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E N V I R O N M E N TA L  S T U D I E S

Transformers enable accurate prediction of acute and 
chronic chemical toxicity in aquatic organisms
Mikael Gustavsson1†, Styrbjörn Käll2†, Patrik Svedberg3, Juan S. Inda-Diaz2, Sverker Molander4, 
Jessica Coria1, Thomas Backhaus3, Erik Kristiansson2*

Environmental hazard assessments are reliant on toxicity data that cover multiple organism groups. Generating 
experimental toxicity data is, however, resource-intensive and time-consuming. Computational methods are fast 
and cost-efficient alternatives, but the low accuracy and narrow applicability domains have made their adaptation 
slow. Here, we present a AI-based model for predicting chemical toxicity. The model uses transformers to capture 
toxicity-specific features directly from the chemical structures and deep neural networks to predict effect concen-
trations. The model showed high predictive performance for all tested organism groups—algae, aquatic invertebrates 
and fish—and has, in comparison to commonly used QSAR methods, a larger applicability domain and a considerably 
lower error. When the model was trained on data with multiple effect concentrations (EC50/EC10), the performance 
was further improved. We conclude that deep learning and transformers have the potential to markedly advance 
computational prediction of chemical toxicity.

INTRODUCTION
Chemical pollution is a driver of biodiversity loss on a planetary 
scale and a major contributor to the declining ecological status of 
surface waters across the globe (1–5). Several adverse environmental 
effects have been directly associated with chemical pollution, such 
as the extreme decline in vultures in India (6, 7) and the general 
decline in bee populations in the Western world (8). Chemical pollu-
tion also negatively affects humans, with an estimated cost of disease 
of €157 billion and $340 billion for the European Union and United 
States, respectively (9, 10). Now, more than 2 million animals are 
euthanized annually for regulatory purposes (11), a number that is 
expected to increase due to the continuous expansion of the number 
of chemicals used in society (12–14).

To ensure that chemicals are used in a safe and sustainable way, 
increasingly stringent regulatory systems have been implemented over 
time (15, 16). Environmentally safe concentrations are determined by 
exposing organisms under controlled conditions to a concentration 
series of the chemical(s) of interest, determining the concentration 
at which effects occurs and then applying a safety factor. For the 
aquatic compartment, data from primary producers, primary con-
sumers, and secondary consumers are typically considered (17–20).

Computational methods have been suggested as fast and cost-
efficient alternatives to experimental data (21, 22). This includes, par-
ticularly, quantitative structure-activity relationship (QSAR) methods 
that use regression or other predictive models (e.g., machine learning–
based) to associate differences in chemical structures with changes 
in toxicological potency. Effects of larger structural alterations are, 
however, notoriously hard to predict, and most QSAR models are, 
therefore, often developed using data that are highly stratified, typically 
based on chemical structure, toxicological effects, species, exposure 

scenarios, and/or tested end points. This results in narrow applicability 
domains (ADs), and multiple QSAR models are often required to make 
predictions for chemicals outside a single class.

Machine learning techniques have been suggested as an approach 
to integrate large volumes of heterogeneous data into more general 
models (23). For example, deep learning has been used to predict 
various biological activities, including toxicity, based on chemical 
structures (24–29). However, current methods still lack the necessary 
accuracy and sufficiently large AD required to apply them in regulatory 
contexts. Existing computational methods have only been able to 
replace a small proportion of experimental toxicity data (30). Thus, 
improved approaches are needed to ensure that chemical regulation 
keeps up the pace with the increasing number of chemicals (12, 14).

Recently, transformers, a deep learning methodology originally 
developed for natural language processing (31, 32), have been shown 
to be highly efficient at capturing information from biological and 
chemical structures (33–35). Transformers use self-attention, a mecha-
nism that infers complex dependencies directly from data to empha-
size the parts of the chemical structure that are deemed especially 
informative. This makes it possible to identify the structural features 
that are most important for an accurate prediction of chemical toxicity. 
The rapid accumulation of toxicity data, stemming both from Euro-
pean legislations with a “no data no market” philosophy, and the 
growing output from the ecotoxicological research community (36), 
has resulted in collections of experimental data for tens of thou-
sands of chemicals, with information on algae, aquatic invertebrates, 
and fish being especially rich. This paves the way for advanced deep 
learning methods, such as transformers, to improve the computa-
tional predictions of chemical toxicity for these species’ groups.

