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Abstract. The stochastic heat equation on a sphere driven by additive iso-

tropic Wiener noise is approximated by a spectral method in space and forward
and backward Euler–Maruyama schemes in time. The spectral approximation

is based on a truncation of the series expansion with respect to the spherical

harmonic functions. Optimal strong convergence rates for a given regularity
of the initial condition and driving noise are derived for the Euler–Maruyama

methods. Besides strong convergence, convergence of the expectation and sec-

ond moment is shown, where the approximation of the second moment con-
verges with twice the strong rate. Numerical simulations confirm the theoret-

ical results.

1. Introduction. While stochastic partial differential equations (SPDEs) and their
numerical approximations have mainly been considered in Euclidean space so far,
applications motivate extending the theory to surfaces and especially the sphere.
Examples are uncertain evolution on the Earth or cells. Numerical methods for
SPDEs have been developed and analyzed for more than two decades by now, with
works, for example, summarized in the monographs [3, 10], but studies on surfaces
are still rare. We are only aware of the results on the sphere given in [1, 2, 4, 8, 9].

To give this area a new push, we consider the stochastic heat equation

dX(t) = ∆S2X(t) dt+ dW (t)

on the unit sphere S2 with initial condition X(0) = X0 ∈ L2(Ω;L2(S2)) driven by
an additive isotropic Q-Wiener process W .

A spectral method including strong convergence for this equation has been con-
sidered in [8] that allows only for simulation if the stochastic convolution is com-
puted directly with the correct distribution. It does not allow simulating solutions
for a given sample path of the Q-Wiener process.

In this work we allow for computations based on samples of the Q-Wiener process
by a time approximation with a forward and backward Euler–Maruyama scheme.
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Optimal rates for given regularity of the initial condition and noise are derived
in the semigroup framework in [16, 5] based on estimates for deterministic PDEs
in [15]. We are following the Gothenburg tradition of optimal estimates and derive
optimal rates for strong convergence but allow for up to O(h) for a time step size h
instead of the usually shown limit of O(h1/2).

Additionally, we show convergence of the expectation and the second moment of
the solution for the spectral and the Euler–Maruyama methods. While the rates
for the expectation are the same as for strong convergence due to the limits of the
deterministic PDE theory, we obtain twice the rate for the second moment compared
to the strong convergence for a given regularity.

In our setting we are able to show all results by elementary estimates on expo-
nential functions and their approximation. Therefore, we do not require the reader
to be familiar with the semigroup theory used in [15] but are able to illustrate nu-
merical analysis for SPDEs and their optimal convergence in a more elementary
way.

The outline of this paper is as follows: In Section 2 we introduce the stochas-
tic heat equation with the necessary framework, background and its properties.
Section 3 recapitulates the spectral approximation in space presented in [8] and
its strong convergence. We show additionally convergence of the expectation and
the second moment of the equation. The forward and backward Euler–Maruyama
methods are then presented in Section 4. Based on properties of the exponential
function and its approximation, we prove optimal strong convergence rates and con-
vergence of the expectation and the second moment. We conclude in Section 5 with
numerical simulations that confirm our theoretical results. Solution paths for all
approximation methods are shown at https://www.youtube.com/playlist?list=
PLtvKza5x5KGN6FR5JPOey85VpdJLEeY-w. Details on the expectation and the sec-
ond moment are included in Appendix A, and the proofs of the estimates of the
exponential functions are shown in Appendix B.

2. The stochastic heat equation on the sphere and its properties. We
consider the stochastic heat equation on the sphere on a complete filtered probability
space (Ω,A, (Ft)t,P) and a finite time interval T = [0, T ], T < +∞,

dX(t) = ∆S2X(t) dt+ dW (t) (1)

with F0-measurable initial condition X(0) = X0 ∈ L2(Ω;L2(S2)). The equation is
driven by an additive isotropic Q-Wiener process W , i.e., W is an L2(S2)-valued
Wiener process with space covariance described by the operator Q. Before elabo-
rating on the noise and deriving a solution X(t) ∈ L2(Ω;L2(S2)) for the equation,
let us introduce all necessary notation.

Let S2 denote the unit sphere in R3, i.e.,

S2 = {x ∈ R3, ∥x∥ = 1},

where ∥·∥ denotes the Euclidean norm, and we equip it with the geodesic metric
given by

d(x, y) = arccos ⟨x, y⟩R3

for all x, y ∈ S2. Furthermore, we denote by σ the Lebesgue measure on the sphere
which admits the representation

dσ(y) = sinϑ dϑdφ

https://www.youtube.com/playlist?list=PLtvKza5x5KGN6FR5JPOey85VpdJLEeY-w
https://www.youtube.com/playlist?list=PLtvKza5x5KGN6FR5JPOey85VpdJLEeY-w
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for Cartesian coordinates y ∈ S2 coupled to polar coordinates (ϑ, φ) ∈ [0, π]× [0, 2π)
via the transformation y = (sinϑ cosφ, sinϑ sinφ, cosϑ).

To characterize the driving noise W and give properties of the Laplace–Beltrami
operator ∆S2 , it is essential to introduce the set of spherical harmonic functions
Y := (Yℓ,m, ℓ ∈ N0, m = −ℓ, . . . , ℓ) consisting of Yℓ,m : [0, π]× [0, 2π) → C given by

Yℓ,m(ϑ, φ) =

√
2ℓ+ 1

4π

(ℓ− µ)!

(ℓ+ µ)!
Pℓ,m(cosϑ)eimφ

for ℓ ∈ N0, m = 0, . . . , ℓ, and by

Yℓ,m = (−1)mYℓ,−m (2)

for m = −ℓ, . . . ,−1. Here, the associated Legendre polynomials (Pℓ,m(µ), ℓ ∈
N0,m = 0, . . . , ℓ) are defined by

Pℓ,m(µ) = (−1)m(1− µ2)
m
2

∂m

∂µm
Pℓ(µ)

for ℓ ∈ N0, m = 0, . . . , ℓ and µ ∈ [−1, 1], which are themselves characterized by the
Legendre polynomials (Pℓ, ℓ ∈ N0) that can, for example, be written by Rodrigues’
formula (see, e.g., [14])

Pℓ(µ) = 2−ℓ 1

ℓ!

∂ℓ

∂µℓ
(µ2 − 1)ℓ

for all ℓ ∈ N0 and µ ∈ [−1, 1].
The spherical harmonic functions form an orthonormal basis of L2(S2;C), and

its subspace L2(S2) of all real-valued functions consists of all functions of the form

f =
∑∞

ℓ=0

∑ℓ
m=−ℓ fℓ,mYℓ,m with coefficients fℓ,m ∈ C satisfying

fℓ,m = (−1)mfℓ,−m (3)

similar to the well-known properties of Fourier expansions of real-valued functions
on R. With a slight abuse of notation, we switch in what follows between Cartesian
and polar coordinates and set

Yℓ,m(y) = Yℓ,m(ϑ, φ)

with y = (sinϑ cosφ, sinϑ sinφ, cosϑ).
We define the Laplace–Beltrami operator or spherical Laplacian in terms of spher-

ical coordinates similarly to [11, Section 3.4.3] by

∆S2 = (sinϑ)
−1 ∂

∂ϑ

(
sinϑ

∂

∂ϑ

)
+ (sinϑ)

−2 ∂2

∂φ2
.

