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Abstract

The lithium-ion battery is a key technology for achieving sustainable mobility.
However, due to its limited energy density, one of the main obstacles to re-
placing fossil-fueled vehicles with lithium-ion battery-powered electric vehicles
is range anxiety. Ultra-fast charging is one way of resolving this issue. Unfor-
tunately, simply increasing the charging current rates to reduce the charging
time can lead to accelerated aging and shortened service life if the internal
conditions of the battery cell are ignored. To achieve health-aware fast charg-
ing, an electrochemical model can provide valuable information for observing
the internal states of batteries. A well-designed charging algorithm is needed
to balance the trade-off between charging time and the rate of degradation.
However, this is a challenging task due to uncertainties arising from various
high-dimensional modeling and measurement errors.

This thesis investigates the influence of various uncertainties in designing
the fast-charging control algorithms of lithium-ion batteries, such as current
sensor bias, structural model differences, and errors in identified parameters.
The study starts by spatially discretizing the pseudo two-dimensional (P2D)
model, the most widely used electrochemical modeling framework for lithium-
ion batteries. One key finding is that in the presence of parameter uncertain-
ties, increasing the system order of the discretized model does not necessarily
yield meaningful improvements. These uncertainties are often inherent due to
difficulties in measurements or lack of clear physical interpretations.

To address the influence of parameter uncertainty during fast charging, a
method for calculating a suitable safety margin to avoid lithium plating is
developed by inverting the single particle model (SPM) of lithium-ion batter-
ies. With knowledge of the range of parameter biases, the sensitivity of the
safety margin with respect to these biases can be calculated, and the range
of the safety margin can be determined. The minimum constant safety mar-
gin enabling lithium-plating-free fast charging is calculated based on this. An
analysis shows that the required charging time is heavily dependent on the set
safety margin. To achieve optimized performance, a method for calculating a
time-varying safety margin is therefore developed, which speeds up the charg-
ing process by determining the maximum possible charging current based on
the range of given parameter uncertainties at each time instant. Based on this



method, an online strategy is proposed to further reduce the charging time by
adaptively updating the learned information about the uncertainties.

To conclude, this thesis contributes to the field by analyzing previously
overlooked factors affecting aging-aware fast-charging design based on elec-
trochemical models. Building on this analysis, methods to determine both
constant and dynamic safety margins with online parameter uncertainty re-
duction are derived. The proposed methods ensure that shortened charging
times can be achieved without inducing lithium plating, even under various
model uncertainties, which is promising for future health-aware charging of
electric vehicles.

Keywords: Lithium-ion battery, Electrochemical model, Parameter sensitiv-
ity analysis, Parameter identification, Safety margin
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CHAPTER 1

Introduction

1.1 Motivation

As climate change receives increasing global attention, attaining a sustain-
able and climate-neutral world has become a primary goal for the future. A
key aspect of achieving this target is reducing emissions from on-road vehi-
cles, which account for about one-quarter of the energy-related greenhouse
gas emissions in the EU. This has pushed the current automotive industry to
shift its focus towards zero-emission transport and highlights the importance
of electric vehicles (EVs) [1].

Many carmakers, including Tesla, Volvo, and BYD, have already begun to
manufacture pure battery-powered EVs. The annual global sales volume of
EVs has increased from 17,000 to 3.24 million between 2010 and 2020, with a
projected increase to 22.7 million by 2028, signifying a massive market expan-
sion [2], [3]. Currently, almost all sold EVs adopt lithium-ion batteries due
to their relatively high energy density, low self-discharge, wide temperature
operating range, and reasonable price [4].
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The battery management system (BMS) is one of the essential components
of lithium-ion battery-powered EVs. Its main functions include monitoring
battery states, balancing the charging and discharging processes, and ensur-
ing that operations stay within specified constraints. For this reason, math-
ematical methods are required [5], [6]. Empirical battery models, such as
equivalent-circuit models (ECMs), are commonly used in practice due to their
simplicity and low computational requirements. However, these models are
constructed using electrical circuit components by fitting the output voltage
data to given input current excitations, without considering internal reactions
and physical states. This limitation implies that they lack the ability to pre-
dict a cell’s internal behaviors, which are directly related to battery health and
safety. Without monitoring the battery’s internal states, accelerated degrada-
tion and even safety issues can easily occur, particularly during the charging
process. Relying on empirical models such as ECMs cannot ensure optimal
battery usage, thus potentially shortening the battery lifespan significantly [7].

Considering the extensive use of lithium-ion batteries, there is a pressing
need for advanced battery management systems (ABMSs). An ABMS can
potentially monitor internal states related to battery degradation, such as
lithium-ion concentrations, side-reaction overpotentials, and the thickness of
the solid-electrolyte interphase (SEI) layer, which are typically unmeasurable
due to sensor limitations. Observing these health-related states inside lithium-
ion batteries is beyond the capabilities of ECMs. Consequently, electrochem-
ical models have been introduced for ABMSs. Unlike empirical models, elec-
trochemical models are physics-based and developed based on electrochemical
principles governing internal dynamics and reactions. This enables prediction
of the states inside the battery during the charging and discharging processes

8].

One of the most widely studied electrochemical models is the pseudo two-
dimensional (P2D) model, which integrates mathematical descriptions of both
macroscopic and microscopic behaviors of lithium-ion batteries. This enhances
the model’s ability to predict battery performance at different temporal and
spatial scales. With the P2D model, closed-loop control and optimization-
based methods can be designed to achieve health-aware fast charging [9], [10].
However, the P2D model is a system of partial differential-algebraic equations
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(PDAESs) with a large number of parameters. Its complex structure imposes a
heavy computational burden and challenges in parameter identification, mak-
ing optimal control design intractable and real-time implementation imprac-
tical [11].

To address these challenges, efforts typically focus on two approaches. One
approach is to simplify the electrochemical model by reducing the order of
the P2D model while preserving its physical meaning [12], [13]. A well-known
reduced-order model (ROM) is the single particle model (SPM), which as-
sumes one layer of particles in each electrode and ignores the changes in
lithium concentration in electrolyte. These simplifications significantly reduce
the model complexity while retaining the ability to predict health-related phe-
nomena such as lithium plating and the growth of the SEI layer. Furthermore,
parameters of the SPM can be grouped to facilitate the design of real-time
health-conscious fast-charging strategies [14].

In addition to simplifying models, advanced control methods have been
proposed to make model based control numerically tractable. One promising
optimization-free method is the model-inversion-based approach [15]. Unlike
proportional-integral-derivative (PID) control [9], [16] and model predictive
control (MPC) [17], [18], which require careful tuning of control parameters
for different battery types and aging states, the model-inversion-based method
computes analytical solutions for the optimal control input directly based on
tracking goals, given that the model parameters are available. This approach
significantly enhances computational efficiency, making it feasible for studies
involving extensive simulations [15]. However, the effectiveness of the model-
inversion-based method depends on the accuracy of the model parameters in
generating reasonable control currents. FErrors in the parameters can lead
to deviations from the tracking goals, potentially causing accelerated battery
degradation or even safety issues.

To deal with the main limitations of the model-inversion-based method, ac-
curate parameterization is crucial but rather challenging. The difficulty arises
primarily due to the complexity of electrochemical models. For instance, there
are around one hundred parameters in the P2D model, most of which are diffi-
cult to measure directly, and many lack clear physical meanings despite being
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derived from first principles. Even in a ROM with fewer parameters, not all
can be straightforwardly obtained. These parameters can only be identified
with carefully designed input excitations, an area that have recently been ex-
tensively investigated to improve the accuracy and reliability of the identified
parameters [19], [20]. However, unidentifiability can arise due to structural
errors in the model, insufficient experimental data, or noise, regardless of the
methods used [21]. Therefore, before proceeding with parameter identifica-
tion, it is important to check whether the parameters are identifiable, which
can be achieved through parameter sensitivity analysis [3], [22]. Based on
the results of parameter sensitivity analysis and optimal experiment design
(OED), which utilizes the input’s effects on parameter sensitivity, maximum
parameter identifiability can be achieved [19], [23]. However, there will still
be biases in the identified parameters, especially as a battery ages over its
lifetime. Degradation-related parameters can change significantly over time,
rendering initially identified parameters unsuitable for later use.

Another way to ensure health-conscious charging when applying the model-
inversion-based control is to establish a safety margin for the tracking goal,
to account for the impact of biased parameters. However, determining this
safety margin often relies on the designer’s experience due to the lack of rig-
orous methods in the literature.

