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SE-412 96 Göteborg Sweden
Telephone: +46(0)31-772 1000

Cover:
Hexagonal fuel assembly of a sodium-cooled fast reactor with simplified fuel pins and a mix of
triangular and square mesh.

Printed by Chalmers Digital Print,
Gothenburg, Sweden 2024.



Development of a hybrid neutron transport solver

Hirepan Palomares Chavez

Division of Subatomic, High Energy and Plasma Physics
Department of Physics
Chalmers University of Technology

Abstract

One of the most fundamental analyses of a nuclear reactor consists in solving an eigenvalue
problem associated with the neutron transport equation and determining the effective multi-
plication factor and the distribution of neutrons of the system under static conditions. Two
categories of methods can be used for this type of static core calculation: Monte Carlo and
deterministic. Monte Carlo methods can reproduce near-real-physics characteristics of the
problem at hand but with a high computational cost. On the other hand, deterministic methods
lead to quicker but less accurate results after several approximations. In this work, a hybrid
computational framework for static core calculations relying on the Interface Current Method
(ICM) is developed.

The framework consists of three steps: 1) the whole computational domain is divided into
subsystems, 2) a set of collision probabilities inside every sub-system is estimated using Monte
Carlo, and 3) the set of collision probabilities is used to estimate the neutron scalar flux and the
effective multiplication factor using the ICM. The framework is verified against Monte Carlo
reference solutions for three cases based on data from a sodium-cooled fast reactor system, i.e.:
1) a hexagonal fuel-pin cell with simplified and detailed geometry, 2) a hexagonal arrangement
of seven fuel-pin cells surrounded by coolant, and 3) a full-size hexagonal fuel assembly.

In the first verification case, for both the simplified and the detailed fuel-pin cell, the framework
was tested with and without production scattering cross sections, using 3 different coarse
meshes, and considering collision probabilities estimated with different number of neutron
histories. Good agreement with the reference solution is obtained for both simplified and
detailed fuel-pin cells when using scattering production cross sections. The sensitivity analysis
shows that increasing the number of neutron histories allows to minimize the uncertainty of
the collision probabilities and thus improves the results. A coarse mesh with a combination of
triangular and rectangular coarse nodes is used in the second and third verification cases. A
relatively good agreement is obtained in terms of the effective multiplication factor and scalar
neutron flux in fast systems.
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Prof. Jan Svensson and Prof. Lena Falk for their help during the project. Big thanks to Prof.
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Chapter 1

Introduction

A background on nuclear energy is provided in section 1.1. Fast nuclear reactors are introduced
in section 1.2. Aspects of computational reactor physics relevant to this work are presented
and discussed in section 1.3. The motivation of the project is presented in section 1.4. Finally,
the structure of the thesis is described in section 1.5.

1.1 Background

Nuclear power comprises approximately 10% of global electricity production, making it the
second-largest source of carbon-neutral energy after hydro-power. As of the 1st of January of
2023, there were 411 operating nuclear reactors distributed across 32 countries, 27 reactors
in suspended operation in Japan and India and 58 more under construction in 18 countries.
During 2022, 6 new reactors were connected to the electrical grid with a combined electric
power of 7,400 MWe and the construction of 8 reactors with 9,125 MWe started. Given its
minimal carbon emissions, nuclear energy stands as a pivotal component in facilitating the
transition toward cleaner and more sustainable energy sources [1].

Most operating nuclear power reactors are water-cooled thermal reactors and are predominantly
of two types: pressurized water reactors (PWR) and boiling water reactors (BWR). In these
systems, neutrons are slowed down, i.e. moderated, with light water to thermal energies (< 1
eV) to induce the fissions in fissile material. An isotope that has a large probability of fissioning
when struck by a thermal neutron is called fissile. Examples of fissile isotopes are U233, U235,
Pu239 and Pu241. In Figure 1.1 the fission cross section for the fissile isotopes mentioned above
is depicted as a function of energy. For these isotopes, the fission cross section for energies below
1 eV (which can be considered as an upper limit for the thermal range) is higher than 25 barns,
with an exponentially increasing trend towards less energetic regions. Naturally occurring
uranium only contains 0.711% of U235, then the nuclear fuel needs to be enriched between 3%
and 5% of U235 to sustain a chain reaction in thermal reactors. Such an arrangement leads to
poor utilization of the uranium resources since most of the uranium ore contains U238. Fast
nuclear reactors can make use of the remaining 99% of uranium resources in a more efficient way.

1
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Figure 1.1: Fission cross section as a function of energy for fissile isotopes. Extracted from the
JEFF-3.3 library [2], using the JANIS software [3].

1.2 Fast reactors

The first fast reactor ever built was the reactor Clementine in Los Alamos, 1946. After the
enthusiasm of Enrico Fermi and Walter Zinn, the fast reactor EBR-1 (Experimental Breeder
Reactor), designed by Los Alamos Scientific Laboratory and Argonne National Laboratory,
was built in Idaho Falls, 1951, becoming the first-ever nuclear reactor of any type to produce
electricity. The power generated by the EBR-1 was 200 kWe, which was enough to provide the
needs of the building. In the next three decades 1950s, 1960s, and 1970s, more experimental
liquid metal fast breeding reactors (LMFBRs) cooled by sodium or lead were developed in
the US, France, UK, Germany, Japan, and the Soviet Union. By the beginning of the 1980s,
the first large-scale sodium-cooled fast breeder nuclear power station Superphènix (SPX) was
nearing completion with an expected output capacity of 1200 MWe [4]. The SPX reactor
achieved criticality for the first time in September 1985, and full power in December 1986 to
be later shut down permanently in December 1998.

One of the key components of a fast reactor is the breeding process, where fissile material,
such as U233, U235, Pu239, or Pu241, is created from fertile isotopes such as Th232, U234, U238, or
Pu240. The two main conversion chains are the conversion of U238 into Pu239 and the conversion
of Th232 into U233, being the first one the most efficient. The two chains are as follows:

2
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238
92 U −−→

(n,γ)

239
92 U

β−
−−−−→
(23.5m)

239
93 Np

β−
−−−−→
(2.35d)

239
94 Pu (1.1)

232
90 Th −−→

(n,γ)

233
90 Th

β−
−−−−→
(23.4m)

233
91 Pa

β−
−−−→
(27d)

233
92 U (1.2)

A characteristic of fertile isotopes is that their probability to fission is very low (< 5 barns)
when struck by a neutron with energies in the order of ≤1 eV, see Figure 1.2.

Figure 1.2: Fission cross section as a function of energy for fertile isotopes. Extracted from the
JEFF-3.3 library [2], using the JANIS software [3].

For a reactor to be called breeder, the ratio of produced (PF) to consumed (CF) fissile material,
also called the breeding ratio (BR), needs to be higher than one, i.e.,:

BR =
PF

CF
> 1 (1.3)

The breeding process is influenced by the neutron spectrum of the reactor. Figure 1.3 shows
the neutron spectrum for the thermal reactors PWR and Very High-Temperature Reactor
(VHTR), and for the fast reactors Lead cooled Fast reactor (LFR) with nitride fuel-type and a
Sodium Fast Reactor (SFR) with metal and oxide fuel-type. Fast systems are more suitable
for breeding than thermal systems because their neutron spectrum is shifted towards energies

3
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larger than 0.1 keV and is not flattened out by neutron thermalization.

Figure 1.3: Neutron spectrum characteristic of different type of reactors. Taken from Ref. [5].

To sustain the chain reaction and have energy output, the fission reactions are still needed while
breeding. Consequently, very high enrichment of fissile isotopes in a fast reactor is required,
due to the fast neutron spectrum and the relatively low fission cross sections at high neutron
energies. The enrichment can go from 9% to 23% in fissile fraction in the initial fuel mixture.
In a nuclear reactor, the amount of energy extracted per unit mass of initial fuel is called
burnup, its requirements are higher for a fast system, and this comes directly related to the
high fissile fraction. While for a LWR a burnup of 30 MWd/kg can be acceptable, for a fast
breeder reactor the requirements for an economically feasible operation are in the order of
100MWd/kg.

Liquid metals and gases are the coolants that comply with the requirements for a fast breeder
reactor: 1) no neutron moderation, 2) high heat transfer coefficient for a high power density
system, and 3) very low parasitic neutron absorption. The most commonly used are sodium
and lead-bismuth eutectic.

The cladding used in a fast breeder reactor differs from the one used in a LWR. The primary
requirements are: capable of resisting very high temperatures, good withstanding of neutron
fluence, chemical compatibility, and low absorption of neutrons. The 316 stainless steel is
a typical choice for the cladding because of its good strength and corrosion performance at
high temperatures, and also to the resistance to high neutron fluence characteristic of liquid
metal-cooled fast breeder reactor.

4
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The core of a fast system typically includes 3 zones: the fissile core, the blanket, and the shielding.
The fissile core is where the majority of the fissile material is placed and the region with highest
power density. The blanket, which is where the breeding process takes place, can be internal or
external. The internal breeding concept involves mixing fertile material assemblies with fissile
material assemblies, while the external consists of having a well-defined blanket section. Then,
the reactor core is surrounded by radial and axial shielding that serves as a reflector of neutrons.

A tight fuel arrangement is needed for a fast system, in order to minimize the fissile material
loading by mainly reducing the neutron leakage. Thus maximizing the fuel volume fraction is
preferred where a hexagonal arrangement is the solution. In contrast, an LWR uses mainly
square arrangement to optimize the water-to-fuel ratio which also provides manufacturing
advantages. A fuel assembly for a sodium-cooled reactor, also called sub-assembly, consists of a
cluster of normally more than 200 fuel pins separated by a spiral wire wrap within a hexagonal
channel. A fuel pin generally includes an active region, lower and/or upper axial blanket with
an upper and/or lower gas plenum. The dimensions of each zone depend on the design of the
reactor.

1.3 Computational reactor physics for fast systems

During the lifetime of a nuclear power plant from the design stages until its final decommis-
sioning, several analyses are needed to ensure safe and efficient operation. One analysis that is
important for the reactor core is commonly referred to as neutronics modeling and it leads to
the estimation of the neutron multiplication factor and the spatial distribution of the neutron
flux in the system. This requires advanced techniques which can be based on a deterministic
or a stochastic approach.

According to the deterministic approach, approximations may be introduced to simplify the
complexity of the system and/or the modeling of terms in the neutron transport equation,
the neutron transport equation may be discretized with respect to the independent variables,
i.e., time, energy, position, and solid angle, and then the problem is solved numerically in an
iterative manner.

In the probabilistic or Monte Carlo approach, no equation is solved, but the history of a
neutron is simulated probabilistically from birth to death where all the variables in the system
(energy, angle, and position) are sampled randomly along the life of the neutron. Monte
Carlo calculations allow to handle very complex geometries and represent the actual physics
of the system. To be able to generate an accurate solution and reduce the uncertainty due
to its probabilistic nature, several neutron histories need to be simulated which raises the
computational cost.

Hybrid methods have been studied with different objectives, such as variance reduction and
the convergence of the fission source in Monte Carlo, as well as the development of Multi-stage
Response-function Transport (MRT) methods. The term ’hybrid’ was originally coined to
incorporate biasing parameters into Monte Carlo simulations, calculated deterministically to
reduce uncertainty in source-detector problems, particularly for detectors located far from the

5
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source [6]. Efforts to enhance the convergence of the fission source in Monte Carlo include
the coarse mesh finite difference (CMFD) method developed by Massachusetts Institute of
Technology and the University of Michigan [7], [8]. An alternative, although less common,
hybrid methodology is based on a deterministic approach to resolve the energy dependence of
the neutron flux in the fast and thermal regions and a Monte Carlo approach for the resonance
region. In this case, the solutions are then coupled through the scattering source to ultimately
obtain the neutron distribution [9].

The MRT methods, are used to solve neutron transport problems via a two-step procedure.
First, the domain is subdivided into multiple subdomains or stages, and a set of coefficients or
response functions are pre-calculated with Monte Carlo for each of the subdomains. Second,
a linear system of equations is built from the pre-calculated set of coefficients and is solved
iteratively in a deterministic fashion to calculate the multiplication factor and the spatial
distribution of neutron scalar flux [10]. Previous efforts in the category of MRT methods are
those made by Virginia Tech with the code RAPID [11] and Georgia Tech with the software
COMET [12]. In RAPID, the fission matrix methodology is used, which involves calculating
a set of fission coefficients for a fraction of a square assembly with Monte Carlo, typically
through fixed source calculations. This set is then used as a database to solve a linear system
of equations for determining the neutron distribution in larger systems. On the other hand,
the methodology used in COMET relies on the calculation of a set of response expansion
coefficients for a determined set of sub-systems inside a coarse mesh. The coefficients are
arranged into a linear system of equations to calculate the effective multiplication factor and
the angular neutron flux distribution. Another work developed in Chalmers, which is the
basis of this thesis, applies the Interface Current Method (ICM) and was demonstrated over a
thermal system [13].

1.4 Motivation and objectives of the project

The current project investigates a hybrid computational framework for static calculations of
fast reactor cores. The framework relies on the Interface Current Method and belongs to the
category of multi-stage response-function transport. The ICM begins by dividing the domain
into a set of subsystems, i.e., coarse mesh. Each subsystem is further refined into a fine mesh.
Then, it uses the collision probabilities inside the nodes of the coarse mesh as a set of response
functions or coefficients to transmit the neutron information between the fine mesh and the
coarse mesh. To calculate the collision probabilities needed in the response matrix method,
the use of a Monte Carlo transport code is explored. Given the assumption that the neutron
emission rates inside the fine mesh are known, the set of collision probabilities is combined
into a linear system of equations and solved iteratively, to calculate the scalar neutron flux in
the fine mesh and the neutron multiplication factor.

The hybrid strategy aims to leverage on the computational efficiency of deterministic methods
while ensuring a certain level of accuracy and reliability through the probabilistic part.

6
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1.5 Structure of the thesis

This thesis presents a hybrid framework for static calculations of fast reactor core and is
structured as follows. Chapter 2 covers the formulation of the interface current method
used for the hybrid framework. Chapter 3 describes the design of the hybrid framework, the
procedure for the estimation of the collision probabilities via Monte Carlo, and the deterministic
algorithm. Chapter 4 discusses the verification and the performance of the hybrid framework
using problems obtained from a sodium-cooled fast breeder reactor. Chapter 5 provides
conclusions and possible future developments of the framework.
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Chapter 2

Theoretical Background

The integro-differential and integral forms of the neutron transport equation are introduced in
section 2.1. The interface current method which is the base of the hybrid framework developed
in this work is derived in section 2.2.

