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Abstract

We present eclipse maps of the two-dimensional thermal emission from the dayside of the hot-Jupiter WASP-43b,
derived from an observation of a phase curve with the JWST MIRI/LRS instrument. The observed eclipse shapes
deviate significantly from those expected for a planet emitting uniformly over its surface. We fit a map to this
deviation, constructed from spherical harmonics up to order =ℓ 2max , alongside the planetary, orbital, stellar, and
systematic parameters. This yields a map with a meridionally averaged eastward hot-spot shift of (7.75± 0.36)°,
with no significant degeneracy between the map and the additional parameters. We show the latitudinal and
longitudinal contributions of the dayside emission structure to the eclipse shape, finding a latitudinal signal of
∼200 ppm and a longitudinal signal of ∼250 ppm. To investigate the sensitivity of the map to the method, we fix
the parameters not used for mapping and derive an “eigenmap” fitted with an optimized number of orthogonal
phase curves, which yields a similar map to the =ℓ 2max map. We also fit a map up to =ℓ 3max , which shows a
smaller hot-spot shift, with a larger uncertainty. These maps are similar to those produced by atmospheric
simulations. We conclude that there is a significant mapping signal which constrains the spherical harmonic
components of our model up to =ℓ 2max . Alternative mapping models may derive different structures with
smaller-scale features; we suggest that further observations of WASP-43b and other planets will drive the
development of more robust methods and more accurate maps.
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Unified Astronomy Thesaurus concepts: Exoplanet atmospheres (487); Exoplanet atmospheric structure (2310);
Exoplanet atmospheric dynamics (2307); Extrasolar gaseous giant planets (509); Hot Jupiters (753)

Supporting material: figure set

1. Introduction

Eclipse mapping measures the two-dimensional (2D) spatial
features of an object when it is eclipsed by another object. The
eclipsed object is covered along one axis during the eclipse
ingress, and is revealed along another axis during the eclipse
egress. Combining the information from these two axes reveals
2D information about the surface of the eclipsed object (de Wit
et al. 2012; Majeau et al. 2012).

Eclipse maps have been derived for objects like Pluto during
its eclipse by Charon (Stern 1992), or the white dwarf BD
+16°516B during its eclipse in a binary system (Warner et al.
1971). Williams et al. (2006) proposed applying this technique
to exoplanets, and Rauscher et al. (2007) showed that the
JWST would have sufficient precision to accurately map
exoplanets. Eclipse mapping is currently the only method by
which 2D information can be measured for exoplanets, as out-
of-eclipse “phase curves” provide low-resolution information
as a function of longitude only. 2D spatial information is
crucial for understanding atmospheric circulation (Lewis &
Hammond 2022), chemical composition (Taylor et al. 2020;
Yang et al. 2023), and cloud structure (Parmentier et al. 2016).

de Wit et al. (2012) and Majeau et al. (2012) derived eclipse
maps of the hot-Jupiter HD 189733b using observations with
the Spitzer Space Telescope. Their analyses were restricted to
fitting large-scale shapes with a high degree of uncertainty due
to the limited precision of the measurements, uncertainty in and
degeneracy with orbital parameters, and the dependence of the
result on the mapping model. de Wit et al. (2012) described the
uncertainty in the mapping signal due to the impact parameter,
stellar density, eccentricity, and argument of periastron in
particular. Rauscher et al. (2018), Mansfield et al. (2020), and
Challener & Rauscher (2022) developed more advanced
methods to fit eclipse maps of 2D and three-dimensional
(3D) structure, based on fitting orthogonal phase curves rather
than orthogonal surface maps, and applied these methods to the
previous observations of HD 189733b. Coulombe et al. (2023)
presented the first eclipse map measured with JWST, deriving a
map of thermal emission from observations of the hot-Jupiter
WASP-18b from 0.85 to 2.85 μm with the NIRISS/SOSS
instrument. They found no longitudinal shift in the hot spot,
sharp gradients in brightness toward the terminator, and no
clear measurement of latitudinal structure.

This study presents eclipse maps derived from broadband JWST
MIRI/LRS (Kendrew et al. 2015) observations from 5 to 10.5 μm
of a full phase curve of the hot-Jupiter WASP-43b containing two
eclipses and one transit (Bell et al. 2024). WASP-43b is a “hot-
Jupiter” exoplanet with strong thermal emission from its permanent
dayside, and a short, tidally locked orbit around a K7 main-
sequence star that exhibits low variability (Hellier et al. 2011;
Scandariato et al. 2022). These properties make it ideal for precise
time-series observations of thermal emission. Bell et al. (2024)
analyzed this MIRI/LRS phase curve, finding a large difference in
dayside and nightside brightness temperatures and evidence for
water absorption. We fit its inclination to be -

+82.11 0.052
0.050, and the

ratio of its semimajor axis to stellar radius to be -
+4.859 0.012

0.013, which
corresponds to an impact parameter of -

+0.667 0.006
0.006. This means

that the edge of the star crosses the planet at an angle of ∼42° (the
“stellar edge angle” defined in Boone et al. 2024). The longitudinal
and latitudinal features of the dayside therefore affect the eclipse
mapping signal almost equally, with a small bias toward the
longitudinal features. This geometry makes WASP-43b especially
well suited for eclipse mapping.
We fit an eclipse map to this data set, finding the clearest

eclipse mapping signal to date and separating the latitudinal
and longitudinal parts of this signal for the first time.
In Section 2, we describe the methods used to fit the eclipse

maps. Section 3 then shows the different maps we fit to the
observations, and compares their structures and statistical
evidence. These maps are then compared to numerical
simulations in Section 4. In Section 5, we conclude that the
spherical harmonic components up to =ℓ 2max are constrained
well, but that further observations are needed to precisely
constrain higher-order mapping structures.

2. Data and Methods

A full orbit of WASP-43b with the JWST MIRI/LRS slitless
mode was observed as part of the JWST-ERS-1366 program,
performing target acquisition with the F1500W filter and using the
SLITLESSPRISM subarray for the science observation. The
science observation lasted 26.5 hr, consisting of 9316 integrations
lasting 10.34 s each. The two eclipses show a downwards
systematic trend with time, similar to that identified in other
MIRI/LRS time-series observations (Bouwman et al. 2023). We
discard the data beyond 10.5 μm due to the “shadowed region
effect” described in Bell et al. (2024) alongside a more detailed
analysis of the data acquisition.
Figure 1 shows the raw MIRI/LRS data set (black points) in

units of planetary flux divided by stellar flux. We use the
Eureka! pipeline (Bell et al. 2022) to reduce the observed data,
starting from the Eureka! Stage 4 output from the “Eureka v1”
reduction in Bell et al. (2024). We trim the initial 780 integrations
(not plotted) where instrumental systematic effects are the
strongest. The only subsequent methodological difference to Bell
et al. (2024) is the method used to model the planetary emission in
the phase curve—we used a starrymodel of a planet with a 2D
emission map over its surface (Luger et al. 2019), instead of a
Fourier series model of the phase curve.

2.1. Astrophysical Model

We fit a 2D map of thermal emission to this phase curve
simultaneously with the orbital, planetary, stellar, and instrumental
systematic parameters. Given the significant effect of the planetary
emission map on the observed eclipse shape, this should derive
more accurate parameters than those derived using a Fourier series
model in Bell et al. (2024). This simultaneous fit also tests if there
are any degeneracies between the system parameters and the
eclipse map, such as between the eclipse timing and the
longitudinal emission offset (Williams et al. 2006).
We fit the planet-to-star radius ratio, the linear ephemeris, the

inclination, the ratio of the semimajor axis to the stellar radius,
and the two parameterized stellar limb-darkening parameters in
Kipping (2013).