It is well known that it satisfies (see, e.g., Theorem 2.13 in [12])

∆S2Yℓ,m = −ℓ(ℓ+ 1)Yℓ,m

for all ℓ ∈ N0, m = −ℓ, . . . , ℓ, i.e., the spherical harmonic functions Y are eigen-
functions of ∆S2 with eigenvalues (−ℓ(ℓ+ 1), ℓ ∈ N0).

On the unit sphere we define the Sobolev spaces Hs(S2) with smoothness in-
dex s ∈ R via Bessel potentials as

Hs(S2) = (Id−∆S2)
−s/2L2(S2),

with inner products given by

⟨f, g⟩Hs(S2) = ⟨(Id−∆S2)
s/2f, (Id−∆S2)

s/2g⟩L2(S2).
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For further details on these spaces, we refer, for instance, to [13]. The corresponding
Lebesgue–Bochner spaces for p ≥ 1 are denoted by Lp(Ω;Hs(S2)) with norm

∥Z∥Lp(Ω;Hs(S2)) = E[∥Z∥pHs(S2)]
1/p.

The last thing to introduce from (1) before being able to solve it is the driving
noise. Similarly to [8] and [2], we introduce an isotropic Q-Wiener process by the
series expansion, often referred to as the Karhunen–Loève expansion,

W (t, y)

=

∞∑
ℓ=0

ℓ∑
m=−ℓ

aℓ,m(t)Yℓ,m(y)

=
∞∑
ℓ=0

(√
Aℓβ

1
ℓ,0(t)Yℓ,0(y) +

√
2Aℓ

ℓ∑
m=1

(β1
ℓ,m(t)ReYℓ,m(y) + β2

ℓ,m(t)ImYℓ,m(y))
)
,

(4)

where ((β1
ℓ,m, β2

ℓ,m), ℓ ∈ N0, m = 0, . . . , ℓ) is a sequence of independent, real-valued

Brownian motions with β2
ℓ,0 = 0 for ℓ ∈ N0, and (Aℓ, ℓ ∈ N0) denotes the angu-

lar power spectrum. In the equality we used the properties (2) and (3) to switch
between complex-valued and real-valued expansions. The covariance operator Q is
characterized by its eigenexpansion (see, e.g., [7, 8]) given by

QYℓ,m = AℓYℓ,m.

The regularity of W is given by the properties of Q, which in turn are described by
the decay of the angular power spectrum. More specifically,

∥W (t)∥2L2(Ω;Hs(S2)) = ∥(Id−∆S2)
s/2W (t)∥2L2(Ω;L2(S2))

= t

∞∑
ℓ=0

(2ℓ+ 1)Aℓ(1 + ℓ(ℓ+ 1))s = tTr((Id−∆S2)
sQ),

which follows with similar calculations as in [8, Proposition 5.2]. This expression is
finite if Aℓ ≤ Cℓ−α with α > 2(s+ 1) for all ℓ ≥ ℓ0.

We are now in a state to solve the stochastic heat equation (1), which reads in
integral form as

X(t) = X0 +

∫ t

0

∆S2X(s) ds+

∫ t

0

dW (s) = X0 +

∫ t

0

∆S2X(s) ds+W (t).

Since the spherical harmonics are an eigenbasis of ∆S2 and Q, we expand both sides
in Y and obtain

∞∑
ℓ=0

ℓ∑
m=−ℓ

Xℓ,m(t)Yℓ,m

=

∞∑
ℓ=0

ℓ∑
m=−ℓ

X0
ℓ,mYℓ,m +

∫ t

0

Xℓ,m(s)∆S2Yℓ,m ds+ aℓ,m(t)Yℓ,m

=

∞∑
ℓ=0

ℓ∑
m=−ℓ

(
X0

ℓ,m − ℓ(ℓ+ 1)

∫ t

0

Xℓ,m(s) ds+ aℓ,m(t)

)
Yℓ,m,

(5)
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for the corresponding coefficients Xℓ,m(t) = ⟨X(t), Yℓ,m⟩L2(S2;C) of the series expan-
sion. The solution is then given by the solutions (Xℓ,m, ℓ ∈ N0,m = −ℓ, . . . , ℓ) to
the system of Ornstein–Uhlenbeck processes

Xℓ,m(t) = X0
ℓ,m − ℓ(ℓ+ 1)

∫ t

0

Xℓ,m(s) ds+ aℓ,m(t), (6)

which are obtained by the variations of constants formula

Xℓ,m(t) = e−ℓ(ℓ+1)tX0
ℓ,m +

∫ t

0

e−ℓ(ℓ+1)(t−s)daℓ,m(s). (7)

In order to simulate real-valued solutions in later sections using the expansion (4),
we need to reformulate the equations in the real and imaginary parts. Using (3)
and noting that Xℓ,0 and Yℓ,0 are real-valued for all ℓ ∈ N0, we obtain

∞∑
ℓ=0

ℓ∑
m=−ℓ

Xℓ,m(t)Yℓ,m

=

∞∑
ℓ=0

(
Xℓ,0(t)Yℓ,0 +

ℓ∑
m=1

2Re(Xℓ,m(t))Re(Yℓ,m)− 2 Im(Xℓ,m(t)) Im(Yℓ,m)
)
.

(8)

This yields for our system of stochastic differential equations (6), using (4),
Xℓ,0(t) = X0

ℓ,0 − ℓ(ℓ+ 1)
∫ t

0
Xℓ,0(s) ds+

√
Aℓβ

1
ℓ,0(t),

Re(Xℓ,m(t)) = Re(X0
ℓ,m)− ℓ(ℓ+ 1)

∫ t

0
Re(Xℓ,m(s)) ds+

√
2−1Aℓ β

1
ℓ,m(t),

Im(Xℓ,m(t)) = Im(X0
ℓ,m)− ℓ(ℓ+ 1)

∫ t

0
Im(Xℓ,m(s)) ds+

√
2−1Aℓ β

2
ℓ,m(t).

(9)

By straightforward computations, which we add for completeness in Appendix A,
we obtain that the expectation of the solution is given by

E[X(t)] =

∞∑
ℓ=0

ℓ∑
m=−ℓ

e−ℓ(ℓ+1)tE[X0
ℓ,m]Yℓ,m, (10)

and the second moment satisfies

E[∥X(t)∥2L2(S2)]

=

∞∑
ℓ=0

( ℓ∑
m=−ℓ

e−2ℓ(ℓ+1)tE[|X0
ℓ,m|2]∥Yℓ,m∥2L2(S2;C)

)
+Aℓ

1 + 2ℓ

2ℓ(ℓ+ 1)
(1− e−2ℓ(ℓ+1)t).

3. Spectral approximation in space. We start with the approximation in space
by the spectral method used in [8]. We recall the strong convergence and derive the
error in the expectation and second moment.