Here, we describe a transformer-based model that uses chemical 
structure, together with effect measurements, to predict toxicity. 
The model shows high predictive performance for aquatic organ-
isms from the three organism groups commonly used in chemical 
regulation: algae, aquatic invertebrates, and fish. Compared to three 
commonly used QSAR-based methods, the proposed model has 
markedly improved accuracy. The transformer-based model also 
had a larger AD and was, in contrast to the other methods, able to 
make predictions for all structures in the evaluation dataset. Last, 
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the performance was further improved by combining multiple effect 
concentrations into a single model. We conclude that transformers 
markedly advance the computational prediction of chemical toxicity, 
making it an increasingly attractive alternative to whole-animal toxicity 
experiments.

RESULTS
In this study, we present a deep learning model for predicting chemical 
toxicity based on molecular structure (Fig. 1). The model uses a 
transformer encoder to derive a numerical representation of the 
chemical structure, which is then used as input to a deep neural net-
work (DNN) that—together with information on the desired effect, 
end point, and duration of the exposure—predicts an associated 
effect concentration (EC10 and EC50) (31, 34). The transformer and 
DNN were trained simultaneously, allowing the transformer to up-
weight the structural features that are especially important for toxicity. 
The training data consisted of 147,864 experimentally measured 
effect concentrations, covering 2321 to 3741 unique chemical struc-
tures for three organism groups (Table 1). Stratified sampling was used 
to reduce the influence of overrepresented chemicals, and Bayesian 
optimization was used to determine model hyperparameters (37). 
Initially, two individual models were trained for each organism group, 
one for the prediction of EC50 and one for EC10 (table S4 and Materials 
and Methods). The code, data, and trained models are available at 
https://github.com/StyrbjornKall/TRIDENT). The trained models can 
be used for inference through the TRIDENT web service available at 
https://trident.serve.scilifelab.se.

We first explored how the numerical representation of the chemi-
cal structures in the trained model corresponded to toxicity. The 
transformer derives a 768-dimensional vector from the simplified 
molecular-input line-entry system (SMILES) that describes the 

substance toxicity. Principal components analysis (PCA) of the vectors 
showed that the model organized the chemical structures in a con-
tinuous gradient (Fig. 2 and figs. S2 and S3). For example, for fish, 
the EC50 model showed a clear ability to separate toxic and nontoxic 
chemicals (Fig. 2A), demonstrating that the model properly captures 
toxicological information from the chemical structure. The EC10 
models (Fig. 2B and figs. S2B and S3B) followed similar trends but 
with more chemical structures with deviations, reflecting a slightly 
higher degree of uncertainty. Analogous patterns could be seen for 
the other organism groups (figs. S2 and S3).

The model performance was evaluated using 10-fold cross-
validation, where the training and test datasets were created randomly 
on the basis of unique chemical structures (Table 1 and Materials and 
Methods). The performance of the model was, thereby, always mea-
sured using chemicals that were not included in the training and, 
thus, new to the model. The highest predictive performances for 
EC50 were seen for fish and aquatic invertebrates, which showed, 
compared to experimental data, median error factors (the ratio between 
the prediction and measured data) of 2.66 and 2.82, while the Pearson 
correlation coefficient (r) was 0.69 and 0.73, respectively (Fig. 3, A 
and B, and table S5). The model performance for algae was slightly 
lower, with a median error factor of 3.16 and r = 0.64 (Fig. 3C and 
table S5). A closer analysis of the residuals from the fish models showed 
that close to 80% of all predictions were within a factor of 10 of the 
experimentally measured data, and only 3.3% of the chemicals had 
prediction errors larger than a factor of 100 (Fig. 3D). These numbers 
were similar for aquatic invertebrates (79.1 and 3.5%, respectively; 
Fig. 3E) and algae (77.3% and 4.8%, respectively; Fig. 3F). The EC10 
models were able to make predictions with almost the same accuracy 
(Fig. 3, A to C) where the median errors were a factor of 3.51, 3.12, 
and 3.99 and the correlation (r) is equal to 0.68, 0.74, and 0.60 for the 
fish, aquatic invertebrates, and algae, respectively (table S5). The 
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Fig. 1. Model architecture. A representation of a molecular structure in the form of a simplified molecular-input line-entry system (SMILES) is first split into tokens (T) and 
then used as input embeddings (E) for the transformer. The model then uses a pretrained six-encoder layer transformer to interpret the SMILES into a classification embed-
ding (E[CLS]) vector of dimension 768, representing the molecular structure with respect to its toxicity (see Materials and Methods). The E[CLS] is then amended with informa-
tion on exposure duration, effect, and end point and used as input to a DNN. The network then predicts the associated toxicity in the form of an effect concentration (EC50 
and EC10). The parameters and hyperparameters were determined using Bayesian optimization and all weights within the transformer and the DNN were determined 
during the model training (table S4).
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corresponding proportion of chemicals deviating more than 10-fold 
were 73.1, 74.8, and 70.9% (Fig. 3, G to I). For all models, less than 
1.5% of the chemical structures had a median error larger than a 
factor of 1000. As expected, the median error increased with higher 
structural dissimilarity to the training set (fig. S4).

