|− 1
20μ(�o) . In order to optimize the bound, an improvement of (4.3)would be required.

However, even an optimal bound in place of (4.3) may not fundamentally change the
result.

Our next lemma deals with intermediate scales of separation between x and y.

Lemma 5.2 Assume that exp(e32) ≤ κ−1 ≤ |A| and that 0 < ε ≤ 1
100μ(�o)

. Then for
every |A| large enough,

∑

x,y∈A:(κ−1)
1

40μ(�o) ≤|x−y|≤κ−1/4

P(x, y ∈ Aε) ≤ |A|−1/7. (5.6)

Proof In order to prove (5.6), wewill use (4.4), and therefore we observe that |x− y| ≤
κ−1/4 ≤ 2κ−1. Next, we observe that by (3.13) we have that

μ(�o) ≤ log

(
log κ−1

π
+ 2

)

≤ log log κ−1, (5.7)

which holds since we assume that κ−1 ≥ exp(e32). Therefore,

|x − y| ≥
(
κ−1

) 1
40μ(�o) ≥

(
κ−1

) 1
40 log log κ−1 ≥ 4

where the last inequality is easily checked to hold for κ−1 ≥ exp(e32) as in our
assumption. Hence, the requirements for (4.4) are satisfied. We then use (4.1) and
(4.4) to obtain that

∑

x,y∈A:(κ−1)
1

40μ(�o) ≤|x−y|≤κ−1/4

P(x, y ∈ Aε)

≤
∑

x,y∈A:(κ−1)
1

40μ(�o) ≤|x−y|≤κ−1/4

|A|−(1−ε)

(
log |x − y|

π

)−(1−ε)u∗

=
∑

x,y∈A:(κ−1)
1

40μ(�o) ≤|x−y|≤κ−1/4

|A|−(1−ε)|A|−(1−ε)
log log |x−y|1/π

μ(�o)
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≤
∑

x,y∈A:(κ−1)
1

40μ(�o) ≤|x−y|≤κ−1/4

|A|−(1−ε)|A|−(1−ε)
log log(κ−1)

1
40πμ(�o)

μ(�o)

≤ |A|
(
2κ−1/4

)2 |A|−(1−ε)|A|−(1−ε)
log log(κ−1)

1
40πμ(�o)

μ(�o) . (5.8)

By again using (5.7), we see that

log log
(
κ−1

) 1
40πμ(�o)

μ(�o)
= log log κ−1 − log(40π) − log(μ(�o))

μ(�o)

≥ 1 − log(40π) + log(μ(�o))

μ(�o)
≥ 2

3
, (5.9)

where the last inequality follows since, by (3.14) and the fact that κ−1 > exp
(
e32

)
,

we have that

μ(�o) ≥ log

(
log κ−1

π
+ 1 − 4

3π

)

≥ 30.

Using (5.8) and (5.9) we see that

∑

x,y∈A:(κ−1)
1

40μ(�o) ≤|x−y|≤κ−1/4

P(x, y ∈ Aε)

≤ |A|
(
2κ−1/4

)2 |A|−(1−ε)|A|−(1−ε)
log log(κ−1)

1
40πμ(�o)

μ(�o)

≤ 4|A|εκ−1/2|A|−(1−ε) 23 ≤ 4|A|2ε− 2
3 κ−1/2 ≤ 4|A|2ε− 1

6

≤ 4|A| 2
100μ(�o)

− 1
6 ≤ 4|A| 2

3000− 1
6 ≤ |A|− 1

7 ,

where we used that κ−1 ≤ |A| in the fourth inequality, that ε < 1
100μ(�o)

in the fifth
inequality, that μ(�o) ≥ 30 in the penultimate inequality, and finally that |A| is taken
large enough in the last inequality. ��

Our next lemma is an intermediate result which we will use to prove Lemma 5.4.

Lemma 5.3 For any κ−1 such that exp
(
e32

) ≤ κ−1 ≤ |A|1− 8
log log |A| , we have that

κ−1 ≤ |A|1− 6
μ(�o) ,

for every |A| large enough.
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Proof If κ−1 ≥ |A|4/5, we can use (3.14) to see that

μ(�o) ≥ log

(
log κ−1

π

)

≥ log log |A|4/(5π) ≥ 3

4
log log |A|,

whenever |A| is large enough. Therefore we see that

|A|1− 6
μ(�o) ≥ |A|1− 8

log log |A| ≥ κ−1,

as desired.
If exp

(
e32

) ≤ κ−1 ≤ |A|4/5, (3.14) and κ−1 ≥ exp(e32) imply that μ(�o) ≥
log

(
log κ−1

π

)
≥ 30, so that

|A|1− 6
μ(�o) ≥ |A|1− 6

30 = |A|4/5 ≥ κ−1,

which conclude the proof. ��

Lemma 5.4 Assume that exp(e32) ≤ κ−1 ≤ |A|1− 8
log log |A| and that 0 < ε ≤ 1

100μ(�o)
.

Then for every |A| large enough,
∑

x,y∈A:κ−1/4≤|x−y|≤|A|
1

μ(�o) κ−1/2

P(x, y ∈ Aε) ≤ |A|− 1
μ(�o) . (5.10)

Proof In order to prove (5.10), we will again use (4.4), and to that end we observe
that 4 ≤ κ−1/4 < 2κ−1 by our assumption that κ−1 ≥ exp(e32). Then, for any

κ−1/4 ≤ |x − y| ≤ min
(
2κ−1, |A| 1

μ(�o) κ−1/2
)
we have that by (4.4)

P(x, y ∈ Aε) ≤ |A|−(1−ε)

(
log |x − y|

π

)−(1−ε)u∗

≤ |A|−(1−ε)
(
log κ−1/(4π)

)−(1−ε)u∗

= |A|−(1−ε) exp

(

−(1 − ε)
log |A|
μ(�o)

log log κ−1/(4π)

)

= |A|−(1−ε)|A|−(1−ε)
log log κ−1/(4π)

μ(�o) . (5.11)

If instead |x − y| ≥ 2κ−1, we use (4.5) to observe that

P(x, y ∈ Aε) ≤ |A|−(1−ε)

(
log κ−1

2π

)−(1−ε)u∗

≤ |A|−(1−ε)

(
log κ−1

4π

)−(1−ε)u∗
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and so (5.11) holds for every x, y such that κ−1/4 ≤ |x − y| ≤ |A| 1
μ(�o) κ−1/2. It

follows that

∑

x,y∈A:κ−1/4≤|x−y|≤|A|
1

μ(�o) κ−1/2

P(x, y ∈ Aε)

≤
∑

x,y∈A:κ−1/4≤|x−y|≤|A|
1

μ(�o) κ−1/2

|A|−(1−ε)|A|−(1−ε)
log log κ−1/(4π)

μ(�o)

≤ |A|
(
2|A| 1

μ(�o) κ−1/2
)2 |A|−(1−ε)|A|−(1−ε)

log log κ−1/(4π)

μ(�o) . (5.12)

As in the proof of (5.9) we have that

log log κ−1/(4π)

μ(�o)
= log log κ−1 − log(4π)

μ(�o)
≥ 1 − log(4π)

μ(�o)
.

We therefore see that

∑

x,y∈A:κ−1/4≤|x−y|≤|A|
1

μ(�o) κ−1/2

P(x, y ∈ Aε)

≤ |A|
(
2|A| 1

μ(�o) κ−1/2
)2 |A|−(1−ε)|A|−(1−ε)

log log κ−1/(4π)

μ(�o)

≤ 4|A|ε+ 2
μ(�o) κ−1|A|−(1−ε)

(
1− log(4π)

μ(�o)

)

≤ 4|A|2ε+ 2
μ(�o)

+ log(4π)
μ(�o) (κ|A|)−1

≤ 4|A| 2
100μ(�o)

+ 2
μ(�o)

+ log(4π)
μ(�o) (κ|A|)−1 ≤ |A| 5

μ(�o) (κ|A|)−1, (5.13)

where we used that ε < 1
100μ(�o)

in the penultimate inequality. Finally, it follows from

Lemma 5.3 (which uses that κ−1 ≥ exp(e32)) that κ ≥ |A|−1+ 6
μ(�o) and so

(κ|A|)−1|A| 5
μ(�o) ≤ |A|− 6

μ(�o) |A| 5
μ(�o) ≤ |A|− 1

μ(�o) ,

which concludes the proof. ��
Remark Aswe shall see, the above lemma is the only one that requires the upper bound

on κ−1, i.e. that κ−1 ≤ |A|1− 8
log log |A| . The other lemmas of this section only require

that κ−1 ≤ |A| (and in addition, with some extra effort this bound can be relaxed). If
we changed the summation to be over the range κ−1/4 ≤ |x − y| ≤ log |A|κ−1/2 (or

so) instead of κ−1/4 ≤ |x − y| ≤ |A| 1
μ(�o) κ−1/2, then this would improve the bound

somewhat. However, since the factor |A| log(4π)
μ(�o) would still remain in the summation

(5.13), this would only lead to a slight improvement of the upper bound of κ−1.