2

The Astronomical Journal, 168:4 (19pp), 2024 July Hammond et al.

http://astrothesaurus.org/uat/487
http://astrothesaurus.org/uat/2310
http://astrothesaurus.org/uat/2307
http://astrothesaurus.org/uat/509
http://astrothesaurus.org/uat/753


We set the orbital period constant at 0.813474 days as it is
known with sufficient precision already (Kokori et al. 2023). We
set the obliquity of the planet to be zero as we assume a tidally
locked orbit. We set the stellar radius to be constant at 0.665Re
(Bell et al. 2024), although this is an arbitrary value that serves
only to give our model a dimensional form, as the ratio Fp/FS is
only sensitive to the ratios Rp/R* and a/R*, which we fit
separately. The stellar mass does affect the signal (de Wit et al.
2012) but is entirely determined in our model by the fitted value of
a/R* and the fixed value of the orbital period.

de Wit et al. (2012) showed how orbital eccentricity can be
degenerate with an eclipse mapping signal. Gillon et al. (2012)
constrained the eccentricity of WASP-43b to be -

+0.0035 0.0025
0.0060,

which has generally been used to assume zero eccentricity for this
planet (Bell et al. 2024). To check this assumption, we separately
fitted the model including the eccentricity and periastron, finding
an eccentricity of -0.001078 0.00025

0.00185 and no meaningful constraint
on periastron, as discussed in Appendix B. We take this to verify
the assumption of zero eccentricity, and proceed to fit the models
with eccentricity set to zero. This is consistent with the

circularization timescale of 3Myr that we estimate using Adams
& Laughlin (2006, assuming QP= 106), which is much shorter
than the age of the system estimated by Hellier et al. (2011) to be

-
+400 100

200 Myr.
For the instrumental systematic effects, we fit a uniform

baseline and linear trend in time, the magnitude and timescale
of an exponential ramp, and trends of the spatial position and
width of the data on the detector. Table 1 shows the new
parameters fitted for the =ℓ 2max eclipse map model, compared
to the parameters fitted with an n= 2 Fourier series model (like
in Bell et al. 2024).
The difference in the time it takes light to travel from the planet

and the star has an important effect on this data set, so we include
it in our model. In eclipse, the light from the planet takes about
8.5 s longer to reach the observer than the light from the star. For
the average gradient in eclipse ingress and egress of roughly
8 ppm s–1 (see Figure 1), this corresponds to a maximum effect of
around 70 ppm on the eclipse shape. Figure 2 shows that this
corresponds to about 15% of the maximum deviation in eclipse
shape due to the eclipse mapping signal itself.

Figure 1. The JWST MIRI/LRS data set, showing the observed phase curve (black points), the fitted =ℓ 2max eclipse map model (red line) shown in Figure 3, and the
systematics model (blue line) fitted alongside the eclipse map.

Table 1
The Orbital and Systematic Parameters Shown in Figure 10, for the Fourier Series Fit Described in Section 3 and the =ℓ 2max Eclipse Map Fit Plotted in Figure 3

Parameter Fourier Series Fit Eclipse Map Fit

Planet–star radius ratio Rp (R*) -
+0.15734 0.00015

0.00017
-
+0.15839 0.00040

0.00025

Transit time (BMJD)
- ´
+ ´

-
-

55934.292296
1.2 10
1.2 10

5
5

- ´
+ ´

-
-

55934.292283
1.1 10
1.1 10

5
5

Inclination (deg) -
+82.277 0.050

0.050
-
+82.106 0.052

0.050

Semimajor axis a (R*) -
+4.881 0.012

0.012
-
+4.859 0.012

0.013

Limb-darkening parameter q1 -
+0.0565 0.0077

0.0079
-
+0.0182 0.0045

0.0081

Limb-darkening parameter q2 -
+0.043 0.032

0.068
-
+0.595 0.350

0.280

Constant baseline C0 (ppm) - -
+2577.0 50

37 - -
+2881.0 30

30

Linear trend C1 (ppm/day) - -
+910 80

100 - -
+240 60

60

Ramp magnitude r0 (ppm) -
+758.0 63

80
-
+1319.0 67

65

Ramp time constant r1 (1/day) -
+9.7 1.9

2.0
-
+3.7 0.3

0.3

Spatial position trend -
+0.0121 0.0012

0.0012
-
+0.0122 0.0013

0.0012

Spatial point-spread function width trend - -
+0.0362 0.0069

0.0070 - -
+0.0385 0.0072

0.0071

Uncertainty scaling factor -
+1.2252 0.0093

0.0098
-
+1.2225 0.0092

0.0092

Notes. The limb-darkening parameters q1 and q2 are as described in Kipping (2013). The polynomial parameters C0 and C1 describe the constant baseline and linear
trend with time, as used in Bell et al. (2022). The ramp parameters describe the magnitude and timescale of a linearly decaying exponential ( )-r e r t

0 1 (where t = 0 at the
start of the observation) as used in Bell et al. (2022). The spatial position and point-spread function width are as described in Bell et al. (2022). The uncertainty scaling
describes a multiplicative parameter to inflate the expected errors to be consistent with the residual between the data and the fitted model.
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2.2. Eclipse Mapping

The eclipse mapping method works by constructing a map
from a number of “basis maps,” which each have an associated
basis phase curve. We match the observed light curve with a
sum F(t) constructed from the the basis phase curves fi(t)
weighted by coefficients ci:

( ) ( ) ( )å=F t c f t . 1
i

i i

We derive the actual eclipse map Z(θ, f) from the fitted
coefficients ci as a sum of the spherical harmonic basis maps
zi(θ, f):

( ) ( ) ( )åq f q f=Z c z, , . 2
i

i i

Luger et al. (2019) shows the phase curves fi(t) of each
spherical harmonic zi(θ, f) (where θ and f are longitude and
latitude). We model the astrophysical signal using starry
(Luger et al. 2019)33 and fit the coefficients ci using PyMC3
(Salvatier et al. 2016). We use “pixel sampling” to enforce a
positive emission map globally (e.g., as used in Gorski et al.
2005). This method samples the brightness of pixels distributed
uniformly over the mapped surface and transforms them to
spherical harmonic coefficients ci to compute the actual phase
curve. To fit the =ℓ 2max eclipse map alongside the orbital and
systematic parameters, we sample 16 pixels evenly spaced on a
Mollweide projection to represent the spherical harmonic space
with 4ℓ2 pixels (McEwen & Wiaux 2011). We use a (natural)
log-normal prior for the pixels with a mean magnitude of
6000 ppm and a standard deviation of 3000 ppm (transformed
to log space).

After fitting the pixels representing the =ℓ 2max eclipse map
simultaneously with the orbital, planetary, stellar, and systema-
tic parameters, we fix these additional parameters to their
derived values, and refit the map with a variety of methods. We
fit maps with the following:

1. =ℓ 3max spherical harmonics.
2. An eigenmap as described in Rauscher et al. (2018).
3. =ℓ 2max spherical harmonics to the first eclipse alone,

the second eclipse alone, and both eclipses.

The next section presents the results from each of these
refitted maps, and describes how the details of each fitting
procedure affect the derived map. It also presents the statistical
evidence for an eclipse mapping signal, and compares the
different mapping models.

3. Results

3.1. Eclipse Map Fitted with Orbit and Systematics

The red line in Figure 1 shows the phase curve resulting from
the =ℓ 2max eclipse map fitted alongside the orbital parameters,
stellar parameters, and systematic model. The blue line in Figure 1
shows the model of instrumental systematics fitted at the same
time. We normalized the Fp/FS values (the ratio of planetary to
stellar flux) in Figure 1 so that the systematic model has zero
mean over the course of the fitted observations.
Appendix B shows the posterior distribution for the fitted

orbital, planetary, stellar, and systematic parameters. Some of
the parameters are consistent with those derived using a Fourier
series fit like that used in Bell et al. (2024), but some are not
consistent. There are small but statistically significant differ-
ences in the planetary radius, eclipse timing, and inclination, all
of which we expect to be more accurately fitted by the more
realistic eclipse shape in the eclipse mapping model. The
posterior distribution of the stellar limb-darkening parameters
are different but we found that, when combined, these resulted
in consistent limb-darkening profiles. The stellar limb darken-
ing is relatively weak at these long wavelengths, so is poorly
constrained, though is consistent between the two models. The
systematic parameters are different to those produced by a
Fourier series fit (Bell et al. 2024) but result in an almost
identical model of systematics, as a short exponential ramp plus
a linear trend is almost identical to a long exponential ramp.

Figure 2. The observed data in the ingress and egress of the eclipses, subtracted by a phase curve fitted using an n = 2 Fourier series model. We fitted this Fourier
series model using the orbital parameters derived using an eclipse map in Table 1, so that the residual signal depends entirely on the different models. This leaves a
residual “eclipse mapping signal” showing the effect of partial stellar coverage of the nonuniform planetary emission. Green points show the first eclipse, purple points
show the second eclipse, and black points show their mean. The blue shaded region labeled “Latitude-Longitude Map Fit” shows the range of fitted phase curves from
the =ℓ 2max eclipse map in Figure 3, with the two shaded regions showing the first and second quantiles, containing 68.27% and 95.45% of the posterior distribution.
The red shaded region labeled “Longitude-Only Map Fit” shows the fitted eclipse of the =ℓ 2max eclipse map with flat latitudinal structure shown in Figure 4. The
poor fit of this model shows the presence of latitudinal information in the data set, and the need to fit the latitudinal structure of the map. This “longitude-only” residual
is around 250 ppm at its largest, while the “latitude-only” signal (estimated from the difference between the 1D and 2D map fits) is around 200 ppm. The total eclipse
mapping signal is around 450 ppm at its largest.