2.1 Neutron transport equation

2.1.1 Integro-differential formalism

In a nuclear system, under steady-state conditions, the distribution of neutrons with respect to
position, solid angle, and energy is given by the static neutron transport equation. The methods
reported hereafter follow the derivations of Ref. [14]. Considering a neutron multiplying medium
without external sources, the integro-differential form of this equation reads:

Ω · ∇ψ(r,Ω, E) + Σt(r, E)ψ(r,Ω, E) = q(r,Ω, E) (2.1)

with the neutron source defined by:

q(r,Ω, E) =

∫
4π

∫ ∞

0

Σs(r,Ω
′ → Ω, E ′ → E)ψ(r,Ω′, E ′)dE ′d2Ω′

+ χ(r, E)

∫
4π

∫ ∞

0

νΣf (r, E
′)ψ(r,Ω′, E ′)dE ′d2Ω′,

(2.2)

where ψ(r,Ω, E) is the angular neutron flux with dependence on position, solid angle, and
energy. In Eq. (2.1), the left-hand side represents the total losses of the system and the
right-hand side represents the total source of neutrons. The first term of the left-hand-side of
the equation is the streaming operator Ω · ∇ψ(r,Ω, E) that accounts for losses of neutrons
through a given surface of a volume. The second term Σt(r, E)ψ(r,Ω, E) is the total rate at
which neutrons are lost due to a collision reaction. In a neutron multiplying system without
external neutron sources, the term on the right-hand side includes two contributions: the
production due to scattering reactions and the neutrons born from fission. In the case of static
problems, the precursors of delayed neutrons are assumed in equilibrium and the total fission
production spectrum (χ) takes into account both prompt and delayed neutrons. The first term
of the right-hand side of Eq. (2.2):∫

4π

∫ ∞

0

Σs(r,Ω
′ → Ω, E ′ → E)ψ(r,Ω′, E ′)dE ′d2Ω′,

9
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accounts for all the neutrons traveling within all energies E ′ within all solid angles Ω′ that are
scattered with speed E and solid angle Ω after the collision. The fission term

χ(r, E)

∫
4π

∫ ∞

0

νΣf (r, E
′)ψ(r,Ω′, E ′)d2Ω′dE ′

accounts for the total number of neutrons produced with energy E from fission induced by
neutrons traveling with speed E ′ and having a solid angle Ω′ before the collision. Integrating
the fission term for all solid angles to remove the angular dependency from the neutron flux
gives as a result:

χ(r, E)

4π

∫ ∞

0

νΣf (r, E
′)ϕ(r, E ′)dE ′, (2.3)

where ϕ(r, E ′) is the scalar neutron flux. To balance the neutron losses with the production of
neutrons, the fission term in the source is simply divided by the multiplication factor k:

q(r,Ω, E) =

∫
4π

∫ ∞

0

Σs(r,Ω
′ → Ω, E ′ → E)ψ(r,Ω, E ′)dE ′d2Ω′

+
χ(r, E)

4πk

∫ ∞

0

νΣf (r, E
′)ϕ(r, E ′)dE ′

(2.4)

In a critical system where the neutron losses are equal to the production of neutrons, the
effective multiplication factor takes a value equal to unity (k = 1). In a supercritical system
where the production of neutrons is higher than the losses the multiplication factor is greater
than unity (k > 1), thus balancing the Eq. (2.1) to compensate the excess of neutrons
and satisfying the equality. In the opposite case when the system is subcritical (k < 1) the
equation is balanced in such a manner that the fission neutron production term is increased to
compensate for the higher losses.

2.1.2 Multigroup formalism

To solve the neutron transport equation within a deterministic framework, the multigroup
approximation is used. Accordingly, all the continuous-energy dependence of the neutrons is
handled by using the multigroup approximation where all the continuous-energy dependent
variables are discretized splitting the continuous-energy spectrum of the neutrons into a number
G of energy bins [14]:

[Emin;Emax] =
1⋃

g=G

[Eg;Eg−1] (2.5)

When introducing the multigroup formalism to the neutron transport equation, the reaction
rates and the neutron flux need to be averaged in each of the energy bins. The averaging
process is simply done by integrating the angular neutron flux and cross sections in each of the
energy intervals [Eg;Eg−1] to preserve the reaction rates as follows:

ψg(r,Ω) =

∫ Eg−1

Eg

ψ(r,Ω, E)dE (2.6)

10
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Σt,g(r) =

∫ Eg−1

Eg
Σt(r, E)ϕw(E)dE∫ Eg−1

Eg
ϕw(E)dE

(2.7)

Σs,g′→g(r,Ω
′ → Ω) =

∫ E′
g−1

E′
g

ϕw(E
′)
∫ Eg−1

Eg
Σs(r,Ω

′ → Ω, E ′ → E)dE ′dE∫ E′
g−1

E′
g

ϕw(E ′)dE ′
(2.8)

(νΣf )g′(r) =

∫ E′
g−1

E′
g

νΣf (r, E
′)ϕw(E

′)dE ′∫ E′
g−1

E′
g

ϕw(E ′)dE ′
(2.9)

ϕg′(r) =

∫ E′
g−1

E′
g

ϕ(r, E ′)dE ′ (2.10)

χg(r) =

∫ Eg−1

Eg

χ(r, E)dE (2.11)

where ϕw(E) is a weight function characteristic of the system. Now we can rewrite Eq. (2.1)
in its multigroup form:

Ω · ∇ψg(r,Ω) + Σt,g(r)ψg(r,Ω) = qg(r,Ω) (2.12)

with:

qg(r,Ω) =
G∑

g′=1

∫
4π

Σs,g′→g(r,Ω
′ → Ω)ψg′(r,Ω

′)d2Ω′

+
χg(r)

4πk

G∑
g′=1

(νΣf )g′(r)ϕg′(r),

(2.13)

and
g = 1, . . . , G.

2.1.3 Integral formulation

The integral neutron transport equation can be deduced from the integro-differential form.
Considering that the gradient Ω · ∇ is the directional derivative along the direction of neutron
travel between the points B(r) and A(r+ uΩ) depicted in Figure 2.1 with u being the traveled
distance, the integro-differential form of the neutron transport equation can be rewritten as
[15]:

d

du
ψg(r+ uΩ,Ω) + Σt,g(r+ uΩ)ψg(r+ uΩ,Ω) = qg(r+ uΩ,Ω) (2.14)

Given an observation point at A(r) and looking at the neutrons that were emitted at the point
B with solid angle Ω, with the notation depicted in Figure 2.2, a more convenient expression
can be obtained from Eq. (2.14), i.e.,

− d

dR
ψg(r−RΩ,Ω) + Σt,g(r−RΩ)ψg(r−RΩ,Ω) = qg(r−RΩ,Ω) (2.15)

11
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After manipulation of the equation above (see details in Ref. [15]), the integral form can be
derived and reads:

ψg(r,Ω) = ψg(r−RΩ,Ω)e−τg(r,r−RΩ) +

∫ R

0

qg(r−R′Ω,Ω)e−τg(gr,r−R′Ω)dR′ (2.16)

where τg(r, r−R′Ω) is the optical path between r and r−R′Ω defined by:

τg(r, r−R′Ω) =

∫ R′

0

Σt,g(r−R′′Ω)dR′′ (2.17)

Ω

A(r + uΩ)

B(r)

u

Figure 2.1: Neutron travel along the direction Ω. The flight distance between B and A is
denoted by u. Figure derived from Ref. [14].

ΩA(r)

B(r - RΩ)

R

Figure 2.2: Neutron travel along the direction Ω between B(r − RΩ) and A(r). The flight
distance between B and A is denoted by R. Figure derived from Ref. [14].

2.2 Interface current method

The strategy of the Interface Current Method (ICM) is to divide the overall system into
smaller sub-systems according to a spatial coarse mesh. Then, the partial neutron currents are
determined assuming that the neutron emission densities inside the subsystem are known; this
is also referred to as solving the global problem. Every sub-system is further discretized using a
spatial fine mesh to calculate the neutron emission densities assuming that the partial neutron
currents are known; this leads to the solution of the so-called local problem. An example of the
two computational meshes for a square lattice of 5x5 fuel pins is depicted in Figure 2.3. The
global problem and local problem equations are derived from the integral neutron transport
equation in the following two subsections.
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Local problem Global problem

Figure 2.3: Representation of a coarse mesh (bold line) and a fine mesh (thin line). Figure
derived from Ref. [14].

2.2.1 Local problem

Recasting Eq. (2.16) and rewriting it for the incoming neutron angular flux as shown in Figure
2.4 gives:

ψg(r,Ω) = ψg(rin,Ω)e−τg(r,rin) +

∫ 0

sin

qg(r+ s′Ω,Ω)e−τg(r,r+s′Ω)ds′, (2.18)

where rin = r+ sinΩ. Integrating the equation above in all directions to remove the angular
dependency on the left-hand side of the equation, the balance of neutrons along the path of
the direction of travel of the neutron results in:

ϕg(r) =

∫
4π

ψg(rin,Ω)e−τg(r,rin)d2Ω+

∫
4π

∫ 0

sin

qg(r+ s′Ω,Ω)e−τg(r,r+s′Ω)ds′d2Ω, (2.19)

If we consider the boundary along the direction Ω from the point defined by the position
rin = r + sinΩ, the infinitesimal change in surface area (d2r′) spanned by a change in solid
angle d2Ω is given by:

d2r′|Ω ·N| = s2ind
2Ω = ||r− rin||2d2Ω, (2.20)

at any point defined by:

r′ = r+ s′Ω. (2.21)

13
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Ω

s in
sout

A(r)

In(r in
)

Out(rou
t)

boundary

boundary

Figure 2.4: Notation used to derive the interface current method. Figure derived from Ref.
[14].

Additionally, the infinitesimal change in volume (d3r′) spanned by change in solid angle Ω and
distance s′ is given by:

d3r′ = s2inds
′d2Ω = ||r− r′||2ds′d2Ω, (2.22)

Considering the right hand side of Eq. (2.19), the first integral becomes a surface integral by
inserting Eq. (2.20) and the second integral becomes a volume integral by inserting Eq. (2.22).
This leads to the following expression:

ϕg(r) =

∫
S

ψg,in(r
′,Ω)

e−τg(r,r′)

||r− r′||2
|Ω ·N′|d2r′ +

∫
V

qg(r
′,Ω)

e−τg(r,r′)

||r− r′||2
d3r′. (2.23)

In the interface current method formalism, one important step in the derivation of the equations
is to partition the total volume V of the system into sub-volumes Vi such that V =

⋃
i Vi and

to partition the total surface S of the system into smaller sub-surfaces Sa such that S =
⋃

a Sa.
Then, the previous equation can be rewritten as:

ϕg(r) =
∑
a

∫
Sa

ψg,in(r
′,Ω)

e−τg(r,r′)

||r− r′||2
|Ω ·N′|d2r′ +

∑
i

∫
Vi

qg(r
′,Ω)

e−τg(r,r′)

||r− r′||2
d3r′, (2.24)

The equation above is multiplied by the g-th transport corrected macroscopic total cross section
Σ0

t,g, integrated on a volume Vj, and assuming isotropic emission density:∫
Vj

Σ0
t,g(r)ϕg(r)d

3r =

∑
a

∫
Sa

ψg,in(r
′,Ω)

∫
V j

Σ0
t,g(r)

e−τg(r,r′)

||r− r′||2
|Ω ·N′|d2r′d3r

+
∑
i

∫
Vi

Qg(r
′)

∫
Vj

Σ0
t,g(r)

e−τg(r,r′)

4π||r− r′||2
d3r′d3r,

(2.25)

where Qg(r
′) represents the emission density under the assumption of isotropic scattering. Eq.

(2.25) can be arranged in a compact form, i.e.,

Σ0
t,g,jϕg,jVj =

∑
a

SaJin,g,aPg,a→j +
∑
i

ViQg,iPg,i→j (2.26)
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The volume averaged quantities to preserve the reaction rates are given by:

ϕg,j =
1

Vj

∫
Vj

ϕg(r)d
3r (2.27)

Qg,i =
1

Vi

∫
Vi

Qg(r)d
3r (2.28)

Σ0
t,g,j =

1

Vjϕg,j

∫
Vj

Σ0
t,g(r)ϕg(r)d

3r (2.29)

with the surface-averaged incoming neutron current defined by:

Jin,g,a =
1

Sa

∫
Sa

∫
(2π),Ω·N<0

ψg(r
′,Ω)|Ω ·N|d2r′d2Ω (2.30)

Since e−τg(r,r′) represents the probability of non-interaction between r and r’ for the energy
group g, Pg,i→j is the probability for a neutron emitted isotropically and homogeneously in the
region i to have its next interaction in the region j and it is given by:

Pg,i→j =
1

Vi

∫
Vi

∫
Vj

Σ0
t,g(r)

e−τg(r,r′)

4π||r− r′||2
d3r′d3r. (2.31)

Likewise, Pg,a→j is the probability for a neutron emitted isotropically and homogeneously from
surface a to have its first interaction in region j and it is given by:

Pg,a→j =
1

SaJin,g,a

∫
Sa

ψg,in(r
′,Ω)

∫
V j

Σ0
t,g(r)

e−τg(r,r′)

||r− r′||2
|Ω ·N′|d2r′d3r (2.32)

2.2.2 Global problem

To obtain the equations for the global problem, the steps are similar to those for the local
problem equations. Taking again Eq. (2.16) and rewriting it for the outgoing angular flux, it
can be read as:

ψg(rout,Ω) = ψg(rin,Ω)e−τg(rout,rin) +

∫ 0

sin

qg(rout + s′Ω,Ω)e−τg(rout,r+s′Ω)ds′. (2.33)

The previous equation is multiplied by |Ω · N′| and integrated over a given surface S and
integrated again for all solid angles in a half sphere such that Ω ·N > 0. The integral with
respect to the solid angle is replaced by a surface integral and the integral with respect to the
solid angle and the distance sin can be replaced by a volume integral. After partitioning the
total volume of the system V into smaller sub-volumes Vi and the total surface S into smaller
sub-surfaces Sa and Sb, the equations for the global problem, under the condition that the
neutron emission density is isotropic, can be written as:∫