Our next lemma sums over pairs that are well separated.
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Lemma 5.5 For any e9 ≤ κ−1 ≤ |A| we have that
∑

x,y∈A:|A|
1

μ(�o) κ−1/2≤|x−y|

P(x, y ∈ Aε) ≤ |A|2ε
(
1 + |A|− 1

2μ(�o)

)
, (5.14)

whenever 0 < ε < 1/2 and |A| is large enough.
Proof Using (2.7) we have that

P(x, y ∈ Aε) = P(o, y − x ∈ Aε) =
(
(Go,o)2 − (Go,y−x )2

)−(1−ε)u∗

= (Go,o)−2(1−ε)u∗
(

1 −
(
Go,y−x

Go,o

)2
)−(1−ε)u∗

= |A|−2(1−ε)

(

1 −
(
Go,y−x

Go,o

)2
)−(1−ε)u∗

(5.15)

where we used (4.2) in the last equality. By (3.5), Go,y−x

Go,o → 0 as |A| → ∞ since we

are assuming that |y− x | ≥ |A| 1
μ(�o) κ−1/2. Furthermore, log(1−u) ≥ −2u whenever

0 < u < 1/2 and so

(

1 −
(
Go,y−x

Go,o

)2
)−(1−ε)u∗

= exp

(

−(1 − ε)
log |A|
μ(�o)

log

(

1 −
(
Go,y−x

Go,o

)2
))

≤ exp

(

2(1 − ε)
log |A|
μ(�o)

(
Go,y−x

Go,o

)2
)

. (5.16)

As before, we observe that it follows from (3.14) and the assumption that κ−1 ≥ e9

that both μ(�o) ≥ 1 and Go,o ≥ 1. We can now use Proposition 3.7 (which requires
that κ−1 ≤ |A|) to conclude that

exp

(

2(1 − ε)
log |A|
μ(�o)

(
Go,y−x

Go,o

)2
)

≤ exp
(
2(log |A|) (Go,y−x)2

)

≤ exp
(
2(log |A|)|A|− 1

μ(�o)

)

≤ exp
(
|A|− 2

3μ(�o)

)
≤ 1 + |A|− 1

2μ(�o) (5.17)

where the penultimate inequality follows since

|A| 1
3μ(�o) ≥ |A|

1
3 log log κ−1 ≥ |A| 1

3 log log |A| ≥ 2(log |A|)
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for large enough |A|, and the last inequality follows since ex ≤ 1 + 2x for small
enough x . Combining (5.15), (5.16) and (5.17) we see that

P(x, y ∈ Aε) ≤ |A|−2(1−ε)
(
1 + |A|− 1

2μ(�o)

)
, (5.18)

and so

∑

x,y∈A:|A|
1

μ(�o) κ−1/2≤|x−y|

P(x, y ∈ Aε)

≤
∑

x,y∈A:|A|
1

μ(�o) κ−1/2≤|x−y|

|A|−2(1−ε)
(
1 + |A|− 1

2μ(�o)

)

≤ |A|2|A|−2(1−ε)
(
1 + |A|− 1

2μ(�o)

)
= |A|2ε

(
1 + |A|− 1

2μ(�o)

)
. (5.19)

��
Remark It follows from equations (5.18) and (5.2) that

P(x, y ∈ Aε) ≤ |A|−2(1−ε) + R = P(x ∈ Aε)
2 + R

where R is some small error term. Morally, this means that o, x are “almost” inde-
pendently covered. This is not surprising considering that they are separated by a
distance close to the diameter of a typical loop, i.e. κ−1/2 (recall the discussion after
the statement of Theorem 1.1 in the Introduction).

We collect the above lemmas in the following proposition.

Proposition 5.6 For any exp(e32) ≤ κ−1 ≤ |A|1− 8
log log |A| , 0 < ε ≤ 1

100μ(�o)
and |A|

large enough we have that

∑

x,y∈A:0<|x−y|≤|A|
1

μ(�o) κ−1/2

P(x, y ∈ Aε) ≤ 2|A|− 1
20μ(�o) , (5.20)

and that

∑

x,y∈A:|x−y|>0

P(x, y ∈ Aε) ≤ |A|2ε
(
1 + 3|A|− 1

20μ(�o)

)
. (5.21)

Proof We start by considering (5.20). Since we assume that exp(e32) ≤ κ−1 ≤
|A|1− 8

log log |A| , we can use (5.4), (5.6) and (5.10) to see that

∑

x,y∈A:0<|x−y|≤|A|
1

μ(�o) κ−1/2

P(x, y ∈ Aε)
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≤
∑

x,y∈A:1≤|x−y|≤(κ−1)
1

40μ(�o)

P(x, y ∈ Aε)

+
∑

x,y∈A:(κ−1)
1

40μ(�o) ≤|x−y|≤κ−1/4

P(x, y ∈ Aε)

+
∑

x,y∈A:κ−1/4≤|x−y|≤|A|
1

μ(�o) κ−1/2

P(x, y ∈ Aε)

≤ |A|− 1
20μ(�o) + |A|−1/7 + |A|− 1

μ(�o) ≤ 2|A|− 1
20μ(�o)

for all |A| large enough (since μ(�o) ≥ 30 by our assumption on κ−1 and (3.14)).
The second statement follows by using (5.14) together with (5.20) and observing

that

2|A|− 1
20μ(�o) + |A|2ε

(
1 + |A|− 1

2μ(�o)

)
≤ |A|2ε

(
1 + 3|A|− 1

20μ(�o)

)

for |A| large enough. ��
Weshall nowuse Proposition 5.6 to prove that the uncovered region at time (1−ε)u∗

consists of a small collection of vertices all separated by a large distance. To that end,
define, for 0 < ε < 1,

HA,ε :=
{
K ⊂ A : ||K | − |A|ε | ≤ |A|3ε/4,
and |x − y| ≥ κ−1/2|A| 1

μ(�o) for every distinct x, y ∈ K
}
. (5.22)

Proposition 5.7 For any exp(e32) < κ−1 ≤ |A|1− 8
log log |A| and 0 < ε ≤ 1

100μ(�o)
we

have that

P(Aε /∈ HA,ε) ≤ 3|A|−ε/2

for every |A| large enough.
Proof We use (5.20) of Proposition 5.6 to see that

P

(
∃x, y ∈ Aε : 0 < |x − y| < κ−1/2|A| 1

μ(�o)

)

≤
∑

x,y∈A:0<|x−y|≤κ−1/2|A|
1

μ(�o)

P(x, y ∈ Aε) ≤ 2|A|− 1
20μ(�o) (5.23)

for every |A| large enough. Next we observe that by (5.21) of Proposition 5.6 we have
that

E[|Aε |2] =
∑

x,y∈A

P(x, y ∈ Aε)
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=
∑

x∈A

P(x ∈ Aε) +
∑

x,y∈A:|x−y|>0

P(x, y ∈ Aε)

≤ |A|ε + |A|2ε
(
1 + 3|A|− 1

20μ(�o)

)
.

Recall (5.3) which states that E[|Aε |] = |A|ε, so that E[(|Aε |− |A|ε)2] = E[|Aε |2]−
|A|2ε . Therefore, by Chebyshev’s inequality,

P

(
||Aε | − |A|ε | ≥ |A|3ε/4

)
≤ E[|Aε |2] − |A|2ε

|A|3ε/2

≤
|A|ε + |A|2ε

(
1 + 3|A|− 1

20μ(�o)

)
− |A|2ε

|A|3ε/2
= |A|−ε/2 + 3|A|ε/2|A|− 1

20μ(�o)

≤ |A|−ε/2 + 3|A|ε/2|A|−5ε ≤ 2|A|−ε/2

for |A| large enough by using our assumption that ε ≤ 1
100μ(�o)

in the penultimate
inequality. Thus,

P

(
||Aε | − |A|ε | ≥ |A|3ε/4

)
≤ 2|A|−ε/2. (5.24)

Combining (5.23) and (5.24) we then find that

P(Aε /∈ HA,ε) ≤ 2|A|− 1
20μ(�o) + 2|A|−ε/2 ≤ 3|A|−ε/2,

where we again used the upper bound on ε. ��

6 Proof of Main Theorem

We will now put all the pieces together.