33 starry.readthedocs.io
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Figure 1 shows that this =ℓ 2max eclipse map model fits the
observed phase curve well. The information about the 2D
eclipse map structure is contained within the shapes of the
ingress and egress of each eclipse. Figure 2 shows the residual
difference in ingress and egress between the observations
(shown as black, green, and purple points) and a “control”
model representing the phase curve as a Fourier series up to
order n= 2. This Fourier series was fitted with orbital and
systematic parameters fixed to the values derived when fitting
the =ℓ 2max eclipse map, listed in Table 1, so that the residual
is only due to the different emission models.

The green and purple points in Figure 2 show the residual of
the observed data in the first and second eclipses, binned every
eight points, and the black points show the average of the two
eclipses. The =ℓ 2max eclipse mapping model and the n= 2
Fourier series model fit the out-of-eclipse phase curve as well as
each other, so the residual outside the range plotted in Figure 2 is
determined by the uncertainty in the data. This is not surprising, as
both models have access to almost identical fitting functions for
the out-of-eclipse phase curve—the =ℓ 2max harmonics produce
the same phase curves as the n= 2 Fourier series, apart from a
small modification from the orbital obliquity.

The size of the residual between the observed data and the n= 2
control model shows the size of the eclipse mapping signal, which
is the effect of partial stellar coverage of nonuniform emission from
the planet (de Wit et al. 2012). For example, when the star covers
an area that is emitting more than the average of the planetary disk,
the observer measures less flux than would be expected for a
uniform disk, so the residual signal is negative.

The blue shaded area shows the range of phase curves fitted
using the =ℓ 2max eclipse map model, with the Fourier series
control model subtracted. The two shaded regions show the
first and second quantiles, containing 68.27% and 95.45% of
the posterior distribution, respectively. The eclipse map model
matches the residual signal in ingress and egress, with a
uncertainty comparable to the error bars of the observed data.
This implies a good fit to a robust eclipse mapping signal,
which we quantify in the next section.

Figure 3 shows the =ℓ 2max eclipse map itself. The plotted
2D map is constructed from the median values of the posterior
distribution of each of the spherical harmonic coefficients. This
median map has a hot spot near the substellar point, with a

small meridionally averaged shift of ( )-
+7.75 0.36

0.36 eastwards and
a shift of ( )-

+10.72 4.68
4.14 southwards.34

We present the maps as a ratio of planetary flux to stellar flux, as
a conversion to temperature is more complex and requires
modeling or assumptions about the temperature structure. We
make a simple estimate of the brightness temperature assuming
planetary blackbody emission BT,λ in the bandpass λ= 5 to 10.5
μm, and a PHOENIX (Allard & Hauschildt 1995; Hauschildt et al.
1999; Husser et al. 2013) stellar model spectrum with effective
temperature Teff= 4300K and surface gravity glog = 4.50 as used
in Bell et al. (2024). The stellar radius that we assumed to be
0.665Re does affect the value of the brightness temperature. We
do not include the effect of the uncertainty of this and other stellar
parameters on the derived brightness temperature, in order to
highlight the uncertainty due to mapping alone. This determines
that this =ℓ 2max map corresponds to a brightness temperature of
( )-

+1790.0 29.0
23.0 K at the substellar point, ( )-

+1293.0 34.0
27.0 K at the

equatorial east terminator, ( )-
+1114.0 36.0

30.0 K at the equatorial west
terminator, ( )-

+1100.0 109.0
128.0 K at the south pole, and ( )-

+1011.0 108.0
111.0

K at the north pole (where the distinction between the poles is our
arbitrary choice).
The posterior distribution of the fitted maps is shown east–

west along the equator and north–south through the substellar
point. This range of fitted maps includes any degeneracies with
the orbital or systematic parameters as these are fitted
simultaneously. We confirmed that the “median map” plotted
in 2D corresponds closely to the center of the east–west and
north–south posterior distributions (not shown). The max-
imum-likelihood map is very similar to the median map, except
near the poles where its latitudinal structure deviates slightly
from the median but remains within the first quantile.
Figure 4 shows an =ℓ 2max eclipse map fitted to the same

data set, but with all of its fitting basis maps averaged in
latitude, removing the ability of the map to fit latitudinal
structure. This makes some of the basis maps uniform
everywhere, so we remove them from the fitting process
(reducing the number of parameters). The resulting map is very

Figure 3. An =ℓ 2max eclipse map fitted to the data in Figure 1. First panel: an eclipse map constructed with spherical harmonics up to =ℓ 2max , fitted simultaneously
with the orbital, planetary, stellar, and systematic parameters, via “pixel sampling” as described in Section 3.1. Note that the nightside of the map contains no
latitudinal information, with longitudinal information from the phase curve only (out of eclipse). The plotted 2D map uses the median of the posterior distribution of
each fitted spherical harmonic coefficient. Second panel: the posterior distribution of the longitudinal structure along the equator of the map, showing the first and
second quantiles. Third panel: the posterior distribution of the latitudinal structure through the substellar point.

34 The observations cannot distinguish between an orbit about a vector pointed
“up” or “down” in the sky, so our choice of north and south poles is made
arbitrarily and kept consistent for plotting. The eastward direction corresponds
to the direction of rotation of the planet.
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tightly constrained by its need to fit the out-of-eclipse phase
curve. Its residual signal in ingress and egress is shown by the
red region in Figure 2, which fails to match the observed
residual points. This shows the presence of a latitudinal
mapping signal of around 200 ppm (the difference between this
longitude-only fit and the observed residual), compared to the
longitudinal mapping signal of around 250 ppm (the magnitude
of the residual of this longitude-only fit).

3.2. Eclipse Mapping Signal

We can quantify the significance of the signal in Figure 2 by
comparing the Bayesian evidence of the =ℓ 2max eclipse map
model (the blue shaded region) and the n= 2 Fourier series
control model (the zero line) in Figure 2. As applied in Placek
et al. (2017) to a similar analysis of exoplanet phase curves, the
log-likelihood function is

( ( ) ) ( )ås
ps= - - -

=

L F t D
N

log
1

2 2
log 2 , 3

i

N

i i2
1

2 2

for data Di at N times ti fitted by a model F(t) with variance σ2 .
The log-odds ratio = -O L Lln ln ln1 2 then represents the
relative performance of models 1 and 2, with a value of Oln
above 1 corresponding to a better fit to model 1. The log-odds
ratio for the =ℓ 2max map model compared to the Fourier
series model (with the eclipse shape of a uniformly emitting
disk) is 52.6, showing that the eclipse model is overwhelmingly
preferred according to the criterion in Placek et al. (2017). Both
models fit the out-of-eclipse data very similarly as they have
access to almost identical out-of-eclipse fitting functions, so
this difference in likelihood is entirely due to the improved fit
in the ingress and egress of the eclipses shown in Figure 2.
Later, we use the Bayesian information criterion (BIC) to
compare the fit quality of the eclipse map models while taking
the number of fitted parameters into account. We cannot use the
BIC to compare a map model to the Fourier series model as
they are not nested.

Notably, the log-odds ratio of an n= 2 Fourier series fit with
free orbital, planetary, stellar, and systematic parameters (used
to derive the parameters in Table 1) is 20.7 compared to the

=ℓ 2max map model. This shows how the nonmapping
parameters are modified by the Fourier series model to slightly

better fit the ingress and egress shape. However, this makes a
minor difference overall and the eclipse map model is still very
strongly preferred.
Comparing the eclipse map and Fourier series models

confirms that there is a strong eclipse mapping signal in this
data set. This does not immediately imply the presence of 2D
information in the data set, as Coulombe et al. (2023) only
found evidence for longitudinal information in their eclipse
map of WASP-18b. We can show that latitudinal information is
present by comparing the 2D =ℓ 2max map to the “one-
dimensional” (1D) =ℓ 2max map where all of the basis maps
are averaged in latitude, shown in Figure 4. The red region in
Figure 2 shows the residual eclipse mapping signal for this 1D
map, which does not fit the real data set as well as the 2D map.
The log-odds ratio of the 2D map to the 1D map fits in

Figure 2 is 9.8, showing that the 2D map with variable
latitudinal structure is greatly preferred. Notably, the uncer-
tainty on the residual of the 1D map in Figure 2 is very small,
as the longitudinal structure is well constrained by the
additional information from the out-of-eclipse phase curve.
This implies that most of the uncertainty on the 2D model in
Figure 2 is related to uncertainty about the latitudinal structure
of the map.
Coulombe et al. (2023) conducted the same comparison

between 1D and 2D eclipse maps of WASP-18b and found no
evidence that the 2D map was preferred over the 1D map. They
therefore concluded that the eclipse mapping signal revealed
longitudinal information only. In contrast, the eclipse mapping
signal in this study of WASP-43b is sensitive to both
longitudinal and latitudinal information, as would be expected
from the higher impact parameter of the orbit. This is therefore
the first time that latitudinal information has been shown to be
detected on an exoplanet.