Based on the aforementioned research challenges, this thesis work attempts
to address the following main research problems in the area of electrochemical
modelling and control of lithium-ion batteries:

e Sensitivity analysis of the P2D model parameters concerning the aging-
related states

e Analytical calculation of the lithium-plating safety margin for the model-
inversion-based charging strategy based on the SPM with grouped pa-
rameters

1.2 Thesis Contributions

Contributions of this thesis can be summarized as follows, as reported in the
three appended papers:
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1. The affecting factors when performing fast charging are studied. Three
aspects of the effects are focused, including the input current bias, model
size, and parameter uncertainties. This is done based on the P2D model,
which includes sensitivity analysis not only on the outputs but also on
the degradation states, such as the lithium-plating potential and the
thickness of the SEI layer. (See Paper A)

2. A minimum constant safety margin is calculated to increase the charg-
ing speed without causing lithium-plating under inversion-based output
tracking. This study is based on the SPM with grouped parameters, as-
suming known bias ranges in the model parameters. Through analytical
calculations, a constant safety margin is determined that can prevent
lithium-plating across all possible parameter combinations. (See Paper
B)

3. An online dynamic safety margin with respect to the state of charge
(SOC) is developed. When performing fast charging based on the SPM-
inversion-based output tracking, a SOC-dependent safety margin can be
calculated at every time instant. In addition, it is shown that the output
voltage error can be approximated by a linear regression with the biases
as unknown parameters. Consequently, a recursive linear least square
estimation can be applied to estimate the model parameters. Employing
this dynamic safety margin and parameter identification method, the
model parameter bias ranges can be narrowed during Li-plating free fast-
charging and the charging time can be significantly reduced compared
to using the constant safety margin. (See Paper C)

1.3 Thesis Outline

In this thesis, Part I includes five chapters that are described in the following
list:

e Chapter 1 provides the motivation and overall introduction of the thesis.

o Chapter 2 gives an overview of lithium-ion batteries and introduces var-
ious lithium-ion batteries models.

o Chapter 3 discusses some useful methods when performing fast charging,
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including the parameter sensitivity analysis, the calculation of lithium
plating safety margin, and parameter identification.

e Chapter 4 provides a summary of papers the thesis is based on.

e Chapter 5 gives concluding remarks and suggests directions for future
research.

Part II includes the papers the thesis is built on.



CHAPTER 2

Lithium-lon Battery Models

2.1 Lithium-lon Batteries

Batteries play an extremely important role in the modern world as one of
the most easy-to-use portable energy storage devices. In batteries, energy
is stored in electrochemical forms and can be easily converted to electricity.
While primary batteries cannot be recharged and are useless once they are
depleted, many types of secondary batteries involve reversible chemical reac-
tions, allowing them to be recharged multiple times. Among various types
of secondary batteries, lithium-ion batteries have gradually become the most
commonly used ones and today dominate the battery market for their out-
standing characteristics. They are widely used as a rechargeable power supply
in many mobile applications, ranging from portable electronic devices to road
transport.

Why choose lithium-ion batteries

The lithium-ion battery offers a good balance between battery energy den-
sity and safety. Generally, a more active metal tends to have higher energy
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density. However, higher activity also means greater instability in practice.
In this aspect, the lithium-ion battery has been found to be a good trade-off
between these two characteristics.

As shown in Fig. 2.1, compared to traditional batteries such as lead-acid
and nickel-cadmium batteries, lithium-ion batteries have both high volumetric
and gravimetric energy densities. Although metal-air batteries have higher
energy density due to their air electrode, secondary metal-air batteries are
still immature with materials and electrochemical issues [24].

Lithium air I:>
1500

E P Zink air
=3
g 400 —
=
7]
S Lithium Ion and
a 300 — Lithium polymer
(=]
S
e
w200 - NiMH
Q2 I
=
E 100 [
% PbA
>
0 ' ' ' L1
0 50 100 150 200 400

Gravimetric Energy Density (Specific Energy) (Wh/kg)

Figure 2.1: Energy density of different types of batteries (Redrawn from [24])

In addition, lithium-ion batteries have no memory effect and require min-
imal maintenance. Their low self-discharge rates and excellent fast charging
capability have led to growing interest in related research topics [25].

Working principles

The working principle of lithium-ion batteries is based on the transfer of
lithium ions between two electrodes. In a single lithium-ion battery cell, dur-
ing discharging, lithium ions move from the negative electrode, through the

10
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separator, to the positive electrode. Conversely, during charging, the lithium
ions move in the opposite position, i.e., from the positive electrode, through
the separator, to the negative electrode. The movement is driven by the po-
tential difference between the positive and negative electrodes, enabling elec-
trochemical conversion between stored electrochemical energy and electricity.
However, during the battery lifetime, degradation can occur due to various
mechanisms, such as the growth of the solid-electrolyte-interface (SEI) layer,
lithium-plating, structural changes, electrolyte decomposition, and particle
fracture. These degradation phenomena can manifest under normal operating
conditions, resulting in capacity and power fade. Fast charging can further ac-
celerate the degradation processes. Consequently, prolonging battery lifetime
while achieving the most rapid charging has emerged as a critical research
objective [26], [27].

2.2 Lithium-lon Battery Models

Equivalent-circuit models

Empirical models focus solely on the battery input-output characteristics in-
stead of the reactions and ion transport inside the battery. The most com-
monly used empirical models are the equivalent-circuit models (ECMs). ECMs
utilize electrical elements such as capacitors, inductors, and resistors to con-
struct a circuit that can reproduce voltage responses under given input current
profiles. It is the state-of-the-art in battery management systems (BMSs) be-
cause of its simplicity. A first-order RC ECM is shown in Fig. 2.2.

R,
MW
R, I
MW i —
4“__

Qw ~ w* v

0

Figure 2.2: A first-order ECM.

The ECM shown in Fig. 2.2 has three parameters, R,, R;, and C;. With
V defined as the battery terminal voltage and I defined as the input current,

11
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the equations of this ECM are given as [28], [29]:

Vi(t) = _1'?1—(21 + %’?
V(t) = Voo Z) + RoI(t) + Vi(t), (2.1)

SOC(t) = SOC(0 Q/

where ¢ is the time index, SOC € [0, 1] is the state of charge, V; is the voltage
of the parallel RC branch, V. is the open-circuit voltage, and @ is the capac-
ity of the cell. Here, V. is a nonlinear function of the SOC, and a positive [
indicates the cell is being charged. Although ECMs are simple to implement
and widely used, the disadvantage of ECMs is also obvious: As an empiri-
cal input-output model, an ECM cannot describe the real process inside the
battery, and consequently not the degradation mechanisms that are crucial
during fast charging.

Electrochemical models

The electrochemical lithium-ion battery model addresses the drawbacks of
ECMs. The probably most widely investigated electrochemical model of
lithium-ion batteries in the literature, namely the P2D model, was first intro-
duced by Newman, Doyle, and Fuller in the 1990s [30], [31]. Apart from its
potentially higher accuracy compared to the ECMs, the first-principle model’s
predictive capability under various operating conditions and its ability to con-
sider degradation mechanisms are particularly attractive. Despite these ben-
efits, this electrochemical model has had limited practical implementation
because of its complexity. Even considering nowadays’ computational capa-
bilities, implementing them in a vehicle BMS can be challenging.

The P2D model was developed based on the porous electrode theory and
the concentrated solution theory, which describe the battery dynamics with
a set of coupled partial differential-algebraic equations (PDAEs). The P2D
model predicts the cell voltage response to an applied input current and pro-
vides spatially resolved internal potentials, lithium cation concentrations, and
intercalated lithium concentrations. To reduce the computational load of the
P2D model, many model reduction methods have been proposed to facilitate

12



2.2 Lithium-Ion Battery Models

implementation in control applications. The most mathematical nature is
spatial discretization, which is also referred to as the method of lines. The
simplest discretization is to take each electrode as one control volume. Com-
bining this with the assumption of no electrolyte dynamics gives the most
notable reduced-order model, the single particle model (SPM). Many research
efforts have been built on the SPM and its extensions thanks to its compu-
tational efficiency, enabling real-time closed-loop control and optimization in
advanced battery management systems (ABMSs).

In the following, a P2D model is described. A schematic diagram of the
P2D model is shown in Fig. 2.3, where the thickness direction of the cell is
regarded as the z-axis. The interface between the positive electrode and the
positive current collector is defined as = 0, and the interface between the
negative electrode and the negative current collector is defined as © = L. Here,
L =L,+Ls+L,, where L,, L, and L,, represent the thickness of the positive
electrode, the separator and the negative electrode, respectively. The point
immediately to the left of z = L, is denoted as x = L, and immediately to the
right © = L,
current collectors are not modelled in detail in this work, and only the positive
electrode, the separator, and the negative electrode will be described in the
governing equations. In the following, for the concentrations and the electrical
potentials, the first index {s, e} of the subscript represents solid material or
electrolyte, and the second index i € {p, sep,n} of the subscript represents
the domain of positive electrode, separator, or negative electrode. For other

and a similar notation is used for the point x = L, + L,. The

symbols, index i € {p, sep,n} of the subscript represents the domain of the
positive electrode, separator, or negative electrode. The governing equations
of the different parts are given in accordance with [32], [33] and the meanings
and units of the symbols used in the model are listed in Table 2.1.