Proof of Theorem 1.1 In this proof we will fix ε to be equal to 1
100μ(�o)

, but we shall
apply Proposition 5.7 to ε and ε/4. Our aim is to establish that

sup
z∈R

|P(μ(�o)T (A) − log |A| ≤ z) − exp(−e−z)| ≤ 12|A|−ε/8 = 12|A|− 1
800μ(�o)

(6.1)

for every large enough finite set A ⊂ Z
2.

We will divide the proof of (6.1) into three cases, depending on the value of z.
Case 1: Here, z ≤ − ε

4 log |A|. Then

P(μ(�o)T (A) − log |A| ≤ z) = P

(

T (A) ≤ u∗ + z

μ(�o)

)
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≤ P

(
T (A) ≤

(
u∗ − ε

4
u∗))

= P

({
x ∈ A : T (x) >

(
1 − ε

4

)
u∗} = ∅

)

= P(Aε/4 = ∅),

by the definition of Aε in (5.1). Moreover, P(Aε/4 = ∅) ≤ P(Aε/4 /∈ HA,ε/4), since
HA,ε/4 does not contain the empty set. It then follows from Proposition 5.7 that for
|A| large enough,

P(μ(�o)T (A) − log |A| ≤ z) ≤ P(Aε/4 /∈ HA,ε/4) ≤ 3|A|−ε/8.

Next, using that z ≤ − ε
4 log |A| it follows that e−z ≥ |A|ε/4, and so, for all |A| large

enough,

exp(−e−z) ≤ exp
(
−|A|ε/4

)
≤ |A|−ε/4.

Therefore,

|P(μ(�o)T (A) − log |A| ≤ z) − exp(−e−z)|
≤ P(μ(�o)T (A) − log |A| ≤ z) + exp(−e−z) ≤ 3|A|−ε/8 + |A|−ε/4

≤ 4|A|−ε/8, (6.2)

and so for all |A| large enough, (6.1) is satisfied in this case.
Case 2: Assume now instead that z ≥ log |A|. Then,

P(μ(�o)T (A) − log |A| > z) = P

(

T (A) > u∗ + z

μ(�o)

)

≤ P(T (A) > 2u∗) = P

(
⋃

x∈A

{
T (x) > 2u∗}

)

≤ |A|P(T (o) > 2u∗)=|A| exp(−2u∗μ(�o))=|A|−1.

Then, since z ≥ log |A|, we have that e−z ≤ e− log |A| = |A|−1 and so

exp(−e−z) ≥ exp(−|A|−1) ≥ 1 − |A|−1,

since ex ≥ 1 + x for every x . This, and the above equation gives

|P(μ(�o)T (A) − log |A| ≤ z) − exp(−e−z)|
= |1 − P(μ(�o)T (A) − log |A| > z) − exp(−e−z)|
≤ P(μ(�o)(T (A) − log |A|) > z) + |1 − exp(−e−z)| ≤ |A|−1 + |A|−1, (6.3)

and so (6.1) holds also in this case.
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Case 3: Assume that z ∈ (− ε
4 log |A|, log |A|) and start by observing that

|P(μ(�o)T (A) − log |A| ≤ z) − exp(−e−z)|
≤ |P(μ(�o)T (A) − log |A| ≤ z) − P(μ(�o)T (A) − log |A| ≤ z, Aε ∈ HA,ε)|

+| exp(−e−z)P(Aε ∈ HA,ε) − exp(−e−z)|
+|P(μ(�o)T (A) − log |A| ≤ z, Aε ∈ HA,ε) − exp(−e−z)P(Aε ∈ HA,ε)|.

(6.4)

We will now consider the three terms on the right hand side separately.
For the first term we note that

|P(μ(�o)T (A) − log |A| ≤ z) − P(μ(�o)T (A) − log |A| ≤ z, Aε ∈ HA,ε)|
= P(μ(�o)T (A) − log |A| ≤ z, Aε /∈ HA,ε) ≤ P(Aε /∈ HA,ε) ≤ 3|A|−ε/2

(6.5)

by Proposition 5.7. Similarly, for the second term of the right hand side of (6.4), we
observe that

| exp(−e−z)P(Aε ∈ HA,ε) − exp(−e−z)| = exp(−e−z)P(Aε /∈ HA,ε) ≤ 3|A|−ε/2

(6.6)

again by Proposition 5.7.
Consider now the third and final term of (6.4). Let K ∈ HA,ε . We will show below

that

|P(μ(�o)T (A) − log |A| ≤ z|Aε = K ) − exp(−e−z)| ≤ 5|A|−ε/4. (6.7)

After multiplication by P(Aε = K ) and summation over all K ∈ HA,ε we then obtain

|P(μ(�o)T (A) − log |A| ≤ z, Aε ∈ HA,ε) − exp(−e−z)P(Aε ∈ HA,ε)| ≤ 5|A|−ε/4.

(6.8)

Summing the contributions from (6.5), (6.6) and (6.8) we conclude from (6.4) that

|P(μ(�o)(T (A) − log |A|) ≤ z) − exp(−e−z)| ≤ 6|A|−ε/2 + 5|A|−ε/4 ≤ 12|A|−ε/4

(6.9)

for all z ∈ (−ε log |A|, log |A|) and |A| large enough. It may be worth recalling that,
from the start of the proof, we assume that ε = 1

100μ(�o)
. This then proves (6.1) and

completes the proof, modulo (6.7).
In order to prove (6.7) we consider the conditional probability

P(μ(�o)T (A) − log |A| ≤ z|Aε = K ) =
P

(
T (A) ≤ u∗ + z

μ(�o)
, Aε = K

)

P(Aε = K )
.
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Let ωu1,u2 denote the loops arriving between times u1 and u2 where u1 < u2. On the
event that Aε = K it must be that K is covered by the loops arriving between times
(1− ε)u∗ and u∗ + z

μ(�o)
for the event T (A) ≤ u∗ + z

μ(�o)
to also occur. Therefore,

P

(

T (A) ≤ u∗ + z

μ(�o)
, Aε = K

)

= P

(

(1 − ε)u∗ ≤ T (K ) ≤ u∗ + z

μ(�o)
, Aε = K

)

= P

⎛

⎜
⎝K ⊂

⋃

γ∈ω(1−ε)u∗,u∗+ z
μ(�o)

γ , Aε = K

⎞

⎟
⎠

= P

⎛

⎜
⎝K ⊂

⋃

γ∈ω(1−ε)u∗,u∗+ z
μ(�o)

γ

⎞

⎟
⎠P(Aε = K )

= P

(

T (K ) ≤ εu∗ + z

μ(�o)

)

P(Aε = K ),

where the last equality follows from the Poissonian nature of the loop process, which
implies that the distribution of the loops that fall between times (1−ε)u∗ and u∗+ z

μ(�o)

is simply a Poissonian loop processwith intensity u∗+ z
μ(�o)

−(1−ε)u∗ = εu∗+ z
μ(�o)

.
We therefore see that

P

(

T (A) ≤ u∗ + z

μ(�o)

∣
∣
∣Aε = K

)

= P

(

T (K ) ≤ εu∗ + z

μ(�o)

)

, (6.10)

and using (6.10) we have

∣
∣
∣
∣P

(

T (A) ≤ u∗ + z

μ(�o)

∣
∣
∣Aε = K

)

− exp(−e−z)

∣
∣
∣
∣

=
∣
∣
∣
∣P

(

T (K ) ≤ εu∗ + z

μ(�o)

)

− exp(−e−z)

∣
∣
∣
∣

≤
∣
∣
∣
∣
∣
P

(

T (K ) ≤ εu∗ + z

μ(�o)

)

− P

(

T (o) ≤ εu∗ + z

μ(�o)

)|K |∣∣
∣
∣
∣

+
∣
∣
∣
∣
∣
P

(

T (o) ≤ εu∗ + z

μ(�o)

)|K |
− exp(−e−z)

∣
∣
∣
∣
∣
. (6.11)

We will deal with the two terms on the right hand side of (6.11) separately.
For the first term, we will use Proposition 4.3. Let therefore x, y ∈ K be distinct.