3.3. Eclipse Map Fitted with =ℓ 3max Spherical Harmonics

The spherical harmonic order of the =ℓ 2max map fit to the
data set was limited by the number of parameters that could be
fitted simultaneously with the orbital, stellar, and systematic
parameters. Figure 10 in Appendix B shows the posterior
distribution for these parameters, demonstrating that there are
no significant degeneracies. We therefore fix these parameters
to the values (listed in Table 1) derived using the =ℓ 2max
eclipse map model and refit the map with a variety of methods.

Figure 4. An eclipse map fitted to the data set in Figure 1, using the parameters listed in Table 1 derived with the =ℓ 2max eclipse map model, and constructed from
=ℓ 2max spherical harmonics averaged in latitude. This is distinct from the “Fourier series” phase curve model used in Table 1, which models the phase curve directly

and does not represent the partial coverage of the map in eclipse. The fit to the ingress and egress data is shown in red in Figure 2; as described in Section 3.2, this map
cannot accurately fit the observed eclipse shape, showing the presence of latitudinal information in the observations.
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Bell et al. (2024) found that an n= 1 Fourier series fitted the
out-of-eclipse phase curve very poorly, so we do not consider
any =ℓ 1max spherical harmonic fits. The top row of Figure 5
shows the eclipse map refitted using spherical harmonics up to
order =ℓ 3max . We fix the orbital, planetary, stellar, and
systematic parameters to the median values derived from the fit
in Figure 3. We found that the =ℓ 3max maps required too
many pixels to sample effectively with PyMC3, so in this case
we sampled the spherical harmonic coefficients directly with
mc3 (Cubillos et al. 2017). This method allows us to impose
positivity by excluding negative maps from the fitting process,
instead of sampling pixels with positive priors. We set the
spherical harmonic coefficients to have Gaussian priors with a
mean of zero and a standard deviation equal to the mean of the
observed planetary flux.

The resulting map in the top row of Figure 5 shows a similar
median structure to the map in Figure 3, with more uncertainty
due to the increased degrees of freedom. There is a longitudinal
offset of ( )-

+0.50 8.04
14.79 , which is consistent with the =ℓ 2max fit

value of ( )-
+7.75 0.36

0.36 . Its median value is almost zero, which
may seem unusual as the overall phase curve has an offset of
( )-

+7.3 0.4
0.4 . This apparent discrepancy is due to the more

complex shapes allowed by the =ℓ 3max spherical harmonics,
which produce a dayside hot spot which peaks at the substellar
point but extends further east than west (as shown in Figure 5),
resulting in an overall shift in the phase curve. We discuss this
distinction between hot-spot position and phase curve offset in
Section 4, showing how the phase curve offsets and hot-spot
positions can differ in numerical simulations.

The latitudinal structure of the =ℓ 3max map is somewhat
different to the =ℓ 2max map, being flatter near the equator
with no significant latitudinal hot-spot shift. We will also
discuss in Section 4 how latitudinal structure could be degraded
by using low-order basis maps to fit the data. For all these
reasons, the spatial resolution of the map used to fit the data is a
key question. In Section 3.6, we will therefore discuss how
many parameters are justified to fit the data set.

3.4. Eclipse Map Fitted with Eigenmapping

The bottom row of Figure 5 shows a map fitted using
“eigenmapping” (Rauscher et al. 2018) with ThERESA
(Challener & Rauscher 2022), with the orbital and systematic
parameters again fixed to the median values derived from the

=ℓ 2max fit in Figures 1 and 3.
Briefly, eigenmapping starts with spherical harmonic phase

curves up to some degree ℓmax, orthogonalizes them with
principal component analysis to create “eigencurves,” and fits
the observed phase curve as a sum of NE highest-variance
eigencurves. ℓmax and NE are selected to minimize the BIC.
Each eigencurve has a corresponding eigenmap, and the fitted
map is the corresponding sum of these eigenmaps. We again
enforce a positive-flux constraint on the fitted map globally.
Eigenmapping has been used to map observations of HD
189733b with the Spitzer Space Telescope (Rauscher et al.
2018; Challener & Rauscher 2022), and observations of
WASP-18b with JWST NIRISS/SOSS (Coulombe et al. 2023).

Figure 5. Two alternative mapping methods to Figure 3. First row: an eclipse map using spherical harmonics up to order =ℓ 3max , fitted using constant systematic and
orbital parameters derived by the map fitted in Figure 3 (listed in Table 1) The median map, longitudinal structure, and latitudinal structure are laid out as in Figure 3.
Bottom row: an eclipse map fitted with eigenmaps up to order =ℓ 3max as described in Section 3.4, for six basis maps selected by optimizing the BIC, using constant
systematic and orbital parameters derived by the fit in Figure 3.
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We find the best BIC for =ℓ 2max and NE= 6, a larger
number of eigencurves than used for WASP-18b in Coulombe
et al. (2023), showing the improved precision of this WASP-
43b data set. We find a slight eastward hot-spot offset of
( )-

+7.5 0.5
0.5 . This eigenmap achieves the best BIC score in

Table 2; its fitted map is almost the same as the =ℓ 2max map
in Figure 3, suggesting that it achieves this improved BIC score
by discarding the map components that contribute the least to
the observed phase curve. This means that it produces the same
fit quality using fewer parameters (see Section 4 for a related
discussion of the mapping “null space”).

3.5. Eclipse Maps Fitted with Single Eclipses

The maps in Figures 3 and 5 are fitted to the entire data set,
including 2D information from both eclipses as well as 1D
information from the rest of the phase curve. To isolate the 2D
mapping information in each eclipse, Figure 6 shows the result
of refitting the =ℓ 2max eclipse map using the first and second
eclipses only. As in Figure 5, we fix the orbital and systematic
parameters to the median values derived with the model in
Figures 3, listed in Table 1. The exceptions are the magnitude
of the exponential ramp and the magnitude of the linear trend,
which we refit as these require different values given the
different starting points in time.

The first row in Figure 6 shows an =ℓ 2max eclipse map
fitted using a ∼2.2 hr section of data containing the first eclipse
only with a small section of phase curve either side. We only
show the map on the dayside of the planet, as there is no
information about the nightside contained in this limited data
set. The map is similar to Figures 3 and 5, but has a larger
latitudinal hot-spot shift than the map in Figure 3. The
latitudinal peak of the fit to the first eclipse only is weakly
constrained, showing how an observation of only a single
eclipse is likely to be insufficient to derive an accurate eclipse
map. There is a greater range of fitted maps at −90° latitude
than +90° latitude because the inclination of the orbit angles
this pole away from the observer.

The second row in Figure 6 shows an eclipse map fitted to
the second eclipse only, with a smaller latitudinal hot-spot shift
than the fit to the first eclipse only. The third row in Figure 6
shows an eclipse map fitted to both eclipses together. We
suggest that the original fit to the entire data set in Figure 3,
which found a latitudinal shift of ( )- -

+10.72 4.68
4.14 , is better

constrained in latitude than this two-eclipse fit (despite
containing no additional latitudinal information) because the
additional measurement of the rest of the phase curve provides
independent longitudinal information. This breaks degeneracies

between the longitudinal and latitudinal information in the
eclipse mapping signal (Boone et al. 2024).
The maps in Figure 6 show that the eclipse mapping signals

in both eclipses are mostly consistent with each other, as would
be expected from the similar residual signals in Figure 2.
However, they have different degrees of latitudinal asymmetry,
which also manifests in the overall fit in Figure 3. Figure 6
shows that the first eclipse implies more latitudinal asymmetry.
This may be a real effect, but it may also be due to the
increased effect of instrumental systematics on this eclipse. The
blue line in Figure 1 shows that the systematic signal is still
relatively large during the first eclipse, but that it is almost
negligible during the second eclipse. This shows the utility of
observing a full phase curve where the periodicity of the
astrophysical signal isolates it from the systematic signal.