S

∫
(2π),Ω·N>0

ψg,out(r,Ω)|Ω ·N′|d2rd2Ω

=
∑
b

∫
Sa

|Ω ·N|d2r
∫
Sb

ψg,in(r
′,Ω)

e−τg(r,r′)

||r− r′||2
|Ω ·N′|d2r′

+
∑
i

∫
Sa

|Ω ·N|d2r
∫
Vi

Qg(r
′)

e−τg(r,r′)

4π||r− r′||2
d3r′

(2.34)
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The compact form of Eq. (2.34) is given as:

SaJout,g,a =
∑
b

SbJin,g,bPg,b→a +
∑
i

ViQg,iPg,i→a (2.35)

where the following averaged quantities are defined:

Jout,g,a =
1

Sa

∫
Sa

∫
(2π),Ω·N>0

ψout,g(r,Ω)|Ω ·N′|d2rd2Ω (2.36)

Since e−τg(r,r′) represents the probability of non-interaction between r and r’ for the energy
group g, Pg,i→a is the probability for a neutron emitted isotropically and homogeneously in the
region i to leave the sub-system without interacting crossing the surface a and it is given by:

Pg,i→a =
1

Vi

∫
Sa

|Ω ·N|d2r
∫
Vi

e−τg(r,r′)

4π||r− r′||2
d3r′ (2.37)

Likewise, Pg,b→a is the probability for a neutron emitted isotropically and homogeneously from
surface b to exit the sub-system without interacting through surface a being given by:

Pg,b→a =
1

SbJin,g,b

∫
Sa

|Ω ·N|d2r
∫
Sb

ψin,g(r
′,Ω)

e−τg(r,r′)

||r− r′||2
|Ω ·N′|d2r′ (2.38)

2.2.3 Overall problem

If Eqs. (2.26) and (2.35) are used directly to solve the entire system, the number of probabilities
to calculate would be enormous and prohibitively expensive. If we divide the system into
sub-systems and define SI and VI as subsets containing all the surfaces and the volumes of the
system respectively, we can rewrite the equations for the global problem and local problem for
each sub-system as:

Σ0
t,g,jϕg,jVj =

∑
a∈SI

SaJin,g,aPg,a→j +
∑
i∈VI

ViQg,iPg,i→j for j ∈ VI (2.39)

SaJout,g,a =
∑
b∈SI

SbJin,g,bPg,b→a +
∑
i∈VI

ViQg,iPg,i→a for a ∈ SI (2.40)

with the emission density in region i given by:

Qg,i =
1

4π

G∑
g′=1

[
Σ0

s0,g′→g,i +
χg,i

k
νΣf,g′,i

]
ϕg′,i (2.41)

where Σ0
s0,g′→g,i is the scattering cross section with transport correction applied at the level 0.

Using matrix notation, the Eqs. (2.39) and (2.40) can be written as follows:

Φ = SJin + Φsrc (2.42)

Jout = RJin + Jsrc (2.43)

with:
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Φsrc = TQ (2.44)

Jsrc = UQ (2.45)

In Eqs. (2.42) and (2.43) the matrices S, R, U, T are block matrices where each block is
associated with a coarse node of the global mesh, i.e.,:

S =


S1 0 · · · 0

0 S2 · · · 0
...

...
. . .

...

0 0 0 SI

 R =


R1 0 · · · 0

0 R2 · · · 0
...

...
. . .

...

0 0 0 RI



U =


U1 0 · · · 0

0 U2 · · · 0
...

...
. . .

...

0 0 0 UI

 T =


T1 0 · · · 0

0 T2 · · · 0
...

...
. . .

...

0 0 0 TI


If we consider a coarse node (or sub-system) with I or J number of regions being enclosed by
A or B number of surfaces, with I = J and A = B, the matrices SI , RI , UI , and TI are given
by:

SI =


S1Pg,1→1 S2Pg,2→1 · · · SAPg,A→1

S1Pg,1→2 S2Pg,2→2 · · · SAPg,A→2

...
...

. . .
...

S1Pg,1→J S2Pg,2→J · · · SAPg,A→J

 RI =


S1Pg,1→1 S2Pg,2→1 · · · SBPg,B→1

S1Pg,1→2 S2Pg,2→2 · · · SBPg,B→2

...
...

. . .
...

S1Pg,1→A S2Pg,2→A · · · SBPg,B→A



UI =


V1Pg,1→1 V2Pg,2→1 · · · VIPg,I→1

V1Pg,1→2 V2Pg,2→2 · · · VIPg,I→2

...
...

. . .
...

V1Pg,1→A V2Pg,2→A · · · VIPg,I→A

 TI =


V1Pg,1→1 V2Pg,2→1 · · · VIPg,I→1

V1Pg,1→2 V2Pg,2→2 · · · VIPg,I→2

...
...

. . .
...

V1Pg,1→J V2Pg,2→J · · · VIPg,I→J


If we consider a system with G energy groups and J number of regions, the vectors Φ and Q
containing the scalar flux and the total source of neutrons would be respectively given by:
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Φ =



ϕ1,1

:

ϕ1,J

:

ϕG,1

:

ϕG,J


Q =



Q1,1

:

Q1,J

:

QG,1

:

QG,J


(2.46)

The outward currents from one sub-system are inward currents to another. In addition, the
inward currents at the boundary of the system depend on the type of chosen condition. The
relationships between outward and inward currents of sub-systems and the boundary conditions
are described by using a connectivity matrix M as follows:

Jin = MJout. (2.47)

After rearranging, the resultant equation for the neutron current balance is given by:

Jin = (I−MR)−1MJsrc, (2.48)

which will be solved simultaneously with Eq. (2.42). As an illustrative example, if a system
with 4 coarse nodes and 16 surfaces with reflective boundary conditions in all directions is
taken (see Figure 2.5), Eq. (2.47) for each energy group is given by:



Jin,1
Jin,2
Jin,3
Jin,4
Jin,5
Jin,6
Jin,7
Jin,8
Jin,9
Jin,10
Jin,11
Jin,12
Jin,13
Jin,14
Jin,15
Jin,16



=



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



·



Jout,1
Jout,2
Jout,3
Jout,4
Jout,5
Jout,6
Jout,7
Jout,8
Jout,9
Jout,10
Jout,11
Jout,12
Jout,13
Jout,14
Jout,15
Jout,16
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Figure 2.5: 2x2 square lattice with 4 coarse nodes and 4 surfaces by coarse node. The surfaces
are numbered clockwise for each coarse node, starting from the west surface.
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Chapter 3

Hybrid Solver

The hybrid solution strategy is introduced in section 3.1. The general algorithm of the solver
is addressed in section 3.2.

3.1 Hybrid solution strategy for the Interface Current

method

In Chapter 2 the Interface Current method (ICM) was derived. It consists of a global problem
and a local problem, Eqs. (2.48) and (2.42) respectively. To be able to solve both problems a
set of collision probabilities and the cross sections need to be pre-calculated. This is done with
the Monte Carlo software Serpent [16]. Then a deterministic calculation is carried out with
the ICM to evaluate the multiplication factor and the scalar flux in the entire system. The
methodology for the estimation of the collision probabilities through Monte Carlo is based on
a previous feasibility study performed at Chalmers University of Technology (see Ref. [13]).

3.1.1 Serpent

The Monte Carlo software Serpent is an open-source continuous-energy 3D neutron and photon
transport developed by the Technical Research Centre (VTT) of Finland. It can be used for
a wide range of applications, such as reactor modeling, group constant generation, radiation
transport, and fusion. The physics model for neutron transport relies on classical collision
kinematics and Evaluated Nuclear Data Files (ENDF) which are based on experimental
measurements and theoretical nuclear models. In Serpent, universe-based constructive solid
geometry (CSG) is used to model the geometry of the systems of interest. Computer Aid
Design (CAD)-based geometry capabilities are also available for complex irregular structures.
The software is developed in a hybrid multi-core and multi-nodal parallel architecture that can
be installed in personal computers or large supercomputer clusters. Within reactor applications,
Serpent can calculate neutron flux, power, and reaction rates distribution in different cells or
materials through standard detectors [16].

To simulate the neutron transport in a nuclear system, each neutron is tracked individually
during its lifetime, i.e., neutron history. Accordingly, the initial position, energy, and fly
direction of a neutron in the system are randomly sampled. Then, the distance of flight is
sampled according to an exponential distribution. Finally, the neutron is tracked after several
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collisions until it is absorbed or crosses the boundary of the computational domain. If the
neutron causes a fission, the neutron history is terminated and new neutrons are produced
which are tracked too. After a fixed number of neutron histories are simulated, a cycle is
completed and the process is repeated for a selected number of cycles.

The neutron tracking in Serpent relies on two methods: ray-tracing-based surface tracking
and rejection sampling-based delta-tracking. These techniques have their advantages and
disadvantages that depend on the complexity of the geometry and the localization of strong
neutron absorbers. Serpent switches between these two techniques on the fly which increases
the overall computational and probabilistic efficiencies of the simulation [17].

During the Monte Carlo simulation, specific quantities of interest, known as tallies, such as
reaction rates and neutron flux, can be recorded. These tallies are derived from the total
number of neutron histories in a cycle. After simulating a fixed number of cycles, the final
tally is estimated as a statistical average, providing a tally value and the associated standard
deviation.

3.1.2 Previous in-house work

The methodology for the calculation of the collision probabilities that is used in this work
was first tested within a previous feasibility study performed in the Nuclear Engineering
group of Chalmers University Of Technology [13]. Accordingly, the collision probabilities
were estimated for a typical square lattice of a light-water system in two energy groups. Two
coarse meshes were used, a single-pin and 2x2 fuel pins. Then, the multiplication factor
and scalar flux were calculated via a hybrid methodology obtaining good agreement with
the reference solution. Additionally, the hybrid solver algorithm was implemented in MATLAB.

In this project, the computational framework is rewritten in Python with C extensions in
charge of heavy calculations and built in a more coherent and flexible architecture that can
accommodate more easily future developments. In addition, the focus is on the optimization
of the methodology for the simulations of fast systems, which are characterized by hexagonal
geometry and finer energy group structures.

3.2 Design

The hybrid computational framework developed in this work is shown in Figure 3.1, and it was
built in a modular structure focused on scalability in order to facilitate future expansions. The
modules are named Materials, Geometry, Mesh, Serpent, CollisionProbabilities, CrossSections,
and ICM, each of them written in Python. First, the framework requires the preparation of
a Python input file that consists of a geometry description of the system with the related
material properties. Information about the types of meshes associated with the global problem
and local problems is also required. The calculation of the collision probabilities is performed
with Serpent and requires to select a cross section library, the neutron population, skip cycles,
and active cycles which will be provided through the input file.
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Based on the type of mesh provided in the input file, the second step in the framework is to gen-
erate the coarse mesh and fine mesh. Then, the cross sections and the collision probabilities need
to be calculated for the coarse nodes. In the next step, the framework generates a set of Serpent
input files for each coarse node, that are simulated sequentially to estimate neutron emission
and reaction rates. A file is generated for every region within the fine mesh, the surfaces of the
coarse node, and one file to generate the macroscopic cross sections. After this step is completed,
the hybrid framework reads and interprets the output data from the Monte Carlo simulations
to calculate the collision probabilities. Finally, the collision probabilities and the macroscopic
cross sections are provided as parameters to a static ICM-based deterministic solver where
the effective multiplication factor keff and the scalar fluxes inside the fine regions are calculated.

Input Output

HYBRID

Serpent2

Geometry

Materials Mesh  ICM
  Collision
probabilities
    and XS

MC parameters

Figure 3.1: Data flow for the hybrid framework

3.3 Geometry representation

The geometric description of the system required in the input is generated using a Constructive
Solid Geometry (CSG) approach [18]. The CSG technique is used in computer graphics and
computer-aid design (CAD) to represent complex bodies from basic shapes or surfaces such as
spheres, cylinders, planes, and prisms. According to the CSG formulation used in the hybrid
framework, the system geometry is built with 5 components: surfaces, half spaces, regions,
cells, and universes.

A basic surface defined in the Euclidean space is described by a function f(x, y, z) that di-
vides the Euclidean space into three subsets of coordinates, where the first subset is given by
(f(x, y, z) = 0) and is related to the surface. A half space is defined by the two other subsets
of coordinates. The second subset of coordinates corresponds to f(x, y, z) < 0, i.e., to the
negative half-space. The third subset is the positive half-space with f(x, y, z) > 0. This is
represented in Figure 3.2(a) for a circular surface. A region is then the result of a boolean
operation – such as intersection and union – between one or more half-spaces. For example,
a hexagon can be represented by the intersection of six half-spaces defined by 6 planes, see
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Figure 3.2(b).

A cell can then be defined inside a region and be filled with a material. Finally, one or more
cells can then be grouped into a universe. The geometry of the system is stored in a data
structure often called Binary Space Partitioning (BSP) tree, where each leaf of the tree is
characterized by a boolean operation. A nuclear reactor core is typically arranged as a lattice
of fuel pins/assemblies. To reproduce this lattice configuration, a hierarchy of components can
be used in CSG, as shown in Figure 3.3.

(a) circular surface (b) hexagonal surface

Figure 3.2: Description of a half space for a surface.

Lattice

Pin-1 Pin-2 Pin-3 Pin-N

cell-1

cell-2

cell-3

Region-1

HalfSpace-1 HalfSpace-2

...

Figure 3.3: Hierarchical representation of a lattice universe.

3.4 Collision probabilities

Two sets of collision probabilities need to be estimated prior to the solution of the ICM Eqs.
(2.42) and (2.48), i.e., one for the neutrons emitted from the fine regions and one for the
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neutrons emitted from the surfaces. The total emission of neutrons from region i and from
surface a are respectively equal to:

Ng,i =
∑
j

Rg,i→j +
∑
a

Rg,i→a, (3.1)

Ng,a =
∑
i

Rg,a→i +
∑
b

Rg,a→b, (3.2)

where:

• Ng,i: Total neutron emission from region i in energy group g.

• Ng,a: Total neutron emission from surface a in energy group g.