By the definition of HA,ε in (5.22), we have that, if x, y ∈ K and K ∈ HA,ε , then

|x − y| ≥ κ−1/2|A| 1
μ(�o) . Furthermore, if K ∈ HA,ε , then ||K | − |A|ε | ≤ |A|3ε/4, and
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so we have that

|A|ε − |A|3ε/4 ≤ |K | ≤ |A|ε + |A|3ε/4 (6.12)

and in particular, (6.12) implies that |K | ≤ 2|A|ε .
We nowwant to apply Proposition 4.3, and to that endwe note that by (3.13)we have

thatμ(�o) ≤ log log κ−1 ≤ log log |A|. Therefore, for every z ∈ (− ε
4 log |A|, log |A|)

we have that

εu∗ + z

μ(�o)
≥ ε

log |A|
μ(�o)

− ε
log |A|
4μ(�o)

= ε
3 log |A|
4μ(�o)

= 3

400

log |A|
(μ(�o))2

≥ 3

400

log |A|
(log log |A|)2 ≥ 1,

whenever |A| is large enough. We can therefore use Proposition 4.3 together with
|K | ≤ 2|A|ε (which follows from (6.12)), ε ≤ 1, and the fact that z

μ(�o)
≤ log |A|

μ(�o)
= u∗

(this is the only place where we use the upper bound on z), to see that

∣
∣
∣
∣
∣
P

(

T (K ) ≤ εu∗ + z

μ(�o)

)

− P

(

T (o) ≤ εu∗ + z

μ(�o)

)|K |∣∣
∣
∣
∣

≤ 2|K |2
(

εu∗ + z

μ(�o)

)

|A|− 1
μ(�o) ≤ 16|A|2εu∗|A|− 1

μ(�o) .

Next, observe that for any κ−1 ≤ |A| we can use (5.7) to see that

|A| 1
2μ(�o) ≥ |A|

1
2 log log κ−1 ≥ |A| 1

2 log log |A| ≥ log |A|,

for any |A| large enough. Therefore, we see that since μ(�o) ≥ 1,

16|A|2εu∗|A|− 1
μ(�o) = 16|A|2ε log |A|

μ(�o)
|A|− 1

μ(�o) ≤ 16|A|2ε |A|− 1
2μ(�o) ≤ |A|−ε,

for |A| large enough by using the assumption on ε. We therefore conclude that

∣
∣
∣
∣
∣
P

(

T (K ) ≤ εu∗ + z

μ(�o)

)

− P

(

T (o) ≤ εu∗ + z

μ(�o)

)|K |∣∣
∣
∣
∣
≤ |A|−ε (6.13)

for |A| large enough.
We can now turn to the second term of the right hand side of (6.11). As before,

exp (−εu∗) = exp
(
−ε

log |A|
μ(�o)

)
and so we have that
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P

(

T (o) ≤ εu∗ + z

μ(�o)

)|K |

=
(

1 − exp

((

−εu∗ − z

μ(�o)

)

μ(�o)

))|K |
=

(

1 − e−z

|A|ε
)|K |

.

Then by (6.12),

(

1 − e−z

|A|ε
)|A|ε+|A|3ε/4

≤ P

(

T (o) ≤ εu∗ + z

μ(�o)

)|K |

≤
(

1 − e−z

|A|ε
)|A|ε−|A|3ε/4

. (6.14)

Therefore, using that log(1 − x) ≥ −x − x2 for every 0 < x < 1/2, we get that

exp(−e−z) − P

(

T (o) ≤ εu∗ + z

μ(�o)

)|K |

≤ exp(−e−z) −
(

1 − e−z

|A|ε
)|A|ε+|A|3ε/4

= exp(−e−z) − exp

((
|A|ε + |A|3ε/4

)
log

(

1 − e−z

|A|ε
))

≤ exp(−e−z) − exp

((
|A|ε + |A|3ε/4

)(

− e−z

|A|ε − e−2z

|A|2ε
))

= exp(−e−z) − exp
(
−e−z − e−z |A|−ε/4 − e−2z |A|−ε

(
1 + |A|−ε/4

))

= exp(−e−z)
(
1 − exp

(
−e−z |A|−ε/4 − e−2z |A|−ε

(
1 + |A|−ε/4

)))

≤ exp(−e−z)
(
e−z |A|−ε/4 + e−2z |A|−ε

(
1 + |A|−ε/4

))
, (6.15)

where we used that 1 − e−x ≤ x for x > 0 in the last inequality. It is easy to check
that ye−y ≤ 1 for every y, and so

exp(−e−z)e−z |A|−ε/4 ≤ |A|−ε/4. (6.16)

Furthermore,

exp(−e−z)
(
e−2z |A|−ε

(
1 + |A|−ε/4

))
≤ 2e−2z |A|−ε ≤ 2|A|−ε/2, (6.17)

since z ≥ − ε
4 log |A|. Combining (6.15), (6.16) and (6.17) we obtain

exp(−e−z) − P

(

T (o) ≤ εu∗ + z

μ(�o)

)|K |
≤ |A|−ε/4 + 2|A|−ε/2 ≤ 3|A|−ε/4. (6.18)
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Similarly, we have that log(1 − x) ≤ −x for every 0 < x < 1/2 and therefore

exp(−e−z) − P

(

T (o) ≤ εu∗ + z

μ(�o)

)|K |

≥ exp(−e−z) −
(

1 − e−z

|A|ε
)|A|ε(1−|A|−ε/4

)

= exp(−e−z) − exp

(

|A|ε
(
1 − |A|−ε/4

)
log

(

1 − e−z

|A|ε
))

≥ exp(−e−z) − exp

(

|A|ε
(
1 − |A|−ε/4

)(

− e−z

|A|ε
))

= exp(−e−z) − exp
(
−e−z

(
1 − |A|−ε/4

))
. (6.19)

It is easy to check that the function f (x) = x − x1−β where 0 < β ≤ 1, is minimized
when x = (1 − β)1/β so that

f (x) ≥ (1 − β)1/β − (1 − β)1/β−1 = − β

1 − β
(1 − β)1/β ≥ −β,

since (1 − β)1/β ≤ 1 − β for 0 < β < 1. We therefore obtain from (6.19) that

exp(−e−z) − P

(

T (o) ≤ εu∗ + z

μ(�o)

)|K |

≥ exp(−e−z) − exp
(
−e−z

(
1 − |A|−ε/4

))
≥ −|A|−ε/4. (6.20)

Combining (6.18) and (6.20) we see that

∣
∣
∣
∣
∣
P

(

T (o) ≤ εu∗ + z

μ(�o)

)|K |
− exp(−e−z)

∣
∣
∣
∣
∣
≤ 3|A|−ε/4 + |A|−ε/4 = 4|A|−ε/4.

Using this and (6.13) in (6.11) proves that

∣
∣
∣
∣P

(

T (A) ≤ u∗ + z

μ(�o)

∣
∣
∣Aε = K

)

− exp(−e−z)

∣
∣
∣
∣ ≤ |A|−ε + 4|A|−ε/4 ≤ 5|A|−ε/4

proving (6.7). This completes the proof. ��

7 Examples and Discussion

Our main result, Theorem 1.1, is geared to work in the worst case possible, i.e., when
all the points of A are grouped close together, and in order to prove Theorem 1.1 we
had to assume an upper bound on κ−1

n , i.e., that κ−1
n ≤ |An|1−8/(log log |An |). As alluded
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to in the introduction, we believe that the distribution of the cover time may undergo
a sort of phase transition as κ−1

n increases even further. In order to indicate this, we
will here consider two simple examples. In the first one we consider the cover time of
two widely separated points, while in the second we consider two almost neighboring
points. However, we start by observing that for A = {x}, we clearly have from (2.4)
that

P(μ(�o)T (x) ≤ u) = 1 − P(T (x) ≥ u/μ(�o)) = 1 − (
Go,o)− u

μ(�o) = 1 − e−u,

(7.1)

where we used (2.5) in the last equality. Therefore, μ(�o)T (x) is always an exponen-
tially distributed random variable with parameter one.