We approximate the solution by truncating the series expansion (5) with the
given solutions (7) at a given κ > 0, i.e., we set

X(κ)(t) =

κ∑
ℓ=0

ℓ∑
m=−ℓ

(
e−ℓ(ℓ+1)tX0

ℓ,m +

∫ t

0

e−ℓ(ℓ+1)(t−s) daℓ,m(s)
)
Yℓ,m. (11)

Analogously to the calculations in Appendix A, we derive the expectation

E[X(κ)(t)] =

κ∑
ℓ=0

ℓ∑
m=−ℓ

e−ℓ(ℓ+1)tE[X0
ℓ,m]Yℓ,m, (12)

and the second moment of the spectral approximation
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E[∥X(κ)(t)∥2L2(S2)]

=

κ∑
ℓ=0

( ℓ∑
m=−ℓ

(
e−2ℓ(ℓ+1)tE[|X0

ℓ,m|2]∥Yℓ,m∥2L2(S2;C)
)
+Aℓ

1 + 2ℓ

2ℓ(ℓ+ 1)
(1− e−2ℓ(ℓ+1)t)

)
.

(13)

Strong convergence of the spectral approximation was earlier shown in Lemma 7.1
in [8]. We state the result here with respect to the initial condition which is of
interest in the next section. The constants follow immediately from the proof in [8].

Lemma 3.1. Let t ∈ T. Furthermore, assume that there exist ℓ0 ∈ N, α > 0
and a constant C > 0 such that the angular power spectrum (Aℓ, ℓ ∈ N0) satisfies
Aℓ ≤ C · ℓ−α for all ℓ > ℓ0. Then, the strong error of the approximate solution X(κ)

is bounded uniformly in time and independently of a time discretization by

∥X(t)−X(κ)(t)∥L2(Ω;L2(S2)) ≤ e−(κ+1)(κ+2)t∥X0∥L2(Ω;L2(S2)) + Ĉ · κ−α/2

for all κ ≥ ℓ0 and a constant Ĉ depending on C and α.

We continue with the convergence of the expectation and the second moment of
the equation. Since the solution is Gaussian conditioned on the initial condition,
these are important quantities to characterize the solution.

Lemma 3.2. Let t ∈ T. Furthermore, assume that there exist ℓ0 ∈ N, α > 0
and a constant C > 0 such that the angular power spectrum (Aℓ, ℓ ∈ N0) satisfies
Aℓ ≤ C ·ℓ−α for all ℓ > ℓ0. Then, the expectation of the approximate solution X(κ) is
bounded for all κ ≥ ℓ0 uniformly in time and independently of a time discretization
by

∥E[X(t)]− E[X(κ)(t)]∥L2(S2) ≤ e−(κ+1)(κ+2)t∥E[X0]∥L2(S2).

The error of the second moment is bounded by

|E[∥X(t)∥2L2(S2) − ∥X(κ)(t)∥2L2(S2)]| ≤ 2 · e−2(κ+1)(κ+2)t ∥X0∥2L2(Ω;L2(S2)) + Ĉ · κ−α

for all κ ≥ ℓ0, where Ĉ depends on C and α.

Proof. Given the exact formulation of the expectation of the solution (10), the error
is given by

∥E[X(t)]− E[X(κ)(t)]∥L2(S2) =
∥∥∥ ∞∑
ℓ=κ+1

ℓ∑
m=−ℓ

e−ℓ(ℓ+1)t E[X0
ℓ,m]Yℓ,m

∥∥∥
L2(S2)

,

which is bounded in the same way as in Lemma 3.1 (see [8]) by∥∥∥ ∞∑
ℓ=κ+1

ℓ∑
m=−ℓ

e−ℓ(ℓ+1)t E[X0
ℓ,m]Yℓ,m

∥∥∥2
L2(S2)

=

∞∑
ℓ=κ+1

ℓ∑
m=−ℓ

e−2ℓ(ℓ+1)t ∥E[X0
ℓ,m]Yℓ,m∥2L2(S2;C) ≤ e−2(κ+1)(κ+2)t∥E[X0]∥2L2(S2).

This finishes the proof of the first part of the lemma.
Using the same computation as in the proof of [2, Proposition 4], one obtains for

the second moment

|E[∥X(t)∥2L2(S2) − ∥X(κ)(t)∥2L2(S2)]| = ∥X(t)−X(κ)(t)∥2L2(Ω;L2(S2)),

and applying Lemma 3.1 yields the claim.
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Having convergence results for the semidiscrete approximation at hand, we are
now ready to look at time discretizations and fully discrete approximations in the
next section.

4. Euler–Maruyama approximation in time. We have seen in the previous
section that we can approximate the solution to (1) by the spectral approxima-
tion (11). Computations are only possible in practice if simulating the stochastic
convolutions directly. Since we know the distribution of the stochastic convolu-
tions, this can be done (see [8] for details). If we want to simulate the solution for
a given sample of the Q-Wiener process W , we need to take another approach. In
this section we introduce forward and backward Euler–Maruyama schemes based
on samples of W and show their convergence.

Let 0 = t0 < t1 < . . . < tn = T, n ∈ N, be an equidistant time grid with step
size h. The forward Euler approximation of the exponential function e−ℓ(ℓ+1)h is
given by

ξ = (1− ℓ(ℓ+ 1)h).

In the later convergence analysis, we will need properties of this approximation that
separate the behavior of growing ℓ and h going to zero. These estimates have been
shown in the abstract semigroup framework, e.g., in [5] and based on [15]. We are
able to show these optimal regularity results based on elementary computations.
Surprisingly, we did not find them in the literature for finite-dimensional stochastic
ordinary differential equation systems, where the growth in ℓ is hidden in global
constants. The proof of the following proposition is given in Appendix B.

Proposition 4.1. The exponential function and its approximation by the forward
Euler approximation satisfy the following properties:

a) For all µ ∈ (0, 1], there exists a constant Cµ > 0 such that for all ℓ ∈ N and
h > 0,

|e−ℓ(ℓ+1)h − (1− ℓ(ℓ+ 1)h)| ≤ Cµ(ℓ(ℓ+ 1))1+µh1+µ.

b) For all µ ∈ (0, 1], there exists a constant Cµ > 0 such that for all ℓ, k ∈ N and
h > 0 with ℓ(ℓ+ 1)h ≤ 1,

|e−ℓ(ℓ+1)h·k − (1− ℓ(ℓ+ 1)h)k| ≤ Cµ(ℓ(ℓ+ 1))1+µh1+µ k e−ℓ(ℓ+1)h·(k−1)

≤ Cµ(ℓ(ℓ+ 1))µ hµ.

Following [6, Definition 10], stability is guaranteed if there exists K ≥ 1 such
that for all h > 0 and all ℓ ∈ N0,

|1− ℓ(ℓ+ 1)h| ≤ K.

Therefore, this forward approximation will only lead to a stable scheme if

h ≤ |ℓ(ℓ+ 1)|−1,

which restricts the time step size h by the truncation index κ.
The backward Euler approximation of the exponential function e−ℓ(ℓ+1)h is given

by
ξ = (1 + ℓ(ℓ+ 1)h)−1,

which is unconditionally stable since∣∣(1 + ℓ(ℓ+ 1)h)−1
∣∣ ≤ K

for any K ≥ 1.



30 ANNIKA LANG AND IOANNA MOTSCHAN-ARMEN

We prove analogous results to Proposition 4.1 also for the backward scheme in
Appendix B, and they are stated in the following proposition.