13
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Charge Discharge
> <«
© © © Load © e—©
Positive Electrode Separator Negative Electrode

i K \

, 7 T Electrolyte ----" N
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2=0 // =1L, @=L, +L, \ =1L
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Figure 2.3: 1D schematic of a Li-ion battery cell with N, layers of particles in the
positive electrode and N, layers of particles in the negative electrode.

14 From left to right, the three compartments represent the positive elec-
trode, the separator, and the negative electrode, respectively.
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Table 2.1: List of symbols used in P2D model

Symbol  Physical Meaning Unit

i g8 solid-phase potential \%

P, electrolyte potential \%

Cs solid-phase concentration mol - m~3

c2ve volume-averaged solid-phase concentration mol - m—3

crex theoretical maximum solid-phase concentration mol - m~3

css surface concentration of solid-particle mol - m—3

cdiff concentration difference between c¢,'® andcs® mol - m ™3

COEC concentration of EC in the bulk electrolyte mol - m~3

Ce electrolyte concentration mol - m—3

2 initial electrolyte concentration mol - m~3

Jtot total molar flux mol - m—2.g1

Jint intercalation molar flux mol-m—2.s71

JSEI SEI molar flux mol -m~—2.-s7!

JLiP lithium plating molar flux mol - m~2 .71

10 exchange current density A-m—2

Nint activation overpotential for intercalation Vv

NLiP activation overpotential for lithium plating A\

U equilibrium potential of the electrode A\

Dy solid-phase diffusion coefficient at reference temperature m? - s~ !

De electrolyte diffusion coefficient m?.s~!

Deft effective electrolyte diffusion coefficient m? .57 !

Dgc diffusivity of EC m2.s”1

R radius of the solid-phase particle m

a specific surface area of electrode (= 3es/Rs) m~!

€s volume fraction of the solid phase -

e porosity or volume fraction of the electrolyte -

o solid-phase conductivity S-m™

K electrolyte (ionic) conductivity S-m~!

o°ff effective solid-phase conductivity S-m~!

reff effective electrolyte (ionic) conductivity S-m~!

ket effective reaction rate constant A-m?5%.mol 15

k reaction rate constant at reference temperature A -m2%.mol 1°

L thickness of a domain m

RAim SEI film resistance Q-m?

Teol resistance of the current collector Q-m?2

s, thickness of the surface film m

F Faraday constant s-A.mol™!

T cell temperature K

R universal gas constant J-K=1.mol™!

t?i- transference number -

A electrode plate area m?

T radial position across a spherical particle m

T position across cell m

t time S

brugg Bruggeman’s coefficient -

tapp applied current density A-m™2
applied current A

Qg anodic charge transfer coefficient -

Qe cathodic charge transfer coefficient - 15
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Solid phase

In the solid active material of the two electrodes, the lithium-ion concentration
is described by Fick’s law of diffusion along the r-direction

Ocsi(x,r,t) 1 0 20cs,i(z,1,1)
ot 2 0r (DS’ZT or ’ (2.2)

where ¢, ; is the lithium-ion concentration in the solid active material, D ; is
the diffusion coefficient for the solid particle, and r denotes the radial distance
in a solid particle at the microscale while z indicates the position at the
macroscale. The corresponding boundary conditions are

Ocs i(x, 7, 1)
or

Ocs,i(x,7, 1)
or

Jint,i(z, 1)
=—=0p_ . (2.3)

=0 T:Rs,i

where jint ; is the intercalation molar flux of lithium-ions through the particle
surface and R, ; represents the radius of the solid particles. These boundary
conditions reflect the assumptions that at the surface of the particles, the
derivatives of ¢, ; with respect to the radius are proportional to jin i, and in
the centre of the particle, the derivatives are zero because of symmetry (no
flux).

The default initial condition is given by

cs,i(w,m,0) = ci'FY, (2.4)

S,1

:’ig’o is the electrode volume-averaged concentration when the battery

is in a steady state.

where ci

Electrolyte phase

In the electrolyte, the lithium-ion transport can be described by

‘8ce,i(az,t) 0 off OCei(, 1) ‘ oy .

Ee,i ot ~ or (De,i Oz + a; (1 t+) ]tot,z<x7 t)? (25)
where ¢ ;(z,t) is the electrolyte lithium-ion concentration in domain i. Dt
is the effective diffusion coefficient of the electrolyte and can be calculated by

brugg, . . . . . .
D = D, ;e "®% where D, ; is the electrolyte diffusion coefficient in domain

16



2.2 Lithium-Ion Battery Models

i, brugg; is the Bruggeman’s coefficient in domain ¢, and €. ; is the porosity
in domain 4. The effective electrolyte diffusion coefficient is used for compen-
sating the tortuous path that the lithium ions go across the electrolyte. Here,
Jtot,i is the total molar flux that considers the intercalation, which consists of
the intercalation molar flux jin¢ ; and the side-reaction molar flux that will be
discussed more in later sections.

For the separator, since there are no chemical reactions, the molar flux jiot.
is considered zero and thus, the above equation needs to be modified by re-
moving the second term on the right-hand side.

No electrolyte flux exists at the boundaries of the electrodes, the boundary
conditions at the interfaces of the current collectors and the electrodes are

OCe p

& OCe.n
= _D¢ e
Ox

eff
_De,p e,n
=0 ox

= 0. (2.6)

x=L

Also, on both sides of the interfaces of the electrodes and the separator, the
concentration c.; and their derivatives should be consistent. The boundary
conditions at the electrodes and separator interfaces are therefore

Oce,p(z,t) g OCe,sep(T,1)
- Dgi e = - D: sep N (27)
Oz m:L; Oz x:L;
_ D:iep ace,sgp(xvt) _ Dsﬁz 8Ce,g(xvt) (28)
x w=(Lp+Ls)— T le=@prLo)t
Cep(@ 1)),y = Ceenl@ D),y s (2.9)
Ce,s($,t)|w:(Lp+Ls)_ = Ce,n(f,t)lw:(Lp+Ls)+ . (210)
An initial condition should naturally also be satisfied, i.e.
Ce.i(x,0) = c2. (2.11)

Electrical potential

The potential ®,; in the solid phase of each electrode can be described by
Ohm’s law where o¢T = €5,i0 is the effective electronic conductivity of the

7
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Chapter 2 Lithium-Ion Battery Models

porous electrode and o is the conductivity of the solid material. This gives

U¢ff 82¢’3,i (32', t)

i 92 = aiFjtot,i(z,1), (2.12)

with the boundary conditions at the current collectors being that the deriva-
tives of ®,; are proportional to the applied current density %.pp, which is
derived from the fact that the electrical current through the solid equals the
total current entering or exiting the cell, together with that there is no elec-
tron flux at the interface of the electrode and the separator because there are
no conductive solids in the separator. The boundary conditions are given as

eff a(I)Syp eff 8(1)5,71
0‘ ———

_ _ e —i. 2.13
P0r |z—o In "oz e tapp ( )
eff8¢5 P effaq)sﬂl
- : — _o® — 0. 2.14
Poz le—r, 0T lz=L,+L, (2.14)

The potential in the electrolyte phase is given by

or2(tS — 1)RT Olnce i(x,t)

. 0 off 8@6 i(ac, t)
iFiori(z,t) = —— |wiT—22 . (2.1
@:Fjioi(2, 1) ox {H ox T F ox (2.15)
where /@?H = g,k is the effective ionic conductivity and T is the temperature.