Next, we investigated whether the performance could be further 
increased by combining predictions of both EC50 and EC10 in a single 
extended model. Three extended models were trained (table S4), one 
for each organism group, and then, as previously, evaluated using 
10-fold cross-validation. As we wanted to investigate if data for EC50 
could improve the prediction of EC10, and vice versa, the model was 

allowed to be evaluated on chemical structure also present in the 
training data as long as the predicted end point was different. The 
results showed that the extended models had an increased performance 
for all three organism groups. For the fish model, the decrease in the 
median error was 23.3% (from 2.66 to 2.04) and 43.0% (from 3.51 to 
2.00) for EC50 and EC10, respectively (Fig. 4). The increase in per-
formance was similar or even larger for aquatic invertebrates and 
algae, with decreases in error corresponding to 25.9% (from 2.82 to 
2.09) and 37.8% (from 3.12 to 1.94) for aquatic invertebrates EC50 
and EC10, respectively, and 36.7% (from 3.16 to 2.00) and 48.6% 
(from 3.99 to 2.05) for algae EC50 and EC10, respectively (fig. S5). 

Table 1. Overview of the EC50 and EC10 datasets for fish, aquatic invertebrates, and algae. The datasets were used to train and validate the transformer-
based model. The number of unique experimental setups is the number of unique combinations of chemicals, end points, effects, and exposure durations in 
each dataset. Effect abbreviations: DVP, development; GRO, growth; ITX, intoxication; MOR, mortality; MPH, morphology; POP, population; REP, reproduction.

Dataset
Organism 

group End point Effect
No. of data 

points

No. of 
unique 

chemicals

No. of 
unique 

experimen-
tal setups

No. of 
chemicals 

responsible 
for more 

than 50% of 
data

Concentra-
tion (mg/

liter) mean 
(5–95%)*

Exposure 
duration 

(hour) mean 
and SEM*

Fish EC50 Fish EC50 MOR 52,666 3542 8974 87 27.1 
(0.005–155.0)

88 ± 0.63

Fish EC10 Fish EC00–EC10, 
NOEC

MOR, ITX, 
DVP, GRO, 
REP, MPH, 

POP

19,751 2321 7870 107 16.9 (0.0001–
100)

621 ± 10.2

Aquatic 
invertebrates 
EC50

Aquatic  
invertebrates

EC50 MOR, ITX 34,820 3741 9116 98 23.1 (0.0007–
140)

78 ± 0.61

Aquatic 
invertebrates 
EC10

Aquatic  
invertebrates

EC00–EC10, 
NOEC

MOR, ITX, 
DVP, REP, 

MPH, POP

15,372 2647 6991 118 14.1 (0.0003–
100)

311 ± 3.50

Algae EC50 Algae EC50 POP 13,019 2843 4487 188 25.863 
(0.008–144)

91 ± 0.82

Algae EC10 Algae EC00–EC10, 
NOEC

POP 11,830 2756 4180 184 16.6 
(0.003–100)

131 ± 3.48

*These values were calculated from the log10-transformed data used to train the models.
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Fig. 2. PCA of the numerical presentation of the chemical structures. The plot shows a two-dimensional visualization of the structural representation inferred by the 
transformer from experimental data on fish for (A) EC50 (n = 3542) and (B) EC10 (n = 2321). The PCA was performed on the 768-dimensional embedding vector (E[CLS]) as-
sociated with each chemical structure after training was completed. Each dot corresponds to a unique chemical structure, and the distance reflects similarities in their 
toxicity. The color of each chemical structure is based on the median of the experimentally measured toxicity. The values at the x and the y axes are the total percent of 
variation explained by the corresponding principal component.
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The largest performance improvement was seen for chemicals where 
both EC50 and EC10 data were available, which had a median error 
of <2. Similarly, the correlation, when allowing for overlap in structure 
but not end point, reached 0.80, 0.83, and 0.80 for the fish, aquatic 
invertebrates, and algae, respectively, thus demonstrating that the 
extended models can accurately extrapolate to different effect con-
centrations.