Proposition 4.2. The exponential function and its approximation by the backward
Euler approximation satisfy the following properties:

a) For all µ ∈ (−1, 1], there exists a constant Cµ > 0 such that for all ℓ ∈ N and
h > 0,

|e−ℓ(ℓ+1)h − (1 + ℓ(ℓ+ 1)h)−1| ≤ Cµ(ℓ(ℓ+ 1))1+µh1+µ.

b) For all µ ∈ (−1, 1], there exists a constant Cµ > 0 such that for all ℓ, k ∈ N
and h > 0 with ℓ(ℓ+ 1)h ≤ Cc,

|e−ℓ(ℓ+1)h·k − (1 + ℓ(ℓ+ 1)h)−k| ≤ Cµ(ℓ(ℓ+ 1))1+µh1+µ k e−ℓ(ℓ+1)h·(k−1)

≤ Cµ(ℓ(ℓ+ 1))µ hµ.

Applying the forward and backward approximation to (9) for m = 0, we obtain
the Euler–Maruyama method for the forward scheme,

X
(h)
ℓ,0 (tk) = (1− ℓ(ℓ+ 1)h)X

(h)
ℓ,0 (tk−1) +

√
Aℓ∆β1

ℓ,0(tk),

where ∆β1
ℓ,0(tk) = β1

ℓ,0(tk) − β1
ℓ,0(tk−1) denotes the increment of the Brownian

motion. Similarly, the backward scheme is given by

X
(h)
ℓ,0 (tk) = (1 + ℓ(ℓ+ 1)h)−1

(
X

(h)
ℓ,0 (tk−1) +

√
Aℓ∆β1

ℓ,0(tk)
)
.

We write both schemes in one by

X
(h)
ℓ,0 (tk) = ξX

(h)
ℓ,0 (tk−1) + ξδ

√
Aℓ∆β1

ℓ,0(tk), (14)

where δ = 0 in the forward scheme, and δ = 1 in the backward scheme. Recursively,
this leads to the representation

X
(h)
ℓ,0 (tk) = ξkX0

ℓ,0 +
√
Aℓ

k∑
j=1

ξk−j+δ∆β1
ℓ,0(tj). (15)

The equations for m > 0 are obtained in the same way.
Our Euler–Maruyama approximation of (1) is given by

X(κ,h)(tk)

=

κ∑
ℓ=0

X
(h)
ℓ,0 (tk)Yℓ,0 + 2

ℓ∑
m=1

Re(X
(h)
ℓ,m(tk))Re(Yℓ,m)− Im(X

(h)
ℓ,m(tk)) Im(Yℓ,m).

(16)

Plugging the representation (15) into (16), observing that all stochastic incre-
ments have expectation zero and rewriting the real and imaginary parts in terms
of Yℓ,m, we derive the expectation of the Euler–Maruyama method,

E[X(κ,h)(tk)] =

κ∑
ℓ=0

ℓ∑
m=−ℓ

ξk E[X0
ℓ,m]Yℓ,m. (17)
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For the second moment, we proceed similarly for the first term in (14) and use the
properties of the independent stochastic increments to obtain

E[∥X(κ,h)(tk)∥2L2(S2)]

=

κ∑
ℓ=0

( ℓ∑
m=−ℓ

ξ2kE[|X0
ℓ,m|2]∥Yℓ,m∥2L2(S2;C)

)
+Aℓ(1 + 2ℓ)

k∑
j=1

ξ2(k−j+δ)h.
(18)

As a last prerequisite for our convergence analysis, we need regularity proper-
ties of exponential functions. As for the approximation properties in the previous
propositions, the proof of the following results can be found in Appendix B.

Proposition 4.3. Assume that ℓ(ℓ+ 1)h ≤ Cc. The exponential function satisfies
the following regularity estimates:

a) For all µ ∈ (0, 1], there exists a constant Cµ such that for all tk > 0

k∑
j=1

∫ tj

tj−1

(e−ℓ(ℓ+1)(tk−s) − e−ℓ(ℓ+1)(tk−tj−1))2 ds ≤ Cµ(ℓ(ℓ+ 1))2µ−1h2µ.

b) For all µ ∈ (0, 1], there exists a constant Cµ such that for all tk > 0

k∑
j=1

∫ tj

tj−1

(e−ℓ(ℓ+1)(tk−s) − e−ℓ(ℓ+1)(tk−tj))2 ds ≤ Cµ(ℓ(ℓ+ 1))2µ−1h2µ.

c) For all µ ∈ [0, 1], there exists a constant Cµ such that for all tk > 0

∣∣∣ k∑
j=1

∫ tj

tj−1

e−2ℓ(ℓ+1)(tk−s) − e−2ℓ(ℓ+1)(tk−tj−1) ds
∣∣∣ ≤ Cµ(ℓ(ℓ+ 1))µ−1hµ.

d) For all µ ∈ [0, 1], there exists a constant Cµ such that for all tk > 0

∣∣∣ k∑
j=1

∫ tj

tj−1

e−2ℓ(ℓ+1)(tk−s) − e−2ℓ(ℓ+1)(tk−tj) ds
∣∣∣ ≤ Cµ(ℓ(ℓ+ 1))µ−1hµ.

Having all basic estimates at hand, we are now ready to prove strong convergence
with optimal rates for additive noise given the regularity of the initial condition
and the noise. The proofs are inspired by [5] but bring the semigroup theory and
estimates going back to [15] to an elementary level.

Theorem 4.4. Assume that there exist α > 0 and a constant C > 0 such that
the angular power spectrum (Aℓ, ℓ ∈ N0) satisfies Aℓ ≤ C · ℓ−α for ℓ > 0 and that
X0 ∈ L2(Ω;Hη(S2)) for some η > 0. Then, for all κ ∈ N and h > 0 such that
κ(κ+1)h ≤ Cc, the strong error between X(κ) and X(κ,h) is uniformly bounded for

some constant Ĉ on all time grid points tk by

∥X(κ)(tk)−X(κ,h)(tk)∥L2(Ω;L2(S2)) ≤ Ĉ
(
hmin{1,η/2}∥X0∥L2(Ω;Hη(S2)) + hmin{1,α/4}).
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Proof. Using the truncated version of (8) and (16), we write the error in the real
and imaginary parts as

∥X(κ)(tk)−X(κ,h)(tk)∥2L2(Ω;L2(S2))

=

κ∑
ℓ=1

(
E
[
|Xℓ,0(tk)−X

(h)
ℓ,0 (tk)|

2
]
∥Yℓ,0∥2L2(S2)

+ 2

ℓ∑
m=1

(
E
[
|Re(Xℓ,m(tk))− Re(X

(h)
ℓ,m(tk))|2

]
∥ReYℓ,m∥2L2(S2)

+ E
[
| Im(Xℓ,m(tk))− Im(X

(h)
ℓ,m(tk))|2

]
∥ ImYℓ,m∥2L2(S2)

))
.

(19)

The first difference satisfies with the formulations (7) and (15) for m = 0 that

E
[
|Xℓ,0(tk)−X

(κ,h)
ℓ,0 (tk)|2

]
= E

[∣∣∣(e−ℓ(ℓ+1)tk − ξk
)
X0

ℓ,0

+
√
Aℓ

∫ tk

0

e−ℓ(ℓ+1)(tk−s) dβ1
ℓ,0(s)−

k∑
j=1

ξk−j+δ∆β1
ℓ,0(tj)

∣∣∣2]
=

(
e−ℓ(ℓ+1)tk − ξk

)2E [
|X0

ℓ,0|2
]

+AℓE

∣∣∣ k∑
j=1

∫ tj

tj−1

e−ℓ(ℓ+1)(tk−s) − ξk−j+δ dβ1
ℓ,0(s)

∣∣∣2
 ,

where we used that the mixed term vanishes due to the mean zero of the Gaussian
increments and that ∆β1

ℓ,0(tj) =
∫ tj
tj−1

dβ1
ℓ,0(s).

