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ABSTRACT
Increasing amounts of data are sensed at the edge of the Edge-
to-Cloud (E2C) continuum, enabling the rapid development of
data-driven applications based on, e.g., Machine Learning. This
is especially true for Vehicular Cyber-Physical Systems (VCPSs),
networks of connected vehicles equipped with high-bandwidth sen-
sors, where Big Data originating on the vehicles is crucial for the
advancement of autonomous drive, developing new cars, and more.
Limited bandwidth and storage mean that moving this vehicular
Big Data from the edge to central processing increasingly poses
challenges. In this work, we present our research on how to allevi-
ate these through efficiently localizing data on the edge, selecting
relevant data in a data stream, and distributing the processing of
data in a VCPS.

CCS CONCEPTS
• Computer systems organization → Embedded and cyber-
physical systems; • Information systems→ Online analytical
processing engines.
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1 INTRODUCTION
The Edge-to-Cloud (E2C) continuum, encompassing a hierarchy
of networked devices from tiny sensors to powerful cloud servers,
is experiencing explosive data growth [26]. The ever-increasing
output of sensors and diverse devices causes the overall data sphere
to double roughly every three years, from one zettabyte (1 ZB =
109 terabytes) in 2010 to 200 ZB by 2025 [36]. The transformative
power of this Big Data is evident across diverse domains: financial
forecasting through the analysis of market fluctuations [4], data
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monitoring and validation in smart grids [31], quality assurance
in additive manufacturing [17], predictive maintenance exempli-
fied by anticipating brake pad wear in automobiles [21], or the
advancement of autonomous mobility [12, 40]. The sheer size of
modern datasets serves as a critical driver for the emergence of
powerful Machine Learning algorithms, as those employed in im-
age recognition [23] and the advances seen in Large Language
Models exemplified by GPT-3 [5]. These advancements collectively
contribute to the ongoing saga of digital automation.

Challenges. Enabling these developments with Big Data requires
extensive processing that has sparked the development of a corre-
sponding processing ecosystem. This ecosystem has to constantly
develop, as exemplified by the following aspects:

(1) Mobile data speeds increase on average only linearly [35], as
wide-spread adoption of next-gen communication technology is
costly and slow [22]. As data is increasingly sensed on the resource-
constrained edge of the E2C continuum, moving Big Data pro-
cessing workloads to the cloud is proposed as a solution to the
increasing computational requirements [26]. However, this increas-
ingly clashes with (mobile) network limitations. Processing data
"close to the edge" emerges as a promising solution.

(2) Data production in 2020 exceeded global storage capacity by
a factor of ten [36]. Also, as data output grew 30× between 2010
and 2020, storage costs only fell to a third [25]. As storing all raw
data becomes untenable (particularly for edge devices), data should
be aggregated, filtered, and prioritized before it is potentially stored.

(3) The interplay of exponential data growth, limited mobile
speeds, and escalating storage costs, particularly at the edge, neces-
sitates a further paradigm shift: not all data merits equal treatment.
While definitive pre-analysis identification of valuable data points
remains challenging, implementing intelligent early-stage filter-
ing and selection strategies holds immense potential [30]. This
relieves strain on communication networks, storage, and process-
ing resources by prioritizing critical information for transmission,
storage, and in-depth analysis. Less relevant or redundant data can
be filtered out early, reducing costs and resource burden.

While these discussions are relevant for many systems charac-
terized under the E2C continuum, they are especially significant
for Vehicular Cyber-Physical Systems (VCPSs). These are connected
fleets of cars, equipped with numerous sensors such as cameras,
LiDARS, or GPS receivers, on-board computers with limited capabil-
ity, and mobile broadband. At the center of a VCPS sits a powerful
central or cloud server that coordinates data analysis in this system.

Contributions. Relating to the previous paragraphs (1-3), we
present in this research summary approaches and novel techniques
that address (1) Where and (2) How to process (3) Which data in
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systems such as VCPSs. Specifically, our work aims at distributing
the computation in the E2C continuum along a spectrum of edge
involvement, from at-edge summaries [19] and data discovery [11]
to full analysis involvement [20]. Furthermore, we leverage Stream
Processing to enable full streaming edge-to-cloud data analysis [19]
and the efficient selection of relevant data [30].

