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Supplementary methods 

Determining QSAR applicability domains 

T.E.S.T., VEGA and ECOSAR each have individual applicability domains and methods for reporting if a chemical is 

outside of that domain. T.E.S.T. only provides predictions for chemicals inside of its applicability domain. VEGA 

provides predictions for chemicals outside of the applicability domain but reports these as ‘low reliability’. ECOSAR 

reports with one or more ‘flags’ or ‘alerts’ if predictions are less reliable.  

The QSAR dataset was constructed according to the following 1) for T.E.S.T., all reported predictions were included 

in the QSAR dataset. 2) for VEGA, all predictions with ‘low’ reliability were considered as outside of the applicability 

domain. 3) for ECOSAR all predictions with an associated ‘alert’ were considered as outside of the applicability 

domain, apart from when only the alerts, ‘AcuteToChronicRatios’ or ‘SaturateSolubility’ were reported as these were 

considered as less severe. Finally, for ECOSAR, predictions for chemicals reported as ‘SHOULD NOT BE 

PROFILED’ by ECOSAR v2.0 in batch mode were considered as outside of the applicability domain. (ECOSAR v2.0 

was used as batch predictions from ECOSAR v2.2 report predictions without flags or alerts when predictions in single 

compound mode are reported as ‘SHOULD NOT BE PROFILED’). ECOSAR v2.0 was run using both CAS and 

SMILES as individual inputs to provide full coverage. This mostly reported metals and metal-containing salts. 

Extracting which chemicals the QSARs were trained with 

Combinations of chemicals and species groups that the QSARs were trained on were identified as follows. 1) For 

T.E.S.T. and VEGA all combinations with reported ‘experimental’ data. 2) For ECOSAR v2.2, the training data was 

retrieved from the file: 

‘..\ecosarapplication v2_2\Helpful\Consolidated_SAR_MS.pdf’. 

Layer-wise Learning Rate Decay (LLRD) 

Initial testing with the fish EC50 and EC10 datasets showed that layer-wise learning rate decay LLRD improved the fine-

tuning stability and that LLRD had a very small influence on model performance. All models presented in the main 

paper are therefore trained using LLRD. 

Hyperparameter and parameter sweep setup 

Initial testing showed that a fully trainable ChemBERTa transformer had the highest accuracy and consequently neither 

the embedding layer nor any of the encoders were frozen during the rest of the model development. Initial testing also 

showed that the dropout rate did not notably affect the accuracy and it was therefore fixed at 0.2. 

The final model hyperparameter/-parameter configurations were determined by Bayesian optimization, training the 

model on the largest datasets per effect concentration (fish EC50 and EC10). The optimization included the number of 

frozen and/or reinitialized encoders and frozen embedding layers in ChemBERTa, batch size, learning rate, dropout 

rate, as well as the number of hidden layers and number of neurons per layer for the deep neural network. Due to the 

high number of possible parameter combinations, the optimization was performed in two individual steps. The 

separation was performed based on the parameters either displaying a decoupling during initial training or because they 

had little or no impact on model accuracy during initial testing (Table S2, Table S3).  

The resulting model configurations were decided based on overall performance (weighted median and mean error) and 

inter-model uniformity. 

Supplementary results 
Selection of ChemBERTa version and loss function 
Initially, we explored the available pre-trained versions of ChemBERTa and evaluated our model using two loss 

functions, mean absolute error (MAE/L1) and mean squared error (MSE). ChemBERTa is available with versions pre-

trained using either a Byte-Pair Encoding (BPE) or a SMILES tokenizer and with varying amounts of SMILES included 

in the pre-training. The largest number of unique SMILES included in the pre-training was 10 and 1 million for the 

BPE and SMILES tokenizers, respectively. Hyperparameter sweeps using Bayesian optimization were performed for 

both versions, using either the MAE or MSE loss functions. Thus, the optimizer changed both the loss function and 

learning rate while minimizing the weighted median loss (Table S1). In total 30 individual models per ChemBERTa 

version were trained (i.e., testing ~15 different learning rates per version and loss function combination). Training was 



performed over 30 epochs, using five-fold cross-validation and the best-performing model was used for the evaluation 

(Fig. S1). This optimization was performed using the largest individual dataset (fish EC50). 