The first term is bounded by Proposition 4.1 b) and Proposition 4.2 b), respec-
tively, by(

e−ℓ(ℓ+1)tk − ξk
)2E [

|X0
ℓ,0|2

]
≤

(
Cη/2(ℓ(ℓ+ 1))η/2hη/2

)2

E[|X0
ℓ,0|2],

for η ∈ (0, 2]. Exploiting that (ℓ(ℓ+1))η/2∥Yℓ,0∥L2(S2) ≤ ∥(Id−∆S2)
η/2Yℓ,0∥L2(S2) =

∥Yℓ,0∥Hη(S2) by the definition of the norm and the eigenvalues of ∆S2 , we obtain(
e−ℓ(ℓ+1)tk − ξk

)2E [
|X0

ℓ,0|2
]
∥Yℓ,0∥2L2(S2;C) ≤ C2

η/2 h
η E[|X0

ℓ,0|2]∥Yℓ,0∥2Hη(S2).

Applying the Itô isometry to the second term yields

E

∣∣∣ k∑
j=1

∫ tj

tj−1

e−ℓ(ℓ+1)(tk−s) − ξk−j+δ dβ1
ℓ,0(s)

∣∣∣2


=

k∑
j=1

∫ tj

tj−1

(
e−ℓ(ℓ+1)(tk−s) − ξk−j+δ

)2
ds

≤ 2

k∑
j=1

(∫ tj

tj−1

(
e−ℓ(ℓ+1)(tk−s) − e−ℓ(ℓ+1)(tk−tj−δ)

)2
ds
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+

∫ tj

tj−1

(
e−ℓ(ℓ+1)(tk−tj−δ) − ξk−j+δ

)2

ds
)

≤ 2Cµ(ℓ(ℓ+ 1))2µ−1h2µ + 2

k∑
j=1

∫ tj

tj−1

(
e−ℓ(ℓ+1)(tk−tj−δ) − ξk−j+δ

)2
ds,

where we applied Proposition 4.3 a) and b) in the last step for µ ∈ (0, 1]. Using the
first inequality in Proposition 4.1 b) and Proposition 4.2 b) for µ = 1, respectively,
we bound the last term by

k∑
j=1

∫ tj

tj−1

(
e−ℓ(ℓ+1)(tk−tj−δ) − ξk−j+δ

)2

ds

≤
k∑

j=1

∫ tj

tj−1

(
C1(ℓ(ℓ+ 1))2h2 (k − j + δ) e−ℓ(ℓ+1)h·(k−j+δ−1)

)2

ds

= C2
1 (ℓ(ℓ+ 1))4h2h

k∑
j=1

(h(k − j + δ))2 e−2ℓ(ℓ+1)h·(k−j+δ−1).

The key estimate for optimal rates with respect to the regularity of the driving noise
is to bound the sum

h

k∑
j=1

(h(k − j + δ))2 e−2ℓ(ℓ+1)h·(k−j+δ−1)

= h

k−1∑
j=0

(h(j + δ))2 e−2ℓ(ℓ+1)h·(j+δ−1) ≤ e2Cc

∫ ∞

0

(s+ h)2 e−2ℓ(ℓ+1)s ds

= e2Cc

(
h2

2ℓ(ℓ+ 1)
+

h

2(ℓ(ℓ+ 1))2
+

1

4(ℓ(ℓ+ 1))3

)
by an integral, which holds since ℓ(ℓ + 1)h ≤ Cc and the integral is decaying for
s ≥ max{1, (ℓ(ℓ+ 1))−1 − h}. Plugging this bound in and re-sorting, we obtain

k∑
j=1

∫ tj

tj−1

(
e−ℓ(ℓ+1)(tk−tj−δ) − ξk−j+δ

)2

ds

≤ C2
1e

2Cc(ℓ(ℓ+ 1))2µ−1h2µ
(
(hℓ(ℓ+ 1))4−2µ + (hℓ(ℓ+ 1))3−2µ + (hℓ(ℓ+ 1))2−2µ

)
≤ C̃(ℓ(ℓ+ 1))2µ−1h2µ,

where we used in the last inequality that ℓ(ℓ+ 1)h ≤ Cc.
The combination of the estimates on the initial condition and on the stochastic

convolution yields

E
[
|Xℓ,0(tk)−X

(h)
ℓ,0 (tk)|

2
]
∥Yℓ,0∥2L2(S2)

≤ C2
η/2 h

η E[|X0
ℓ,0|2]∥Yℓ,0∥2Hη(S2) + 4C̃Aℓ(ℓ(ℓ+ 1))2µ−1h2µ∥Yℓ,0∥2L2(S2).

The terms for m > 0 are bounded in the same way.
Putting all parts of (19) together, we bound

∥X(κ)(tk)−X(κ,h)(tk)∥2L2(Ω;L2(S2))
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≤ C2
η/2 h

η∥X0∥2L2(Ω;Hη(S2)) + 4C̃h2µ
κ∑

ℓ=1

Aℓ(2ℓ+ 1)(ℓ(ℓ+ 1))2µ−1

and conclude with the observation that the last term satisfies
κ∑

ℓ=1

Aℓ(2ℓ+ 1)(ℓ(ℓ+ 1))2µ−1 ≤ C

κ∑
ℓ=1

ℓ−α+1+4µ−2 ≤ C κ4µ−α,

which is bounded for µ ≤ α/4. Since µ ∈ (0, 1], the claim follows.

Putting Lemma 3.1 and Theorem 4.4 together, the total error is bounded by

∥X(tk)−X(κ,h)(tk)∥L2(Ω;L2(S2))

≤ Ĉ
(
hmin{1,η/2}∥X0∥L2(Ω;Hη(S2)) + κ−α/2 + hmin{1,α/4})

and the rates are balanced for α = 2η.
Optimal rates for additive noise and multiplicative noise were derived in [16]

and [5], respectively, for convergence up to O(hmin{1,β}/2) under the assumption
that X0 ∈ L2(Ω;Hβ(S2)) and Tr((−∆S2)

(β−1)/2Q) < +∞. Setting β = η = α/2,
the assumptions coincide with our conditions.

Having shown strong convergence, we continue with the time discretization error
of the expectation and the second moment extending Lemma 3.2 to the fully discrete
setting.

Theorem 4.5. Assume that there exist α > 0 and a constant C > 0 such that the
angular power spectrum (Aℓ, ℓ ∈ N0) satisfies Aℓ ≤ C · ℓ−α for all ℓ > 0 and that
X0 ∈ L2(Ω;Hη(S2)) for some η > 0.

Then, for all κ ∈ N and h > 0 such that κ(κ + 1)h ≤ Cc, the error of the

expectation is uniformly bounded for some constant Ĉ > 0 on all time grid points tk
by

∥E[X(κ)(tk)−X(κ,h)(tk)]∥L2(S2) ≤ Ĉhmin{1,η/2} ∥E[X0]∥Hη(S2) .