• Rg,i→j: Neutrons in energy group g, that are emitted in region i and have the first
collision in region j.

• Rg,i→a: Neutrons in energy group g, that are emitted in region i and escape through
surface a without having a collision.

• Rg,a→i: Neutrons in energy group g, that are emitted from surface a and have the first
collision in region i.

• Rg,a→b: Neutrons in energy group g, that are emitted from surface a and escape through
surface b without having a collision.

The collision probabilities can then be as follows:

Pg,i→j =
Rg,i→j

Ng,i

(3.3)

Pg,i→a =
Rg,i→a

Ng,i

(3.4)

Pg,a→i =
Rg,a→i

Ng,a

(3.5)

Pg,a→b =
Rg,a→b

Ng,a

(3.6)

These probabilities are equivalent to those discussed in Section 2.2, see Eqs. (2.31), (2.32),
(2.37), and (2.38). To evaluate Eqs. (3.3) - (3.6) for a coarse node, Monte Carlo is used. For
this purpose, a model of the fine mesh within the coarse node is required, which includes a set
of detectors to tally the quantities of interest Rg,i→j, Rg,i→a, Rg,a→i, and Rg,a→b. The set of
detectors varies depending on the type of collision probability to be calculated. Considering
a system with nuclear fuel and non-fuel regions, the collision probabilities are computed for
three different types of neutron emissions, i.e., neutrons emitted from the fuel regions, neutrons
emitted from the non-fuel regions, and neutrons emitted from the surfaces.

The neutrons emitted from one region can have their next collision in one of the regions or
escape through one of the surfaces of the coarse node. Labels are used to track the neutrons
before their collisions. In Serpent, detectors can be set to count neutrons that interact in a
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region and assign a flag to them. When the neutrons have a collision or cross a surface, the
flag is removed and the corresponding detector is scored. The same methodology applies to the
neutrons coming from the surfaces. Once the emission rates are estimated, all the necessary
collision probabilities are calculated for every coarse node. The set of detectors used to estimate
the neutron emission rates is described in the following sections.

3.4.1 Neutron emission from fuel regions

A hexagonal fuel pin cell is considered and the total emission of neutrons from the fuel for the
case in Figure 3.4 is calculated with the following equation:

Ng,fuel = Rg,fuel→fuel +Rg,fuel→coolant +
6∑
a

Rg,fuel→a (3.7)

Figure 3.4: Simplified hexagonal fuel cell with fuel (in yellow) and coolant (in blue).

In the last equation eight quantities need to be calculated. The quantity Rg,fuel→fuel indicates
the neutron with first collision in the fuel, Rg,fuel→coolant the neutrons that have their first
collision in the coolant, and Rg,fuel→a the neutrons that escape through each of the six surfaces
of the cell without having a collision. Since the neutrons that are produced in the fuel cannot
be flagged in Serpent, the neutron emission rate Rg,fuel→fuel is calculated indirectly with the
following equation:

Rg,fuel→fuel = Rg,fuel,total −Rg,coolant→fuel −
6∑
a

Rg,a→fuel (3.8)

The total reaction rate Rg,fuel,total provides the neutrons that have a collision in the fuel after
having a collision in other regions or being emitted from the surfaces.

The process of counting the neutrons is illustrated in Figure 3.5. This is calculated as follows:

1. A detector for the inward current Jin is placed on the surface of the fuel and a flag #1 is
set.
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2. A detector for the outward current Jout is placed on the surface of the fuel and it scores
only if the flag #1 for Jin is not set, then a flag #2 is set. This flagging procedure
eliminates the neutrons that might have crossed the fuel region without interacting. Thus,
this detector only accounts for the neutrons that are emitted inside the fuel region and
exit the region.

3. All the neutrons that interact elsewhere in the cell and then interact in the fuel are
scored in another detector only if the flag #1 is set, i.e., second and third terms of the
right-hand side of Eq. (3.8). Then the flag #1 is reset.

4. The neutrons that are emitted from the fuel and have a collision in other region or escape
through one of the surfaces, i.e., second and third terms in the right-hand side of Eq.
(3.7), are estimated with several detectors only if the flag #2 is set. Then the flag #2 is
reset.

#2

#1

#1

#2

Figure 3.5: Counting of neutrons emitted from a fuel region.

3.4.2 Neutron emission from non-fuel regions

The total emission of neutrons from the coolant is given by:

Ng,coolant = Rg,coolant→fuel +Rg,coolant→coolant +
6∑
a

Rg,coolant→a (3.9)

The steps to estimate the neutron emission from a non-fuel region differ from that of the fuel
region. In this case, the set of detectors uses only a single flag to label the neutrons. First, a
detector is defined to score the neutrons that interact in the non-fuel region of interest and the
neutrons are flagged with #1. Second, the neutrons that interact later in the same non-fuel
region are flagged again with #1 after having the collision. Third, the neutrons that have a
collision in other regions or escape through one of the surfaces are scored in the other detectors,
finally, the flag #1 is reset. The counting procedure for neutrons emitted from a non-fuel
region is illustrated in Figure 3.6.
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#1
#1

#1#1

Figure 3.6: Counting of neutrons emitted from a non-fuel region.

3.4.3 Neutron emission from surfaces

The total emission of neutrons from the surfaces is given by:

Ng,a = Rg,a→fuel +Rg,a→coolant +
6∑
b

Rg,a→b (3.10)

To estimate the neutrons emitted from a generic surface a and having a collision in one of
the regions or escaping through the surfaces, the procedure consists of two steps. First, a
detector is assigned to score the incoming neutrons in each surface and a different flag for every
surface is set. Second, if the neutron has a collision and the flag from a given surface is set,
the detector is scored, and the flag is reset. This is depicted in Figure 3.7.

#2

#1

#3

#4

#5

#6

Figure 3.7: Counting of neutrons emitted from the surfaces.
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3.5 Solver routines

The hybrid solver includes subroutines to estimate the collision probabilities (CP) for the fine
regions inside every subsystem, then the matrices for the interface current method are generated.
The eigenvalue problem of the system associated with the static neutron transport equation is
solved iteratively using the power iteration method so that the effective multiplication factor
and the static fluxes are calculated.

3.5.1 Pre-calculation of the collision probabilities

After the coarse and fine meshes are generated, the coarse nodes that are geometrically
equivalent are grouped together into sub-sets. Then, a Serpent model is generated to perform
the simulations that lead to the estimation of the cross sections and the collision probabilities
for the fine regions of the coarse node and the surfaces. The Serpent model is used to calculate
the collision probabilities for the fine regions and surfaces, and the neutron macroscopic cross
sections. This process is depicted in Algorithm 1.

3.5.2 Solution of the eigenvalue problem

The algorithm implemented in the Hybrid framework is shown in the diagram of Figure 3.8.
Once the input file is provided, the collision probabilities are calculated in a sequential way. The
hybrid framework awaits Serpent2 to complete the simulations to then estimate the collision
probabilities. The next step is to allocate the matrices for the interface current method, and the
initial guess for the multiplication factor and the scalar flux. The transport sweep comprehends
an outer iteration also referred to as power iteration (PI) and an inner iteration called energy
group iteration. In each outer iteration the vector Q (Eqs. (2.41) and 2.46) is evaluated and
used to build the source vectors Φsrc (defined by Eq. (2.44)) and Jsrc (defined by Eq. (2.45))
are calculated for all energy groups, then the neutron current Jin and the scalar flux Φ are
computed for all energy groups. The effective multiplication factor keff is updated with Eq.
(3.11):

k
(n)
eff = k

(n−1)
eff

φ(n−1) · φ(n)

φ(n−1) · φ(n−1)
, (3.11)

where the superscript n denotes the quantity in the iteration n. The flux values φ(n) are
obtained by multiplying the vector Φ by the fission source as follows:

φ(n) = Φ(n) × F, (3.12)

with:
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F =



fj,i,g,g′ .. fj,i,g,G′ .. fJ,i,g,g′ .. fJ,i,g,G′

: : : :

fj,i,G,g′ .. fj,i,G,G′ .. fJ,i,G,g′ .. fJ,i,G,G′

: : : :

fj,I,g,g′ .. fj,I,g,G′ .. fJ,I,g,g′ .. fJ,I,g,G′

: : : :

fj,I,G,g′ .. fj,I,G,G′ .. fJ,I,G,g′ .. fJ,I,G,G′


(3.13)

where every component of the fission source matrix represents the probability for a neutron
with energy g ∈ G born from fission induced by a neutron with energy g′ ∈ G′ in region j ∈ J
to have its first interaction in the region i ∈ I and it is given by:

fj,i,g,g′ = Pj,i,gVjχj,gνΣf,j,g′ (3.14)

Algorithm 1 Collision probabilities generation algorithm.

1: create CoarseMesh() ▷ The coarse mesh is created
2: for all CoarseNode() ∈ CoarseMesh() do ▷ Loop over the coarse nodes
3: create FineMesh() ▷ Fine regions are created
4: end for
5: find coarse nodes subsets() ▷ Finds geometrically equivalent coarse nodes
6: for all CoarseNode() ∈ coarse nodes subsets() do ▷ Loop over the sub-sets
7: for all region ∈ CoarseNode do ▷ Loop over the fine regions
8: create SerpentFileRegion ▷ Serpent model is created for the fine region
9: run SerpentFileRegion ▷ Serpent model is simulated

10: read SerpentFileRegionOutput ▷ Serpent model output is read
11: calculate ProbabilitiesRegion ▷ CP calculation for the fine region
12: end for
13: create SerpentFileSurfaces ▷ Serpent model is created for the surfaces
14: run SerpentFileSurfaces ▷ Serpent model is simulated
15: read SerpentFileSurfacesOutput ▷ Serpent model output is read
16: calculate ProbabilitiesSurfaces ▷ CP calculation for the surfaces
17: end for
18: for all CoarseNode() ∈ CoarseMesh() do ▷ Loop over the coarse nodes in the mesh
19: replicate ProbabilitiesRegion ▷ CP of fine regions are copied
20: replicate ProbabilitiesSurfaces ▷ CP of surfaces are copied
21: end for

Finally the neutron source vectors Q, Jsrc, and Φsrc are updated to be used within the next
power iteration. The convergence criterion for the multiplication factor is given by:

ϵk =
k
(n)
eff − k

(n−1)
eff

k
(n−1)
eff

, (3.15)

and the convergence criterion for the neutron flux is given by:

ϵΦ =
max[Φ(n)]−max[Φ(n−1)]

max[Φ(n−1)]
, (3.16)
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Serpent2

Initial Guess:
      Φ, keff

Calculate neutron source:
            Q, Jsrc, Φsrc  

Calculate neutron currents:
    Jin (Global problem)

Calculate neutron flux:
  Φ (Local problem)

Calculate keff

Power iteration

Energy group
iteration

Allocation of matrices:
     R, S, T, U and M

   Estimation of the
collision probabilities 
          and XS

Input:
- Geometry
- Mesh
- Materials
- MC parameters

Figure 3.8: Chart flow of the algorithm implemented within the hybrid framework.

This process is repeated until convergence is reached, which is when ϵk and ϵΦ are smaller than
a selected tolerance. The transport sweep is depicted in Algorithm 2.
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Algorithm 2 Transport sweep algorithm.

calculate M,R,S,T,U
Initial guess Φ, keff = 1
calculate initial Source Q
while ϵk < tolerance & ϵΦ < tolerance do

for all g ∈ G do
solve GlobalProblem ▷ Eq. (2.48)
solve LocalProblem ▷ Eq. (2.42)

end for

k
(n)
eff = k

(n−1)
eff

φ(n−1) · φ(n)

φ(n−1) · φ(n−1)
,

update Source Q
calculate ϵk & ϵΦ

end while
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Chapter 4

Verification of the Hybrid framework

The verification cases used for the hybrid framework are introduced in section 4.1. In section 4.2,
the results of the verification over the case of a fuel pin cell are presented. Section 4.3 presents
the verification using a scaled fuel assembly. Finally, Section 4.4 presents the verification of
the hybrid framework with a full-size hexagonal fuel assembly.

4.1 Verification problems

The hybrid neutron transport framework discussed in Chapter 3 is verified over cases based
on data that are derived from the sodium-cooled fast reactor Superphénix (SPX). For the
verification of the framework, information was taken from the benchmark for validation of
calculation tools that include static and transient data related to the sodium-cooled fast reactor
Superphènix (SPX) and its operations [19], [20].

The core of the SPX reactor is divided into four radial zones: inner core, outer core, radial
breeder blanket, and steel shielding. The inner core zone is composed of 190 fuel assemblies, 3
diluent steel assemblies, 6 control rods, and 3 shutdown rods. In the periphery between the
inner core and the outer core 15 control rods are located along with 15 more diluent steel
assemblies. The outer core possesses 168 fuel assemblies, the radial breeder blanket has 222
fuel assemblies, and finally 297 radial steel shielding assemblies. The core composition of the
SPX benchmark is depicted in Figure 4.1.

Four 2-D verification cases were built upon the SPX data: a hexagonal fuel pin cell with
simplified geometry, a hexagonal fuel pin cell with detailed geometry, a scaled fuel assembly
with 7 simplified fuel pins, and a full-sized hexagonal fuel assembly with 271 simplified fuel
pins (derived from one fuel assembly included in the SPX inner core, see Figure 4.2). The fuel
composition used in the four cases is given in Table 4.1, liquid sodium was used as coolant,
stainless steel as cladding, and helium gas in the hollow and the gap regions. The temperature
for all materials was set to 453K. A typical 8-energy group grid for a fast system is used and is
reported in Table 4.2.
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Inner core 
(190 assemblies)

Outer core 
(168 assemblies)

Radial breeder blanket
(222 assemblies)

Diluent steel
(18 assemblies)

Shutdown rods
(3 assemblies)

Control rods 
(21 assemblies)

Radial steel shielding
(297 assemblies)

Figure 4.1: Sodium Cooled Fast Reactor SPX core composition.

(a) (b)

Figure 4.2: Fuel assembly with detailed fuel pins and box (a) and simplified fuel assembly (b).
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Table 4.1: Isotopic composition of the fuel.