Example 7.1 Consider a set with two points, say A = {o, x} and assume for conve-
nience that |x | is even. Then, we start by noticing that

P(T (o, x) ≤ u) = P(T (o) ≤ u, T (x) ≤ u)

= 2P(T (o) ≤ u) − P(T (o) ≤ u ∪ T (x) ≤ u)

= 2 − 2P(T (o) ≥ u) − (1 − P(T (o) ≥ u, T (x) ≥ u))

= 1 − 2P(T (o) ≥ u) + P(T (o) ≥ u, T (x) ≥ u)

= 1 − 2P(x ∩ Cu = ∅) + P({o, x} ∩ Cu = ∅). (7.2)

Using this, and (2.7) we then see that

P(T (o, x) ≤ u) − P(T (o) ≤ u)2

= 1 − 2P(x ∩ Cu = ∅) + P({o, x} ∩ Cu = ∅) − (1 − P(x ∩ Cu = ∅))2

= P({o, x} ∩ Cu = ∅) − P(x ∩ Cu = ∅)2

= P(x ∩ Cu = ∅)2

((

1 −
(
Go,x

Go,o

)2
)−u

− 1

)

. (7.3)

Next, we trivially have that

(

1 −
(
Go,x

Go,o

)2
)−u

≥ 1,

and so it follows from (7.3) that

P(T (o, x) ≤ u) − P(T (o) ≤ u)2 ≥ 0. (7.4)

In order to bound the expression in (7.3) from above, we assume now that |x | ≥ 10κ−2.
We then have that (since |x | is assumed to be even)

Go,x =
∞∑

n=|x |

(
1

4 + κ

)n

Wo,x
n =

∞∑

n=|x |/2

(
1

4 + κ

)2n

Wo,x
2n
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≤
∞∑

n=|x |/2

(
1

4 + κ

)2n

Wo,o
2n ≤ 4e−(|x |/2−1)κ/4 ≤ 4e−(10κ−2/2−1)κ/4 ≤ 4e−κ−1

.

wherewe used Lemma 3.1 in the first inequality and (3.11) in the second. Furthermore,
as in the proof of (5.16), we see that

(

1 −
(
Go,x

Go,o

)2
)−u

≤
⎛

⎝1 −
(
4e−κ−1

Go,o

)2
⎞

⎠

−u

= exp

⎛

⎝−u log

⎛

⎝1 −
(
4e−κ−1

Go,o

)2
⎞

⎠

⎞

⎠

≤ exp

⎛

⎝2u

(
4e−κ−1

Go,o

)2
⎞

⎠ ≤ exp
(
32ue−2κ−1

)
≤ 1 + 32ue−2κ−1

(7.5)

for κ−1 large enough and since Go,o ≥ 1. Combining (7.3) with (7.5) we conclude
that

P(T (o, x) ≤ u) − P(T (o) ≤ u)2 ≤ P(x ∩ Cu = ∅)232ue−2κ−1
. (7.6)

By fixing u and letting κ−1 → ∞, we therefore see that (by using (3.14) and (2.3))

|P(μ(�o)T (o, x) ≤ u) − P(μ(�o)T (o) ≤ u)2|

≤ P(x ∩ C u
μ(�o)

= ∅)232
u

μ(�o)
e−2κ−1 = 32ue−2u e

−2κ−1

μ(�o)

≤ 32ue−2u e−2κ−1

log log κ−1 − logπ
→ 0, (7.7)

as κ−1 → ∞. Thus, the re-scaled cover time T (o, x) behaves asymptotically like
the cover time of two independent exponentially distributed random variables with
parameter one. In light of the great distance between o and x, this is not surprising.

In our next example, we will consider two points which are close. We will need the
following lemma, whose proof is similar to that of Lemma 3.2 and is deferred to the
appendix.

Lemma 7.2 We have that for any κ > 0,

Go,(1,1) ≥ log κ−1

π
− 1. (7.8)

Example 7.3 This example is similar to Example 2 in that A = {o, x}. However, we
will here assume that x = (1, 1) so that the two points are close to each other. We start
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by noting that by (3.12) and Lemma 7.2 we have that

Go,o − Go,x ≤ log κ−1

π
+ 2 −

(
log κ−1

π
− 1

)

= 3.

We therefore have that

(

1 −
(
Go,x

Go,o

)2
)−u

≥
(

1 −
(
Go,o − 3

Go,o

)2
)−u

=
(

1 −
(

1 − 3

Go,o

)2
)−u

=
(

6

Go,o
− 9

(Go,o)2

)−u

≥
(

6

Go,o

)−u

= 6−u

P(x ∩ Cu = ∅)
,

and therefore (as in (7.5))

P({o, x} ∩ Cu = ∅) = P(x ∩ Cu �= ∅)2

(

1 −
(
Go,x

Go,o

)2
)−u

≥ P(x ∩ Cu = ∅)2
6−u

P(x ∩ Cu = ∅)
= P(x ∩ Cu = ∅)6−u . (7.9)

Noting that trivially,

P(T (o) ≤ u/μ(�o)) − P(T (o, x) ≤ u/μ(�o)) ≥ 0,

we can therefore see that by using (7.9) and (7.2)

|P(μ(�o)T (o, x) ≤ u) − P(μ(�o)T (o) ≤ u)|
= P(T (o) ≤ u/μ(�o)) − P(T (o, x) ≤ u/μ(�o))

= 1 − P(x ∩ Cu/μ(�o) = ∅) − (1 − 2P(x ∩ Cu/μ(�o) = ∅)

+P({o, x} ∩ Cu/μ(�o) = ∅))

= P(x ∩ Cu/μ(�o) = ∅) − P({o, x} ∩ Cu/μ(�o) = ∅)

≤ P(x ∩ Cu/μ(�o) = ∅)
(
1 − 6−u/μ(�o)

)

= e−u
(
1 − 6−u/μ(�o)

)
→ 0,

when κ−1 → ∞, since it follows from (3.4) that in this case μ(�o) → ∞. We
conclude that the re-scaled cover time of T (o, x) behaves like a single exponentially
distributed random variable with parameter one.

Recall the discussion in the Introduction concerning a possible phase transition
depending on the rate at which κn → 0. The purpose of our next example is to
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demonstrate the (perhaps unsurprising) fact that if we allow the separation distance
between the vertices in An to depend on the killing rate κn, such a phase transition will
be absent. Allowing the separation distance to depend on κn may feel like “cheating”,
but serves to demonstrate how the geometry of the sets An plays an important role.
In order not to make this example, and indeed the entire paper, forbiddingly long, we
shall be somewhat informal. Otherwise we would have to repeat large parts of Sects. 5
and 6.

Example 7.4 Consider a (large) set A and a killing rate κ such that κ−1 ≥ log |A|,

|x − y| ≥ 10κ−2 (7.10)

for every x, y ∈ A, and such that |x − y| is even for every x, y ∈ A. We then have
that

Go,x−y =
∞∑

n=|x |

(
1

4 + κ

)n

Wo,x−y
n =

∞∑

n=|x |/2

(
1

4 + κ

)2n

Wo,x−y
2n

≤
∞∑

n=|x |/2

(
1

4 + κ

)2n

Wo,o
2n ≤ 4e−(|x |/2−1)κ/4 ≤ 4e−(10κ−2/2−1)κ/4 ≤ 4e−κ−1

,

where we used Lemma 3.1 in the first inequality and (3.11) in the second. Then, as in
Lemma 5.5 we have that (using that μ(�o) ≥ 1 whenever κ−1 is larger than e9 due to
(3.14)),

P(x, y ∈ Aε) ≤ |A|−2(1−ε) exp

(

2(1 − ε)
log |A|
μ(�o)

(
Go,y−x

Go,o

)2
)

≤ |A|−2(1−ε) exp
(
2 log |A|

(
16e−2κ−1

))

≤ |A|−2(1−ε) exp
(
e−κ−1

)
≤ |A|−2(1−ε)

(
1 + e−κ−1

)
,

where we used the assumption that κ−1 ≥ log |A| in the penultimate inequality.
Next, we consider sequences (An, κn)n≥1 of sets and killing times with the property of
(A, κ) above, and such that |An| → ∞. We can then use the machinery of Sects. 5 and
6 and we note that we only need to consider the case where x, y is “well separated”
(i.e Lemma 5.5). Applying this machinery demonstrates that that no upper bound for
κ−1
n is needed when proving a statement analogous to Theorem 1.1 in this case. This
demonstrates that if we always have a large separation between the points in An, such
as described by (7.10), we will obtain a Gumbel distribution as the limit even when
κn → 0 exceedingly fast.