Since only potential differences are measurable, ®.,, can be set to zero at
the interface of the anode and its current collector. At both interfaces of
the electrodes and their current collectors the derivatives of ®.; are set to
zero for physical constraints. In addition, the derivatives of ®.; are equal
when crossing the interfaces of the electrodes and the separators. Overall, the
boundary conditions are

o 0P
eff e,p eff e,n
—_ = — = @e n I 21
p 8$ £—0 Kn afE o1 s |m_0 0 ( 6)
eff aq)e P eff aq)e sep
_ ZZeP = — ——=2eP 2.17
p 8.’[; w:L; K‘sep ax a::L;_ ( )
_ Heﬂ' aQe,sep - _ effaq)e,n (2 18)
P Oz e=(Lp+Ls)~ " Oz e=(Lp+Ls)"

Butler—Volmer kinetics

The Butler—Volmer equation is an algebraic equation that couples the above
PDEs. It describes the relationship between the intercalation molar flux,
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2.2 Lithium-Ion Battery Models

concentrations, and overpotential according to

: 0,i o F'Nint,i(z,t e Fning,i(x,t
Jint,i(x, 1) = Z;; {exp (T’R—tT(x)> — exp (—77}{#(33))] . (2.19)

Equation (2.19) works for the two electrodes and in the separator ji, ; is
assumed to be zero since there is no solid phase in the separator domain. In
(2.19), i is the exchange current density, given by

G0, = k§TFce i (z, 1) (c?fx — ¢ (=, t))aa ci(z, t)™, (2.20)
and 7yt is the surface overpotential and is given by
Nint,i (T, 1) = @5 i(x,t) — Pei(x,t) — F Reiim, i Jrot,i (x, 1) — Ui, (2.21)

where Uj; is the equilibrium potential of the lithium intercalation, Ry ; is the
surface film resistance, and kfff is the effective reaction rate constant. Usually,
it is assumed that o, = a. = 0.5, and then (2.19) becomes

jiﬂt,i(xv t) = 2k.i3ff\/c€,i(x7 t) (csm,?x - Cis ($, t)) C?S(x? t) sinh [()‘Rifniﬂt (x7 t)j| . (222)

Terminal voltage and SOC

The terminal voltage is given by
V(t) = s p(z,t)] g — Psn(®, )] ,_p + Teollapp (2.23)

where 701 is the resistance of the current collector per square meter, and %app
is the applied current density, defined as positive for charging. In this work
reol 1S taken as zero. Thus, V is calculated by

V(t) = (2, t)],_g — Psnlz,t)],_; - (2.24)

The bulk SOC is the average utilization of the entire electrode and is often
used as an indicator of available energy in the cell [34]. In the positive and
negative electrode, their bulk SOC can be represented as (2.25) and (2.26),
respectively.
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SOC, (1) £ / / 2y (s t)drda
Lp p) Cmax

° (2.25)
1 / s
= 8 (x, t)dx
Lpcgs™ Jo p (1)
SOC,(t) = / / 2 csn(z, 7, t)drdz
Ln s n cmax Ly+Ls (2 26)

n / =+
C.S,’I’L Lp L

Since SOC,, and SOC,, are directly related to each other, conventionally
SOC = SOC,, when referring to SOC.

Side Reactions

The degradation of the battery due to side reactions can be considered within
the P2D modelling framework [33]. As mentioned earlier, the intercalation
molar flux jin; is only one part of the total molar flux jiot;. The rest is
attributed to side reactions, including the SEI molar flux jsgr; and the lithium
plating molar flux jrip ;. In the following side reaction equations, the index
7 that indicates the domain is dropped for brevity, as these side reactions
occur only in the negative electrode. It is assumed that the SEI is formed by
the reaction between ethylene carbonate (EC) and lithium ions, generating
lithium ethylene dicarbonate. First, the molar flux jsg; associated with SEI
side reactions can be calculated as

- ss (07K F
JsE1 = —ko,SEICEC €XP <_R—;I77$EI> ; (2.27)
with
nser = ®s — Pe — F' ReimJror — UsEr, (2.28)

where ko sgr is a kinetic rate constant, nggr is the overpotential, and Usgg
is the equilibrium potential of SEI formation reaction. cj is the concentra-
tion of EC on the surface of graphite, which is calculated based on the mass
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2.8 Reduced-Order Electrochemical Model

conservation of EC:
S, — C0
— Do ZEC EC

5 = —JSEI, (2.29)
film

where Dgc is the diffusivity of EC, C%C is the concentration of EC in the bulk
electrolyte, and gy, is the thickness of the surface film. The left-hand side of
(2.29) represents the diffusive flux of EC across the film, and the right-hand
side denotes the consumption rate of EC.

Lithium plating is assumed to be irreversible in this model. That is, the
stripping of plated lithium in the subsequent discharge process is neglected. As
such, the following cathodic Tafel expression is used to calculate the transfer
molar flux of the lithium deposition reaction:

io,LiPe ( Qe Lip F

RT 7]LiP>a when  nLip <0, (2.30)

JLiP = —
where nr;p is the lithium-plating overpotential, calculated by
nNLip = b, — P, — FRﬁlmjtot, (231)

and 7 rip is the exchange current density of lithium deposition, which is
treated as a fitting parameter in the present model due to the lack of reli-
able experiment data. Equation (2.30) indicates that lithium plating only
occurs when 7 ip is below zero. jrip is considered as zero when np;p > 0.

2.3 Reduced-Order Electrochemical Model

Solving a full P2D model requires significant programming and computational
efforts making it unfit to run online. A reduced-order model (ROM) is there-
fore very useful when performing real-time control and or conducting huge
numbers of long simulations. There are many ROM techniques in mathe-
matics, though when it comes to P2D models there are four main categories
of control-oriented methods that are applied. They are spatial discretiza-
tion, function approximation, frequency domain approximation, and simpli-
fied physics/spatial lumping [35]. In this work, all four techniques are applied
for P2D model simplification.
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Reformulate Solid-Phase Diffusion Equation

Polynomial approximation

Before applying any method of lines along the z-dimension, it is conventional
to reformulate (2.2). The diffusion inside the solid particles is described by
(2.2) and many approaches have been adopted to simplify it. One commonly
used method is to assume the spatial profile of the concentration is a quadratic
function with respect to the radial position r. Equations (2.2) and (2.3) can
then be simplified by using only the volume-averaged concentration cavg(x, t)
and the surface concentration ¢*(z,t) of the solid particles. This method
is regarded as the two-parameter polynomial approximation [32], [36] in the
literature, and the resulting model is given by

o(a,t) 3

= — fint,i (X, T 2.32
) 232
(1, 8) = B, 1) — 2 i( 1), (2.33)
4 5 5Ds,i s 5

If the concentration profile is assumed to be a quadratic function with only
even terms, the resulting three-parameter polynomial approximation leads to
a 2nd-order model:

8t = _R ]1nt z($ t) (234)
0q;(z,t) 30DS i 45
= — d i ,t — ———— Jint.q ’t 2.
ot R?,Z q ('CB ) QREJJ t, (I ) ( 35)
& (x,t) = P (x,t) + 8Rs iqi (w0, 1) — 35D s Jint,i (2, 1), (2.36)

where the physical meaning of the second state variable ¢; is the concentration
flux.

Padé Approximation

Instead of approximating the solid diffusion equation with the sum of different
orders of polynomial combinations, Padé approximation works as a frequency
domain method. Compared to the polynomial approximation, Padé approxi-
mation has better convergence properties and higher accuracy with the same
order of polynomials [37].
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2.8 Reduced-Order Electrochemical Model

Taking the Laplace transform of (2.2) and (2.3), one can obtain the following
transcendental transfer function [35]

G (S) _ C?S($78) . Rs,z’ tanh (RS,i V S/Ds,i)
T ) Doy (RS0 ~ R 5T

For n-th order Padé approximation, the above transcendental transfer func-
tion is approximated using a rational transfer function

(2.37)

ag+a1s+ -+ ap_15"t

Gs(s) = Py(s) = s(L+bgs+ -+ bysn=1)

(2.38)

To obtain the coefficient a; (i =0,1,--- ,n—1)and b; (j =2,3,--- ,n), we
calculate the zeroth to (2n — 1)th derivatives of G4(s) and Ps(s) with respect
to the complex frequency index s, and obtain 2n nonlinear equations, i.e.,

d’“Gs(s) B d’“PS(s)
dsk dsk

Vk € {0,1,---,2n—1}. (2.39)

In this work, for simplicity we only consider the 2nd-order Padé approxi-
mation:

3 2Rs,i s 3 Rs,i
Rs,i 7Dsyi . 5Ds,i
Py(s) = - RZ. "R.os RZ . - (2.40)
S,1 S, S,?
S+ 30,8 L+ 5558

The corresponding state-space model is given by

O E(x,t) 3
2 = — 'in 7 7t
ot Rs,z‘] (%)
ocdift(z, 1) 35Ds; 4 7 (2.41)
5,0\ 5t diff —J '
o - 31 Csi (x,t) — Rs,i‘jint’i(%t)

S(x,t) = V8 (x,t) + Al (2, 1),

8,1 ER)

Discretized Governing Equations

By performing a two-parameter polynomial approximation on the solid-phase
diffusion equation, all the unknowns are functions of time ¢ and x which is the
direction in the thickness of the cell. Apply the finite volume method (FVM)
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Figure 2.4: One-dimensional finite volume mesh.

on the reformulated P2D, by subdividing the positive electrode, the separator,
and the negative electrode into IV,,, N, and N, respectively, non-overlapping
control volumes, where each control volume has a geometrically centered node.
The width of every control volume is Az; = L;/N;,i € {p,s,n}. The centre
of the k-th volume is denoted as x; and spans the interval [z, 1534, 1] as
shown in Fig. 2.4. The resulting set of discretized governing equations are
given in Table 2.2. The symbols with a bar above are the volume-averaged
values, and @e,end = 0 is the averaged electrolyte potential in the last control
volume. Within reasonable limits, the larger NV,,, Ny and N,, are, the higher
the model accuracy, but at the price of an increased computational burden.
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Chapter 2 Lithium-Ion Battery Models

2.4 Grouped Single Particle Model

Single Particle Model

The simplest discretized model assumes that there is only a single layer of solid
particles in each electrode and that there is no electrolyte dynamics. Ignoring
the electrolyte phase dynamics considerably reduces the system complexity
and the number of model parameters. The resulting single particle model
(SPM) is given by

Ocg ; 1 0 Ocg ;
L= = — | Dy r® 2.42
ot r2 Or ( T oy > ’ ( )
865 i 865 i I
: =0, Dg;—— =4+— 2.43
or r—0 ’ " Or r=R.; CLZLZFA ( )
2RT +7
Tint,i = isimh_1 , (2.44)
F 2kl LiF Ay el (emex — )

1/t
SOC(t) = SOC(0) — 0 I(7)dr, (2.45)

0
V =Up(c}) + np — Un(Sy) — 1 (2.46)
nLip = Un(cy) + nn. (2.47)

Note that here I is the input current in Amperes, defined as positive for
discharge.