Isotope Atomic density [cm−3]

U235 1.01116E-04

U238 1.98680E-02

Pu238 1.78056E-05

Pu239 2.45592E-03

Pu240 7.32245E-04

Pu241 1.96866E-04

Pu242 6.83261E-05

Am241 4.81830E-05

O16 4.65070E-02

Table 4.2: Energy structure typical of a 3-D core simulation for a SFR.

Energy group Energy upper limit [eV]

1 2.00E+07

2 2.23E+06

3 8.21E+05

4 3.02E+05

5 1.11E+05

6 4.09E+04

7 1.50E+04

8 7.49E+02

4.2 2-D Hexagonal fuel pin-cell

4.2.1 Simplified geometry

In the first step of the verification, a hexagonal fuel pin cell with simplified geometry is used,
see Figure 4.4a. The radius of the fuel pellet is 3.570 mm and the apothem of the hexagon is
4.912 mm. As discussed previously in Chapter 2, the solution of the interface current method
requires a coarse and a fine mesh. Three different coarse meshes were tested: a single-node
hexagonal mesh that corresponds to the entire hexagonal fuel cell (Figure 4.4a), a 2x2 square
grid mesh (Figure 4.4b), and a triangular mesh (Figure 4.4c). In the three cases, the fine mesh
of every coarse node consists of two regions: fuel and coolant, respectively. As mentioned in the
previous chapter, the ICM requires the precalculation of collision probabilities for the fine mesh.
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(a) (b) (c)

Figure 4.3: Single-node coarse mesh (a), 2x2 square grid coarse mesh (b), and triangular mesh
(c) for the simplified fuel pin cell.

Since the collision probabilities are estimated with Monte Carlo, they have an associated uncer-
tainty. The effect of the number of neutron histories selected in the Monte Carlo simulations for
the estimation of the collision probabilities is investigated for the single-node, square grid, and
triangular coarse meshes. For this purpose, different number of neutron histories (maintaining
200 skip cycles and 2,000 active cycles) are taken: 2E+03, 1E+04, and 1E+05. Serpent is used
to calculate the collision probabilities for the eight energy groups for the three different coarse
meshes by simulating a coarse node of the corresponding mesh.

For the single-node mesh, the collision probabilities were estimated for the neutrons emitted
from the fuel, the coolant, and the six surfaces of the enclosing hexagon (see Figure 4.4a).
Reflective boundary conditions are applied to all the faces. For the square-grid mesh, the
collision probabilities were estimated within the coarse node illustrated in Figure 4.4b for the
neutrons emitted from the fuel, the coolant, and from the surfaces numbered from 1-4 and
marked with thicker lines. To model this problem in Serpent, reflective boundary conditions
were assumed in the enclosing rectangle and void space was set in the corner (depicted in light
gray). 1/4 symmetry is assumed to derive the probabilities in the other coarse nodes. For the
triangular mesh, the collision probabilities were estimated within the coarse node illustrated in
Figure 4.4c for the neutrons emitted from the fuel, coolant, and the surfaces numbered from
1-3. To model this coarse node, reflective boundary conditions were assumed in the enclosing
rectangle and void spaces were set (depicted in light gray). 1/6 symmetry is assumed to derive
the probabilities in the other coarse nodes.

The collision probabilities calculated for the square grid, single-node, and triangular coarse
meshes are reported in Ref. [21]. The computation time of the estimation of the collision

1

5 4

6

2

3

(a)

1

4

2

3

(b)

1

2

3

(c)

Figure 4.4: Coarse node representation for the single-node, square grid, and triangular coarse
meshes respectively.
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probabilities with different numbers of neutron histories for the single-node, square grid, and
triangular coarse meshes is reported in Table 4.3. In Tables 4.5, 4.4, and 4.6 the relative
standard deviation of the probabilities are reported for the three meshes, respectively. Only
the highest, intermediate, and lowest energy groups (g=1, 4, and 8) are considered, but they
are sufficient for the illustration of the general trend. The values in these tables are related
to the calculations with 1E+05 neutron histories. In this problem, the highest uncertainty
value corresponds to the estimation of the number of neutrons emitted from the coolant in the
thermal energy range (g = 8). The highest standard deviation associated with these Monte
Carlo estimations corresponds to the neutrons emitted from the coolant and it ranges from
1.507% to 5.005% for the single-node coarse mesh, from 1.510% to 5.161% for the square grid
coarse mesh, and from 1.749% to 5.397% for the triangular coarse mesh.

Table 4.3: Computational time of the estimation of the collision probabilities with different
number of neutron histories for the hexagonal fuel pin-cell with simplified geometry.

Neutron histories CPU-min

Single-node

2,000 28

10,000 101

100,000 909

Square grid

2,000 50

10,000 177

100,000 1,635

Triangular mesh

2,000 72

10,000 279

100,000 2,543

A reference solution value of 1.35600 ± 6.9E-05 was obtained with Serpent2 using 20,000
neutron histories, 500 skip cycles, and 1,500 active cycles that resulted in 19.19 CPU min. The
computational effort of the reference solution was smaller than the one required to calculate
the collision probabilities even with only 2,000 neutron histories (see Table 4.3). Both for
the collision probabilities and the reference solution a supercomputer cluster with a processor
Intel® Xeon® Gold 6130 CPU @ 2.10GHz was used.
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Table 4.4: Relative standard deviation (%) of the collision probabilities calculated for the
single-node hexagonal coarse mesh with 1E+05 neutron histories.

To →
fuel coolant 1 2 3 4 5 6

From ↓
g = 1

fuel 0.074 0.079 0.046 0.043 0.039 0.034 0.029 0.022

coolant 0.844 0.795 0.482 0.445 0.402 0.354 0.302 0.235

1 0.049 0.051 0.000 0.038 0.032 0.028 0.024 0.019

2 0.049 0.051 0.038 0.000 0.034 0.028 0.023 0.019

3 0.049 0.051 0.035 0.034 0.000 0.029 0.023 0.018

4 0.049 0.051 0.035 0.032 0.030 0.000 0.025 0.019

5 0.049 0.051 0.036 0.032 0.029 0.025 0.000 0.019

6 0.049 0.050 0.038 0.032 0.028 0.024 0.019 0.000

g = 4

fuel 0.004 0.004 0.003 0.003 0.003 0.002 0.002 0.001

coolant 0.032 0.032 0.021 0.020 0.018 0.015 0.013 0.010

1 0.005 0.005 0.000 0.004 0.003 0.003 0.002 0.002

2 0.005 0.005 0.004 0.000 0.003 0.003 0.002 0.002

3 0.005 0.005 0.004 0.004 0.000 0.003 0.002 0.002

4 0.005 0.005 0.004 0.003 0.003 0.000 0.003 0.002

5 0.005 0.005 0.004 0.003 0.003 0.003 0.000 0.002

6 0.005 0.005 0.004 0.003 0.003 0.002 0.002 0.000

g = 8

fuel 0.496 0.598 0.411 0.376 0.338 0.295 0.245 0.183

coolant 4.830 5.005 3.261 2.996 2.699 2.364 1.982 1.507

1 0.756 0.866 0.000 0.661 0.565 0.500 0.421 0.324

2 0.756 0.866 0.661 0.000 0.588 0.489 0.413 0.311

3 0.758 0.868 0.633 0.599 0.000 0.518 0.410 0.311

4 0.754 0.864 0.633 0.571 0.523 0.000 0.428 0.308

5 0.761 0.873 0.636 0.580 0.512 0.449 0.000 0.329

6 0.752 0.861 0.659 0.562 0.499 0.420 0.324 0.000
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Table 4.5: Relative standard deviation (%) of the collision probabilities calculated for the
square grid coarse mesh with 1E+05 neutron histories.

To →
fuel coolant 1 2 3 4

From ↓
g = 1

fuel 0.094 0.097 0.037 0.033 0.034 0.031

coolant 0.970 0.820 0.355 0.376 0.312 0.258

1 0.020 0.018 0.000 0.011 0.010 0.008

2 0.009 0.008 0.006 0.000 0.005 0.004

3 0.009 0.009 0.005 0.005 0.000 0.003

4 0.010 0.010 0.006 0.005 0.004 0.000

g = 4

fuel 0.0047 0.0049 0.0023 0.0019 0.0018 0.0016

coolant 0.0347 0.0306 0.0148 0.0144 0.0122 0.0099

1 0.0019 0.0018 0.0000 0.0012 0.0009 0.0008

2 0.0009 0.0008 0.0006 0.0000 0.0005 0.0004

3 0.0008 0.0008 0.0005 0.0004 0.0000 0.0003

4 0.0010 0.0010 0.0006 0.0005 0.0004 0.0000

g = 8

fuel 0.593 0.645 0.319 0.263 0.245 0.215

coolant 5.161 4.843 2.316 2.206 1.874 1.510

1 0.325 0.316 0.000 0.200 0.162 0.141

2 0.147 0.144 0.106 0.000 0.078 0.067

3 0.147 0.150 0.094 0.080 0.000 0.060

4 0.172 0.180 0.108 0.092 0.072 0.000
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Table 4.6: Relative standard deviation (%) of the collision probabilities calculated for the
triangular coarse mesh with 1E+05 neutron histories.

To →
fuel coolant 1 2 3

From ↓
g = 1

fuel 0.103 0.105 0.041 0.032 0.039

coolant 1.035 0.841 0.359 0.431 0.324

1 0.005 0.005 0.000 0.003 0.003

2 0.005 0.004 0.003 0.000 0.003

3 0.005 0.005 0.003 0.003 0.000

g = 4

fuel 0.0050 0.0052 0.0022 0.0017 0.0020

coolant 0.0361 0.0304 0.0134 0.0154 0.0116

1 0.0005 0.0005 0.0000 0.0003 0.0002

2 0.0005 0.0004 0.0003 0.0000 0.0002

3 0.0005 0.0005 0.0003 0.0003 0.0000

g = 8

fuel 0.629 0.671 0.287 0.238 0.251

coolant 5.397 4.904 2.068 2.345 1.749

1 0.089 0.087 0.000 0.048 0.045

2 0.086 0.080 0.045 0.000 0.044

3 0.089 0.087 0.047 0.046 0.000
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After the collision probabilities are estimated with Monte Carlo, the overall problem is solved
to determine the effective multiplication factor keff of the system and the local neutron flux
using the deterministic algorithm based on the power iteration method. The selected tolerance
for convergence of the multiplication factor and the neutron flux was 1E-10. Two sets of results
were generated for every coarse mesh and are denoted as ICMnoSP and ICMSP. The set ICMnoSP

corresponds to the case where the scattering production reactions such as (n,2n’), (n,3n’), and
(n,4n’) were not added to the scattering matrix needed in the deterministic calculations. The
second set ICMSP, utilizes scattering matrices including the scattering production neutron
reactions mentioned above.

The multiplication factor is shown in Tables 4.7, 4.8, 4.9 for the single-node, square grid, and
triangular coarse meshes respectively. The number of iterations to reach convergence in the
deterministic calculation is also reported, alongside the wall-clock time of the simulation.

Across all the mesh types, the usage of the scattering production cross sections, corresponding
to the results of the set ICMSP, introduces a significant improvement in the prediction of
the multiplication factor. The estimation of the collision probabilities with Monte Carlo is
the main contributor to the total simulation time, and the deterministic simulation time is
negligible. The three different coarse meshes produce very similar results, the discrepancies can
be attributed to the geometric representation of the fuel pin and the modeling of each coarse
node in Monte Carlo. When the number of neutron histories for the estimation of the collision
probabilities is increased, the accuracy and the overall computational effort also does. However,
in the case of the single-node and square grid coarse mesh, the accuracy of the estimation of the
effective multiplication factor somehow deteriorates, when increasing the neutron population
from 1E+04 to 1E+05, from 15pcm to 32 pcm and from 32 pcm to 41 pcm respectively. This be-
havior is attributed to the variability of Monte Carlo when estimating the collision probabilities.

The scalar neutron flux is calculated for each fine region within the nodes of the coarse meshes
using the set of collision probabilities estimated with 1E+05 neutron histories since it has the
lowest standard deviation. For the case of the square grid and the triangular coarse mesh, the
neutron flux for group g is respectively homogenized over the entire coolant and fuel region
using:

ϕg =

∫
V
ϕg(r⃗)dV∫
V
dV

. (4.1)

The results from the simulations where the scattering production cross sections are added to
the scattering matrix, are compared to the reference solution in Figure 4.5 and the relative
differences are shown in Figure 4.6. The reference solution is plotted with uncertainty bars
having a maximum standard deviation of 0.141% for the coolant and 0.111% for the fuel in
energy group 8, while for the rest of the energy groups, the standard deviation is below 0.052%.
The scalar flux is plotted in the fuel (F) and coolant (C) regions. The values of the neutron
scalar flux are normalized with respect to the maximum value.

In the hexagonal fuel pin the scalar flux is relatively flat, it has very small spatial variations
across the system. Relative differences in absolute value with respect to the reference values
estimated with Monte Carlo are less than 0.13% except in the energy group g=8 with values of
up to 0.31%. The buckling of the neutron flux is reproduced correctly for all energy groups.
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Table 4.7: Effective multiplication factor for the simplified 2-D fuel pin (hexagonal coarse
mesh).

Neutron keff (keff )ref − keff [pcm] No. iterations Wall-clock
histories time (s.)

ICMnoSP

2,000 1.35174 426

605

0.191

10,000 1.35223 377 0.184

100,000 1.35207 393 0.182

ICMSP

2,000 1.35541 59

606

0.187

10,000 1.35585 15 0.188

100,000 1.35568 32 0.182

Table 4.8: Effective multiplication factor for the simplified 2-D fuel pin (square grid coarse
mesh).

Neutron keff (keff )ref − keff [pcm] No. iterations Wall-clock
histories time (s.)

ICMnoSP

2,000 1.35123 477

602

0.369

10,000 1.35207 393 0.366

100,000 1.35198 402 0.367

ICMSP

2,000 1.35483 117

603

0.366

10,000 1.35568 32 0.374

100,000 1.35559 41 0.369
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Table 4.9: Effective multiplication factor for the simplified 2-D fuel pin (triangular coarse
mesh).

Neutron keff (keff )ref − keff [pcm] No. iterations Wall-clock
histories time (s.)