We end this section with an informal discussion (this is the discussion mentioned
in the Introduction) concerning the case where κ−1

n >> |An| and An is a (very large)
ball or square. In this case, we believe that it may be that for sufficiently large values

123



Cover Times of the Massive Random Walk Loop Soup Page 43 of 54 6

of κ−1
n , the set An will asymptotically be covered by the first loop which touches the

set An . The reason for this belief can be explained in two steps as follows.
Step 1: After an exponentially distributed time with rate μ(�An ) where

�An :=
⋃

x∈An

�x ,

the first loop that touches An appears. With very high probability this loop should be
of length order at least log κ−1

n . The reason why we expect this, is that when analyzing
μ(�o) starting from (2.2), one can show that the contribution from loops of length
n smaller than log κ−1

n will be small compared to the total sum, which is of order
log log κ−1

n (due to (3.13) and (3.14)).
Step 2:Considering a typical loop of size order at least log κ−1

n fromStep 1 touching
An , then the probability that it will in fact cover the entirety of An is again very high
(note that therefore, μ(�An ) ≈ μ(�o)) whenever κ−1

n is large enough. The reason
why we believe this to be true, stems from considering the corresponding problem for
a simple symmetric random walk Sn started at the origin of Z

2. Let Tn be the first time
when the walk has visited every site x ∈ Bn, where Bn is the ball of radius n in Z

2.
According to [11] (see also the references within for background on this challenging
problem), we have that

lim
n→∞ P(log Tn ≤ t(log n)2) = e−4/t . (7.11)

From this, one can then conclude that “with high probability”, the ball Bn will be
covered at time, say, exponential of γ (n)(log n)2 where γ (n) is chosen appropriately.
By letting

Tr(n) := {x ∈ Z
2 : Sk = x for some k = 0, 1, . . . , n}

denote the trace of the random walk until time n and observing that

P(log Tn ≤ t(log n)2) = P(Tn ≤ nt(log n)) = P(Bn ⊂ Tr(nt log n)),

it follows from (7.11) that

lim
n→∞ P(Bn ⊂ Tr(nt log n)) = e−4/t . (7.12)

In turn, one can hope that a similar statement can be inferred for a loop rooted at
the origin by simply conditioning the random walk to be back at the origin at some
suitable time. For instance, from a statement along the lines of (ignoring that nt log n

may not be an integer)

lim
n→∞ P(Bn ⊂ Tr(nt log n)|Snt log n = o) = e−4/t , (7.13)

one can infer that with very high probability, the ball Bn will be covered by a loop
of length nγ (n) log n where again γ (n) is chosen appropriately. However, there does
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not seem to be an easy way to infer (7.13) directly from (7.12) without knowing an
explicit rate of convergence in (7.12). The issue is of course that we are conditioning
on an event which is known to have probability of order

(
nt log n

)−1
. In order to turn the

intuition above into a proof, one would instead have to prove (7.13) by other means.
One may attempt to adapt the techniques of [11], but even if this were possible, that
may very well be an entire project in itself and outside the scope of this paper.
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Appendix A

In this appendix we shall provide full proofs of all lemmas of Sect. 3.

Proof of Lemma 3.1 Let Sxn denote a simple symmetric random walk started at x and
with killing rate κ = 0. Since P(So2n = x) = 4−2nWo,x

2n , it suffices to show that
P(So2n = x) ≤ P(So2n = o) for every x such that |x | is even. To that end, we observe
that

P(So2n = x) =
∑

y

P(Son = y)P(Syn = x) =
∑

y

P(Son = y)P(Sxn = y)

≤
√∑

y

P(Son = y)P(Son = y)
√∑

y

P(Sxn = y)P(Sxn = y)

=
√∑

y

P(Son = y)P(Syn = o)
√∑

y

P(Sxn = y)P(Syn = x)

=
√

P(So2n = o)
√

P(Sx2n = x) = P(So2n = o),

where we used the reversibility of the random walk in the second and third equality. ��
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For the proof of Lemma 3.2 (and for future reference), we state a standard Stirling
estimate (see [12]):

√
2πnn+1/2e−n ≤ n! ≤ √

2πnn+1/2e−ne1/(12n) for every n ≥ 1. (A.1)

Proof of Lemma 3.2 Recall that L2n denotes the number of loops rooted at o of length

2n, and note thatWo,o
2n = L2n . It is well known (see for instance [13]) that L2n = (2n

n

)2

and furthermore, by (A.1), we have that

(
2n

n

)

= (2n)!
n!n! ≥

√
2π(2n)2n+1/2e−2n

2πn2n+1e−2ne1/(6n)

= 1√
2π

22n+1/2n2n+1/2

n2n+1 e−1/(6n) = 1√
π

4n√
n
e−1/(6n),

and so

L2n =
(
2n

n

)2

≥ 42n

πn
e−1/(3n).

We can therefore conclude that

N−1∑

n=0

(
1

4 + κ

)2n

Wo,o
2n = 1 +

N−1∑

n=1

(
1

4 + κ

)2n

L2n ≥ 1 +
N−1∑

n=1

(
4

4 + κ

)2n e−1/(3n)

πn
.

(A.2)

Next, let f (x) = e−1/(3x)

x and observe that

f ′(x) = 1

x

e−1/(3x)

3x2
− 1

x2
e−1/(3x) = e−1/(3x)

x2

(
1

3x
− 1

)

,

and so f (x) is decreasing for all x ≥ 1. Therefore,

N−1∑

n=1

e−1/(3n)

πn

(
4

4 + κ

)2n

≥
N−1∑

n=1

∫ n+1

n

e−1/(3x)

πx

(
1

1 + κ/4

)2x

dx

=
∫ N

1

e−1/(3x)

πx

(
1

1 + κ/4

)2x

dx =
∫ Nκ

κ

e−κ/(3y)

π y

(
1

1 + κ/4

)2y/κ

dy. (A.3)

Then, observe that for any x > 0 we have that log(1 + x) ≤ 2x . Therefore, by also
using that e−x ≥ 1 − x for every x > 0, we see that

(
1

1 + κ/4

)2y/κ

= exp

(

−2y

κ
log(1 + κ/4)

)
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≥ 1 − 2y

κ
log(1 + κ/4) ≥ 1 − 2y

κ

κ

2
= 1 − y,

and so, by again using that e−x ≥ 1 − x for every x > 0,

∫ Nκ

κ

e−κ/(3y)

π y

(
1

1 + κ/4

)2y/κ

dy ≥
∫ Nκ

κ

1

π y
(1 − y)

(

1 − κ

3y

)

dy

=
∫ Nκ

κ

3 + κ

3π y
− 1

π
− κ

3π y2
dy ≥

∫ Nκ

κ

1

π y
− 1

π
− κ

3π y2
dy

= log N

π
− (N − 1)κ

π
+

[
κ

3π y

]Nκ

κ

≥ log N

π
− Nκ

π
+ κ

3π

(
1

Nκ
− 1

κ

)

≥ log N

π
− Nκ

π
− 1

3π
. (A.4)

Combining (A.2), (A.3) and (A.4) gives us that

N−1∑

n=0

(
1

4 + κ

)2n

Wo,o
2n ≥ 1 + log N

π
− Nκ

π
− 1

3π
,

establishing (3.3).
In order to obtain (3.4), we first observe that by a minor modification of (A.4)

(changing the second to last inequality into an equality), we have that

N−1∑

n=0

(
1

4 + κ

)2n

Wo,o
2n ≥ 1 + log N

π
− (N − 1)κ

π
− 1

3π
.

Thus,

Go,o =
∞∑

n=0

(
1

4 + κ

)2n

Wo,o
2n ≥

�κ−1�∑

n=0

(
1

4 + κ

)2n

Wo,o
2n

≥ 1 + log(�κ−1� + 1)

π
− �κ−1�κ

π
− 1

3π
≥ 1 + log κ−1

π
− 1

π
− 1

3π
,

as desired. ��
We now turn to Lemma 3.4.

Proof of Lemma 3.4 We will again use the Stirling estimate (A.1) to see that

(
2n

n

)

= (2n)!
n!n! ≤

√
2π(2n)2n+1/2e−2ne1/(24n)

2πn2n+1e−2n

= 1√
2π

22n+1/2n2n+1/2

n2n+1 e1/(24n) = 1√
π

4n√
n
e1/(24n),
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and so

Wo,o
2n = L2n =

(
2n

n

)2

≤ 42n

πn
e1/(12n).