Single Particle Model With Grouped Parameters

The original SPM is still described with a large number of parameters. To
further simplify the SPM for analysis of the influence of the parameters, a
normalized, reformulated SPM with grouped parameters is introduced [14].
In the following equations, the index “s” indicating the solid phase and “int”
indicating intercalation are omitted, as the SPM does not account for the
electrolyte phase. A symbol with a bar denotes the normalized value of the
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corresponding variable.

L1 ()
gg T 0, g; = —6l,1, (2.49)
ni = 21? sinh~* (egﬁ) : (2.50)
SOC(t) = SOC(0) — % /O I(r)dr. (2.51)
V = Uy(@) +1mp — Un(E) — 1, (2.52)

nuip = Un(63) + M- (2.53)

. — Y max =SS __ .SS max -
where 7; = 7/Rg i, ¢; = ¢;/ci™, &° = ¢;°/ci*, and i € {p,n} represents the

positive and negative electrodes.

The grouped parameters are defined as

— Ri —
- A , D,
pl Ry 1
]’32 Dy, 3ep LpcaxF A
/ — Ry 1 Y
F 3ep Lycmax |
9’ = ;33 = 2k; Cngp PCp , (254)
nl n
412 R? Dnl
T S
;3 D,, 3¢, LycitaxXFA
L . R, 1
2kef, /0 3ep Lpcax A i

with the meanings of the symbols given in Table 2.1.
The Padé approximation introduced in Section 2.3 can be applied to simplify

the PDEs in the SPM [38], [39]. The normalized concentrations are now used
to represent the lithium-ion concentration dynamics. With a 2nd-order Padé

27



Chapter 2 Lithium-Ion Battery Models

approximation a reduced model for the concentration is

dciVe(t)

T 30,1 2.
— 30,51 (1) (2.55)

deif (1) 3D _gife

= g A ~ TI(t) (2.56)
G(t) = &8 (1) + & (1), (2.57)

where 6;1 and 6,5 are the redefined grouped parameters for the convenience
of further analysis. With the knowledge of the initial averaged concentration
c:'8(0) and assuming the initial e(0) = 0, (2.55)—(2.57) can be solved to
give

t
cvE(t) =8 (0) — 39i2/ I(t"dt (2.58)
0
—35t
_diff I(t)@ilﬁm I(t)@ileige 041
Grt)=————+ - (2.59)
t
1(t)0;16;
&5 (t) = &¥3(0) — 36,z / I(t)dt' — %
0
[()0;10me i1
10 “5126 - (2.60)
The negative overpotential is
2RT 1 1
= sinh Opy3—— |, 2.61
n r ( n3 E%S (1 — E%S)> ( )
and the new grouped parameters are
_ R2 -
[ O | o
3epLpchaxF A
g — 01’? — | 2 ?;;Lp% Far (2.62)
n —_n
O b
9 3€nLnC%‘axFA
| Un3 | R, 1
2keft /0 3enLlncp®*FA |
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CHAPTER 3

Methods

3.1 Parameter Sensitivity Analysis

The sensitivity analysis in this work relates to how much an output is affected
by sensor errors and parameter uncertainties. Parameter sensitivity analysis
is highly important for model identification, especially for complicated non-
linear models such as the electrochemical lithium-ion battery model, which
has a very large number of parameters. For such a complex kind of model, it
is impossible to identify all the parameters without knowing the parameters’
identifiability and correlation. A sensitivity analysis method is introduced
to determine if a parameter can be identified or not. The more sensitive a
parameter is, the higher the identifiability the parameter typically has. By
performing sensitivity analysis a ranking and the correlation of the selected
parameters’ sensitivities can be deduced [40], [41]. Global sensitivity analysis
is utilized to study the sensitivity of the parameters in their entire possible
range, taking the nonlinearity of the system and the correlation between the
parameters into account as well [19], [23]. To do such a global sensitivity
analysis is computationally expensive, or even infeasible. Therefore, only a
local sensitivity analysis is often performed to examine the sensitivity of a
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complex system around a small vicinity of a specific parameter value set. In
this work, a local sensitivity analysis is applied to the P2D model under vari-
ous charging profiles and different model discretization orders. The parameter
uncertainties, current sensor bias, and discretization errors are all considered
in the analysis. In addition to the output voltage and temperature, the sen-
sitivity of other important states is also analyzed, such as the lithium-plating
overpotential and the growth of the SEI layer.

Among the large number of parameters in the lithium-ion battery electro-
chemical model, we exclude those that are constant, easy to obtain, or lack
clear physical meaning. In total 23 parameters are selected for the later sen-
sitivity analysis. The sensitivity can be different depending on the outputs
and the initial state of the battery. Thus, for all selected parameters the same
outputs and initial values are chosen for fair comparison of sensitivity. The
selected parameters can be grouped into the following 4 categories:

1. Geometric parameters: Rs,, Ly, €cp, €s.py RBsns Ln, €eny €sny Lsep,
Ee,sep, and A. These parameters describe the geometric characteristics
of the battery, such as the thickness of the electrodes and the area of
the electrode surface.

2. Transport parameters: D, 0p, Dgyn, 0y, De, t&. These parameters
describe the ions’ transportation ability.

3. Kinetic parameters: k;ﬁ, k¥ brugg. These parameters describe the
charge transfer ability.

4. Concentration parameters: cg' 0%, Y. They are the maximum solid-

phase concentration in the two electrodes and the initial concentration
in the electrolyte.

max

Cs,n )

For a nonlinear system
y=fo(u), (3.1)

where y € R™ is the vector of outputs, u € R is the input and 8 € R™ is the
vector of parameters, the local sensitivity derivative vector S; € R™v of the
model outputs to the i-th parameter is defined as

_ 9y
- 891 6:0*’

Si (3.2)
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where 6* is the nominal parameter vector. However, S; is usually numerically
calculated from the response Ay to a parameter perturbation A#;, i.e.

A A
S y

N

(3.3)

6=0*

The sensitivity derivative matrix S € R"v*"¢ of the model outputs to the
parameter vector is then defined as

_Ofg
S =00 ()
0fs, . Ok ofs
—[8—91 (1) G (w) oo 0 <u>]
~ |:§1 gg gne . (34)

Since the P2D model is nonlinear, the value of S; varies with 6*. Despite
this defect, this local sensitivity analysis method is useful as it has the advan-
tage of being simple and computationally light. A set of nominal parameter
values is chosen from experience, measurements and literature. Then a small
uncertainty g; is added to the i-th parameter, that is

0= [61702a"' 791(1+QZ)7 76719]7

followed by a new simulation run under the same conditions. In total, ng+1
simulations are needed for one input profile u. Here all the parameters have
a unified uncertainty, that is all the uncertainties ¢; have the same value.
With this premise, two cases are studied. One assumes the uncertainty to
be 0.5% while in the other case, it is assumed to be 2%. In other words,
the Ny simulations are repeated for ¢; = —0.5%, 0.5%, —2%, and 2%. By
analyzing the simulation results, the rank of the parameter sensitivities for
different outputs can be calculated.
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3.2 Lithium-Plating Safety Margin

Grouped SPM-Inversion-Based Output Tracking Control
Method

Charging the battery as quickly as possible, while not causing side reactions
that lead to battery ageing is one of the key battery problems of today. Some
widely used model-free charging methods, such as CV (Constant Voltage), CP
(Constant Power), CCCV (Constant Current Constant Voltage) can limit the
voltage, current, or power while charging, but the dynamics of the internal
conditions in the battery are ignored. Under these circumstances, increasing
the charging C-rate for faster charging without caring about the battery’s
inner states can cause severe degradation and even be dangerous. To realize
health-conscious fast charging, electrochemical model-based charging meth-
ods are introduced. Considering the complexity of the electrochemical model,
some feedback control methods like MPC or PID control where control param-
eters need to be tuned are hard to apply in practice. Also, the optimisation
strategies can be very time-consuming when searching for a globally optimised
solution. Inversion-based model output tracking control method has been in-
troduced to calculate the optimal solution at each time instant directly from
the tracking goals. One of the main disadvantages of this method is that
it requires a high model accuracy. However, as mentioned previously, it is
hard to get the exact values of many of the parameters in the lithium-ion
battery electrochemical model, especially when considering the degradation
of the batteries, since this continuously changes many of the parameters. As
a consequence, it is important to have a safety margin when operating the
inversion-based control, to avoid violating the constraints set up for the charg-
ing [15].