2 STREAM PROCESSING PIPELINES
UTILIZING ONLINE LOSSY COMPRESSION

Traditional workflows in VCPSs involve vehicles gathering data,
wireless transmission to a central server, and subsequent data analy-
sis. As discussed in § 1, network limitations mean that transmitting
raw data incurs several drawbacks. With the Driven framework [19]
(overview sketch in Figure 1), we propose to distribute work and
reduce data volumes through compact data summaries generated
on-vehicle via lossy compression, and employ Stream Processing
throughout an analysis pipeline for minimal latencies.

Online Lossy Compression Through Piecewise-Linear Approxima-
tions (PLA). PLA reduces time series commonly produced by edge
devices to a set of line segments that encode a segment’s data points
using only segment length, slope, and y-intercept. This trades off ac-
curacy (from approximating sets of points with straight lines) with
data size. Recent PLA research emphasizes its feasibility in stream-
ing contexts, prioritizing low resource consumption and minimal
latency to enable on- or near-sensor deployment [9, 15, 39]. Our
implementation of streaming-based PLA in [18, 19] is adapted for
use in vehicular data analysis scenarios through the following: (i) it
has a per-point bound for the approximation error (e.g., for a bound
of 1m, no data point reconstructed after compression is off from
its raw data counterpart by more than 1m), unlike other works in
the field [15] that bound the maximum deviation only per segment.
Such fine-grained control allows analysts to set bounds in accor-
dance with their analysis needs. (ii) Our implementation processes
the time dimension of time series data independent from other data
dimensions, allowing independent compression and decompres-
sion of all data dimensions. This improves on previous techniques
that can introduce compounding errors from decompressing a data
dimension using a decompressed time signal [9].

Continuous Data Clustering. For a fully streaming pipeline, also
the eventual data analysis must be performed in an online manner.
In [19], we take the problem of clustering as example analysis and
present a fully online version, extending previous work from [27].
Our approach leverages the fact that some sensors deliver data
partially ordered among at least one dimension of interest. For a
rotating LiDAR mounted on a vehicle, for example, measurements
generated close in time have a bounded distance. This bounds
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Figure 1: Overview of Driven for clustering LiDAR data.
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Figure 2: Performance of Driven for the LiDAR use case (base-
line: streaming pipeline without compression).

the search space for neighboring points, allowing processing in
O(𝑛), where traditional clustering techniques require O(𝑛 log𝑛)
computations [38] (𝑛 = # of points to cluster).

Evaluation Results and Conclusion. Using an Odroid XU-3 [19]
as stand-in for a vehicle’s available processing power, we evaluate
various use cases from traffic density analysis to LiDAR point cloud
clustering. In all these, the Driven framework leads to significant
data reductions and speedups. We present the LiDAR results in Fig-
ure 2. Here, the baseline uses no compression and streams raw data
directly from vehicle to central server. We evaluate the gathering
time ratio (time of data transmission incl. potential compression and
decompression), compression ratio, and adjusted rand index (ARI, a
metric for clustering similarity [37]), comparing the corresponding
values for various PLA bounds (which regulate the compression
strength) with the baseline. For a bound of 1m, the ARI remains
above 90%, while gathering time is reduced by 35% (indicating low
impact of the [de-]compression work), and the compression ratio
reaches below 0.1. This yields a balance of fast transmission of
starkly reduced data volumes at limited analysis accuracy loss.

In summary, our work shows that tunable lossy compression
can lead to significant speed-ups of the gathering phase and con-
siderate data savings, while bounding the loss in analysis accuracy,
enabling analysts to choose the maximum compression that still
yields acceptable eventual accuracy.

3 DATA LOCALIZATION AT THE EDGE
While on-vehicle compression or summarization as in the previous
section reduces the amount of transmittable data, it does not ad-
dress the issue of global aggregation: depending on the analysis, a
central server may gather unfit or excessive amounts of data when
querying the fleet too broadly. This results in unnecessary strain
on the network, the central server and the participating vehicles.
Employing the edge processing paradigm, we suggest in [10, 11]
to leverage data localization: to (i) push the task of filtering for
relevant data to the vehicles, and (ii) employ orchestrated data ag-
gregation that avoids excessive transmission of data and minimizes
the overall workload on the fleet during the data localization stage.