The performance of the transformer-based model was compared 
to three commonly used QSAR methods for the assessment of chem-
ical toxicity in aquatic organisms (ECOSAR, VEGA, and T.E.S.T.) 
(38–40). The transformer-based models were not restricted to specific 
chemical classes and could, thus, make predictions for all structures 
included in the training datasets (n = 6474 unique structures). In 
contrast, a large proportion of these chemicals fell outside the ADs 
of the conventional QSAR methods (Fig. 5). The largest differences 
in AD were seen for EC10 (Fig. 5, A, C, and E), where VEGA was only 
able to analyze 10 to 30% of the chemical structures (depending on 
organism group). T.E.S.T. does not have any EC10 model and was 
therefore excluded. Of the three QSAR methods, ECOSAR had the 
largest AD for EC10, and it was able to predict toxicity for more than 
75% of the chemical structures. Even when used in the most relaxed 
settings, under which ECOSAR and VEGA return predictions for 
chemicals outside of their ADs, these QSAR methods still failed to 

predict the toxicity of a large proportion of the chemicals (Fig. 5, B, 
D, and F). Note that there were considerable overlaps between the 
ADs of ECOSAR, VEGA, and T.E.S.T., resulting in between 19 and 
21% (depending on organism group and effect concentration) of the 
chemicals not being predictable by any of the conventional QSAR 
methods (fig. S6).

Next, we compared the predictive performance of the transformer-
based model against the conventional QSAR methods (Fig. 6). To 
make the comparison fair, we only included chemical structures that 
were inside the ADs of all methods and that were not included in 
any of the training datasets used to develop the four compared 
methods (see Materials and Methods and Supplementary Materials). 
For the predictions of EC50, the transformer-based model had the 
best accuracy for fish and aquatic invertebrates with a median error 
corresponding to a factor of 2.35 and 2.40, respectively, while ECOSAR 
had the best performance for algae with a median error of a factor of 
1.41 (Fig. 6A and Table 2). The difference between the conventional 
methods and the transformer-based model was much larger for the 
EC10 predictions, where the transformer-based model had an error 
corresponding to a factor of 2.75 and 2.68 for fish and invertebrates, 
respectively. The second-best method, VEGA, had a predictive error 
between two and three times larger, corresponding to a factor of 
8.02 and 6.35 for fish and aquatic invertebrates, respectively (Fig. 6B 
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Fig. 3. Model performance. (A to C) Performance as the median and mean absolute prediction error, measured as the absolute fold change (i.e., always using the larger 
of the measured and predicted value as the numerator when calculating the ratio), determined from 10-fold cross-validations repeated 10 times. In (A), fish EC50 model 
(n = 52,666) and fish EC10 model (n = 19,751), (B) aquatic invertebrate EC50 model (n = 34,820) and aquatic invertebrate EC10 model (n = 15,372), and (C) algae EC50 
model (n = 13,019) and algae EC10 model (n = 11,830). The error bars show the median absolute deviation and the standard error of the mean for the median and mean 
prediction error, respectively. (D to I) Histograms of the residual errors (measured as fold change) for the six models: (D) fish EC50, (E) aquatic invertebrates EC50, (F) algae 
EC50, (G) fish EC10, (H) aquatic invertebrates EC10, and (I) algae EC10. The reported percentage values show the percentage of residuals that are larger than a factor of 10, 
100, or 1000, respectively.
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Fig. 4. Extended model performance. (A) Performance as the absolute median and mean prediction error, measured as the absolute fold change (i.e., always using the 
larger of the measured and predicted value as the numerator when calculating the ratio) determined from 10-fold cross-validations repeated 10 times. The bars corre-
spond to the fish EC50 model (n = 52,666), fish EC10 model (n = 19,751), and the fish extended model for EC50/EC10 (n = 72,417). The error bars show the median absolute 
deviation and the standard error of the mean for the respective prediction error. (B and C) Histogram of residual errors (measured as fold change) of the extended fish 
model when evaluated on the EC50 and EC10 datasets. The reported percentage values show the percentage of chemicals that are erroneously predicted by a factor of 
more than 10, 100, or 1000, respectively.
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(n = 2321), [(C) and (D)] aquatic invertebrates EC50 (n = 3741) and aquatic invertebrates EC10 (n = 2647), and [(E) and (F)] algae EC50 (n = 2843) and algae EC10 (n = 2756).
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and Table 2). For algae, the differences were not as extreme; however, 
the transformer-based model had an error of a factor of 3.50 compared 
to 5.27 for ECOSAR, the second-best performing method. In addition, 
the transformer-based model consistently had a lower error when 
evaluating the predictive performance individually for each included 
toxicological effect (figs. S10 and S11).