3.6. Model Selection

To compare our fitted eclipse maps, we calculate the BIC
(Schwarz 1978) and the Akaike information criterion (AIC;
Akaike 1981). The BIC is

( ) ( ) ( )= - k N LBIC ln 2 ln , 4

where k is the number of model parameters, N is the number of
data points, and L is the model likelihood:

⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( )å s
= -

-L M D
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1

2
, 5

i

N
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i
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for a sum over all N data points Di with uncertainty σi, fitted by
a model Mi. This uncertainty is derived from the residuals of
the originally fitted phase curve, by scaling the expected error
by a factor referred to as the “Uncertainty Scaling Factor” in
Figure 10 (see Bell et al. 2024).
A smaller BIC implies a better model, with a better fit or

fewer fitting parameters. The difference in BIC is the relevant
quantity for model comparison, so Table 2 shows the ΔBIC for
each model compared to Model M5, the eigenmap in Figure 5.
This criterion allows comparison of nested models, where it is
assumed that the true model is inside the set of tested models
(Burnham & Anderson 2004).
We also consider the AIC of each model, which is

( ) ( )= - k LAIC 2 2 ln . 6

Due to the large number of points N in this data set, the BIC
applies a stronger penalty for each parameter than the AIC. We
also present the “weights” of each model, wBIC and wAIC,
which are the relative probabilities of each compared model in

Table 2
A Comparison of the Models Used to fit the Full Data Set

Model Order Longitude Offset Parameters χ2 ΔBIC ΔAIC wBIC wAIC

M1: Fourier series n = 2 ( )-
+7.3 0.4

0.4 5 8121.0 L L L L
M2: Uniform latitude =ℓ 2max ( )-

+7.3 0.4
0.4 5 8039.9 6.4 20.4 3.9% 0.0%

M3: Spherical harmonics =ℓ 2max ( )-
+7.75 0.36

0.36 10 8016.5 19.0 5.0 0.0% 7.5%

M4: Spherical harmonics =ℓ 3max ( )-
+0.50 8.04

14.79 17 8014.9 80.2 17.4 0.0% 0.0%

M5: Eigenmap =ℓ 2max , NE = 6 ( )-
+7.5 0.5

0.5 8 8015.5 0 0 96.1% 92.5%

Notes. The offset value for the Fourier series model is the offset of the phase curve, and the offset value for the eclipse maps is the meridionally averaged longitudinal
offset as defined in Section 4.2. TheΔBIC andΔAIC scores are calculated relative to the eigenmap model. When calculating the χ2, BIC, and AIC values, we exclude
the transit because ThERESA (Challener & Rauscher 2022) does not model this explicitly. We do not calculate a comparative BIC or AIC between the Fourier series
model and the eclipse map models as they are not nested.
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a set, based on their ΔBIC or ΔAIC. The wBIC for a particular
model is

( )
( )

( )=
-D

å -D=

wBIC
exp BIC 2

exp BIC 2
, 7

r
R

r1

where ΔBIC is compared to the best-performing model, and
there are R total models being compared with a score of ΔBICr

each. wAIC depends on ΔAIC in the same way. Table 2
summarizes our compared models, showing their χ2 values,
their ΔBIC and ΔAIC relative to the model with the best BIC
and AIC, and the implied probability of each model.

Model M1 is the Fourier series model used in Bell et al.
(2024). It achieves a significantly worse χ2 value than all the
eclipse mapping models, due to a worse fit to the eclipse shape.
Model M2 is the eclipse map model shown in Figure 4, where
the latitudinal structure is fixed to be flat. This achieves a better
χ2 value than the Fourier series model, as it includes the effect
of longitudinal map structure on the eclipse shape. However, its
χ2 value is worse than the fully 2D eclipse map fits, as shown
by its poor fit in Figure 2. Interestingly, due to its smaller
number of parameters, it achieves the second-best BIC score of
all the eclipse mapping models due to the strong penalty
applied to the number of parameters by the BIC. However, it

Figure 6. Eclipse maps fitted using each eclipse separately. First row: an eclipse map fitted using spherical harmonics up to =ℓ 2max , using a ∼2.2 hr section of the
data centered on the first eclipse. The orbital and systematic parameters are fixed to those derived using the map fitted in Figure 3 (except the time-dependent
systematics, which are refitted), listed in Table 1. Only the dayside of the map is shown as there is no information about the nightside in this limited data set. The map
has a similar longitudinal structure to Figure 3, but finds more latitudinal asymmetry. Second row: an eclipse map fitted using a ∼2.2 hr section of the data centered on
the second eclipse. This finds a similar map to that in Figure 3. These two maps show that both eclipses are mostly consistent, although the first eclipse implies more
latitudinal asymmetry. Third row: an eclipse map fitted using both the first and second eclipses as defined above, excluding the rest of the phase curve. This combined
fit is similar to the individual fits, especially in its longitudinal structure.
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achieves the worst AIC score of the eclipse map models, where
the number of parameters is penalized less strongly. We can
confidently reject models M1 and M2 compared to the 2D
eclipse mapping models.

Model M3 is the =ℓ 2max eclipse mapping model in
Figure 3. It achieves a better χ2 value than models M1 and
M2, as shown by its good fit in Figure 2. It has a worse BIC
score than the eigenmap (model M5), as they have similar χ2

values, but model M3 uses two more parameters. It has a more
similar AIC score to the eigenmap, where these additional
parameters are penalized less heavily.

Model M4 is the =ℓ 3max eclipse mapping model in
Figure 5. It achieves the best χ2 value due to its increased
degrees of mapping freedom, but has poor BIC and AIC scores
due to its increased number of parameters. These metrics imply
that the data quality does not justify this number of degrees of
freedom, which is also implied by the large uncertainty on the

=ℓ 3max map in Figure 5.
Model M5 is the =ℓ 2max eigenmap using six basis maps. It

achieves a similar χ2 to the other eclipse mapping models, and
has the best BIC and AIC scores due to its reduced number of
parameters. It achieves these by discarding mapping structures
that contribute weakly to the observed phase curve, so is able to
match the observations with fewer degrees of freedom.

It is not clear whether the BIC or AIC is the better metric for
model comparison, or if another metric would be more
appropriate. The BIC assumes that the set of fitted models
includes the “true” physical system, while the AIC assumes
that all of the tested models are inexact representations of this
system (Burnham & Anderson 2004). It could be argued that
eclipse maps fitted to real planets do include the “true” map, as
spherical harmonics form a complete basis set on the sphere.
On the other hand, information about the real map is inevitably
lost in the mapping process due to the need to truncate fits to
low-order harmonics, and due to the presence of a “null space”
(see Section 4 for discussion of both issues).

To summarize our model comparison:

1. The Fourier series model (M1), and the eclipse map with
flat latitudinal structure (M2) perform badly on all
statistical metrics, so we confidently reject them.

2. The latitude–longitude =ℓ 2max eclipse map (M3) is
favored over the longitude-only eclipse map (M2),
showing the presence of latitudinal information in
the data.

3. The =ℓ 3max eclipse map achieves a better χ2 value than
model M3, but at the cost of many more parameters, so
has worse BIC and AIC scores.

4. The =ℓ 2max eigenmap achieves the best BIC and AIC
scores, producing a fit of comparable quality to model
M3 with two fewer parameters.

Therefore, the eigenmap (model M5) is the best-performing
model on these metrics. However, it requires model M3 to fit
the orbital, stellar, and systematic parameters simultaneously
first, and then both models produce a similar result in the end.
The eigenmap achieves a better AIC and BIC by discarding
structures that do not contribute strongly to the map, producing
a very similar map to model M3 overall. We suggest that more
work can be done on the process of fitting eclipse maps and
comparing levels of model complexity. Cross-validation may
provide a more practical metric for eclipse mapping model
comparison, such as the leave-one-out cross-validation applied

by Challener et al. (2023), which is asymptotically equivalent
to the AIC but provides advantages such as an absolute
measurement of model predictive power (Stone 1977).

4. Comparison to General Circulation Models

In this section, we interpret the eclipse maps by comparing
them to 3D general circulation models (GCMs). We use some
of the GCMs presented in Bell et al. (2024), selecting those that
matched the out-of-eclipse phase curve well. We include a
simulation from four models: THOR (Mendonça et al.
2016, 2018a, 2018b; Simulation 31 in Bell et al. 2024),
expeRT/MITgcm (Carone et al. 2020; Schneider et al. 2022;
Simulation 20 in Bell et al. 2024), the Generic Planetary
Climate Model (Generic PCM; Teinturier et al. 2024;
Simulation 7 in Bell et al. 2024), and the RM-GCM (Rauscher
& Menou 2012; Roman & Rauscher 2017; Roman et al. 2021;
Simulation 24 in Bell et al. 2024).
The THOR and RM-GCM simulations use semi-gray

radiative transfer, while the PCM and expeRT/MITgcm
simulations use multiband correlated-k schemes. The THOR,
RM-GCM, and PCM simulations feature clouds (on the
nightside only for THOR), whereas the expeRT/MITgcm
simulation is free of clouds. The output from each model was
postprocessed using several multiband radiative transfer codes
to calculate spectrally resolved emission from each column,
which was then integrated from 5 to 10.5 μm, weighted by the
MIRI/LRS throughput. Appendix A and Bell et al. (2024) give
more detail on each model.