Here we will only focus on the constraint set to avoid lithium plating, i.e.

keeping the lithium plating overpotential positive during fast charging, which
can be expressed as

nuip = Un(éfzs) + "m = Tmin 2 07 (35)

where 7y, is introduced as a safety margin the controller aims to track.
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Combining (3.5) with (2.61), the control current can be calculated as

F JEl-)

1= sinh (i = U () 5 ) Y22,

n

(3.6)

which should give a Li-plating overpotential equal to nyin, in theory. In the
beginning of the charging the calculated current is too large for the hardware
to apply. Therefore, a limitation I, is set to restrict the applied current before
the model-inversion-based control is triggered. The calculated input current
in (3.6) will only be adopted when it is smaller than the limit /.. In other
words, the final applied input current is

Tapp = min(|1], | L), (3.7)

where [ is calculated from (3.6).

Constant Safety Margin

In the SPM-inversion-based output tracking control method, the accuracy of
the parameters plays an important role. The control current is calculated
based on the model parameters and the model states. With inaccurate pa-
rameters, the control current can lead to Li-plating being smaller than its
safety margin 7min. If Jmin is chosen to be inappropriately small, such that
the Li-plating overpotential actually goes below zero, Li-plating will happen
and potentially cause serious battery degradation. Simply choosing a large
safety margin to prevent the Li-plating from happening will extend the charg-
ing time a lot. In order to shorten the charging time as much as possible a
minimum safety margin should be applied.

Assume the model parameters are restricted within a range decided by g¢;,
ie.
O; = (1+q)b;, i=1,2,3,.. (3.8)

where 6; is the grouped plant parameters, 91 is the grouped model parameters
and ¢; is the normalised difference between the i-th plant parameter and the
corresponding model parameter.
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Denote

Applying a first-order Taylor expansion, we have

Fn(an) = Fn(gn) +Fr/z(én)(5n _én>7 (3'9)
and
U, =U, — F.(¢h)AC, = U, + Ap1, (3.10)
where
Ap1 = —F! (¢,)AC,. (3.11)

Similarly, denote
ﬁn - Yn(Ena 6713)

Nn = Yn(éru '9113)
A9n3 = énS - 9n3 = _Qn3én3-

Once more, using a first-order Taylor expansion,

Yn(Ena 0713) = Yn(éna én3) + Yé b (éna én3>(5n - én)
+Y 5 (s 0n3) Oz — On3) (3.12)
N = ﬁn - Yri en (éna én3)A5n - Yé 0 B(Ena énB)AenlS
= M+ Anpa, (313>
where
Anz ==Y . (Cns0n3)AG =Y 5 (e, 0n3) Abs. (3.14)

With A, and A1, the relationship between 7y ;p and 7,;p, can be expressed
as
nLip = Un + Mn

- (017, + Anl) + (ﬁn + AnZ) (315>
= fLip + Ap1 + Apa.
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3.2 Lithium-Plating Safety Margin

NOW; let ﬁLiP = ﬁmin and LiP = "Jmin, which giVGS
ﬁmin = Tlmin — Anl - AnQ- (316)

Equation (3.16) suggests that in order to achieve lithium-plating-free charg-
ing control, i.e., nmin = 0, the safety margin should be set to —(A,1 + Aj2).
Consequently, denote the safety margin as

Tlsafem = _Anl - An2- (317)

The range of the bias can be available in practice [14], [42]. In this case, the
minimum safety margin can be found so that no combination of parameter
biases can lead to lithium plating during the charging process.

Assuming —1 < qn; < 1, 1 = 1,2, 3, it can be derived that

0AC, I(t), =

= —20,10,2(1 4+ qy 0
D 5 Ul 2(1 4 gn2) <

_ t

OACn _ 3én2/ I(t)dt' + ﬂénlénz(l +gn1) <0
Oqn2 0 5
0A,1 dA,; 0Ac, , o OAEC,

= = =—F (ch)—,1 € {nl,n2
0qi dAc, 0g; (e) 9qi { } (3.18)
8An2 o 8AnQ 8A5n
dq;  OAG, Og;

A 0AC,

= =Y . (Gn,0n3)—=—,i € {nl,n2}

dq
8An2 3An2 8A9n3 , ~ R R
- =Y , ny Qn en .
Oqn3 0AB,3 0gn3 n,0p3 (C 3) 3

Combining the derivatives above with the knowledge of the range of the
grouped parameter biases it is possible to calculate the minimum constant
safety margin preventing Li-plating. The safety margin is then selected as
the largest value of the time series 7)safem. The whole process is described in
Algorithm 1.
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Algorithm 1 Find the safety margin with known parameter bias values

Input tol =1 x 1072, npin = 0, éi, di, and I
Output Mmin and Lupp

1: Initialize fmin = Nmin — 0.1;

2: for each iteration do

3: ﬁglﬁ = Thmin

4: for each time sample do

5: Qalculate model-inversion-based current

6: I= f(ﬁmin)’ R

v Lapp = max(| L], |1])

8: end for

9: Calculate time-dependent 7, (t) series by (3.11), (3.14), and (3.16);

10: Nmin = MaX (Mmin(tiny © tend)), Where ¢,y is the time when [ starts to
be effective;

11: if ||AP5 — fiminllco < tol then

12: break

13: end if

14: end for

Calculated the Dynamic Safety Margin

The constant safety margin is chosen from the maximum value in the safety
margin time series after the inversion-based control starts according to Algo-
rithm 1. However, the charging time can become very long when using the
constant safety margin, since most of the time the required safety margin is
smaller than the chosen value. To reduce the total charging time we therefore
allow the safety margin to vary in time, though still guaranteeing no lithium
plating as long as the parameters stay within the specified bounds.

According to the previous analysis in Chapter 3.2, we define the worst model
as the one with the parameter biases that lead to the maximum safety margin
Nsafem- Lhe relationship between the worst model and the original model
parameters is

‘gw,ik: - (1 + Qw,ik:)éikza 1€ {p7 n}7 k= 17 27 37 (319)

where g, ;1 is the bias between the worst model and the original model pa-
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3.2 Lithium-Plating Safety Margin

rameter.

It can be proven (see Paper C) that for a fixed ¢, the dynamic safety
margin is only SOC dependent and can be calculated. The optimal control
current can then be calculated from

F >¢ézs,n<t><1 — &5a(t)

fwt = sinh Awmin_Awn ’
(1) = S5t (i~ D) oo N

(3.20)

where 9y, min = 0, Uw,n and ésljn are the worst model states. With the above
analysis, an online Li-plating free fast charging process can be described as in
Fig. 3.1.

50C = f(I,) Worst Model

Figure 3.1: Online charging process with the worst-case model and dynamic safety
margin

In addition, the voltage difference between the model terminal voltage and

the plant terminal voltage can be approximated by a linear combination of
the biases ¢ between the model and the plant according to

AViat (t) = Viar(t) — Vear () ~ Ha, (3.21)
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where
H = [ le Hp2 Hp3 Hnl Hn2 Hn3 j| (322)

can be easily calculated at each time instant and

T
q= [ dp1 4p2 Gp3 4dn1 4dn2 ({n3 ] (323)

With this approximation, a recursive least square (RLS) parameter iden-
tification part can be applied to identify the vector ¢ and hence the plant
parameters. Using this identification, the bias ranges can be narrowed, and
a faster charging can thus be realized. The charging process with the RLS
parameter identification part is illustrated in Fig.3.2

500 = f(Lu) Worst Model [«
7
i, v
. . Foyes,(1-es,) Recursively update
I, = sinh ((0 — Uw’7l)m)é—m o
A
fw
. . y
Identification current
—> Plant
Lig
Vbat
v R
‘/bat
Model
y
AVbat ~ H q

Figure 3.2: Online charging process with the worst-case model, dynamic safety
margin and parameter identification
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CHAPTER 4

Summary of included papers

This chapter provides a summary of the included papers.

4.1 Paper A

Yao Cai, Changfu Zou, Yang Li, and Torsten Wik

Fast Charging Control of Lithium-Ion Batteries: Effects of Input, Model,
and Parameter Uncertainties

Published in 2022 European Control Conference (ECC),

pp. 1647-1653, July 2022.

©IEEE DOI: 10.23919/ECC55457.2022.9838024 .