ICMnoSP

2,000 1.35139 461

605

0.480

10,000 1.35168 432 0.476

100,000 1.35187 413 0.466

ICMSP

2,000 1.35501 99

606

0.459

10,000 1.35531 69 0.470

100,000 1.35548 52 0.481
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Figure 4.5: Scalar flux for the simplified hexagonal fuel pin cell.

44



Licentiate Thesis Hirepan Palomares

Figure 4.6: Relative difference with respect to the reference neutron flux estimated with Monte
Carlo for the simplified fuel pin cell.
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4.2.2 Detailed geometry

In the second step of the verification, a hexagonal fuel pin cell with detailed geometry was simu-
lated. It consists of a fuel pin (F) with a helium hollow (H), helium gap (HG), and cladding (Z)
surrounded by coolant (C). Three different coarse meshes were tested: a single-node hexagonal
mesh that corresponds to the entire hexagonal fuel cell (Figure 4.7a), a 2x2 square grid mesh
(Figure 4.7b), and a triangular mesh (Figure 4.7c). The fine mesh consists of the regions
characterized by the different materials in each section of the cell, i.e., helium hollow, fuel, gap,
cladding, and coolant.

(a) (b) (c)

Figure 4.7: Hexagonal fuel pin with detailed geometry.

The effect of the number of neutron histories on the accuracy of the Monte Carlo calculations
of the collision probabilities is investigated for the single-node, square grid, and triangular
coarse meshes. As in the previous section, the number of neutron histories was selected to
be 2E+03, 1E+04, and 1E+05 and the active and skip cycles were set to 2,000 and 200
respectively. Serpent is used to calculate the collision probabilities for the eight energy groups
for the neutrons emitted from every region and the surfaces.

For the single-node coarse mesh the collision probabilities were estimated for the neutrons
emitted from the helium hollow, fuel, gap, cladding, coolant, and the six surfaces of the
enclosing hexagon (see Figure 4.8a). Reflective boundary conditions were applied to all the
faces. Symmetry of 1/4 is assumed to derive the probabilities in the other coarse nodes of the
mesh.

For the square-grid mesh, the collision probabilities were estimated within the coarse node
illustrated in Figure 4.8b. To model this problem in Serpent, reflective boundary conditions
were assumed on the enclosing rectangle and void space was set in the corner (depicted in light
gray). The probabilities were calculated for the neutrons emitted from the hollow, fuel, gap,
cladding, and coolant, and from the surfaces marked with thicker lines and numbered from 1 to 4.

For the triangular mesh, the collision probabilities were estimated within the coarse node
illustrated in Figure 4.8c for the neutrons emitted from the fuel, coolant, and the surfaces
numbered from 1 to 3. Reflective boundary conditions were assumed in the enclosing rectangle
and void spaces were set (depicted in light gray) to model this coarse node. Symmetry of 1/6
is assumed to derive the probabilities in the other coarse nodes. The collision probabilities
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were estimated for the neutrons emitted from the hollow, fuel, gap, cladding, coolant, and the
three surfaces.

1

5 4

6

2

3

(a)

1

4

2

3

(b)

1

2

3

(c)

Figure 4.8: Hexagonal fuel pin with detailed geometry.

The estimated values of the collision probabilities for the single-node, square grid, and triangu-
lar coarse meshes are reported in Ref. [21]. The computation time of the estimation of the
collision probabilities with different numbers of neutron histories for the single-node, square
grid, and triangular coarse meshes is reported in Table 4.10. The relative standard deviation
of the probabilities are calculated and reported for the energy groups 1, 4, and 8 in Tables
4.11, 4.12, and 4.13 for the single-node hexagonal coarse mesh and in Tables 4.14 and 4.15 for
the square grid and triangular coarse meshes respectively. These results were generated with
1E+05 neutron histories.

The probabilities with the highest statistical uncertainty are related to the number of neutrons
emitted from the helium regions (both hollow and gap) in the three meshes and all energy
groups. This is expected because neutrons have very few collisions in these regions (the reaction
rates are in the order of 10−6) and the probability for neutrons emitted from anywhere in
the cell and then interacting in a helium region is very low (in the order of 10−5). Then, a
very large number of neutron histories is required to obtain good accuracy. The values for the
standard deviation of these probabilities range from 32.326% to higher than 100% for group 1,
from 2.505% up to 39.396% for group 4, and higher than 100% for the energy group 8.

The reference value of the effective multiplication factor is 1.26450 ± 6.9E-05 and it was
obtained with Serpent2 using 100,000 neutron histories, 500 skip cycles, and 1,500 active cycles
that resulted in 115 CPU min, which needed less computational effort than the ones required to
estimate the collision probabilities with 2E+03, 1E+04, and 1E+05 neutron histories. Both for
the collision probabilities and the reference solution, a supercomputer cluster with a processor
Intel® Xeon® Gold 6130 CPU @ 2.10GHz was used.
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Table 4.10: Computational time of the estimation of the collision probabilities with different
number of neutron histories for the hexagonal fuel pin-cell with detailed geometry.

Neutron histories CPU-min

Single-node

2,000 193

10,000 586

100,000 5,391

Square grid

2,000 99

10,000 375

100,000 3,142

Triangular mesh

2,000 150

10,000 560

100,000 5,121
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Table 4.11: Relative standard deviation (%) of the collision probabilities calculated for the detailed pin with single-node hexagonal
coarse mesh using 1E+05 neutron histories (Energy group g = 1).

To →
H F HG Z C 1 2 3 4 5 6

From ↓
g = 1

H >100 >100 >100 77.704 71.679 41.173 39.572 37.927 36.195 34.355 32.326

F 0.385 0.280 0.308 0.136 0.126 0.079 0.076 0.072 0.068 0.064 0.060

HG >100 >100 >100 80.365 76.221 50.339 48.545 46.712 44.912 42.801 40.729

Z 2.680 1.707 1.787 0.726 0.689 0.513 0.496 0.478 0.459 0.440 0.420

C 13.973 9.452 9.781 3.097 2.741 2.529 2.471 2.408 2.343 2.275 2.207

1 0.237 0.163 0.178 0.075 0.071 0.000 0.055 0.059 0.059 0.053 0.036

2 0.238 0.164 0.179 0.076 0.071 0.055 0.000 0.051 0.056 0.056 0.049

3 0.236 0.163 0.178 0.075 0.071 0.062 0.051 0.000 0.046 0.052 0.053

4 0.238 0.164 0.179 0.076 0.072 0.065 0.059 0.048 0.000 0.042 0.049

5 0.237 0.165 0.180 0.075 0.071 0.062 0.062 0.056 0.042 0.000 0.036

6 0.238 0.164 0.179 0.075 0.072 0.055 0.059 0.059 0.052 0.037 0.000
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Table 4.12: Relative standard deviation (%) of the collision probabilities calculated for the detailed pin with single-node hexagonal
coarse mesh using 1E+05 neutron histories (Energy group g = 4).

To →
H F HG Z C 1 2 3 4 5 6

From ↓
g = 4

H 17.066 13.792 16.244 5.684 5.139 3.299 3.153 3.003 2.847 2.677 2.505

F 0.018 0.013 0.015 0.006 0.006 0.004 0.004 0.004 0.003 0.003 0.003

HG 20.729 11.259 12.358 5.666 5.291 3.920 3.772 3.613 3.451 3.277 3.103

Z 0.107 0.065 0.070 0.026 0.025 0.020 0.019 0.019 0.018 0.017 0.016

C 0.409 0.265 0.281 0.082 0.073 0.073 0.071 0.069 0.067 0.065 0.063

1 0.019 0.012 0.014 0.006 0.005 0.000 0.004 0.004 0.004 0.004 0.003

2 0.019 0.012 0.014 0.006 0.005 0.004 0.000 0.004 0.004 0.004 0.004

3 0.019 0.012 0.014 0.006 0.005 0.005 0.004 0.000 0.004 0.004 0.004

4 0.019 0.012 0.014 0.006 0.005 0.005 0.004 0.004 0.000 0.003 0.004

5 0.019 0.012 0.014 0.006 0.005 0.005 0.005 0.004 0.003 0.000 0.003

6 0.019 0.012 0.014 0.006 0.005 0.004 0.004 0.004 0.004 0.003 0.000
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Table 4.13: Relative standard deviation (%) of the collision probabilities calculated for the detailed pin with single-node hexagonal
coarse mesh using 1E+05 neutron histories (Energy group g = 8).

To →
H F HG Z C 1 2 3 4 5 6

From ↓
g = 8

H >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100

F 1.739 1.129 1.401 0.577 0.579 0.388 0.364 0.337 0.310 0.280 0.244

HG >100 >100 >100 >100 >100 >100 >100 >100 >100 >100 >100

Z 2.829 1.690 1.866 0.779 0.753 0.569 0.539 0.507 0.474 0.437 0.397

C 54.994 35.110 37.863 10.425 9.720 9.314 9.060 8.789 8.513 8.226 7.933

1 2.577 1.624 1.919 0.735 0.709 0.000 0.568 0.552 0.529 0.469 0.376

2 2.574 1.620 1.915 0.735 0.709 0.568 0.000 0.525 0.511 0.486 0.419

3 2.584 1.629 1.925 0.733 0.706 0.588 0.524 0.000 0.480 0.467 0.442

4 2.567 1.617 1.910 0.733 0.709 0.602 0.553 0.482 0.000 0.431 0.419

5 2.568 1.623 1.919 0.735 0.709 0.590 0.566 0.513 0.433 0.000 0.375

6 2.573 1.622 1.918 0.734 0.707 0.566 0.550 0.527 0.469 0.375 0.000
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Table 4.14: Relative standard deviation (%) of the collision probabilities calculated for the
detailed pin with square grid coarse mesh using 1E+05 neutron histories.

To →
H F HG Z C 1 2 3 4

From ↓
g = 1

H >100 >100 >100 >100 >100 37.911 61.179 >100 >100

F 0.580 0.410 0.432 0.186 0.171 0.081 0.134 0.174 0.168

HG >100 >100 >100 99.744 93.779 68.508 >100 >100 >100

Z 4.330 2.193 2.223 0.840 0.785 0.734 1.305 1.089 0.988

C 22.826 13.030 13.132 3.471 2.867 4.681 7.874 5.247 4.207

1 0.134 0.083 0.085 0.030 0.026 0.000 0.026 0.054 0.047

2 0.049 0.031 0.032 0.013 0.011 0.008 0.000 0.023 0.018

3 0.042 0.032 0.033 0.014 0.013 0.010 0.020 0.000 0.011

4 0.049 0.038 0.040 0.017 0.015 0.012 0.021 0.014 0.000

g = 4

H 30.293 27.887 29.367 9.743 8.464 2.988 4.697 10.828 10.770

F 0.027 0.018 0.020 0.008 0.007 0.004 0.006 0.008 0.007

HG 33.849 13.530 14.090 6.806 6.261 5.219 9.344 8.651 8.027

Z 0.171 0.082 0.084 0.029 0.026 0.029 0.051 0.041 0.038

C 0.668 0.367 0.375 0.088 0.072 0.136 0.230 0.149 0.118

1 0.011 0.006 0.007 0.002 0.002 0.000 0.002 0.004 0.004

2 0.004 0.002 0.002 0.001 0.001 0.001 0.000 0.002 0.001

3 0.003 0.002 0.003 0.001 0.001 0.001 0.002 0.000 0.001

4 0.004 0.003 0.003 0.001 0.001 0.001 0.002 0.001 0.000

g = 8

H >100 >100 >100 >100 >100 >100 >100 >100 >100

F 2.536 1.648 1.868 0.738 0.725 0.357 0.528 0.699 0.672

HG >100 >100 >100 >100 >100 >100 >100 >100 >100

Z 4.483 2.119 2.219 0.862 0.779 0.729 1.258 0.986 0.891

C 91.471 48.437 50.035 10.987 9.685 18.464 31.385 18.785 14.691

1 1.447 0.848 0.905 0.285 0.258 0.000 0.280 0.490 0.480

2 0.526 0.314 0.334 0.121 0.113 0.086 0.000 0.232 0.170

3 0.434 0.319 0.350 0.132 0.127 0.097 0.193 0.000 0.104

4 0.510 0.373 0.415 0.160 0.155 0.120 0.192 0.138 0.000
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Table 4.15: Relative standard deviation (%) of the collision probabilities calculated for the
detailed pin with triangular coarse mesh using 1E+05 neutron histories.

To →
H F HG Z C 1 2 3

From ↓
g = 1

H >100 >100 >100 >100 >100 >100 73.807 >100

F 0.659 0.458 0.478 0.211 0.193 0.230 0.165 0.230

HG >100 >100 >100 >100 >100 >100 >100 >100

Z 5.090 2.360 2.377 0.897 0.838 1.513 1.810 1.510

C 26.735 14.470 14.500 3.677 2.989 7.249 11.377 7.230

1 0.026 0.020 0.020 0.008 0.007 0.000 0.012 0.012

2 0.031 0.019 0.020 0.007 0.006 0.015 0.000 0.015

3 0.026 0.020 0.020 0.008 0.007 0.012 0.012 0.000

g = 4

H 36.257 34.029 35.287 11.635 10.044 14.596 5.611 14.573

F 0.030 0.020 0.022 0.008 0.008 0.010 0.007 0.010

HG 39.396 14.257 14.689 7.363 6.794 12.007 12.491 11.981

Z 0.201 0.089 0.091 0.030 0.028 0.058 0.071 0.058

C 0.784 0.407 0.413 0.092 0.073 0.207 0.332 0.207

1 0.002 0.001 0.002 0.001 0.001 0.000 0.001 0.001

2 0.002 0.001 0.002 0.001 0.000 0.001 0.000 0.001

3 0.002 0.001 0.002 0.001 0.001 0.001 0.001 0.000

g = 8

H >100 >100 >100 >100 >100 >100 >100 >100

F 2.896 1.851 2.059 0.830 0.813 0.939 0.641 0.932

HG >100 >100 >100 >100 >100 >100 >100 >100

Z 5.341 2.306 2.390 0.923 0.820 1.411 1.786 1.400

C >100 53.744 55.021 11.361 9.902 26.851 45.694 26.793

1 0.270 0.199 0.213 0.078 0.073 0.000 0.119 0.117

2 0.343 0.200 0.208 0.070 0.063 0.151 0.000 0.151

3 0.269 0.198 0.212 0.078 0.073 0.116 0.118 0.000
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The probabilities generated with Monte Carlo are used for the deterministic solution of the
overall problem (given by Eqs. (2.39) and (2.40)). As a result, keff and the spatial distribution
of the neutron flux are calculated. The convergence tolerance for the multiplication factor
and the neutron flux was selected equal to 1E-10. Two sets of results were generated for
every coarse mesh and are denoted as ICMnoSP (only scattering reactions (n,n’)) and ICMSP

(production scattering reactions included). The multiplication factor is shown for the two
sets of results in Tables 4.16, 4.17, and 4.18 for the single-node, square grid, and triangular
coarse meshes, respectively. Additionally, the number of iterations to reach convergence and
the wall-clock time of the deterministic simulation are reported.