Figure S1: ChemBERTa version and loss-function optimization. Mean, median, weighted mean and weighted median validation 

loss for the five-fold cross-validation on the fish EC50 dataset. Training and validation were performed using a transformer pre-

trained either using a byte-pair (BPE) or SMILES tokenizer, and a pre-training-set of either 1 or 10 million SMILES. The error bars 

show the standard error of the mean when associated with mean errors, and the median absolute deviation (MAD) when associated 

with median errors. The validation losses were recorded at the epoch where the lowest normalized median validation loss was 

observed within each fold. The bars are based on the validations from the five 80/20 splits between training and validation. Thus, 

per fold n = 1934 SMILES was used for the training and n = 483 SMILES were used for the validation. 



Principal Component Analysis for invertebrates and algae 
PCAs for the CLS-embeddings after the model was trained using the aquatic invertebrate EC50 and EC10 datasets (Fig. 

S2) as well as the algae EC50 and EC10 datasets (Fig. S3).  

Figure S2: PCA projection of CLS-embeddings from the transformer when trained on aquatic invertebrates EC50 and EC10 

data.  Principal Component Analysis of CLS-embeddings from the transformer when trained using the (a) EC50 dataset (n = 3741) 

(b) EC10 dataset (n = 2647).

Figure S3: PCA projection of CLS-embeddings from the transformer when trained on algae EC50 and EC10 data. Principal 

Component Analysis of CLS-embeddings from the transformer when trained using the (a) EC50 dataset (n = 2843) (b) EC10 dataset 

(n = 2756). 



Model performance by cosine similarity 
The difference in absolute prediction error increased with decreasing between the CLS-embeddings of the validation 

chemical and the chemicals in the training set (Fig. S4). 

Figure S4: Model performance by cosine similarity. The mean absolute prediction error, measured as the absolute fold change 

(i.e., always using the larger of the measured and predicted value as the numerator when calculating the ratio), determined from 

ten-fold cross-validations repeated ten times, split by the median cosine similarity of the validation chemical to the training 

dataset. High similarity is defined as a cosine similarity > 0.3, intermediate similarity between 0.2 – 0.3 and low similarity < 0.3. 

In panel (a) fish EC50 model (n = 52666), (b) aquatic invertebrate EC50 model (n = 34820), (c) algae EC50 model (n = 13019), (d) 

fish EC10 model (n = 19751), (e) aquatic invertebrate EC10 model (n = 15372), (c) algae EC10 model (n = 11830). The error bars 

show the standard error of the mean. The reported percentage values show the percentage of validation chemicals that belonged to 

the respective classification during training. 



Combined model comparison 
The accuracy and residual distribution from the combined EC50 and EC10 model showed a consistent improvement 

across all species groups, demonstrating the model’s ability to integrate and utilize different types of data (Fig. S5). 

The improvement is seen both by the Absolute Prediction Error (fold change) and by a decrease in the number of 

residuals outside a factor of 10, 100 and 1000. 

Figure S5: combined model performance fish, aquatic invertebrates, and algae. Panels (a,d,g) show the performance as the 

absolute median and mean error, measured as the absolute fold-change between predicted and experimental values, determined 

from the ten-fold cross-validations for the (a) fish EC50 model (n = 52666), EC10 model (n = 19751), and the model able to predict 

both EC50/EC10 (n = 72417), (d) aquatic invertebrates EC50 model (n = 34820), EC10 model (n = 15372), and the model able to 

predict both EC50/EC10 (n = 50192), and (g) algae EC50 model (n = 13019), EC10 model (n = 11830), and the model able to predict 

both EC50/EC10 (n = 24849). The error bars show the median absolute deviation and the standard error of the mean for the 

respective prediction error. Panels (b-c, e-f, h-i) show the histogram of residuals for the (b-c) fish, (e-f) aquatic invertebrate, and 

(h-i) algae model able to predict both EC50/EC10, when predictions were evaluated on the EC50 and EC10 datasets. The reported 

percentage values show the percentage of chemicals which are erroneously predicted by a factor of more than 10, 100 or 1,000. 



Venn diagrams over QSAR applicability 
The number of SMILES predictable by each QSAR method, for all chemicals with measured data, as well as all 

chemicals inside the QSARs applicability domains for the six individual datasets (Fig. S6).  

Figure S6: QSAR models applicability intersection. The number of SMILES predictable by each QSAR. (a,b) Number of 

predictable SMILES both in and outside of the applicability domain for the three QSARs based on all chemicals in the fish EC50 

dataset. (c,d) The number of predictable SMILES both in and outside of the applicability domain for the three QSARs based on all 

chemicals in the fish EC10 dataset. (e,f) Number of predictable SMILES both in and outside of the applicability domain for the three 

QSAR tools based on all chemicals in the aquatic invertebrate EC50 dataset. (g,h) Number of predictable SMILES both in and outside 

of the applicability domain for the three QSARs based on all chemicals in the aquatic invertebrate EC10 dataset. (i,j) The number of 

predictable SMILES both in and outside of the applicability domain for the three QSARs based on all chemicals in the algae EC50 

dataset. (k,l) The number of predictable SMILES both in and outside of the applicability domain for the three QSARs based on all 

chemicals in the algae EC10 dataset. 