The performance of all methods was also assessed by investigating 
the prediction errors. In this analysis, all chemicals that were inside 
the AD of each respective method were included, even those that 
were part of the training sets of the conventional QSAR methods. 
The results showed that the transformer-based model had the overall 
highest performance. For the prediction of EC50 for fish, only 10 (of 
3047, 0.3%) of the chemicals had an error larger than a factor of 
1000 and only 91 (3%) had an error larger than a factor of 100 
(Fig. 7A). The corresponding error rates for the conventional QSAR 
methods ranged between 0.4 and 3.3% and 3.8 and 8.6% for a deviation 
of a factor of 1000 and 100, respectively (Fig. 7, B to D). For predictions 
of EC10 for fish, the differences were even more pronounced, and 
deviations of a factor of 1000 were between two and seven times more 
likely for the traditional QSAR methods when compared to the 
transformer-based model (Fig. 7, E to H). Similar patterns could be 
seen for aquatic invertebrates (Table 2 and figs. S8 and S9), while the 
prediction of EC50 and EC10 for algae VEGA [with a six times lower 
AD had a smaller percentage with errors >1000 (0.9 and 1.2% for 
the transformer based method and 0.3 and 0.2% for VEGA, for EC50 
and EC10, respectively). For the median errors, the performance 
improvement of the proposed transformer-based model was especially 
pronounced for predictions of EC10, where it was reduced by up to a 
factor of 7.

Last, we evaluated the results from the transformer-based model 
against a recent model that predicts chemical toxicity [EC50 and no 
effect concentration (NOEC)] in fish (41) based on an ensemble of 
three different machine learning methods (random forest, gradient 
boosted trees, and support vector regression). Because this model is 
not publicly available, the evaluation was done on the same set of 
chemicals as previously published, which showed that the transformer-
based model had an improved performance (e.g., root mean square 
error of 0.83 and 0.97 for the reported method compared to 0.56 and 
0.65 for the transformer-based method for EC50 and EC10, respectively).

DISCUSSION
In this study, we show that deep learning markedly improves the 
computational prediction of chemical toxicity to aquatic organisms. 
We propose an approach that combines transformer with DNNs to 
derive a general structure toxicity and effect relationship directly from 
data. This resulted in models with substantially increased ADs that 
are able to make predictions for large and more diverse sets of chemi-
cals. In addition, the transformer-based models, including the extended 
models, had superior performance with a median error corresponding 
to a factor of 2.00 to 3.50 when compared to experimentally mea-
sured effect concentrations.

One major difference between the proposed transformer-based 
model and the conventional QSAR methods is the numerical repre-
sentation of the chemical structures. Our model uses self-attention, 
a mechanism originally used to infer complex dependencies in natural 
language data (31, 32), that has recently been shown to efficiently 
associate biochemical properties with molecular structures (33). 
During the model training, the representation of the chemical structure 
is inferred from data by the transformer where structural features 
that are deemed especially important for toxicity are up-weighed. In 
contrast, ECOSAR v2.2 contains 263 individual models covering 
111 chemical classes only for fish (42). In addition, QSAR methods 
typically use predefined static structural representations, either using 
single values (38) or multidimensional vectors [e.g., fingerprints or 
other vector molecular descriptors (27, 43)]. Our results, thus, demon-
strate that self-attention constitutes an adaptive data-driven approach 
for estimating the structure-toxicity relationship that improves the 
predictive performance beyond existing QSAR methods.

The model was trained on a dataset consisting of 147,864 experi-
mental measurements for 6473 chemical structures with species 
from three organism groups. The high performance of the final 
model demonstrates that the currently available data is sufficiently 
rich to train deep learning models that are at least on par, but often 
superior, to existing methods for predicting chemical toxicity. This 
suggests that we have reached a tipping point, where data-driven black 
box models trained on the accumulated data are able to outcompete 
white box QSAR approaches. This performance gap is expected to 
grow as more experimental data become available. We, therefore, 
argue that the adoption and further refinement of data-driven artificial 
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Fig. 6. Comparison of performance. (A and B) Performance as the median absolute prediction error, measured as the absolute fold change between predicted and ex-
perimental values (i.e., always using the larger of the measured and predicted value as the numerator when calculating the ratio) for the three QSAR methods such as 
ECOSAR, VEGA, and T.E.S.T. and from the 10 times repeated 10-fold cross-validations for the transformer-based model. The comparison was done only for chemicals that 
were within the ADs of all methods but not in the training datasets of any of the methods. In (A), models for EC50 (n is 734, 752, and 72 for fish, aquatic invertebrates, and 
algae, respectively). In (B), models for EC10 (n is 130, 518, and 120 for fish, aquatic invertebrates, and algae, respectively).
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intelligence (AI)–based methods should be prioritized because 
they have the potential to substantially advance the reliability and 
applicability of in silico assessment of chemical toxicity. It should, 
however, be emphasized that data-driven methods are highly depen-
dent on the availability of large volumes of high-quality data. Large 
efforts are therefore necessary to aggregate information from multiple 
independent sources to compile datasets of sufficient size. The dataset 
used in this study included results both from standardized tests and 
experiments performed by the scientific community. This effort was, 
however, hampered by the lack of organized ecotoxicity data. The data 
and metadata describing chemical toxicity are rarely standardized, 
often limited, incomplete, or inaccessible. In particular, toxicity data 
generated to comply with European legislations, for example the 
Registration, Evaluation, Authorisation and Restriction of Chemicals 
(REACH), is only available as point estimates (e.g., EC50, EC10, and 