The second moment satisfies under the same assumptions that∣∣∣E [
∥X(κ)(tk)∥2L2(S2) − ∥X(κ,h)(tk)∥2L2(S2)

]∣∣∣
≤ Ĉ

(
hmin{1,η}∥X0∥2L2(Ω;Hη(S2)) + hmin{1,α/2}).

Proof. We observe first that

E[X(κ)(tk)]− E[X(κ,h)(tk)] =

κ∑
ℓ=0

ℓ∑
m=−ℓ

(
e−ℓ(ℓ+1)tk − ξk

)
E[X0

ℓ,m]Yℓ,m

using (12) and (17) combined with the linearity of the expectation.
Using Proposition 4.1 b) or Proposition 4.2 b), respectively, we bound the above

by

∥E[X(κ)(tk)]− E[X(κ,h)(tk)]∥2L2(S2)

≤
κ∑

ℓ=1

ℓ∑
m=−ℓ

(
Cη/2(ℓ(ℓ+ 1))η/2hη/2

)2 E[|X0
ℓ,m|2] ∥Yℓ,m∥2L2(S2;C)

≤
κ∑

ℓ=1

C2
η/2 h

η
ℓ∑

m=−ℓ

E[|X0
ℓ,m|2]∥(Id−∆S2)

η/2Yℓ,m∥2L2(S2;C) ≤ C2
η/2 h

η ∥E[X0]∥2Hη(S2)

for η ∈ (0, 2]. Taking the square root finishes the proof of the first claim.
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For the second moment, we apply (13) and (18) to get

E
[
∥X(κ)(tk)∥2L2(S2) − ∥X(κ,h)(tk)∥2L2(S2)

]
=

κ∑
ℓ=1

ℓ∑
m=−ℓ

(
e−2ℓ(ℓ+1)tk − ξ2k

)
E[|X0

ℓ,m|2]∥Yℓ,m∥2L2(S2)

+Aℓ(1 + 2ℓ)
(
(2ℓ(ℓ+ 1))−1(1− e−2ℓ(ℓ+1)tk)−

k∑
j=1

ξ2(k−j+δ)h
)

=

κ∑
ℓ=1

ℓ∑
m=−ℓ

(
e−2ℓ(ℓ+1)tk − ξ2k

)
E[|X0

ℓ,m|2]∥Yℓ,m∥2L2(S2)

+Aℓ(1 + 2ℓ)
( k∑
j=1

∫ tj

tj−1

e−2ℓ(ℓ+1)(tk−s) − ξ2(k−j+δ) ds
)
,

(20)

using in the last equation that

(2ℓ(ℓ+1))−1(1− e−2ℓ(ℓ+1)tk) =

∫ tk

0

e−2ℓ(ℓ+1)(tk−s) ds =

k∑
j=1

∫ tj

tj−1

e−2ℓ(ℓ+1)(tk−s) ds.

Similarly to the proof of Theorem 4.4, we split

e−2ℓ(ℓ+1)(tk−s) − ξ2(k−j+δ)

= (e−2ℓ(ℓ+1)(tk−s) − e−2ℓ(ℓ+1)(tk−tj−δ)) + (e−2ℓ(ℓ+1)(tk−tj−δ) − ξ2(k−j+δ))

and obtain two integrals in (20), which we bound separately. To the first integral
we apply Proposition 4.3c) or d), respectively. The second one can be bounded in
a similar way as the stochastic term in the proof of Theorem 4.4. Using the first
inequality in Proposition 4.1b) or Proposition 4.2b) for µ = 1, respectively, and
re-sorting the terms, we start with∣∣∣ k∑

j=1

∫ tj

tj−1

e−2ℓ(ℓ+1)(tk−s) − ξ2(k−j+δ) ds
∣∣∣

≤ C12(ℓ(ℓ+ 1))2h2
k∑

j=1

h(k − j + δ) e−2ℓ(ℓ+1)h·(k−j+δ−1).

Again, we bound the last term by the corresponding integral to obtain

h

k∑
j=1

h(k − j + δ) e−2ℓ(ℓ+1)h·(k−j+δ−1) ≤ e2Cc

∫ ∞

0

(s+ h) e−2ℓ(ℓ+1)s ds

= e2Cc

(
h

2(ℓ(ℓ+ 1))
+

1

4(ℓ(ℓ+ 1))2

)
,

since ℓ(ℓ+ 1)h ≤ Cc, and conclude using the same bound that∣∣∣ k∑
j=1

∫ tj

tj−1

e−2ℓ(ℓ+1)(tk−tj−δ) − ξ2(k−j+δ) ds
∣∣∣ ≤ C̃(ℓ(ℓ+ 1))µ−1hµ.
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The first term in (20) is bounded using, as in the proof of Theorem 4.4, Propo-
sition 4.1b) or Proposition 4.2b), respectively. All together, we get

E
[
∥X(κ)(tk)∥2L2(S2) − ∥X(κ,h)(tk)∥2L2(S2)

]
≤ Cmin{1,η}h

min{1,η}∥X0∥2L2(Ω;Hη(S2)) + 2C̃hµ
κ∑

ℓ=1

Aℓ(2ℓ+ 1)(ℓ(ℓ+ 1))µ−1

for µ ∈ (0, 1].
We finish the proof by observing that the last term satisfies

κ∑
ℓ=1

Aℓ(2ℓ+ 1)(ℓ(ℓ+ 1))µ−1 ≤ C

κ∑
ℓ=0

ℓ−α+1+2µ−1 ≤ Cκ2µ−α,

which is bounded for all µ ≤ min{1, α/2}.

Putting together Lemma 3.2 and Theorem 4.5, the total errors are bounded by

∥E[X(tk)−X(κ,h)(tk)]∥L2(S2) ≤ Chmin{1,η/2} ∥E[X0]∥Hη(S2) .

and ∣∣∣E [
∥X(tk)∥2L2(S2) − ∥X(κ,h)(tk)∥2L2(S2)

]∣∣∣
≤ C

(
hmin{1,η}∥X0∥2L2(Ω;Hη(S2)) + κ−α + hmin{1,α/2}).

While the error in the expectation coincides with the strong error in Theorem 4.4,
due to the properties of the corresponding deterministic PDE, the error rate in the
second moment is twice that of strong convergence under fixed regularity properties.
We are thus able to confirm the rule of thumb that the weak rate is twice the strong
one with time convergence limited by 1.

5. Numerical simulation. We are now ready to confirm our theoretical results
from Sections 3 and 4 with numerical experiments. We compare the convergence
rates of the different errors for the spectral approximation and the forward and the
backward Euler–Maruyama schemes.
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Figure 1. Convergence of spectral approximation for different α.

For the spectral approximation, we use a reference solution with κ = 210 at time
T = 1 and compare it to the approximations based on κ = 2j for j = 0, . . . , 9. In
Figure 1(a) we computed the expectations of the strong error explicitly, while we
used 10 Monte Carlo samples in Figure 4(a). The obtained rates for α = 1, . . . , 5
coincide with those proven in Lemma 3.1. Since the error in the initial condition
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converges exponentially fast, and we cannot see a difference in the convergence
plots, we set X0 = 0.