4.1. Observable Features of GCMs

Figure 7 shows thermal emission maps postprocessed from
each GCM simulation. The top row shows the thermal emission
integrated from 5 to 10.5 μm. These maps contain small-scale
structure that is not present in the observed eclipse maps in
Section 3. A chevron-like structure is present in all the GCM
maps, which is commonly attributed to the temperature
structure associated with equatorial Kelvin and Rossby waves
(Matsuno 1966; Showman & Polvani 2011; Lewis &
Hammond 2022). THOR, expeRT/MITgcm, and the RM-
GCM each show cold “lobes” on the nightside, which are likely
associated with stationary equatorial Rossby waves (Matsuno
1966; Showman & Polvani 2011; Lewis & Hammond 2022).
A Rossby wave–like structure also appears to dominate the
dayside emission in the RM-GCM simulation.

4.1.1. Observable and Null Maps

Not all spatial brightness patterns produce a signal in phase
curve space (Luger et al. 2021). For instance, rotational phase
curves of spatially unresolved objects (i.e., exoplanet phase
curves) are insensitive to latitudinal structures. If the object is
eclipsed, as is the case for WASP-43b, then the shape of eclipse
ingress and egress breaks many of these degeneracies, but still
leaves a “null space” of unobservable patterns (Challener &
Rauscher 2023). This null space means that retrieved eclipse
maps will not always match thermal emission output from
GCM simulations. This effect may account for some of the
discrepancy between the GCM maps shown in the top row of
Figure 7 and the observed eclipse maps in Section 3.
To illustrate this effect, we separate our GCM maps into their

observable and null components following Challener &
Rauscher (2023). The second row of Figure 7 shows the

10

The Astronomical Journal, 168:4 (19pp), 2024 July Hammond et al.



observable component for each GCM. The most significant
difference between the observable GCM maps and the original
GCM maps is the lack of spatial variation on the nightside of
the observable maps. In this region, we only have information

from the phase curve, so our mapping capabilities are limited to
large-scale longitudinal variation. This means that the fine
structure associated with, for example, nightside equatorial
Rossby waves cannot be constrained by observations. By

Figure 7. A comparison of four GCM simulations of WASP-43b and how their spatial distributions could appear in an eclipse map with restricted spherical harmonic
order. First row: the modeled outgoing longwave radiation (OLR) in the 5–10.5 μmMIRI/LRS bandpass for each of the four GCM simulations, expressed as a ratio of
planetary to stellar flux. Second row: observable emission from the GCM simulations, with the null space removed as described by Luger et al. (2021) and Challener &
Rauscher (2023). Third row: the OLR represented using spherical harmonics up to =ℓ 3max , showing how structure is lost; this is the best map that could be achieved
by a fit like the =ℓ 3max fit in Figure 5. Fourth row: the OLR represented using a basis of the eigenmaps used in Figure 5. Fifth row: the OLR represented using
spherical harmonics up to =ℓ 2;max this is the best map that could be achieved by a fit like that in Figure 3. All of the simulations match the dayside and nightside
amplitudes of the observed phase curve and eclipse map fairly well, as well as the small eastward phase curve shift. The succession of plots here shows how using low-
order spherical harmonics limits the structures that can be fitted with an eclipse map.
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contrast, the dayside is scanned by the eclipse, which means
that some features remain observable, such as the broad shape
and location of the hot spot. While the observable maps appear
to have some new structures compared to the original GCM
maps, this is simply the result of removing the high-order
structures of the null space.

There are a number of differences between the observable
parts of the GCMs and the observed eclipse maps. Each
observable GCM map has a large hot spot that is offset
eastwards from the substellar point, while the eclipse maps in
Section 3 have smaller or negligible hot-spot sifts. In addition,
the dayside emission in the GCMs varies less with latitude near
the equator than the emission in any of the =ℓ 2max eclipse
maps (Figures 3 and 6), or the eclipse map derived using the
eigenmapping method (bottom row of Figure 5).

None of the GCM maps in the top row of Figure 7 show a
significant latitudinal hot-spot offset, which is present in the
observed =ℓ 2max full phase curve map, the =ℓ 2max map
derived from the first eclipse only, and the eigenmap. It is
unsurprising that the GCMs do not show a latitudinal offset,
given that the forcing and boundary conditions for each model
are hemispherically symmetric. However, the observable maps
for each do have small latitudinal offsets due to asymmetries
introduced by the inclined viewing angle. This implies that
asymmetries could be introduced by mapping at high orders.

For the purposes of comparison to the =ℓ 2max and =ℓ 3max
maps we fit to the observations, it is important to note that the

=ℓ 2max and =ℓ 3max maps have no null space for this
observation. The nonzero null spaces identified in Figure 7 are
due to the high-order spherical harmonic bases used to
represent the small-scale structure of the GCM results.
Therefore, while the presence of a null space places a
theoretical upper limit on the accuracy of eclipse mapping, it
should not have a direct effect on our fitted =ℓ 2max and

=ℓ 3max maps, and should not introduce a latitudinal
asymmetry at these low orders. The eigenmap basis may have
some latitudinal asymmetry introduced by its calculation of the
structures which contribute most strongly to the light curve.

4.1.2. Effect of Mapping Order

The eclipse maps in Section 3 are fitted with low-order
spherical harmonics up to =ℓ 2max and =ℓ 3max , as including
higher-order harmonics could lead to overfitting. This means
that some realistic structures cannot be fitted accurately—for
example, a sharp brightness temperature gradient caused by the
onset of cloud formation needs high-order harmonics to fit it
accurately (Parmentier et al. 2016). To illustrate this effect, the
third and fourth rows of Figure 7 show emission maps from
each GCM, truncated to use information from harmonics up to

=ℓ 2max and =ℓ 3max only (computed using starry).
Latitudinal and longitudinal cross sections of the truncated

maps (taken at the substellar longitude and along the equator,
respectively) are shown in Figure 8, where they are compared
to the relevant observed eclipse maps. The eigenmaps fitted in
Figure 5 are also compared to each GCM, expressed using a
basis of the eigenmaps from this particular fit.

Truncation of the GCM emission to =ℓ 2max forces the
dayside emission to be more strongly peaked on the equator
than in the higher-order representations. This difference is
consistent with the different latitudinal structure suggested by
the =ℓ 2max and =ℓ 3max eclipse maps from Section 3
(comparing, for example, Figure 3 and the top row of Figure 5).

The =ℓ 2max fit is therefore consistent with the real WASP-43b
either having (i) a peaked latitudinal structure in reality, or (ii) a
flatter latitudinal structure in reality (like the GCMs), which is
being masked by the spherical harmonic truncation. While the
flatter fits in the =ℓ 3max map in Figure 5 are in better
agreement with the GCM simulations, the ℓ= 3 modes are not
constrained well enough to conclude that the flatter structure is
a better representation of the “real” emission from WASP-43b.
Turning to longitudinal structure, Figure 7 shows that

restricting the emission to =ℓ 2max broadens the longitudinal
structure of the hot spot, most notably for the THOR and
expeRT/MITgcm simulations. It also removes sharp gradients
in emission at the terminators of the THOR and RM-GCM
simulations, which are associated with the formation of clouds
on the nightside. As with the latitudinal structure, these
differences between =ℓ 2max and =ℓ 3max are consistent with
those present in the eclipse maps presented in Section 3 and
Figure 8.

4.2. Longitudinal Offsets

The eastwards hot-spot shift of the temperature structure of
tidally locked planets is one of their key observable features,
traditionally derived from the phase offset of the maximum of
their phase curve. This phase curve offset is not, however,
identical to the actual shift of the 2D emission structure.
Instead, it represents the integration of the emission over the
observed hemisphere, weighted by viewing angle. Figure 9
shows how the simulated phase curves for each GCM have
different phase curve offsets than the offsets of their emission
map, which we define as the maximum longitude qmax of

( )ò q f f f
p

p

-

+
F d, cosp2

2
. We refer to this averaging as

“meridional averaging” from now on, and always consider
this to be the “longitudinal offset” of a 2D map, for comparison
to the “peak offset” of a phase curve.
By this measure, the THOR GCM has a phase curve offset of

11.1° but an emission map offset of 17.5° (meridionally
averaged). Figure 9 shows how this difference is especially
pronounced for this simulation, due to its sharp gradients
shown in the top row of Figure 7. These gradients are poorly
captured by the =ℓ 2max representation, so the phase curve has
a very different offset, as it is dominated by low-order modes
(Cowan & Agol 2008). This also results in different emission-
map offsets in its =ℓ 2max and =ℓ 3max representations, which
are 13.2° and 26.5°, respectively. The =ℓ 2max emission-map
offset is similar to the phase curve offset, as expected. This
shows how low-order representations of emission maps can
bias measurements of the large-scale offsets, as well as discard
small-scale information.
Figure 9 shows that the meridionally averaged emission-map

offset for the =ℓ 2max map in Figure 3 is ( )-
+7.75 0.36

0.36 . This is
consistent with the emission-map offset for the first, second,
and combined eclipses in Figure 6, which are ( )-

+7.03 5.41
7.57 ,

( )-
+6.67 4.32

5.77 , and ( )-
+4.86 2.88

3.6 , respectively. The fit to the full
phase curve is more precise due to the increased longitudinal
information present in the out-of-eclipse phase curve, which
constrains the low-order longitudinal structure very well and
breaks degeneracies with the latitudinal structure (Boone et al.
2024). The =ℓ 3max map fit to the whole data set shown in
Figure 5 has a map offset of ( )-

+0.50 8.04
14.79 that is consistent with

the =ℓ 3max eclipse-only fits, as well as with the =ℓ 2max map
fits. As discussed in Section 3.3, this map has a hot-spot offset
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with a median position on the substellar point, but a nonzero
phase offset of around 7°, consistent with the overall phase
curve, showing the difference between these two metrics. The

=ℓ 3max fit also has much more uncertainty due to its increased
degrees of mapping freedom, resulting in the large range of
fitted maps in Figure 5.