QSAR accuracy and residual analysis 
The accuracies were analyzed for the set of chemicals that were inside the shared applicability domain for all three 

QSARs (ECOSAR, VEGA, T.E.S.T.) for each of the six datasets, that neither model had been trained on. For our model 

the validation accuracy from the ten times repeated ten-fold cross-validation is used. Thus, neither model had been 

trained with the chemicals that are predicted, and no differences in coverage influence the comparison of accuracy. The 

residuals, per chemical, for all chemicals inside each model’s applicability domain was also analyzed and results are 

summarized in the main text in Table 2. That figure is complemented here for fish (Fig. S7), aquatic invertebrates (Fig. 

S8) and algae (Fig. S9). 

Figure S7: Comparison of model performance and absolute error distribution fish. The mean and median absolute error for 

the chemicals that are within the applicability domains, but not included in the training, of ECOSAR, VEGA and T.E.S.T. for the 

models trained using the (a) EC50 dataset (n = 734) and (b) EC10 dataset (n = 130). (c-j) The absolute error distribution for all 

chemicals within the applicability domain of the transformer-based model, ECOSAR, VEGA and T.E.S.T. 



Figure S8: Comparison of model performance and absolute error distribution aquatic invertebrates. The mean and median 

absolute error for the chemicals that are within the applicability domains, but not included in the training, of ECOSAR, VEGA and 

T.E.S.T. for the models trained using the (a) EC50 dataset (n = 752) and (b) EC10 dataset (n = 518). (c-j) The absolute error distribution 

for all chemicals within the applicability domain of the transformer-based model, ECOSAR, VEGA and T.E.S.T. 



Figure S9: Comparison of model performance and absolute error distribution algae. The mean and median absolute error for 

the chemicals that are within the applicability domains, but not included in the training, of ECOSAR, VEGA and T.E.S.T. for the 

models trained using the (a) EC50 dataset (n = 72) and (b) EC10 dataset (n = 120). (c-j) The absolute error distribution for all chemicals 

within the applicability domain of the transformer-based model, ECOSAR, VEGA and T.E.S.T. 



QSAR residual analysis per effect type for EC10 datasets 
The residual error was determined individually for each effect to ensure that the error distributions within the fish and 

aquatic invertebrate EC10 datasets were not dependent on the measured effect (Fig. S10, Fig. S11). The proportions of 

errors exceeding 10, 100 and 1000 absolute fold prediction errors show that the model performs well also within each 

effect individually. Note, that algae are not presented as the model only predicts one population  effects. 

Figure S10: Absolute error distribution per effect fish. The absolute error distribution for all chemicals trained using the fish-

EC10 dataset for the transformer-based model, ECOSAR, VEGA and T.E.S.T., split by the effects that are inside the applicability 

domain of our model. Effect abbreviations: DVP = development, GRO = growth, ITX = intoxication, MOR = mortality, MPH = 

morphology, POP = population, REP = reproduction. 



Figure S11: Absolute error distribution per effect invertebrates. The absolute error distribution for all chemicals trained using 

the aquatic invertebrate EC10 dataset for the transformer-based model, ECOSAR, VEGA and T.E.S.T., split by the effects that are 

inside the applicability domain of our model. Effect abbreviations: DVP = development, ITX = intoxication, MOR = mortality, MPH 

= morphology, POP = population, REP = reproduction. 



Table S1: ChemBERTa version and loss-function optimization. Parameter/Hyperparameter sweep to determine the best 

performing ChemBERTa version and loss function based on the fish EC50 dataset. This sweep uses a Bayesian optimizer and a five-

fold cross-validation with the average median loss as the target metric. The choice of a log-uniform distribution for the learning rate 

ensures that learning rates from different magnitudes are equally likely to be tested. 

EC50 model development 

Parameter/Hyperparameter Distribution Interval Result 

Learning rate Log-uniform [1e-3,1e-6] - a

ChemBERTa version Categorical 
[SMILES_tokenized_PubChem_shard00_160k, 

PubChem10M_SMILES_BPE_450k] PubChem10M_SMILES_BPE_450k 

Loss function Categorical [MAE Loss, MSE Loss] MAE Loss 

FIXED VALUES 

Dataset  Fish EC50 

Epochs 30 

Batch size 512 

Dropout 0.2 

Number of frozen encoders 0 

Frozen embedding layer False 

Number of reinitialized encoders 0 

Number of hidden layers 2 

Hidden layer sizes [350,20] 

a The resulting learning rate is not specifically of interest, but an interval is necessary as the loss function varied between the tests. 