We obtain that for N ≥ 1,

∞∑

n=N+1

(
1

4 + κ

)2n

Wo,o
2n ≤

∞∑

n=N+1

(
1

4 + κ

)2n 42n

πn
e1/(12n).

Clearly
(

4
4+κ

)2x
e1/(12x)

x is a decreasing function of x > 0, and so we get that

∞∑

n=N+1

(
4

4 + κ

)2n e1/(12n)

πn
≤

∫ ∞

N

(
4

4 + κ

)2x e1/(12x)

πx
dx

≤
∫ ∞

N

(
4

4 + κ

)2x ( 1

πx
+ 1

6πx2

)

dx=
∫ ∞

Nκ

(
4

4 + κ

)2y/κ ( 1

π y
+ κ

6π y2

)

dy,

where we used that ey ≤ 1+ 2y for 0 < y < 1 in the second inequality. Furthermore,
we have that log(1 + z) ≥ z/2 for every 0 < z < 1, and therefore

(
1

1 + κ/4

)2y/κ

= exp

(

−2y

κ
log(1 + κ/4)

)

≤ exp

(

−2y

κ

κ

8

)

= e−y/4,

and so we obtain

∞∑

n=N+1

(
1

4 + κ

)2n

Wo,o
2n ≤

∫ ∞

Nκ

e−y/4
(

1

π y
+ κ

6π y2

)

dy. (A.5)

Therefore, if N < κ−1 we see that

∞∑

n=N+1

(
1

4 + κ

)2n

Wo,o
2n ≤

∫ ∞

Nκ

e−y/4
(

1

π y
+ κ

6π y2

)

dy

=
∫ 1

Nκ

e−y/4
(

1

π y
+ κ

6π y2

)

dy +
∫ ∞

1
e−y/4

(
1

π y
+ κ

6π y2

)

dy

≤
∫ 1

Nκ

(
1

π y
+ κ

6π y2

)

dy +
∫ ∞

1
e−y/4dy

= log(Nκ)−1

π
+ κ

6π

[−1

y

]1

Nκ

+
∫ ∞

1
e−y/4dy ≤ log(Nκ)−1

π
+ 1

6πN
+ 4,
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proving (3.10). If Nκ ≥ 1/2, we see from (A.5) that

∞∑

n=N+1

(
1

4 + κ

)2n

Wo,o
2n ≤

∫ ∞

Nκ

e−y/4
(
2

π
+ 4κ

6π

)

dy ≤
∫ ∞

Nκ

e−y/4dy = 4e−Nκ/4,

proving (3.11).
For (3.12), observe that as above,

Go,o = 1 +
(

1

4 + κ

)2

Wo,o
2 +

∞∑

n=2

(
1

4 + κ

)2n

Wo,o
2n

≤ 1 + 1

4
+

∫ ∞

κ

e−y/4
(

1

π y
+ κ

6π y2

)

dy. (A.6)

Next, we have that

∫ 1

κ

e−y/4
(

1

π y
+ κ

6π y2

)

dy ≤
∫ 1

κ

(
1

π y
+ κ

6π y2

)

dy

=
[
log y

π
− κ

6π y

]1

κ

= − log κ

π
− κ

6π
+ 1

6π
≤ log κ−1

π
+ 1

6π
,

and furthermore, using that κ < 1,

∫ ∞

1
e−y/4

(
1

π y
+ κ

6π y2

)

dy ≤ 7

6π

∫ ∞

1
e−y/4 1

y
dy ≤ 2

π
,

where the last inequality can be verified through elementary but lengthy calculations.
We can then conclude from (A.6) that

Go,o ≤ 1 + 1

4
+ log κ−1

π
+ 1

6π
+ 2

π
≤ log κ−1

π
+ 2,

as desired. ��
Before we can prove Lemma 3.6, which is the last lemma of Sect. 3, we need to

present a version of the so-called local central limit theorem for random walks. We do
not claim that the following result is original, although we could not find an explicit
reference. However, as we shall see, the result is an easy consequence of Theorem
2.1.1 equation (2.4) of [14].

Lemma A.1 There exists a constant C < ∞, such that for any n ≥ 1 and any x ∈ Z
2

such that |x | ≥ 3, we have that

P(Sn = x) ≤ 2

n
e− |x |2

2n + C

n|x |2 . (A.7)
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Proof Let (San )n≥1 be an aperiodic symmetric random walk on Z
2. It follows from

equation (2.4) of [14] that for any n ≥ 1 and y ∈ Z
2,

P(San = y) ≤ 1

2πn
√
det �

e−J ∗(y)2

2n + C

n‖y‖2 , (A.8)

where ‖ · ‖ denotes the L2-norm. Furthermore, using the notation in [14] (see in
particular p. 4), � is the covariance matrix of the walk and J ∗(y)2 = ‖y · �−1y‖.

For a simple symmetric random walk on Z
2, it is easy to see that � = 1

2 I where I
is the 2 × 2 identity matrix, and that J ∗(y)2 = 2‖y‖2 as stated on p. 4 of [14]. It is
worth noting that in [14] the notation | · | is used for the L2-norm (corresponding to
Euclidean distance) while, throughout this paper, we use this notation for the L1-norm
(corresponding to graph distance), as defined at the beginning of Sect. 3. The simple
symmetric randomwalk is however not aperiodic but rather bipartite (in the sense of p.
3 of [14]) since P(Sn = o) = 0 whenever n is odd. Therefore, we cannot apply (A.8)
directly. Instead, we shall first consider even times n, and turn the simple symmetric
walk at those times into an aperiodic random walk on Z

2 as we now explain. This
auxiliary walk (Sen)n≥1 is defined by letting

Sen = T (S2n) where T (x) = T ((x1, x2)) = 1

2
(x1 + x2, x2 − x1), (A.9)

for every n ≥ 0 and x ∈ Z
2. This corresponds to considering the walk at even times

on the even sublattice of Z
2 rotated clockwise by 45 degrees and shrunk by a factor of√

2, which gives a new walk on Z
2. For example, S2 can take any of the nine values in

{o,±2e1,±2e2,±e1 ± e2} (where e1 = (1, 0) and e2 = (0, 1)), which correspond to
the vertices at distance 0 or distance 2 from o. The mapping T then maps these nine
vertices to the set {o,±e1,±e2,±e1 ± e2} so that for instance

T (2e1) = T ((2, 0)) = 1

2
(2,−2) = (1,−1)

and

T (−e1 − e2) = T ((−1,−1)) = 1

2
(−2, 0) = (−1, 0).

Since the steps of the random walk (Sn)n≥1 are independent, we see that (Sen)n≥1 is
an aperiodic random walk on Z

2 (since P(Sn = o) > 0 for every n ≥ 0). Therefore,
we can apply (A.8) to this walk.

Fix x ∈ Z
2 such that |x | is even. Clearly, P(Sn = x) = 0 if n is odd and so trivially

(A.7) holds in this case. If instead n is even, we have from (A.8) that

P(Sn = x) = P(Sen/2 = T (x)) ≤ 1

2πn
√
det �

e−J ∗(T (x))2
2n + C ′

n‖T (x)‖2 , (A.10)
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for someC ′ < ∞. In order to continue,weneed todetermine�=E[(Se1)i (Se1) j ]1≤i, j≤2
where (Se1)1, (S

e
1)2 denote thefirst and the second coordinate of S

e
1, respectively. There-

fore, note that

P(Se1 = o) = P(S2 = o) = 1

4
, P(Se1 = ±e1) = P(Se1 = ±e2) = P(S2 = (1, 1)) = 1

8

and that all four remaining probabilities equal 1/16. We then see that

E[(Se1)1(Se1)1] = P((Se1)1 = ±1) = 1 − P(Se1 = o) − P(Se1 = ±e2) = 1

2
,

and by symmetry that E[(Se1)2(Se1)2] = 1
2 . Furthermore,

E[(Se1)1(Se1)2] = 1P(Se1 = ±(1, 1)) − 1P(±(1,−1)) = 0,

and so

� = 1

2

[
1 0
0 1

]

so that �−1 = 2

[
1 0
0 1

]

.

Therefore

√
det � =

√
1

4
= 1

2
and J ∗(y)2 = ‖y · �−1y‖2 = 4‖y‖2.

Furthermore, using the definition of the map T from (A.9) we see that

‖T (x)‖2 = ‖1
2
(x1 + x2, x2 − x1)‖2 = 1

4
((x1 + x2)

2 + (x2 − x1)
2) = ‖x‖2

2
.