This work aims to pinpoint the minimum model complexity for health-
conscious fast charging control of lithium-ion batteries in the presence of sensor
biases and parameter errors. Starting from a high-fidelity physics-based model
that describes both the normal intercalation reaction and the dominant side
reactions, Padé approximation and the finite volume method are employed
for model simplification, with the number of control volumes as a tuning
parameter. A P2D model is implemented and the errors of the selected outputs
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Chapter 4 Summary of included papers

with different orders of the model are investigated under the HPPC profile.
With this analysis, for given requirements on modelling accuracy, extensive
model-based simulations are conducted to find the simplest models, based on
which the effects of current sensor bias and parameter errors are systematically
studied. To do this, simulations are performed to find the absolute errors of
the lithium plating potential under different current biases. Two cases are
studied, one assumes the uncertainty to be 0.5% while the other one assumes
it to be 2%. A sensitivity analysis is done to study the effects of the parameter
errors, and the analysis is based on the P2D model and for various charging
profiles. A set of nominal parameters is selected from the P2D model and their
values are decided from experience and literature. Then a small uncertainty is
added to each parameter, one at a time. The results show that relatively low-
order models can be well-qualified for controlling voltage, state of charge, and
temperature. On the other hand, high-order models are necessary for health
management, particularly during fast charging, and the choice of the safety
margin should also consider the current sensor biases. Furthermore, increasing
the model order will not improve model accuracy unless the parameters are
sufficiently accurate.

4.2 Paper B

Yao Cai, Yang Li, Torsten Wik

Safety Margin for Li-Plating Free Fast-Charging of Li-Ion Batteries Con-
sidering Parameter Uncertainty

Accepted in 8th IEEE Conference on Control Technology and Applica-
tions (CCTA) Newcastle upon Tyne, , 2024-08-21 - 2024-08-23 .

In this work, an algorithm that realizes the Li-plating-free fast-charging
of Li-ion batteries considering the parameter uncertainties is proposed. Fast
charging of the lithium-ion battery is key to deal with range anxiety. However,
there is always a contradiction between a higher charging rate and a longer
battery life, since some side reactions can be caused by a too high charging
rate, such as Li-plating, SEI growth and particle cracking. How to charge as
fast as possible while not leading to excessive ageing has therefore become
an important research topic. This paper introduces a single particle model-
based inversion-based fast charging method with a calculated safety margin,
and a grouped SPM is used for analysis. One disadvantage of the inversion-
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4.8 Paper C

based fast-charging method is that it relies a lot on the accuracy of the model
parameters that cannot be identified precisely due to inevitable differences
between the model and the plant. To deal with this problem, the proposed
algorithm can calculate a theoretical Li-plating safety margin based on the
provided range of parameter uncertainties. The simulations and theoretical
analysis show that with this safety margin, lithium plating can be completely
avoided provided the battery can be accurately described by the model for
some parameter setting within the specified intervals.

4.3 Paper C

Yao Cai, Yang Li, Torsten Wik

Dynamic Safety Margin with Parameter Identification for Li-Plating-
Free Fast-Charging of Li-Ion Batteries

Manuscript for submission, July 2024 .

In this work, an analytical calculation of a minimum dynamic safety margin
for non-Li-plating fast charging from the ranges of parameter biases is pro-
vided. Also here the derivations are based on a grouped single particle model
(SPM) based inversion control method. It is shown that the optimal current as
well as the dynamic safety margin for the plating overpotential depends only
on the SOC and the specified parameter ranges. Instead of a constant safety
margin, from experience or from calculation, the dynamic safety margin intro-
duced here can accelerate the charging process significantly. Furthermore, it is
shown that at each time instant the difference between the measured voltage
and the modelled voltage can be approximated by a known linear combination
of the parameter biases. These can then be estimated using recursive least
squares, which reduces the ranges of the parameter biases and can thus reduce
the required charging time for Li-plating-free fast-charging even further.
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Conclusions and Future Work

Conclusions

The health-aware fast charging of lithium-ion batteries is an essential topic
for the development of electric vehicles. To address the goal of ultra-fast
charging, a well-identified battery model is needed. The identifiability of the
parameters can be assessed by a sensitivity analysis. In this thesis, a local
sensitivity analysis w.r.t. 23 parameters in a P2D model is introduced. In ad-
dition to parameter uncertainties, the current sensor bias and discretization
errors are also considered in the sensitivity analysis. In addition to the output
voltage, temperature, state of charge (SOC), and state of health (SOH), two
degradation-related states, the lithium-plating overpotential and the growth
of the SEI layer, are taken into consideration. The results indicate that the
higher the model order is, the more accurate the simulation results tend to
be. However, depending on the parameter uncertainties there is a quite low
limit for how high order of the discretized model that is meaningful.

To compensate for the effects of the parameter uncertainties when aim-
ing for Li-plating-free fast charging, a method for analytically calculating the
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Chapter 5 Conclusions and Future Work

required safety margin is introduced. Provided that the ranges of the param-
eter biases are known when performing SPM-inversion-based fast charging,
the derivatives of the safety margin with respect to the parameter biases can
be calculated. With this information, the bias combination that leads to the
maximum required safety margin series in the given parameter range can be
found. The maximum value in this series is thus the minimum constant safety
margin that can prevent any Li-plating from happening within the given pa-
rameter biases range.

However, this calculated constant safety margin is often unnecessarily large
for most parts of the charging process. Charging time can be reduced by
selecting a smaller safety margin when possible. Therefore, a dynamic safety
margin is introduced for ultra-fast charging. Still based on the SPM-inversion-
based fast charging, and using the information on safety margin derivatives
with respect to parameter biases, a unique safety margin can be determined
for each control time constant. This approach significantly reduces charging
time and enables the fastest Li-plating-free charging within the range of pa-
rameter uncertainties (biases). Furthermore, an approximate linear regression
with the biases as unknown parameters is derived. By applying recursive least
squares, the parameter biases can be identified, which reduces the ranges of
the parameter biases and further shortens the required charging time for Li-
plating-free fast charging.

Future Work

Since the P2D model offers superior performance in predicting ageing-related
states compared to the SPM, applying a similar method to calculate the ana-
lytical dynamic safety margin based on P2D model-inversion-based control is
a highly interesting topic for further research. The main obstacle is that the
P2D model has many more parameters than the grouped SPM investigated
in this thesis, which makes it more difficult to calculate the derivatives of the
safety margin with respect to the parameters’ biases, which is vital to the
analysis.

Moreover, the linear regression with the biases as unknown parameters
based on recursive least squares can be verified using the P2D model. The
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P2D model can then serve as a plant for parameter identification, allowing
the generation of data for fitting the parameters of the SPM. After this, the
Li-plating free SPM-inversion-based fast charging protocol can be designed
and then tested on a P2D model. Ultimately, of course, we need to test
the methods experimentally in the battery lab. Other methods than recur-
sive least squares as well as input design methods for identification can also be
interesting to apply to the linear regression for improved identification results.

45






References

1]

P. Plotz, J. Wachsmuth, T. Gnann, F. Neuner, D. Speth, and S. Link,
“Net-zero-carbon transport in europe until 2050—targets, technologies

and policies for a long-term EU strategy,” Karlsruhe: Fraunhofer Insti-
tute for Systems and Innovation Research ISI, 2021.

M. Wu and W. Chen, “Forecast of electric vehicle sales in the world and
china based on PCA-GRNN,” Sustainability, vol. 14, no. 4, 2022.

W. Li, D. Cao, D. Jost, et al., “Parameter sensitivity analysis of elec-
trochemical model-based battery management systems for lithium-ion
batteries,” Appl. Energy, vol. 269, p. 115104, 2020.

Y. Li, M. Vilathgamuwa, T. Farrell, S. S. Choi, N. T. Tran, and J.
Teague, “A physics-based distributed-parameter equivalent circuit model
for lithium-ion batteries,” Electrochim. Acta, vol. 299, pp. 451-469, 2019.

K. W. E. Cheng, B. P. Divakar, H. Wu, K. Ding, and H. F. Ho, “Battery-
management system (BMS) and SOC development for electrical vehi-
cles,” IEEFE Trans. Veh. Technol., vol. 60, no. 1, pp. 76—88, 2011.

M. Nizam, H. Maghfiroh, R. A. Rosadi, and K. D. Kusumaputri, “Bat-
tery management system design (BMS) for lithium ion batteries,” in
AIP Conf. Proc., AIP Publishing, vol. 2217, 2020.

M.-K. Tran, A. Mevawala, S. Panchal, K. Raahemifar, M. Fowler, and
R. Fraser, “Effect of integrating the hysteresis component to the equiv-
alent circuit model of lithium-ion battery for dynamic and non-dynamic
applications,” J. Energy Storage, vol. 32, p. 101 785, 2020.