Table S2: Batch size sweep. Hyperparameter/parameter optimization to determine batch size based on the fish EC50 dataset 

performed using Bayesian optimization with the average median loss across a five-fold cross-validation as the target metric. The 

choice of a log-uniform distribution for the learning rate ensures that learning rates from different magnitudes are equally likely to 

be tested.  

EC50 model development 

Parameter/Hyperparameter Distribution Interval Result 

Learning rate Log-uniform [1e-3,1e-6] - a

Batch size Categorical [512,256,128,64] 512 

FIXED VALUES 

Dataset Fish EC50 

Epochs  30 

Dropout 0.2 

Number of frozen encoders 0 

Frozen embedding layer False 

Number of reinitialized encoders 0 

Number of hidden layers 2 

Hidden layer sizes [350,20] 

ChemBERTa version PubChem10M_SMILES_BPE_450k 

a The resulting learning rate is not specifically of interest, but an interval is necessary as the batch sizes vary. The learning rate will 

therefore be subject to change in subsequent sweeps. 



Table S3: Learning rate, number of reinitialized encoders, hidden layers and hidden layer size optimization. 

Hyperparameter/parameter optimization to determine the remaining parameter configurations for all three models. This is performed 

using Bayesian optimization with the average median loss across a five-fold cross-validation as the target metric. The choice of a 

log-uniform distribution for the learning rate ensures that learning rates from different magnitudes are equally likely to be tested.  

EC50 model development EC10 model development 
EC50/EC10 combined 

model development

Parameter/Hyperparameter Distribution Interval Result Interval Result Interval Result 

Learning rate Log-uniform [1e-3,1e-6] 1.5e-4 [1e-3,1e-6] 5e-4 [1e-3,1e-6] 2e-4 

Number of reinitialized 

encoders 
Categorical [0,1] 0 [0,1] 0 [0,1] 0 

Number of hidden layers Categorical [2,3,4] 3 [2,3,4] 3 [2,3,4] 3 

First hidden layer size Int-uniform [768,300] 700 [768,300] 700 [768,300] 700 

Subsequent hidden layer size Int-uniform [500,20] [500,300] [500,20] [500,300] [500,20] [500,300] 

FIXED VALUES 

Dataset Fish EC50, Fish EC10, and combined Fish EC50 & Fish EC10
 

Epochs  30 

Batch size 512 

Dropout 0.2 

Number of frozen encoders 0 

Frozen embedding layer False 

ChemBERTa version PubChem10M_SMILES_BPE_450k 

a The first hidden layer size is allowed a different interval than subsequent layers. Due to the definition of the sweep, subsequent 

hidden layers share the same interval, but can assume different sizes. The result should be read as [size of sub. Layer 1, size of sub. 

Layer2] 



Hyperparameter and parameter sweep results 
The final model parameter and hyperparameter configurations are presented in Table S4. 

Table S4: Final model hyperparameters. The set of hyperparameters that yielded the highest performance for the model. The 

parameters were set after performing Bayesian optimization with Weights and Biases v0.13.1. The model configurations are used 

for all species groups and were derived from the largest individual dataset (fish EC50, fish EC10 and fish EC50/EC10). 

Model Learning rate Batch size 
Number of reinitialized 

encoders 

Number of hidden 

layers 
Hidden layer sizes 

EC50 model 1.5e-4 512 0 3 [700, 500, 300] 

EC10 model 5e-4 512 0 3 [700, 500, 300] 

Combined EC50/EC10 

model 
2e-4 512 0 3 [700, 500, 300] 



Pearson correlation coefficients 
Table S5: Pearson correlation coefficients. The correlation coefficients per dataset. For the extended model the correlation 

coefficients have been determined when the validation chemicals are allowed to present also in the training dataset, as long as the 

predicted endpoint was different (overlap). 

Organism Group Model version Pearons correlation coefficeint (r) 

Fish EC50 0.688 

Fish EC10 0.680 

Fish Combined EC50/EC10 (overlap) 0.797 

Aquatic 

invertebrates EC50 0.733 

Aquatic 

invertebrates EC10 0.739 

Aquatic 

invertebrates Combined EC50/EC10 (overlap) 0.827 

Algae EC50 0.643 

Algae EC10 0.595 

Algae Combined EC50/EC10 (overlap) 0.800 
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