Inserting this into (A.10) we obtain

P(Sn = x) ≤ 1

πn
e− 4‖T (x)‖2

2n + C ′

n‖T (x)‖2 = 1

πn
e− ‖x‖2

n + 2C ′

n‖x‖2 .

Lastly, we have that ‖x‖2 ≤ |x |2 ≤ 2‖x‖2 and so we conclude that

P(Sn = x) ≤ 1

πn
e− |x |2

2n + 4C ′

n|x |2 .

Thus, (A.7) holds in this case for any C ≥ 4C ′.
Assume now instead that |x | is odd so that P(Sn = x) = 0 whenever n is even or

|x | > n. For n ≥ |x |, we can now sum over the neighbors y ∼ x and use the last
inequality for each y to obtain, for |x | ≥ 3,

P(Sn = x) = 1

4

∑

y∼x

P(Sn−1 = y)
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≤ 1

4

∑

y∼x

(
1

π(n − 1)
e− |y|2

2(n−1) + 4C ′

(n − 1)|y|2
)

≤ 1

π(n − 1)
e− (|x |−1)2

2(n−1)

+ 4C ′

(n − 1)(|x | − 1)2

≤ 2

πn
e− (|x |−1)2

2n + C

n|x |2 ≤ 2

πn
e− |x |2

2n e
|x |
n + C

n|x |2 ≤ 2

n
e− |x |2

2n + C

n|x |2

for some C < ∞, where, in the last inequality, we have used that n ≥ |x |. This
establishes (A.7) also for |x | odd. ��
Proof of Lemma 3.6 According to Lemma A.1 we have that for |x | ≥ 3,

P(Sn = x) ≤ 2

n
e− |x |2

2n + C

n|x |2 .

Observe next that the function ye−cy is decreasing in y for y > 1/c from which it

follows that 2
n e

− |x |2
2n is increasing in n for n <

|x |2
2 . To prove (3.15), we then observe

that

⌊
|x |2

2 log |x |
⌋

∑

n=|x |

(
1

4 + κ

)n

Wo,x
n =

⌊
|x |2

2 log |x |
⌋

∑

n=|x |

(
4

4 + κ

)n

4−nWo,x
n ≤

⌊
|x |2

2 log |x |
⌋

∑

n=|x |
P(Sn = x)

≤

⌊
|x |2

2 log |x |
⌋

∑

n=|x |

(
2

n
e− |x |2

2n + C

n|x |2
)

≤

⌊
|x |2

2 log |x |
⌋

∑

n=|x |

(
4 log |x |

|x |2 e
− |x |22 log |x |

2|x |2 + C

|x |3
)

≤ |x |2
2 log |x |

(
4 log |x |

|x |2 e− log |x | + C

|x |3
)

= 2|x |−1 + C
1

2|x | log |x | ≤ 3|x |−1,

where the last inequality follows by taking |x | sufficiently large.
In order to prove (3.16), observe first that

|x |2∑

n=
⌊ |x |2
2 log |x |

⌋
+1

(
1

4 + κ

)n

Wo,x
n =

|x |2∑

n=
⌊ |x |2
2 log |x |

⌋
+1

(
4

4 + κ

)n

4−nWo,x
n

=
|x |2∑

n=
⌊ |x |2
2 log |x |

⌋
+1

(

1 − κ

4 + κ

)n

P(Sn = x)

≤
(

1 − κ

4 + κ

) |x |2
2 log |x | |x |2∑

n=
⌊ |x |2
2 log |x |

⌋
+1

P(Sn = x). (A.11)
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Next, by using Lemma A.1 and the fact that ye−cy is maximized when y = 1/c
whenever c > 0, we see that

|x |2∑

n=
⌊ |x |2
2 log |x |

⌋
+1

P(Sn = x) ≤
|x |2∑

n=
⌊ |x |2
2 log |x |

⌋
+1

(
2

n
e− |x |2

2n + C

n|x |2
)

≤
|x |2∑

n=
⌊ |x |2
2 log |x |

⌋
+1

(
4

|x |2 e
−1 + 2C log |x |

|x |4
)

≤ |x |2
(

4

|x |2 e
−1 + 2C log |x |

|x |4
)

≤ 2,

(A.12)

by taking |x | large enough. Combining (A.11) and (A.12) proves (3.16). ��
The last proof of this Appendix is that of Lemma 7.2.

Proof of Lemma 7.2 We will be somewhat informal at the start since the proof relies
on a well known technique for two-dimensional random walks. Indeed, using the
so-called ”45-degree-trick” it is easy to show that

Wo,(1,1)
2n =

(
2n

n

)(
2n

n + 1

)

.

Informally, this can be explained as follows. Start by considering a clockwise rotation
of Z

2 by 45 degrees. After re-orientation, the original walk can now be viewed as two
independent one-dimensional random walks of lengths 2n on this rotated lattice. In
order for the original random walk to end up at (1, 1), the re-oriented walk must be
such that the vertical walker returns to the origin at time 2n, while the horizontal must
take n + 1 steps to the right and n − 1 to the left, in order to end up at the position two
steps to the right of the origin at time 2n.

Continuing, we have that
( 2n
n+1

) = n
n+1

(2n
n

)
so that

Wo,(1,1)
2n = n

n + 1

(
2n

n

)2

.

As in the proof of Lemma 3.2 we then see that

Wo,(1,1)
2n ≥ n

n + 1

42n

πn
e−1/(3n) = 42n

π(n + 1)
e−1/(3n).

We can therefore conclude that

N−1∑

n=1

(
1

4 + κ

)2n

Wo,(1,1)
2n ≥

N−1∑

n=1

(
4

4 + κ

)2n e−1/(3n)

π(n + 1)
. (A.13)
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Next, let f (x) = e−1/(3x)

x+1 and observe that

f ′(x) = 1

x + 1

e−1/(3x)

3x2
− 1

(x + 1)2
e−1/(3x) = e−1/(3x)

x + 1

(
1

3x2
− 1

x + 1

)

,

and so f (x) is decreasing for all x ≥ 1. Therefore,

N−1∑

n=1

e−1/(3n)

π(n + 1)

(
4

4 + κ

)2n

≥
N−1∑

n=1

∫ n+1

n

e−1/(3x)

π(x + 1)

(
1

1 + κ/4

)2x

dx

=
∫ N

1

e−1/(3x)

π(x + 1)

(
1

1 + κ/4

)2x

dx =
∫ Nκ

κ

e−κ/(3y)

π(y/κ + 1)

(
1

1 + κ/4

)2y/κ 1

κ
dy

=
∫ Nκ

κ

e−κ/(3y)

π(y + κ)

(
1

1 + κ/4

)2y/κ

dy. (A.14)

Then, observe that for any x > 0wehave that log(1+x) ≤ 2x . Thus, since e−x ≥ 1−x
for every x > 0,

(
1

1 + κ/4

)2y/κ

= exp

(

−2y

κ
log(1 + κ/4)

)

≥ e−y ≥ 1 − y

and so,

∫ Nκ

κ

e−κ/(3y)

π(y + κ)

(
1

1 + κ/4

)2y/κ

dy ≥
∫ Nκ

κ

1

π(y + κ)
(1 − y)

(

1 − κ

3y

)

dy

= 1

π

∫ Nκ

κ

3 + κ

3(y + κ)
− y

y + κ
− κ

3y(y + κ)
dy ≥ 1

π

∫ Nκ

κ

1

y + κ
− 1 − κ

3y2
dy

= 1

π

[
log(y + κ)

]Nκ

κ
− (N − 1)κ

π
+

[
κ

3π y

]Nκ

κ

= log(N + 1)

π
− (N − 1)κ

π
+ 1

3πN
− 1

3π

≥ log N

π
− (N − 1)κ

π
− 1

3π
. (A.15)

Combining (A.13), (A.14) and (A.15) gives us that

N−1∑

n=1

(
1

4 + κ

)2n

Wo,(1,1)
2n ≥ log N

π
− (N − 1)κ

π
− 1

3π
.

We therefore conclude that

Go,(1,1) =
∞∑

n=1

(
1

4 + κ

)2n

Wo,(1,1)
2n ≥

�κ−1�∑

n=0

(
1

4 + κ

)2n

Wo,(1,1)
2n
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≥ log(�κ−1� + 1)

π
− �κ−1�κ

π
− 1

3π

≥ log κ−1

π
− 1

π
− 1

3π
≥ log κ−1

π
− 1

as desired. ��
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