47



References

8]

[10]

[11]

[12]

[13]

[14]

48

Y. Li, Z. Wei, B. Xiong, and D. M. Vilathgamuwa, “Adaptive ensemble-
based electrochemical-thermal degradation state estimation of lithium-
ion batteries,” IEEFE Trans. Ind. Electron., vol. 69, no. 7, pp. 6984-6996,
2022.

Y. Li, D. M. Vilathgamuwa, E. Wikner, et al., “Electrochemical model-
based fast charging: Physical constraint-triggered PI control,” IEEFE
Trans. Energy Convers., vol. 36, no. 4, pp. 3208-3220, 2021.

Z. Chu, X. Feng, L. Lu, J. Li, X. Han, and M. Ouyang, “Non-destructive
fast charging algorithm of lithium-ion batteries based on the control-
oriented electrochemical model,” Appl. Energy, vol. 204, pp. 1240-1250,
2017.

Y. Li, B. Xiong, D. M. Vilathgamuwa, Z. Wei, C. Xie, and C. Zou, “Con-
strained ensemble Kalman filter for distributed electrochemical state es-
timation of lithium-ion batteries,” IEEE Trans. Ind. Inform., vol. 17,
no. 1, pp. 240-250, 2021.

C. Li, N. Cui, C. Wang, and C. Zhang, “Reduced-order electrochemical
model for lithium-ion battery with domain decomposition and polyno-
mial approximation methods,” Energy, vol. 221, p. 119662, 2021.

Z. Deng, H. Deng, L. Yang, Y. Cai, and X. Zhao, “Implementation of
reduced-order physics-based model and multi-parameters identification
strategy for lithium-ion battery,” Energy, vol. 138, pp. 509-519, 2017.

A. M. Bizeray, J.-H. Kim, S. R. Duncan, and D. A. Howey, “Identifiabil-
ity and parameter estimation of the single particle lithium-ion battery
model,” IEEE Trans. Control Syst. Technol., vol. 27, no. 5, pp. 1862—
1877, 2019.

Y. Li, T. Wik, Y. Huang, and C. Zou, “Nonlinear model inversion-based
output tracking control for battery fast charging,” IEEE Trans. Control
Syst. Technol., vol. 32, no. 1, pp. 225-240, 2024.

N. Ghaeminezhad and M. Monfared, “Charging control strategies for
lithium-ion battery packs: Review and recent developments,” IET Power
Electron., vol. 15, no. 5, pp. 349-367, 2022.



References

[17]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

A. Pozzi, M. Torchio, R. D. Braatz, and D. M. Raimondo, “Optimal
charging of an electric vehicle battery pack: A real-time sensitivity-
based model predictive control approach,” J. Power Sources, vol. 461,
p- 228 133, 2020.

S. Kolluri, S. V. Aduru, M. Pathak, R. D. Braatz, and V. R. Subrama-
nian, “Real-time nonlinear model predictive control (NMPC) strategies
using physics-based models for advanced lithium-ion battery manage-
ment system (BMS),” J. FElectrochem. Soc., vol. 167, no. 6, p. 063 505,
2020.

M. Streb, M. Ohrelius, M. Klett, and G. Lindbergh, “Improving Li-ion
battery parameter estimation by global optimal experiment design,” J.
Energy Storage, vol. 56, p. 105948, 2022.

V. Laue, F. Roder, and U. Krewer, “Practical identifiability of electro-
chemical P2D models for lithium-ion batteries,” J. Appl. Electrochem.,
vol. 51, no. 9, pp. 1253—-1265, 2021.

M. Andersson, M. Streb, J. Y. Ko, et al., “Parametrization of physics-
based battery models from input—output data: A review of methodology
and current research,” J. Power Sources, vol. 521, p. 230859, 2022.

C. Edouard, M. Petit, C. Forgez, J. Bernard, and R. Revel, “Parameter
sensitivity analysis of a simplified electrochemical and thermal model for
Li-ion batteries aging,” J. Power Sources, vol. 325, pp. 482-494, 2016.

M. Streb, M. Andersson, V. Lofqvist Klass, M. Klett, M. Johansson,
and G. Lindbergh, “Investigating re-parametrization of electrochemi-
cal model-based battery management using real-world driving data,”
eTransport., vol. 16, p. 100231, 2023.

G. L. Plett, Battery Management Systems, Volume I: Battery Modeling.
Artech House, 2015.

A. Jokar, B. Rajabloo, M. Désilets, and M. Lacroix, “Review of simpli-
fied pseudo-two-dimensional models of lithium-ion batteries,” J. Power
Sources, vol. 327, pp. 44-55, 2016.

A. Tomaszewska, Z. Chu, X. Feng, et al., “Lithium-ion battery fast
charging: A review,” eTransport., vol. 1, p. 100011, 2019.

49



References

[27]

28]

[29]

[30]

[31]

32]

[35]

[36]

50

J. S. Edge, S. O’Kane, R. Prosser, et al., “Lithium ion battery degra-
dation: What you need to know,” Phys. Chem. Chem. Phys., vol. 23,
no. 14, pp. 8200-8221, 2021.

R. Nemes, S. Ciornei, M. Ruba, H. Hedesiu, and C. Martis, “Model-
ing and simulation of first-order Li-ion battery cell with experimental
validation,” in 2019 8th Int. Conf. Modern Power Syst. (MPS), 2019,

pp. 1-6.
M. Dubarry, N. Vuillaume, and B. Y. Liaw, “From single cell model to

battery pack simulation for Li-ion batteries,” J. Power Sources, vol. 186,
no. 2, pp. 500-507, 2009.

M. Doyle, T. F. Fuller, and J. Newman, “Modeling of galvanostatic
charge and discharge of the lithium/polymer/insertion cell,” J. Elec-
trochem. Soc., vol. 140, no. 6, p. 1526, Jun. 1993.

T. F. Fuller, M. Doyle, and J. Newman, “Simulation and optimization
of the dual lithium ion insertion cell,” J. Electrochem. Soc., vol. 141,
no. 1, p. 1, Jan. 1994.

M. Torchio, L. Magni, R. B. Gopaluni, R. D. Braatz, and D. M. Rai-
mondo, “LIONSIMBA: A Matlab framework based on a finite volume
model suitable for Li-ion battery design, simulation, and control,” J.
Electrochem. Soc., vol. 163, 2016.

X.-G. Yang, Y. Leng, G. Zhang, S. Ge, and C.-Y. Wang, “Modeling of
lithium plating induced aging of lithium-ion batteries: Transition from
linear to nonlinear aging,” J. Power Sources, vol. 360, pp. 28—40, 2017.

N. A. Chaturvedi, R. Klein, J. Christensen, J. Ahmed, and A. Kojic,
“Algorithms for advanced battery-management systems,” IEEE Control
Syst. Mayg., vol. 30, no. 3, pp. 49-68, 2010.

Y. Li, D. Karunathilake, D. M. Vilathgamuwa, et al., “Model order
reduction techniques for physics-based lithium-ion battery management:
A survey,” IEEE Ind. Electron. Mag., vol. 16, no. 3, pp. 36-51, 2022.

V. R. Subramanian, V. D. Diwakar, and D. Tapriyal, “Efficient macro-
micro scale coupled modeling of batteries,” J. Flectrochem. Soc., vol. 152,
no. 10, A2002, Aug. 2005.



References

[37]

[39]

[40]

[41]

[42]

J. H. Summerfield and C. N. Curtis, “Modeling the lithium ion/electrode
battery interface using fick’s second law of diffusion, the laplace trans-
form, charge transfer functions, and a [4, 4] padé approximant,” Inter-
national Journal of Electrochemistry, vol. 2015, no. 1, p. 496 905, 2015.

N. T. Tran, M. Vilathgamuwa, T. Farrell, S. S. Choi, Y. Li, and J.
Teague, “A Padé approximate model of lithium ion batteries,” J. Elec-
trochem. Soc., vol. 165, no. 7, A1409, May 2018.

J. Basdevant, “The Padé approximation and its physical applications,”
Fortschritte der Physik, vol. 20, no. 5, pp. 283-331, 1972.

J. Li, L. Zou, F. Tian, X. Dong, Z. Zou, and H. Yang, “Parameter iden-
tification of lithium-ion batteries model to predict discharge behaviors
using heuristic algorithm,” J. Electrochem. Soc., vol. 163, no. 8, A1646,
Jun. 2016.

M. Lagnoni, C. Nicolella, and A. Bertei, “Survey and sensitivity analy-
sis of critical parameters in lithium-ion battery thermo-electrochemical
modeling,” FElectrochim. Acta, vol. 394, p. 139098, 2021.

E. Namor, D. Torregrossa, R. Cherkaoui, and M. Paolone, “Parameter
identification of a lithium-ion cell single-particle model through non-
invasive testing,” J. Energy Storage, vol. 12, pp. 138-148, 2017.

o1