Table 4.16: Effective multiplication factor calculation for the detailed 2-D hexagonal fuel
pin-cell (single-node hexagonal coarse mesh).

Neutron keff (keff )ref − keff [pcm] No. iterations Wall-clock
histories time (s.)

ICMnoSP

2,000 1.26112 338

746

0.333

10,000 1.26116 334 0.341

100,000 1.26178 272 0.330

ICMSP

2,000 1.26376 74

748

0.327

10,000 1.26375 75 0.370

100,000 1.26380 70 0.336

Table 4.17: Effective multiplication factor calculation for the detailed 2-D hexagonal fuel
pin-cell (square grid coarse mesh).

Neutron keff (keff )ref − keff [pcm] No. iterations Wall-clock
histories time (s.)

ICMnoSP

2,000 1.26162 288

735

0.762

10,000 1.26186 264 0.794

100,000 1.26175 275 0.771

ICMSP

2,000 1.26422 28

736

0.745

10,000 1.26445 5 0.852

100,000 1.26435 15 0.792
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Table 4.18: Effective multiplication factor calculation for the detailed 2-D hexagonal fuel
pin-cell (triangular coarse mesh).

Neutron keff (keff )ref − keff [pcm] No. iterations Wall-clock
histories time (s.)

ICMnoSP

2,000 1.26156 294

745

1.093

10,000 1.26122 328 1.095

100,000 1.26139 311 1.088

ICMSP

2,000 1.26413 37

746

1.097

10,000 1.26381 69 1.060

100,000 1.26399 51 1.061

As seen in the case of the hexagonal pin with simplified geometry, the usage of the scattering
production cross sections (ICMSP) significantly improves the prediction of the effective multi-
plication factor of the hexagonal pin with the detailed geometry. The wall-clock time duration
of the deterministic simulation is negligible compared with the computational time for the
collision probabilities. The three different coarse meshes produce similar results. However, the
estimation from the triangular mesh is slightly less accurate. This can be due to the geometric
representation and modeling of the triangular coarse node in Monte Carlo. In the case of the
squared grid coarse mesh, when increasing the neutron population from 1E+04 to 1E+05, the
accuracy on the effective multiplication factor deteriorates (the difference with respect to the
reference goes from 5 to 15 pcm), while the computational effort is almost ten-folded. Future
work is needed to propagate the Monte Carlo uncertainty of the probabilities to the estimation
of the effective multiplication factor.

The scalar flux is calculated in the fine regions within the nodes of the coarse meshes. For the
case of the square grid and the triangular coarse mesh, the scalar fluxes are homogenized in
the different regions using Eq. (4.1). The scalar flux for the detailed hexagonal fuel pin-cell is
plotted in Figure 4.9 for the three meshes and only for the ICMSP set. The reference solution is
plotted with uncertainty bars in Figure 4.9, having a maximum standard deviation of 0.175%
for the helium gap and of 0.158% in the helium hollow, both in the energy group 8. The
relative differences to the reference solution are plotted in Figure 4.10. The neutron scalar
flux and the relative differences are plotted for the helium hollow (H), fuel (F), helium gap
(HG), cladding (Z), and coolant (C). The values of the neutron scalar flux are normalized with
respect to the maximum value.

The flux is still relatively flat but the spatial variations are a little bigger than in the previous
case. The scalar flux calculated with the hybrid framework differs from the Monte Carlo
reference solution less than 0.7% for all energy groups. The largest discrepancies are found in
the helium regions. This may be due to the accuracy of the associated probabilities, whose
Monte Carlo estimation has a statistical error higher than 100%.
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Figure 4.9: Scalar flux for the detailed hexagonal fuel pin cell.
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Figure 4.10: Relative difference with respect to the reference neutron flux estimated with
Monte Carlo in the detailed fuel pin cell.
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4.3 Scaled hexagonal fuel assembly

The second test case consists of a hexagonal lattice of 7 fuel pins with simplified geometry.
The system is discretized according to a coarse mesh that includes both triangular and square
nodes, see Figure 4.11. Three different types of coarse nodes, whose orientation may vary,
namely an inner triangular subchannel (Figure 4.12a), a square subchannel (Figure 4.12b),
and an outer triangular subchannel (Figure 4.12c). Then, the global problem has a total of 24
coarse nodes, 66 fine regions, and 78 surfaces.

To study the accuracy of the Monte Carlo estimation of the collision probabilities, different
numbers of neutron histories are taken (maintaining 200 skip cycles and 2000 active cycles),
i.e., 2E+03, 1E+04, and 1E+05. Serpent is used to calculate the collision probabilities for the
eight energy groups for the three different coarse nodes.

For the inner triangular subchannel, the collision probabilities were estimated for the neutrons
emitted from the three fuel regions, the coolant, and the three surfaces numbered 1-3 of
the enclosing triangle (see Figure 4.12a). Reflective boundary conditions are applied to the
enclosing square. For the square subchannel, the collision probabilities were estimated for the
neutrons emitted from the two fuel regions, the coolant, and from the surfaces numbered from
1 to 4 and marked with thicker lines (see Figure 4.12b). To model this problem in Serpent,
reflective boundary conditions were assumed in the enclosing rectangle. For the outer triangular
subchannel, the collision probabilities were estimated for the neutrons emitted from the fuel,
coolant, and the surfaces numbered (see Figure 4.12c). To model this coarse node, reflective
boundary conditions were assumed on the enclosing rectangle, and void space was set (depicted
in light gray).

The collision probabilities calculated for the three coarse nodes are reported in Ref. [21]. The
computation time of the estimation of the collision probabilities with different numbers of
neutron histories for the three types of coarse nodes is reported in Table 4.19.

Table 4.19: Computational time of the estimation of the collision probabilities with different
number of neutron histories for the coarse mesh applied to the scaled hexagonal fuel assembly.

Neutron histories CPU-min

2,000 252

10,000 938

100,000 9,359

The reference value of the effective multiplication factor is 1.33257 ± 6.8E-06 and it was
obtained with Serpent2 using 1E+06 neutron histories, 3,000 active cycles, and 1,500 inactive
cycles that resulted in 1,867 CPU min. In this case, the reference solution was more expensive
than estimating the collision probabilities with 2E+03 and 1E+04 neutron histories. Both for
the collision probabilities and the reference solution a supercomputer cluster with a processor
Intel® Xeon® Gold 6130 CPU @ 2.10GHz was used.

The relative standard deviation of the probabilities are calculated and reported for the energy

58



Licentiate Thesis Hirepan Palomares

groups 1,4, and 8 in Tables 4.20, 4.21, and 4.22 for the inner triangular subchannel, rectangular
subchannel, and the outer triangular subchannel respectively. These results were generated
with 1E+05 neutron histories. In this problem, the highest uncertainty value corresponds to
the estimation of the number of neutrons emitted from the coolant in the thermal energy range
(g = 8). The standard deviation associated with these Monte Carlo estimations ranges from
2.16% to 6.65% for the inner triangle, from 0.45% to 1.46% for the rectangular subchannel,
and from 0.54% to 1.64% for the outer triangle.

Figure 4.11: 2-D scaled hexagonal fuel assembly with coarse mesh (thick lines) and fine mesh
(thin line within the coarse nodes).
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Figure 4.12: Type of coarse nodes obtained from the triangular mesh applied to the hexagonal
assembly.
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Table 4.20: Relative standard deviation (%) of the collision probabilities calculated for the
scaled hexagonal fuel assembly with triangular coarse mesh in the inner triangular subchannel
using 1E+05 neutron histories.

To →
fuel-1 fuel-2 fuel-3 coolant 1 2 3

From ↓
g = 1

fuel-1 0.74 0.76 0.61 0.39 0.30 0.17 0.29

fuel-2 0.77 0.59 0.61 0.39 0.30 0.30 0.16

fuel-3 0.77 0.62 0.39 0.39 0.18 0.29 0.29

coolant 1.47 1.26 1.00 0.65 0.50 0.49 0.48

1 0.01 0.01 0.01 0.01 0.00 0.01 0.01

2 0.01 0.01 0.01 0.01 0.01 0.00 0.01

3 0.01 0.01 0.01 0.01 0.01 0.01 0.00

g = 4

fuel-1 0.034 0.036 0.029 0.019 0.014 0.008 0.013

fuel-2 0.036 0.027 0.029 0.019 0.014 0.014 0.008

fuel-3 0.036 0.029 0.019 0.019 0.009 0.014 0.013

coolant 0.050 0.043 0.035 0.024 0.017 0.017 0.016

1 0.001 0.001 0.001 0.001 0.000 0.001 0.001

2 0.001 0.001 0.001 0.001 0.001 0.000 0.001

3 0.001 0.001 0.001 0.001 0.001 0.001 0.000

g = 8

fuel-1 3.59 3.93 3.29 2.47 1.53 1.00 1.44

fuel-2 4.01 3.04 3.29 2.48 1.54 1.50 0.88

fuel-3 4.00 3.37 2.35 2.49 1.12 1.48 1.44

coolant 6.65 5.86 4.94 3.85 2.41 2.29 2.16

1 0.20 0.19 0.18 0.15 0.00 0.10 0.10

2 0.21 0.18 0.16 0.14 0.10 0.00 0.10

3 0.20 0.19 0.16 0.15 0.10 0.10 0.00
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Table 4.21: Relative standard deviation (%) of the collision probabilities calculated for the
scaled hexagonal fuel assembly with triangular coarse mesh in the rectangular subchannel using
1E+05 neutron histories.

To →
fuel-1 fuel-2 coolant 1 2 3 4

From ↓
g = 1

fuel-1 0.32 0.33 0.22 0.12 0.11 0.09 0.11

fuel-2 0.33 0.22 0.22 0.11 0.10 0.11 0.11

coolant 0.65 0.53 0.37 0.22 0.25 0.17 0.19

1 0.03 0.03 0.02 0.00 0.01 0.01 0.01

2 0.01 0.01 0.01 0.01 0.00 0.01 0.01

3 0.03 0.02 0.02 0.01 0.01 0.00 0.01

4 0.01 0.01 0.01 0.01 0.01 0.00 0.00

g = 4

fuel-1 0.016 0.017 0.012 0.007 0.006 0.006 0.006

fuel-2 0.017 0.012 0.012 0.007 0.006 0.006 0.006

coolant 0.023 0.019 0.014 0.009 0.009 0.007 0.007

1 0.002 0.002 0.002 0.000 0.001 0.001 0.001

2 0.001 0.001 0.001 0.001 0.000 0.001 0.001

3 0.003 0.002 0.002 0.001 0.001 0.000 0.001

4 0.001 0.001 0.001 0.001 0.001 0.000 0.000

g = 8

fuel-1 0.81 0.90 0.70 0.39 0.36 0.32 0.30

fuel-2 0.92 0.65 0.70 0.41 0.32 0.31 0.30

coolant 1.46 1.27 1.05 0.65 0.62 0.50 0.45

1 0.18 0.18 0.15 0.00 0.10 0.09 0.07

2 0.09 0.08 0.07 0.05 0.00 0.04 0.05

3 0.19 0.15 0.15 0.10 0.08 0.00 0.07

4 0.09 0.08 0.08 0.05 0.05 0.03 0.00

61



Licentiate Thesis Hirepan Palomares

Table 4.22: Relative standard deviation (%) of the collision probabilities calculated for the
scaled hexagonal fuel assembly with triangular coarse mesh in the outer triangular subchannel
using 1E+05 neutron histories.

To →
fuel coolant 1 2 3

From ↓
g = 1

fuel 0.125 0.127 0.056 0.031 0.054

coolant 0.689 0.481 0.270 0.231 0.222

1 0.002 0.002 0.000 0.001 0.001

2 0.005 0.004 0.003 0.000 0.002

3 0.003 0.002 0.002 0.001 0.000

g = 4

fuel 0.0063 0.0064 0.0029 0.0019 0.0027

coolant 0.0243 0.0178 0.0098 0.0085 0.0080

1 0.0002 0.0002 0.0000 0.0001 0.0001

2 0.0005 0.0004 0.0003 0.0000 0.0002

3 0.0003 0.0002 0.0002 0.0001 0.0000

g = 8

fuel 0.37 0.39 0.17 0.12 0.16

coolant 1.64 1.35 0.67 0.59 0.54

1 0.02 0.02 0.00 0.01 0.01

2 0.04 0.03 0.02 0.00 0.02

3 0.02 0.02 0.01 0.01 0.00

62



Licentiate Thesis Hirepan Palomares

After the preparation of the collision probabilities, the overall problem is solved using the
deterministic approach and keff and the neutron flux are evaluated. The selected tolerance for
convergence of the multiplication factor and the neutron flux was 1E-10. Similarly to the case
of the fuel-pin cell, two sets of results were generated, considering the full scattering (ICMSP) or
the approximated scattering (ICMnoSP). The effective multiplication factor, its differences from
the reference value, and the performance of the power iteration method in terms of the number
of iterations and wall-clock time are shown in Table 4.23 for the sets of collision probabilities
obtained from the different numbers of neutron histories.

Table 4.23: Multiplication factor calculation for the scaled hexagonal assembly.

Neutron keff (keff )ref − keff [pcm] No. iterations Wall-clock
histories time (s.)