Figure 8. A comparison of the GCM simulation results in Figure 7 to the eclipse maps fitted to the data in Figure 1. First row: the GCM maps in the first row of
Figure 7. Second row: the =ℓ 2max map in Figure 3 compared to the =ℓ 2max GCM maps in the fourth row of Figure 7. Third row: the eigenmap in Figure 5
compared to the eigenmap representations of the GCMs. Fourth row: the =ℓ 3max map in Figure 3 compared to the =ℓ 3max GCM maps in the third row of Figure 7.
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The longitudinal offsets of the n= 2 Fourier series fit and the
=ℓ 2max map fit to the full data set appear very precise

compared to the =ℓ 3max map fit to the full data set. This
reflects the choice of fitting functions rather than a truly
increased precision. The out-of-eclipse phase curve in Figure 1
is very well constrained, so the n= 2 Fourier series model has a
very precise peak, as shown in Figure 9. Similarly, most of the

=ℓ 2max modes in the map in Figure 3 are tightly constrained
by the out-of-eclipse phase curve, resulting in an apparently
more precise value in Figure 9. This precision is due to the
limited fitting functions rather than actual statistical certainty.
This is shown by the greater uncertainty on the =ℓ 3max map in
Figure 5, which has more degrees of mapping freedom. It can
be consistent with the out-of-eclipse phase curve with many
different maps, resulting in the larger uncertainty on its
meridionally averaged longitudinal shift in Figure 9.

In summary, the derived emission-map offset varies between
around 0° and 20° based on the mapping method used. The
map offsets in the GCMs used for comparison are larger,
varying between around 10° and 30° depending on the
mapping basis. We conclude that while the =ℓ 2max map
and eigenmap are the best constrained maps, they may be
discarding important structures from the real map. The

=ℓ 3max map has access to more structures, but has too large
an uncertainty to provide precise conclusions. Observations of
more eclipses would provide the information needed to better
constrain the ℓ= 3 modes.

5. Conclusions

In this study, we have presented eclipse maps of the thermal
emission of WASP-43b derived from a JWST MIRI/LRS
phase curve. We fitted a map using =ℓ 2max spherical
harmonics simultaneously with the parameters of the system
and the systematic parameters of the instrument. There is a
clear residual mapping signal in the ingress and egress of the
eclipses, which a 2D map model fits much better than a Fourier
series model. This residual signal is at most 450 ppm,
composed of a signal ∼250 ppm due to longitudinal structure
and ∼200 ppm due to latitudinal structure. This is the first time
that the magnitude of the signal of the latitudinal structure has
been statistically identified in an eclipse map of an exoplanet.

Fitting this data set with an eclipse map model derived
statistically significantly different parameters to those derived
with a Fourier series model as in Bell et al. (2024). We suggest
these updated parameters are more accurate due to a more
accurate fit to the eclipse shapes, but note that they have little
effect on the eclipse map itself, as shown in Figure 11. There
were no significant degeneracies between the fitted parameters.
Figure 3 shows that the =ℓ 2max map found a small

eastward hot-spot shift of ( )-
+7.75 0.36

0.36 (defined using a
meridional average), compared to an eastward phase shift of
( )-

+7.3 0.4
0.4 derived from fitting a Fourier series to the phase

curve. This =ℓ 2max fit finds a sharply peaked latitudinal
structure, with a small latitudinal offset of ( )- -

+10.72 4.68
4.14 .

Figure 5 shows an =ℓ 3max eclipse map fitted with the
nonmapping parameters fixed to those derived from the

=ℓ 2max map fit. This found a smaller but more uncertain
hot-spot shift of ( )-

+0.5 8.04
14.79 degrees east, and a flatter

latitudinal structure near the equator than the =ℓ 2max map.
It achieved a better χ2 than the =ℓ 2max model, but a worse
BIC and AIC due to its higher number of parameters.
In addition, we fitted an “eigenmap” (with the orbital and

systematic parameters fixed), which fitted the data with six
eigenmaps with orthogonal phase curves from an =ℓ 2max
basis. Figure 5 shows that this derived a map very similar to the
original =ℓ 2max eclipse map in Figure 3, but with fewer
parameters as it discarded the mapping structures that
contribute least to the phase curve. Table 2 shows how this
model achieved the best BIC score, with a similar fit quality but
fewer parameters.
As described in Section 3.1, a simple estimate of brightness

temperature from the observed broadband flux corresponds to a
temperature at the substellar point of ( )-

+1790.0 29.0
23.0 K for the

=ℓ 2max map. This is consistent with the brightness temper-
ature of the eigenmap at the substellar point of ( )-

+1783.0 70.0
51.0 K,

as well as with the brightness temperature of the =ℓ 3max map,
which is ( )-

+1822.0 92.0
75.0 K at the substellar point.

We tested the mapping information in each eclipse
separately by refitting a map to each eclipse individually.
Figure 6 shows that the second eclipse produced a dayside map
similar to that derived from the full phase curve, but the first
eclipse produced one with a larger latitudinal offset. This may
be due to increased systematic effects on the first eclipse; it

Figure 9. Left: the phase curve offset derived from the n = 2 fit using a Fourier series model (giving the same result as Bell et al. 2024), compared to the phase curve
offset simulated from each GCM. Right: the (meridionally averaged) longitudinal offset in each 2D map. The =ℓ 2max and =ℓ 3max offsets (using all the data set) are
from the map fits in Figures 3 and 5. The =ℓ 2max map fits using the eclipses only correspond to the fits in Figure 6 (the black point shows the fit to both eclipses, and
the gray points show the fits to the first and second eclipses). The eclipse-only eigenmap fits and the eclipse-only =ℓ 3max map fits are not plotted in full elsewhere.
The GCM points show the fcos -weighted offset for the GCMs truncated to the =ℓ 2max and =ℓ 3max representations shown in Figure 7, as well as for the maps with
no truncation.

14

The Astronomical Journal, 168:4 (19pp), 2024 July Hammond et al.



could also be a real difference in thermal emission structure,
but we suggest that such large-scale variability over one orbit is
unlikely. We recommend that those looking to use MIRI/LRS
for eclipse mapping observations allow for significant settling
time at the start of their observations to reduce the impact of the
large instrumental systematics.

Figures 7 and 8 compare the fitted eclipse maps to four GCM
simulations from Bell et al. (2024). In general, the GCMs
match the eclipse maps well given the effect of truncating the
spherical harmonic order of the maps. The =ℓ 2max map is
largely consistent with the =ℓ 2max GCM representations. The

=ℓ 3max map has almost no hot-spot shift, different to the
GCMs. It has a flatter latitudinal structure near the equator,
which appears more consistent with the structure of the GCMs,
but the higher uncertainty on the =ℓ 3max map makes it
difficult to compare exactly.

We conclude that there is a strong eclipse mapping signal in
this MIRI/LRS observation of WASP-43b, which can strongly
constrain the =ℓ 2max spherical harmonic components of the
planetary emission. Our fiducial map is the =ℓ 2max eclipse
map in Figure 3, fitted simultaneously with the orbital, stellar,
and systematic parameters. This fiducial map finds a (mer-
idionally averaged) hot-spot shift of ( )-

+7.75 0.36
0.36 eastward

(shown in Figure 9), compared to a shift in the peak of the
phase curve of ( )-

+7.3 0.4
0.4 eastward.