In our system model, we assume a central server that spreads
requests for checking compliance of local data with an analysis-
dependent condition to the vehicles (e.g., “Have you driven close
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Figure 3: Evaluation of data localization algorithms. Factors
“×” given with respect to starred algorithm.

to a parking spot today?”). These reply with a binary answer, and
the procedure proceeds in rounds until a minimum number of affir-
mative answers is collected. While each vehicle holds an unknown
amount of data and thus answering time and required local work-
load are highly variable between vehicles, we attempt to optimize
for both the duration of the data localization phase as well as for
the workload induced on the complete fleet.

Data Localization Algorithms. The work’s core lies in the follow-
ing data localization algorithms that describe the orchestration of
request spreading: BaseEager sends a request to the entire vehicle
fleet, resulting in the fastest possible conclusion of the localization
phase, but inducing maximal workload. BaseLazy asks vehicles in
a 1-by-1 fashion, in best case reducing the induced workload to a
minimum, while requiring in worst-case maximum time. Crucially,
we introduce BalanceRequests that navigates between the afore-
mentioned algorithms by including on-the-fly heuristics about the
share of affirmative answers from vehicles to optimize when to
send more requests to how many vehicles, proceeding in overlap-
ping rounds that avoid excessive wait times for vehicles to answer.
Allowing for multiple concurrent requests for different types of
data, individual vehicles may be involved in processing several re-
quests simultaneously. Addressing this, BalanceLoad extends the
BalanceRequestwith the notion of fairness to balance the induced
load over the fleet such that no vehicles are excessively tasked.

Evaluation Results and Conclusion. We extensively evaluate our
novel data localization algorithms for different fleet scenarios, static
and dynamic (in which vehicles can join and leave the fleet even
during the processing of requests). Furthermore, we model realistic
5G communication latencies for the transmission of requests and
answers. Here, we show the results for the proprietary Volvo dataset,
where we evaluate 15 simultaneous requests that cover combina-
tions of GPS and drive mode data, with a static fleet size of 3462
cars. Figure 3 shows several of the core conclusions of this evalua-
tion. We see that for the data localization time (left plot), the novel
balanced algorithms achieve times very close to the respective base-
line BaseEager. Regarding the total workload (right plot), similarly,
the balanced results are close to the baseline BaseLazy; indicating
that the balanced algorithms balance the trade-off space to identify
sweet spots that approach the optimal baseline performance.

In summary, these novel data localization algorithms can help
to efficiently and swiftly localize data on the edge, overall reducing
the necessity of excessive global data gathering.

4 STATEFUL IN-STREAM DATA SELECTION
While in many contexts it is useful to localize data across several
data sources (in the previous section, cars), oftentimes localizing
or selecting data within a data source is required. In VCPSs, such
data sources commonly exist as real-time sources. We model these
using Stream Processing, where a canonical, stateless Filter function
exists (e.g., in frameworks such as [3, 6]). This Filter regards its
current input, forwarding the latter only if it passes an internal
condition. Stateful selection, spanning the time dimension of data,
is a more powerful alternative that can allow for the definition of
complex conditions for selection of data, e.g., “find all video frames
of bicyclists stopping in front of a vehicle for 30s”. In [30], we show
how such stateful selection can be achieved via Forward Provenance.

Forward Provenance (FP). FP in Stream Processing builds on the
well-established concept of Backward Provenance (BP) [14, 29]. BP
connects the outputs (the result) of a query to the inputs causing
the result. This causal relationship is used to both debug an appli-
cation, or to understand how a result came to be [13]. An example,
for two parallel Stream Processing queries processing a stream of
position reports from two vehicles, is shown in Figure 4 b): a graph,
connecting the results 𝑎𝑖1, 𝑎

1
2 from each query 𝑄1, 𝑄2 to the input

data 𝑡𝑚
𝑙

that caused it. As the graph shows, input data can occur
multiple times, and it is not possible to tell when some input data
will not contribute to any future results anymore and can be seen
as finalized (from the processing standpoint).

We amend these issues in [30] as the first to introduce FP and
our corresponding framework Ananke, which produces a single
graph (cf. Figure 4 c)) of dependencies: every node, corresponding
to an input or output, is unique, and special labels (here represented
as green checkmarks) indicate once data is finalized. To achieve
this, Ananke ingests a stream of BP annotations and time flow
information (watermarks, cf. [1, 16]) from every considered query.