ICMnoSP

2,000 1.32816 441

635

1.890

10,000 1.32922 335 1.783

100,000 1.32919 338 1.833

ICMSP

2,000 1.33153 103

636

1.807

10,000 1.33258 -1 1.829

100,000 1.33255 2 1.827

The usage of the scattering production cross sections (ICMSP) significantly improves the predic-
tion of the effective multiplication factor. The computational effort spent in the deterministic
method is negligible compared to the estimation of the collision probabilities with Monte
Carlo. The prediction of the effective multiplication factor has a minor variation (3 pcm) when
increasing the neutron population from 1E+04 to 1E+05 although the computational effort is
almost ten-folded. This behavior is related to the statistical uncertainties associated with the
MC estimation of the collision probabilities and needs to be studied in the future. The total
simulation time of the calculations based on the collision probabilities from 2E+03 and 1E+04
neutron histories is significantly lower than the one of the reference solution, i.e., saving 1,615
and 929 CPU-min, respectively.

The scalar flux is calculated in the fine regions within the nodes of the coarse meshes. The
scalar flux value in each fuel pin is homogenized using Eq. (4.1). The calculated neutron scalar
flux is plotted along the diagonal shown in Figure 4.13 and it is compared against the reference
solution in Figure 4.14. Only the ICMSP results with the collision probabilities estimated from
100,000 neutron histories are shown and discussed. Error bars for the Monte Carlo reference
solution are small, e.g., the maximum standard deviation is equal to 0.062% and is found for
the 8th energy group in the coolant region.

In this fast system with reflective boundary conditions, the spatial distribution of the neutron
flux is expected to be relatively flat. The neutron scalar flux calculated with the hybrid
framework shows in general very good agreement with the reference solution. The highest
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relative difference is found in the thermal energy group (g=8) with a value of 0.9%. For the
energy groups 1, 7, and 8 the highest differences are found close to the boundary, while for the
rest it is found close to the center of the assembly.

1

2

3

4

5

6

7

Figure 4.13: Regions 1-7 used to plot the neutron flux in Figure 4.14.
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Figure 4.14: Scalar flux for the scaled hexagonal assembly problem.
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4.4 Hexagonal fuel assembly

A full-scale simplified fuel assembly is taken, where the 271 fuel pins are modeled without
cladding, gap, and hollow. This system is discretized according to a coarse mesh with tri-
angular and rectangular nodes with a total of 552 nodes, 2,130 regions, and 1,710 surfaces,
see Figure 4.15. Given the choice of the mesh and the symmetry of the assembly, 3 types of
coarse nodes are identified. These are the same nodes found in the previous case, see Figure 4.12.

Figure 4.15: Triangular coarse mesh for the 2-D hexagonal assembly.

Since the neutron collision probabilities for each type of node were evaluated for the scaled
hexagonal fuel assembly, there is no need to recalculate such values. Therefore, the collision
probabilities discussed in section 4.3 can be recycled to solve the current bigger system. The
computation time of the collision probabilities is reported in Table 4.19 and the standard
deviation values for the three different coarse nodes in the energy groups 1, 4, and 8 are
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reported in Tables 4.20, 4.21, and 4.22 respectively.

After the collision probabilities were taken from the scaled hexagonal fuel assembly, the keff
and the neutron scalar flux are calculated with the interface current method (Eqs. (2.39)
and (2.40)). The convergence tolerance for the interface current method was selected to be
1E-10. Similarly to the previous cases, two sets of results were generated, considering scattering
reactions of the type (n,n’), namely ICMnoSP, and considering the scattering neutron production
reactions, i.e., ICMSP. The effective multiplication factor is shown for the two sets of results in
Table 4.24. The number of iterations to reach convergence and the wall-clock time spent in the
deterministic calculation are also reported. The reference value of the effective multiplication
factor is 1.35592 ± 4.8E-06 and it was obtained with Serpent2 using 2E+06 neutron histories,
3,000 active cycles, and 1,500 inactive cycles. The reference solution required 4,690 CPU min
on a supercomputer cluster with a processor Intel® Xeon® Gold 6130 CPU @ 2.10GHz.

Table 4.24: Multiplication factor calculation for the 2-D hexagonal assembly.

Neutron keff (keff )ref − keff [pcm] No. iterations Wall-clock
histories time (s.)

ICMnoSP

2,000 1.34714 879

611

103.106

10,000 1.34754 839 102.231

100,000 1.34779 814 104.279

ICMSP

2,000 1.35070 523

611

104.572

10,000 1.35113 480 104.388

100,000 1.35135 458 105.102

Consistently with the results in the previous tests, the use of the scattering production cross
sections leads to a significant improvement of the evaluation of keff . As reported in Table 4.24,
the difference from the reference goes from 814 pcm to 458 pcm (given the collision probabilities
obtained from 100,000 neutron histories). Despite the use of the same collision probabilities,
the agreement with the reference is lower than the one obtained for the scaled hexagonal fuel
assembly. This may be due to the fact that the Monte Carlo statistical uncertainty and the
approximations on the coarse nodes have more impact in the bigger system. The full fuel
assembly has 552 coarse nodes and the errors may accumulate to a larger extent.

The computational effort required in the deterministic method is around 104 seconds, so it is
still small in comparison with the simulation time of the collision probabilities with Monte
Carlo. Although the multiplication factor was not reproduced accurately, the total simulation
time of the hybrid framework, was significantly lower than that of the reference solution. The
total computation time of the collision probabilities with 2E+03 and 1E+04 neutron histories is
significantly lower than the one of the reference solution, i.e., saving 4,438 and 3,752 CPU-min,
respectively.
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After a spatial homogenization in the fine regions of the coarse nodes, the scalar flux is compared
with the reference solution along the diagonal of the fuel assembly. The diagonal is shown in
Figure 4.16 and the comparison of the neutron flux in Figure 4.17.

Figure 4.16: Plot line for the full-size hexagonal asembly.
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Figure 4.17: Scalar neutron flux along the diagonal of the assembly.
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For this system, the spatial distribution of the flux is relatively flat. The hybrid method
reproduces the scalar flux value more accurately for the energy groups 1-5 where the relative
differences with respect to the Monte Carlo reference are below 0.54%. The scalar flux is
reproduced with less accuracy in the energy groups 6-8, where the maximum difference is of
1.10%, 1.55%, and 3.98% respectively. The highest standard deviation in the reference solution
corresponds to the neutron flux in the coolant region next to the boundary with a value of
0.1% in the 8th energy group.

In all the energy groups the relative differences are maximum close to the center of the fuel
assembly. The shape of the flux corresponding to the hybrid framework appears to be less flat
compared with the reference solution for energy groups 3, 5, and 8. Additionally, the shape
of the neutron flux is reproduced accurately for the energy groups 6 and 7 but it is slightly
shifted by a factor of 1.011 and 1.015 respectively.
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Chapter 5

Conclusions

Conclusions and future work are provided in sections 5.1 and 5.2 respectively.

5.1 Summary

In this thesis, a flexible and user-friendly hybrid computational framework for 2-D static
neutron transport calculations of fast reactors was developed. The framework is based on the
deterministic Interface Current Method (ICM) where the collision probabilities are determined
via Monte Carlo (MC) simulations. Accordingly, the computational domain is divided into
smaller sub-domains where every subdomain is a local problem with fine regions and the entire
set of subdomains corresponds to the global problem. The collision probabilities are estimated
prior to the deterministic calculation for those local problems with unique geometry. Then,
the calculated collision probabilities are replicated to the rest of the sub-domains that are
geometrically equivalent. Finally, a linear system of equations is built from the combination of
all the subdomains and is solved iteratively to calculate the effective multiplication factor and
the scalar flux in every fine region.

The framework is designed according to a modular structure so that its use and future develop-
ment are simplified. Each module has a specific functionality, such as geometry processing,
calculation of collision probabilities, matrix calculations for the interface current method, and
output data processing. A Python input file is used to specify the geometry, materials, mesh,
and neutronics parameters for the problem of interest. For the calculation of the collision
probabilities related to the local problems, the framework calls the MC code Serpent. Then, the
framework assembles the matrices needed for the solution of the global problem via the ICM.
The output files contain the multiplication factor, data about the convergence of the solution,
the scalar fluxes in the fine regions, and the collision probabilities which can be retrieved with
the ready-to-use post-processing tools of the software.

The verification process of the framework is based on 2-dimensional problems derived from
data of a sodium-cooled fast reactor, i.e., 1) hexagonal fuel pin cell with simplified geometry;
2) detailed fuel pin cell; 3) scaled hexagonal lattice with simplified fuel pins; 4) full-scale
hexagonal assembly with simplified fuel pins. Reference solutions are generated using Serpent.

In the first two cases, three different coarse meshes were tested: a single-node coarse mesh, a
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square-grid coarse mesh, and a triangular coarse mesh. For both the simplified fuel pin and the
detailed fuel pin, the usage of the scattering production cross sections significantly improves
the criticality calculations. The results obtained from the different meshes are similar in terms
of keff and neutron fluxes, and they are close to the reference values. In the case of the detailed
fuel pin, neutron interactions in the hollow and gap of the fuel pin are very low. Hence, an
accurate MC estimation of the collision probabilities in these regions requires a high number
of neutron histories and thus a very demanding computational effort. Yet, both keff and the
neutron fluxes are predicted reasonably well despite the fact that the collision probabilities
used for the hollow and the gap have large statistical uncertainties.

In the third problem, a scaled hexagonal system was discretized using a coarse mesh with
rectangular and triangular nodes. Again, the scattering production cross sections are important
for an accurate solution. Both the effective multiplication factor and the scalar flux are close
to the reference values.

In the fourth problem, a full-scale fuel assembly was discretized with a mix of rectangular and
triangular coarse nodes. Considering the scattering production cross sections in the scattering
matrix is important to achieve a solution closer to the reference. The discrepancy between
the effective multiplication factor predicted with the framework and with the reference Monte
Carlo calculation is high (around 500 pcm). The comparison of the scalar neutron fluxes shows
that the buckling was reproduced accordingly, except for the energy groups 3 and 8, which
will be an object of study in the future. The differences between the hybrid solution and the
reference solution are small, but they grow in the less energetic groups where the collision
probabilities are less accurate.

For all the verification cases, the sensitivity of the Monte Carlo estimation of the collision
probabilities to the number of neutron histories was analyzed. Increasing the number of neutron
histories leads to the estimation of collision probabilities with lower statistical uncertainty
and thus leads to more reliable values of the effective multiplication factor and neutron fluxes.
However, in some cases, a lower number of neutron histories reproduces a criticality value
closer to the reference. This behavior can be attributed to the higher variability of the MC
simulations using more limited statistics, and it needs to be studied in the future. The modeling
of a detailed geometry with materials with low neutron reaction rates might be challenging
since it requires higher MC statistics to estimate accurate collision probabilities in all the
regions of the system.

The estimation of the collision probabilities through Monte Carlo is computationally more
expensive than the deterministic calculation, which, for the 4 problems considered in Chapter
4, was negligible. The computational effort of the reference solution for the simplified fuel
pin cell and the detailed fuel pin cell was less expensive than the overall calculation of the
collision probabilities. For the bigger systems such as the scaled and the full-size hexagonal
fuel assembly, the reference solution was more expensive than the hybrid one based on the sets
of collision probabilities estimated from 2e+03 and 1e+04 neutron histories. In the case of
the scaled system, the cheaper hybrid simulations also provided accurate results. Therefore,
the hybrid framework has the potential to reduce computational costs when applied to a large
system, but a careful selection of the coarse mesh is needed to minimize the number of collision

72



Licentiate Thesis Hirepan Palomares

probabilities to be estimated with Monte Carlo.

5.2 Future work

5.2.1 Nuclear Engineering Research Problems

The next phase of the research will be focused on the study of the applicability of the hybrid
framework to more realistic system configurations.

First, the framework will be used for simulations of a fuel assembly where the fuel pins are
modeled in a detailed manner, i.e., considering helium hollow, gap, and cladding regions. The
introduction of such regions with low neutron reaction rates in assembly-level calculations will
require generating a set of collision probabilities with lower standard deviations, at a feasible
computational cost.

Second, to explore the modeling for efficient hybrid simulations of a multi-region fast breeder
system, a simplified and miniaturized representation of a full core will be considered, including
an inner and outer fuel region, a breeder blanket, and a shielding, see Figure 5.1. Then, one of
the fuel assemblies in the outer fuel region (light blue region in Figure 5.1) will be replaced
with a control rod. The control rod contains enriched boron, so it is a strong localized neutron
absorber and can pose challenges because of its significant impact on the spatial distribution
of the neutrons. In this way, the performance of the framework in solving non-symmetrical
systems will also be evaluated.

Figure 5.1: Example of a mini core characteristic of sodium-cooled fast reactor
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The last step will be to optimize the framework and evaluate the possible benefits of the
approach for simulations of a real sodium-cooled fast reactor core. To avoid excessive use of
computational resources, the neutron transport problem will be solved only for a fraction of
the core, taking advantage of the 1/3 symmetry of this system, see Figure 5.2. Relevant points
to be addressed will be the scalability of the framework and the selection of a suitable coarse
mesh. Since the most consuming part of the hybrid framework is the calculation of the collision
probabilities, the performance against Monte Carlo will be evaluated to answer if the hybrid
framework can be competitive against pure Monte Carlo calculations for full-core. A coarse
mesh in the pin-cell level will require excessive computational resources for full-core calculations.
Furthermore, the selection of a suitable coarse mesh needs to be studied. Additionally, the linear
problem solved with the interface current method will require high-performance computational
techniques, such as the implementation of sparse matrix calculation algorithms and CPU
parallelization will be needed.

Figure 5.2: Example of a mini core characteristic of sodium-cooled fast reactor

5.2.2 Improvements to the framework

Improvements to the modeling methodology and the computational framework can be addressed
in the future. For the methodology, the optimization of the coarse meshes and the application
of MC fixed source calculations may be considered to reduce the computational cost and
improve the accuracy of the estimation of the collision probabilities associated with the local
problems.

For the computational framework, developments of future interest are summarized as follows:

• The solution of the eigenvalue problem is based on a simple power iteration method, which
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is known to have a low convergence rate. Consequently, implementing an acceleration
method such as a standard Chebyshev technique is necessary. Non-linear acceleration
using the Jacobian Free Newton Krylov algorithm can also be explored.

• The implementation of high-performance computational (HPC) techniques, such as
C/C++ binders to the current Python software and parallelization at the CPU level are
needed to enable criticality calculations of the full core.

• For full core calculations the matrices of the linear system become extremely large. Thus,
algorithms for sparse matrix operations will be implemented as well. This will decrease
the memory storage requirements and will speed up the calculations.
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