We also highlight our statistically preferred map (according
to the BIC and AIC), which is the eigenmap fitted using

=ℓ 3max and NE= 6 basis maps; this produces a very similar
map to the fiducial =ℓ 2max map using fewer fitting
parameters. However, the limited spatial order of the fitting
functions means we may be missing important structure, as
shown in Figure 7. The limitation of our maps in general to

=ℓ 2max structures is a very model-dependent result; there may
be information about smaller-scale structures in the data that
the spherical harmonics are not well suited to capture. Future
studies could investigate mapping methods with more degrees
of freedom to relax the dependence of our conclusions on the
form of the low-order spherical harmonics (Horne 1985).
Measuring further eclipses would allow better constraints on
the smaller-scale structures. In general, we suggest that
observing multiple eclipses, and ideally observing a full phase
curve, is necessary to obtain reliable eclipse maps for even the
best targets like WASP-43b.

In summary, the dayside eclipse maps fitted to this data set
are generally symmetric about the equator, have a small hot-
spot shift eastward from the substellar point, and vary smoothly
away from the substellar point. This structure implies a weak
eastward heat transport by atmospheric dynamics (Hammond
& Lewis 2021), no strong latitudinal asymmetries driven by
magnetic fields or atmospheric dynamics (Rogers & Koma-
cek 2014; Skinner & Cho 2022), and no dayside homogeneity
driven by magnetic fields (Beltz et al. 2021). They are generally
consistent with our four numerical simulations of WASP-43b,
which have small eastwards hemispheric hot-spot shifts, and
are symmetric about the equator. However, the eastward hot-
spot shift measured by the eclipse maps is generally smaller
than that predicted by the simulations. This data set contains
spectroscopic information that we averaged out in this broad-
band analysis; future studies could derive maps in particular
wavelength bands or regions of molecular absorption, in order
to measure 3D temperature structure or the distribution of
particular chemical species. However, the accompanying

decrease in precision may weaken the mapping signal and
the accuracy of the resulting maps. More precise mapping may
also reveal subtler spatial features that are not present in this
analysis, and mapping of planets with different properties may
reveal different spatial structures on their daysides.
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Appendix A
General Circulation Models and Postprocessing

We compare four GCM simulations from Bell et al. (2024)
to our derived eclipse maps. The first is THOR (Mendonça
et al. 2016; Simulation 31 in Bell et al. 2024), with the same
model configuration as was used to simulate WASP-43b
previously (Mendonça et al. 2018a, 2018b). The simulation
presented here uses semi-gray radiative transfer and a simple
parameterized cloud scheme on the nightside of the planet
(Mendonça et al. 2018a). It was run for roughly 9400 orbits,
and the output data were averaged over the last 500 days. The
emission from each column was calculated by postprocessing
the results with a multiwavelength radiative transfer model
(Mendonça et al. 2015), assuming 1× solar metallicity and
equilibrium chemical species concentration calculated with the
FastChem model (Stock et al. 2018).
The second is expeRT/MITgcm (Simulation 20 in Bell et al.

2024). This model uses the dynamical core of the MITgcm
(Adcroft et al. 2004) on a C32 cubed-sphere grid, coupled to a
nongray radiative transfer scheme based on petitRADTRANS
(Mollière et al. 2019). It follows a setup used in Carone et al.
(2020) and Schneider et al. (2022) to investigate the deep
dynamics of hot Jupiters, with radiative transfer as described in
Schneider et al. (2022). The only difference between the
configuration used here and that in Schneider et al. (2022) is
the omission of TiO and VO. Eleven frequency bins are used,
with 16 k-coefficients for each. The simulation shown here has
47 vertical levels and 10× solar metallicity, and was run for

15

The Astronomical Journal, 168:4 (19pp), 2024 July Hammond et al.

https://doi.org/10.17909/kj9a-8d81
https://doi.org/10.17909/kj9a-8d81


1500 days, with the results shown here averaged over the last
100 days. The spectrally resolved emission was postprocessed
using petitRADTRANS (Mollière et al. 2019) and prt_pha-
securve (Schneider et al. 2022) using a spectral resolution
of R= 100.

The third is the Generic PCM (Simulation 7 in Bell et al.
2024), which has been used to model exoplanets (Charnay et al.
2015; Turbet et al. 2016; Teinturier et al. 2024) and the planets
of the solar system (Spiga et al. 2020; Turbet et al. 2021). The
simulation presented here uses a horizontal resolution of
64× 48 with 40 vertical levels. The Generic PCM treats
clouds as radiatively active tracers of fixed radii. The
correlated-k radiative transfer uses 27 shortwave and 26
longwave bins, each with 16 k-coefficients. The model is run
for 2000 orbits, and the data presented is an average of the
model output over the last 100 days. The simulation presented
here has 1× solar metallicity and models Mg2SiO4 clouds with
radius 1 μm. The simulation was postprocessed with the
Pytmosph3R code (Falco et al. 2022) to calculate the
spectrally resolved emission from each column, which was
then integrated from 5 to 10.5 μm.

The fourth is the RM-GCM (Simulation 26 in Bell et al.
2024), which was adapted from the GCM of Hoskins &
Simmons (1975) by Menou & Rauscher (2009), Rauscher &
Menou (2010), and Rauscher & Menou (2012), and has been
applied to investigations of exoplanets using semi-gray
radiative transfer and aerosol scattering (Roman &
Rauscher 2017; Roman et al. 2021). The simulation presented
here has 1× solar metallicity and condensate clouds repre-
sented by aerosols as described in Bell et al. (2024), with 50
vertical levels, and was run for over 3500 orbits. It was
postprocessed following Zhang et al. (2017) and Malsky et al.
(2021) to produce the spectrally resolved emission.

Appendix B
Orbital and Systematic Parameters

Figure 10 shows the orbital, planetary, stellar, and systematic
parameters fitted with the n= 2 Fourier series model described
in Section 3, compared to the parameters fitted with the

=ℓ 2max eclipse map model shown in Figure 3. We find no
significant degeneracies between these parameters, or between
these parameters and the Fourier series coefficient or map
pixels used to fit the light-curve shape as described in Section 2
(not shown). There are some degeneracies between the
parameters of the systematic model, due to inherent

degeneracies between a linear slope and a long-timescale
exponential ramp.
As described in Section 3, the eclipse map model produces a

better fit to the data (the smaller χ2 value listed in Table 2).
This is as expected, as it should provide a more realistic model
of the eclipse shape. We therefore assume that the parameters
derived by the eclipse map model (colored blue in Figure 10)
are more accurate. The eclipse timing is very well constrained
despite the possibility for degeneracy between eclipse timing
and eclipse mapping (Williams et al. 2006). We suggest this is
due to the high precision and cadence of the observations, the
independent measurement of longitudinal structure from the
phase curve, and the presence of a transit in the data set.
The Fourier series model finds a statistically significantly

smaller planetary radius, higher orbital inclination, and larger
semimajor axis than the eclipse map model. The Fourier series
model also finds different stellar limb-darkening parameters to
the eclipse mapping model, but the resulting limb-darkening
profile posteriors (not shown) are almost the same. This reflects
degeneracies in the limb-darkening model, and the limited
limb-darkening information available at these longer wave-
lengths (Morello et al. 2017; Morello 2018). The two fits in
Figure 10 also find different systematic parameters, but these
result in almost exactly the same systematic model. The Fourier
series model fits a weak exponential ramp with a long
timescale, plus a strong decreasing linear trend. The eclipse
map model fits a strong exponential ramp with a short
timescale, plus a weak decreasing linear trend. These two
systematic models are almost identical within observational
uncertainty when the linear and exponential trends are
combined.
These statistically significant differences in the parameters

fitted by the two models do not produce significant differences
in the resulting eclipse map. Figure 11 shows an =ℓ 2max

eclipse map fitted using orbital, planetary, stellar, and
systematic parameters fixed to those derived using the n= 2
Fourier series model (listed in Table 1). The resulting map is
very similar to that fitted simultaneously with the additional
parameters in Figure 3, showing that the differences in
parameters in Figure 10 do not have a significant effect on
the eclipse map. We suggest that it is still best to fit the orbital
and systematic parameters simultaneously with an eclipse map
model in general, to derive more accurate parameters and to
search for degeneracies with the fitted map.
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Figure 10. A corner plot of the posterior distributions of the orbital, planetary, stellar, and systematic parameters fitted to the observations in Figure 1, produced with
Foreman-Mackey (2016). The red posteriors correspond to the n = 2 Fourier series model described in Section 3, and the blue posteriors correspond to the =ℓ 2max

eclipse map model in Figure 3. Table 1 lists the numerical values. Some of the parameters have statistically significant differences, although Figure 11 shows that these
differences do not produce large changes in the eclipse map. We expect that the blue posteriors derived by the =ℓ 2max eclipse map model are more accurate, due to
its more accurate model of the eclipse shape. This figure is part of a figure set available in the online journal, which shows alternative fits that also include the
eccentricity, argument of periastron, and stellar radius as free parameters, to explain why we fix these parameters to constant values in our fiducial model.

(The complete figure set (3 images) is available.)
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