NOECs), while data on experimental setups and uncertainties are 
missing. Also, results from toxicity experiments presented in scientific 
papers are generally not submitted to data repositories and need to 
be manually extracted from the texts. Introducing modern FAIR 
data-sharing principles in both academy, government, and industry 
would, thus, greatly facilitate the development of data-driven ap-
proaches within ecotoxicology (44, 45).

We conclude that AI-based prediction of chemical toxicity offers 
new means to replace, reduce, and refine the use of animals for experi-
mental purposes. In addition, they allow rapid prescreening of large 
and diverse bodies of data and will aid in the development of more 
sustainable chemicals, as well as facilitate the substitution to more 
benign ones (46). This has the potential both to lower societal cost 
by replacing expensive tests with cheaper computational alternatives 
and to reduce the burden of disease and impacts on ecosystem services 

Table 2. Overview of performance comparison. Model performance for the transformer-based model compared to ECOSAR, VEGA, and T.E.S.T. The number of 
chemicals in the intersect is the number of chemicals that are within the AD of all models but not included in the training datasets. The mean and median 
absolute error are calculated for this subset of chemicals. The number of chemicals within the extended AD is the number of chemicals for which predictions are 
provided. This, thus, includes training data for the QSAR methods but excludes training data for the transformer-based model. The number of chemicals within 
the extended AD does not always match the total number of chemicals included in the training presented in Table 1 as only the data with durations matching 
the QSAR predictions were included in this comparison. The three rightmost columns report the percentage of chemicals with an error larger than the 
respective fold difference. Bold indicates best performance.

Dataset Model

No. of chem-
icals in the 
intersect

Mean  
absolute error

Median  
absolute error

No. of chem-
icals (within 

extended AD) >1000 [%] >100 [%] >10 [%]