This exponential convergence is visible in Figure 1(b), which confirms the conver-
gence of the expectation in Lemma 3.2. Due to the fast smoothing of the solution, we
use T = 0.01. Setting X0 = 0 and computing the expectations explicitly, we confirm
the convergence rates of the second moments from Lemma 3.2 for α = 1/2, 1, 2, 3
in Figure 1(c).
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(b) Error expectation.
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(c) Error second moment.

Figure 2. Convergence of the forward Euler–Maruyama scheme
with respect to the time step size h for different α.

Having verified the spectral convergence, it remains to simulate the time dis-
cretization with the forward and backward Euler–Maruyama schemes. For that we
focus on the error between X(κ) and X(κ,h). We simulate on time grids with step
size h = 2−2·m for m = 1, . . . , 10 coupled with κ = 2m to guarantee stability for the
forward Euler–Maruyama scheme and since larger κ do not change the simulation
results. As for the spectral approximations, we set X0 = 0 to focus on the conver-
gence with respect to the smoothness of the noise given by α. The results for the
forward Euler–Maruyama scheme in Figure 2(a) using the exact expectations con-
firm the expected convergence of O(hmin{1,α/4}) from Theorem 4.4. Similar results
are obtained for the backward Euler–Maruyama method in Figure 3(a). For com-
pleteness we added the corresponding results for the forward and backward scheme
based on 10 Monte Carlo samples and with reference solution using h = 2−14 and
κ = 27 in Figures 4(b) and 4(c).
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(a) Strong error.
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(b) Error expectation.
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(c) Error second moment.

Figure 3. Convergence of the backward Euler–Maruyama scheme
with respect to the time step size h for different α.

Figure 2(b) and Figure 3(b) show the simulated convergence of the expectation
for η = 1/2, 1, 2, where we would expect from Theorem 4.5 no convergence and
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convergence rates of 1/2 and 1, respectively. We used T = 0.01 to minimize the
smoothing over time. Still, it is clear that all solutions are smooth for finite κ.
Therefore, the simulations all show O(h) convergence but with different error con-
stants depending on η.

As for the strong error, we set X0 = 0 in the simulation of the error of the second
moment to focus on the convergence with respect to the noise smoothness α. In
Figures 2(c) and 3(c) for the forward and backward Euler–Maruyama schemes, we
observe convergence of O(hmin{1,α/2}), which confirms Theorem 4.5 for the second
moment.
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(a) Spectral approxima-
tion.
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(b) Forward Euler–
Maruyama.
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(c) Backward Euler–
Maruyama.

Figure 4. Strong convergence error based on 10 Monte Carlo sam-
ples.

Appendix A. Properties of the solution. Let us consider the expectation of
the solution. It holds that

E[X(t)] = E[X0] +

∫ t

0

∆S2E[X(s)] ds

due to the linearity of the expectation and the mean zero property of the Q-Wiener
process. Setting u(t) = E[X(t)] and u0 = E[X0], we obtain that the expectation
of X is the solution to the (deterministic) PDE

∂tu = ∆S2u

with initial condition u(0) = u0.
This PDE is solved by the variations of constants formula

E[X(t)] = u(t) =

∞∑
ℓ=0

ℓ∑
m=−ℓ

e−ℓ(ℓ+1)tu0
ℓ,mYℓ,m =

∞∑
ℓ=0

ℓ∑
m=−ℓ

e−ℓ(ℓ+1)tE[X0
ℓ,m]Yℓ,m,

where u0
ℓ,m = ⟨u0, Yℓ,m⟩L2(S2;C).

Another interesting quantity of the solution is the second moment given by
E[∥X(t)∥2L2(S2)]. We observe first that

E[∥X(t)∥2L2(S2)]

= E
[∥∥∥ ∞∑

ℓ=0

ℓ∑
m=−ℓ

(
e−ℓ(ℓ+1)tX0

ℓ,m +

∫ t

0

e−ℓ(ℓ+1)(t−s) daℓ,m(s)
)
Yℓ,m

∥∥∥2
L2(S2)

]
,
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where the stochastic processes aℓ,m are given in (4). Due to the independence of
the Q-Wiener process and the initial condition and the mean zero property of the
Itô integral, the two terms separate. While the first term satisfies

E
[∥∥∥ ∞∑

ℓ=0

ℓ∑
m=−ℓ

e−ℓ(ℓ+1)tX0
ℓ,mYℓ,m

∥∥∥2
L2(S2)

]

=

∞∑
ℓ=0

ℓ∑
m=−ℓ

e−2ℓ(ℓ+1)tE[|X0
ℓ,m|2]∥Yℓ,m∥2L2(S2;C),

it remains to have a closer look at the stochastic convolution next. By the Itô
isometry and the scaling of the spherical harmonic functions, we obtain

E

[∥∥∥ ∞∑
ℓ=0

ℓ∑
m=−ℓ

∫ t

0

e−ℓ(ℓ+1)(t−s) daℓ,m(s)Yℓ,m

∥∥∥2
L2(S2)

]

= E
[∥∥∥ ∞∑

ℓ=0

(√
Aℓ

∫ t

0

e−ℓ(ℓ+1)(t−s) dβ1
ℓ,0(s)Yℓ,0

+
√

2Aℓ

ℓ∑
m=1

(∫ t

0

e−ℓ(ℓ+1)(t−s) dβ1
ℓ,m(s)ReYℓ,m

+

∫ t

0

e−ℓ(ℓ+1)(t−s) dβ2
ℓ,m(s)ImYℓ,m

))∥∥∥2
L2(S2)

]
=

∞∑
ℓ=0

(
Aℓ

∫ t

0

e−2ℓ(ℓ+1)(t−s) ds

×
(
∥Yℓ,0∥2L2(S2) + 2

ℓ∑
m=1

(∥ReYℓ,m∥2L2(S2) + ∥ ImYℓ,m∥2L2(S2))
))

=

∞∑
ℓ=0

Aℓ(2ℓ(ℓ+ 1))−1(1− e−2ℓ(ℓ+1)t)(1 + 2ℓ).

In conclusion, the second moment of X(t) is given by

E[∥X(t)∥2L2(S2)] =

∞∑
ℓ=0

( ℓ∑
m=−ℓ

e−2ℓ(ℓ+1)tE[|X0
ℓ,m|2]∥Yℓ,m∥2L2(S2)

)
+Aℓ(1 + 2ℓ)(2ℓ(ℓ+ 1))−1(1− e−2ℓ(ℓ+1)t).

Appendix B. Regularity of exponential functions and their approxima-
tion. In this section we collect the proofs of the regularity of exponential functions
and their approximation with forward and backward Euler methods from the propo-
sitions in Section 4.

Proof of Proposition 4.1. Let us start to prove the first property a). By partial
integration we obtain that

|e−ℓ(ℓ+1)h − (1− ℓ(ℓ+ 1)h)| =

∣∣∣∣∣
∫ h

0

∫ s

0

(ℓ(ℓ+ 1))2e−ℓ(ℓ+1)r dr ds

∣∣∣∣∣ .
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Since xηe−x ≤ C̃η, we can bound the expression inside the integral by

(ℓ(ℓ+ 1))2e−ℓ(ℓ+1)r ≤ C̃µ(ℓ(ℓ+ 1))1+µrµ−1,

which leads for any µ ∈ (0, 1] to∣∣∣∣∣
∫ h

0

∫ s

0

(ℓ(ℓ+ 1))2e−ℓ(ℓ+1)r dr ds

∣∣∣∣∣
≤ C̃µ(ℓ(ℓ+ 1))1+µµ−1

∫ h

0

sµ ds

= C̃µ(ℓ(ℓ+ 1))1+µµ−1(1 + µ)−1h1+µ = Cµ(ℓ(ℓ+ 1))1+µh1+µ.