Using Ananke, analysts can write complex queries in such a way
that relevant data contributes to query results, and leverage FP to
obtain this relevant data without duplicates and with additional
temporal information useful for further processing.

Figure 4: a) Two Stream Processing queries, 𝑄1 and 𝑄2, pro-
ducing alerts as output; b) Backward Provenance graph of
outputs and inputs; c) Forward Provenance graph.
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Figure 5: Overheads of Forward Provenance (Ananke - ANK-
1/N) vs. BP (GL [29]) for a vehicular tracking query running
on an Odroid XU-3. NP = no provenance (original query).

Evaluation Results and Conclusions. We present an optimized
single-operator (ANK-1) and a parallelizable implementation (ANK-
N) of Ananke, and evaluate these over a range of use cases and
queries. The results show that ANK-1 incurs small overheads to
queries, close to those of sheer BP, while ANK-N can sustain high
data rates on manycore systems. An excerpt of our evaluation
is shown in Figure 5 for a query processing vehicle GPS traces,
running on a low-powered Odroid XU-3 emulating available com-
putational headroom on modern vehicles. As shown, the overheads
of especially ANK-1 are small, with < 4% impact on processing rate
and latency compared to BP (GL = GeneaLog [29], the SoA).

In conclusion, via FP at low overheads, Ananke enables the
efficient selection of data from Stream Processing sources.

5 VALIDATION OF DISTRIBUTED DATA
PROCESSING ALGORITHMS FOR VCPS

The works presented so far in this paper leverage the capabilities
of distributed computing and Stream Processing to enhance the
gathering and discovery of data. The next step in data processing in
VCPS is the analysis or learning from the data, which for modern
applications often involves Machine Learning (ML) methods [2, 28,
34]. This, as the preceding steps, may also be distributed over a fleet
of vehicles. Recent approaches for distributed ML in VCPSs have
included Federated Learning (FL) [8] (centrally-coordinated) and
Gossip Learning (GL) [33] (peer-to-peer and centerless), that can
lead to remarkable reductions in data transmission by exchanging
summaries and leveraging direct vehicle-to-vehicle communication
(V2X, cf. IEEE 802.11p). In [20], we are the first to deeply explore
the challenges of creating a learning simulator for evaluating such
distributed learning algorithms end-to-end in VCPSs, by identifying
among others the requirements of
(1) Realistic ML support. Handling modern ML frameworks (e.g.,

Keras [7] or PyTorch [32]) and realistic data distributions
(2) Realistic communicationmodel. Simulate cellular and direct vehicle-

to-vehicle connections
(3) Flexible distributed algorithm support. Allowing flexible imple-

mentations of distributed learning algorithms to allow for easy
experimentation and iteration
From (1)-(3), we build Roadrunner, a prototype simulator, and

demonstrate its capabilities using a novel distributed ML algorithm.
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Figure 6: Accuracy of OPP using our prototype Roadrunner
learning simulator.

Evaluation Results and Conclusion. With OPP, we present a novel
algorithm that extends FL with elements from GL, that is difficult
to evaluate appropriately with previously existing VCPS simulation
tools (such as Sumo [24]). For a fixed communication budget, OPP
allows many more ML iterations than FL, as shown in Figure 6,
reaching a higher final accuracy (as measure for the learning goal).

As this example shows, tools like Roadrunner that are based on
our specifications can help in the discovery and tuning of novel
distributed learning algorithms in VCPSs.

6 CONCLUSIONS
We presented novel approaches for processing data in VCPSs more
efficiently by focussing on reducing data volumes and involving the
vehicles (the system’s edge) more actively than traditional work-
flows. Specifically, we presented Driven, a framework that incor-
porates a novel lossy compression algorithm for full streaming
edge-to-cloud pipelines that demonstrably reduce transmitted data
volumes and speed up the data gathering phase; a family of data
localization algorithms that enable more targeted involvement of
edge nodes in data transmission while balancing localization speed
and workload; Ananke, the first forward provenance framework,
enabling low-overhead selection of relevant data in Stream Process-
ing; and the specifications for and an implementation of the first
comprehensive simulation tool for distributed learning in VCPSs.
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