Fish EC50 Proposed 
Model

734 3.19 2.35 3047 0.3 3.2 19.0

ECOSAR 734 4.44 2.99 1530 3.3 8.6 27.1

VEGA 734 4.56 3.27 1472 0.4 3.8 23.6

T.E.S.T. 734 3.82 2.74 1300 2.1 8.2 25.9

Fish EC10 Proposed 
Model

130 4.57 2.75 2321 1.4 6.4 26.8

ECOSAR 130 18.1 11.74 1368 9.8 26.2 60.1

VEGA 130 11.5 8.02 152 3.3 10.5 46.1

TEST – – – 0 – – –

Aquatic 
invertebrates 
EC50

Proposed 
Model

752 3.34 2.40 3110 0.7 3.9 20.7

ECOSAR 752 5.09 3.33 1758 4.8 10.0 30.7

VEGA 752 5.29 3.71 1243 1.0 6.3 28.2

T.E.S.T. 752 3.98 2.95 1548 1.1 5.6 24.9

Aquatic 
invertebrates 
EC10

Proposed 
Model

518 3.97 2.68 2647 1.1 6.0 25.2

ECOSAR 518 14.34 11.97 1584 5.2 19.1 52.1

VEGA 518 7.77 6.35 609 1.5 7.6 41.9

T.E.S.T. – – – 0 – – –

Algae EC50 Proposed 
Model

72 4.29 2.59 2325 0.9 4.6 23.0

ECOSAR 72 1.97 1.60 450 2.7 7.6 24.7

VEGA 72 2.60 2.23 634 0.3 4.3 26.3

T.E.S.T. – – – 0 – – –

Algae EC10 Proposed 
Model

120 6.04 3.50 2756 1.2 7.1 29.1

ECOSAR 120 7.00 5.27 762 3.7 11.4 35.7

VEGA 120 7.01 5.37 439 0.2 5.5 30.3

T.E.S.T. – – – 0 – – –

D
ow

nloaded from
 https://w

w
w

.science.org at C
halm

ers U
niversity of T

echnology on A
ugust 07, 2024



Gustavsson et al., Sci. Adv. 10, eadk6669 (2024)     6 March 2024

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

8 of 10

from chemical pollution. Both issues that are becoming increasingly 
important as the number of chemicals in society grows and exposure 
to chemical mixtures becomes increasingly complex. Improved 
computational methods will be vital to ensure safe use of the ever-
increasing number of newly found chemicals.

MATERIALS AND METHODS
Model design
The model consists of two modules: a transformer encoder and a 
DNN (47). We used a pretrained RoBERTa transformer (ChemBERTa), 
which consists of 6 encoders, 12 attention heads, and an embedding 
vector dimension of 768 (34). Tokenization of the SMILES was done 
using the byte pair encoding tokenizer. Tokens generated by the 
tokenizer could represent single elements or entire subsections of the 
SMILES. A beginning-of-string token, denoted the “CLS” (classification) 
token, was added to all sequences during tokenization. All input 
sequences were then padded or truncated to a maximum length of 100 
tokens. The input to the DNN consisted of the CLS token concatenated 
with the log10-transformed exposure duration (hours) and a one-hot 
encoding vector indicating the type of toxicity end point and effect. 
The DNN consisted of multiple fully connected layers with a dropout 
probability of 0.2 and rectified linear unit activation functions. The 
output layer consisted of a single node predicting the log10 effect 
concentration. The model was implemented in PyTorch v1.10.2 with 
ChemBERTa loaded from the Huggingface v4.21.1 transformers li-
brary (48).

Toxicity data
Data on the toxicity of chemicals, reported as the concentrations at 
which specific effects of specific sizes were seen, for fish, aquatic inverte-
brates, and algae were gathered from three sources: REACH dossiers, the 
United States Environmental Protection Agency (U.S. EPA) database 
ECOTOX, and the European Food Safety Authority (EFSA) collection 

of pesticide registration data (49–51). Toxicity data in REACH was 
retrieved in August 2020, while the EFSA “openTox” database and 
the U.S. EPA ECOTOX database were retrieved in November 2020. 
Toxicity data from the three datasets were merged, and all species’ 
names were verified using the R package Taxize v0.9.99. The taxonomic 
groups for all species were harmonized to the same classification as 
used by the U.S. EPA whenever possible. All NOEC and effect concen-
tration/lethal concentration values reported between 0 and 10% effect 
were translated to EC10 values. All limit tests (data reported as 
“greater than” or “less than”) were excluded from the analysis. Last, 
all reported effect concentrations larger than 500 mg/liter were re-
moved to avoid outliers and ensure sufficiently high data quality. 
Training and validation were performed using log10-transformed 
test exposure and concentration data, thus ensuring that differences 
in time and concentrations were always relative. All chemical struc-
tures, represented as SMILES, were collected by translating the re-
ported CAS from the original datasets using the chemical identity 
resolver (R package webchem v1.1.2), collecting the first suggested 
SMILES. The SMILES were then canonicalized through RDKit 
v2022.03.5.

For algae, we only considered data from population toxicity assays 
(EC50 and EC10). For aquatic invertebrates, we considered assays 
that measured mortality (EC50 and EC10), intoxication (the term 
used by the U.S. EPA for the effect group that includes immobility) 
(EC50 and EC10), inhibition of reproduction (EC10), development 
(EC10) population growth (EC10), and morphological effects (EC10). 
For fish, the two datasets contained data for the same end points as 
the aquatic invertebrate dataset plus data on the growth of indi-
viduals (EC10).

Model training
In total, nine individual models were trained. For each organism 
group (algae, aquatic invertebrates, and fish), we trained models 
predicting EC50 and EC10 as well as a combined model predicting 
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Fig. 7. Distribution of the prediction errors. The absolute prediction error, measured as the absolute fold change (i.e., always using the larger of the measured and 
predicted value as the numerator when calculating the ratio) against the median measured effect concentration for fish for all chemicals within the respective AD of the 
transformer-based model, ECOSAR, VEGA, and T.E.S.T. (A to D) Results for EC50 predictions. (E to H) Results for EC10 predictions.
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both EC50 and EC10. Model parameters (learning rate, batch size, 
number of reinitialized encoders, and number of hidden layers in 
the DNN) were kept identical across organism groups. Thus, three 
parameter configurations were used in total (i.e., for prediction of EC50, 
EC10, and EC50/EC10, table S4). Specifically, all model configurations 
used a batch size of 512, three hidden layers (layer sizes 700, 500, and 
300), and a learning rate set to 1.5 × 10−4, 5.0 × 10−4, or 2.0 × 10−4 
for the prediction of EC50, EC10, and EC50/EC10, respectively. In total, 
the models contained between 84,490,145 and 84,495,745 trainable 
parameters. The used ChemBERTa transformer version was pretrained 
on 10 million SMILES (34).