We continue with the proof of b) and use an − bn = (a − b)
∑n−1

j=0 an−1−jbj to
obtain that

|e−ℓ(ℓ+1)h·k − (1− ℓ(ℓ+ 1)h)k|

= |e−ℓ(ℓ+1)h − (1− ℓ(ℓ+ 1)h)| ·
∣∣∣k−1∑
j=0

e−ℓ(ℓ+1)h·j(1− ℓ(ℓ+ 1)h)k−1−j
∣∣∣.

The first term is bounded by a), and for the second, we observe that the Taylor
expansion with remainder satisfies

e−ℓ(ℓ+1)h = 1− ℓ(ℓ+ 1)h+

∫ ℓ(ℓ+1)h

0

(ℓ(ℓ+ 1)h− s)e−s ds.

Since the integral is positive, we obtain

1− ℓ(ℓ+ 1)h ≤ e−ℓ(ℓ+1)h,

which yields ∣∣∣k−1∑
j=0

e−ℓ(ℓ+1)h·j(1− ℓ(ℓ+ 1)h)k−1−j
∣∣∣ ≤ k e−ℓ(ℓ+1)h·(k−1)

and implies the first inequality of the claim. The second follows by

k e−ℓ(ℓ+1)h·(k−1) ≤ eℓ(ℓ+1)h C̃1(ℓ(ℓ+ 1)h)−1 ≤ e1C̃1(ℓ(ℓ+ 1)h)−1,

applying again that xηe−x ≤ C̃η and that ℓ(ℓ+ 1)h ≤ 1.

Proof of Proposition 4.2. Similarly to the proof of Proposition 4.1, we observe first
by partial integration that

|e−ℓ(ℓ+1)h − (1 + ℓ(ℓ+ 1)h)−1| =

∣∣∣∣∣ −(ℓ(ℓ+ 1))2

1 + ℓ(ℓ+ 1)h

∫ h

0

∫ h

s

e−ℓ(ℓ+1)r dr ds

∣∣∣∣∣ .
Using again that xηe−x ≤ C̃η to bound (ℓ(ℓ + 1))1−µe−ℓ(ℓ+1)r ≤ C̃1−µr

µ−1, we
compute the integrals to obtain∫ h

0

∫ h

s

rµ−1 dr ds = (1 + µ)−1h1+µ.

Putting these all together yields∣∣∣∣∣ −(ℓ(ℓ+ 1))2

1 + ℓ(ℓ+ 1)h

∫ h

0

∫ h

s

e−ℓ(ℓ+1)r dr ds

∣∣∣∣∣ ≤ C̃1−µ
(ℓ(ℓ+ 1))1+µ

1 + ℓ(ℓ+ 1)h
(1 + µ)−1h1+µ

= Cµ(ℓ(ℓ+ 1))1+µh1+µ
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for all µ ∈ (−1, 1], which concludes the proof of a).
Using again the same approach as in Proposition 4.1 with an − bn = (a −

b)
∑n−1

j=0 an−1−jbj and bounding∣∣∣∣∣∣
k−1∑
j=0

e−ℓ(ℓ+1)h·j(1 + ℓ(ℓ+ 1)h)−(k−1−j)

∣∣∣∣∣∣ ≤ eCc

1 + Cc
k e−ℓ(ℓ+1)h·(k−1)

in a similar way yields both inequalities in b). The only difference is that we apply
ℓ(ℓ+ 1)h ≤ Cc to obtain the bound

(1 + ℓ(ℓ+ 1)h)−1 = (1 + ℓ(ℓ+ 1)h)−1eℓ(ℓ+1)he−ℓ(ℓ+1)h ≤ eCce−ℓ(ℓ+1)h.

Proof of Proposition 4.3. To prove a), we observe first that∫ tj

tj−1

(e−ℓ(ℓ+1)(tk−s) − e−ℓ(ℓ+1)(tk−tj−1))2 ds

=

∫ tj

tj−1

e−2ℓ(ℓ+1)(tk−s)(1− e−ℓ(ℓ+1)(s−tj−1))2 ds

≤ he−2ℓ(ℓ+1)(tk−tj)(1− e−ℓ(ℓ+1)h)2.

Therefore, we can bound∣∣∣ k∑
j=1

∫ tj

tj−1

(e−ℓ(ℓ+1)(tk−s) − e−ℓ(ℓ+1)(tk−tj−1))2 ds
∣∣∣

≤ h(1− e−ℓ(ℓ+1)h)2
k∑

j=1

e−2ℓ(ℓ+1)(tk−tj).

Since e−2ℓ(ℓ+1)h < 1 and (1− x)−1 =
∑∞

j=0 x
j for |x| < 1, the sum satisfies

k∑
j=1

e−2ℓ(ℓ+1)(tk−tj) =

k−1∑
j=0

e−2ℓ(ℓ+1)h·j ≤ (1− e−2ℓ(ℓ+1)h)−1

= (1− e−ℓ(ℓ+1)h)−1(1 + e−ℓ(ℓ+1)h)−1 ≤ (1− e−ℓ(ℓ+1)h)−1.

On one side, for µ ∈ (1/2, 1],

1− e−ℓ(ℓ+1)h

= (ℓ(ℓ+ 1))2µ−1

∫ h

0

(ℓ(ℓ+ 1))2−2µe−ℓ(ℓ+1)r dr

≤ C̃2−2µ(ℓ(ℓ+ 1))2µ−1
∣∣∣∫ h

0

r2µ−2 dr
∣∣∣ = C̃2−2µ(ℓ(ℓ+ 1))2µ−1(2µ− 1)−1h2µ−1.

For µ = 1/2 the expression is bounded, and for µ ∈ (0, 1/2) on the other side,

1− e−ℓ(ℓ+1)h ≤ 1 = (ℓ(ℓ+ 1)h)1−2µ(ℓ(ℓ+ 1)h)2µ−1 ≤ Cc(ℓ(ℓ+ 1)h)2µ−1,

since ℓ(ℓ+ 1)h ≤ Cc. Therefore, for µ ∈ (0, 1], the expression satisfies

1− e−ℓ(ℓ+1)h ≤ C(ℓ(ℓ+ 1)h)2µ−1,

and putting all terms together yields the claim. Similarly, one proves b).
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We continue with the proof of c). With the same steps as in the proof of a), we
arrive at∣∣∣ k∑

j=1

∫ tj

tj−1

e−2ℓ(ℓ+1)(tk−s) − e−2ℓ(ℓ+1)(tk−tj−1) ds
∣∣∣

≤
k∑

j=1

he−2ℓ(ℓ+1)(tk−tj)(1− e−2ℓ(ℓ+1)h) ≤ h(1− e−2ℓ(ℓ+1)h)−1(1− e−2ℓ(ℓ+1)h)

= h(ℓ(ℓ+ 1)h)µ−1(ℓ(ℓ+ 1)h)1−µ ≤ Cc(ℓ(ℓ+ 1))µ−1hµ,

which shows the claim. The proof of d) follows in the same way.
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