Model training was done using the mean absolute error loss 
function using the AdamW (52) optimizer. The transformer encoder 
and the DNN were trained simultaneously. The learning rate was set 
to follow a linear schedule with a warmup phase, with a linear in-
crease from 0 to the defined learning rate during 10% of the training 
steps and then linearly decreased. Layer-wise learning rate decay was 
employed on the basis of the assumption that the first encoders capture 
very general language representations and that the last encoders are 
more task specific (53). During training, gradient norms were clipped 
to 1.0 to avoid exploding gradients (54). All training was performed 
using NVIDIA A100-SXM4-40GB GPUs. Model hyperparameters 
were determined through Bayesian optimization (Weights and Biases 
v0.13.1.) based on fivefold cross-validation using the fish datasets 
(fig. S1 and tables S1, S2, and S3). Stratified sampling with probabilities 
inversely proportional to the number of data points for each combi-
nation of chemical structure, effect, and end point was used to account 
for skewness in the data.

Model performance and benchmarking
The models were trained using 10-fold cross-validation that was re-
peated 10 times. For the models predicting EC50 and EC10, datasets 
were split on the basis of the chemical structures to ensure that there 
was no overlap between chemicals used for training and validation. 
For the combined EC50/EC10, data were instead split on the basis of 
pairs of effect concentration and chemical structure. The predictive 
performance was determined by first calculating the mean prediction 
for each datapoint across the repeated 10-fold cross-validation, after 
which the median residual for each unique combination of chemical, 
duration, effect, and end point was determined. The overall model 
performance was then calculated as the weighted mean over all the 
combinations. Differences in chemical structure were measured as 
the cosine similarity between the CLS (classification) tokens. During 
validation, the structural distance between the validation chemical 
and the training set was measured as the mean cosine similarity be-
tween the validation chemical and all chemicals in the training set.

We compared our model against three commonly used QSAR-
based methods: ECOSAR v2.2, VEGA v1.1.5, and T.E.S.T. v5.1.1.0 
(38, 39, 55). For the comparison with ECOSAR EC50 predictions, 
96-hour fish (mortality), 48-hour invertebrate (mortality and intoxi-
cation), and 96-hour algae (population growth) measurements were 
used. For the comparison with VEGA EC50 predictions, 96-hour fish 
(mortality), 48-hour invertebrate (mortality and intoxication), and 
72-hour algae (population) measurements were used. For ECOSAR, 
the predicted Chronic value (ChV) was also, in accordance with 
current guidelines, divided by the square root of 2 to estimate a pre-
dicted NOEC (56). For the comparison with ECOSAR and VEGA 
NOEC predictions, EC10 measurements of all durations and effects 
were used. For the comparison with T.E.S.T., only 96-hour fish EC50 

(mortality) and 48-hour invertebrate EC50 (mortality, intoxication) 
were used. For ECOSAR, if more than one value per chemical was 
reported for EC50 and ChV, then the lowest reported respective value 
was collected [as recommended by the user manual (38)]. Further-
more, if more than one value was reported for VEGA, then the pre-
diction was taken as the value with the highest reliability score, i.e., 
“good,” “moderate,” and “low,” in that respective order.

The AD of each method was evaluated on the basis of two criteria. 
First, counting all compounds where a prediction/experimental value 
was reported, even if it was reported as being outside the AD and, 
secondly, only counting compounds within the AD. For the perfor-
mance comparison, the set of compounds inside the AD of all three 
QSARs but excluding experimental/training data was used (see 
Supplementary methods for details).

Last, the model was compared to a machine learning model able 
to predict fish EC50 mortality and NOEC mortality and sublethal 
effects (41). However, because that model was not publicly available, 
our model was trained on the data included in (41) using 10-fold 
cross-validation and evaluated on the reported measures of root 
mean square error and percentage of errors of different magnitudes.

Supplementary Materials
This PDF file includes:
Supplementary Methods
Supplementary Results
Figs. S1 to S11
Tables S1 to S5
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