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Data-Driven Models and Correla�on Strategies for Thermal Cracking of 

Polymeric Feedstocks in Dual Fluidized Beds 

RENESTEBAN FORERO FRANCO 
Division of Energy Technology 

Department of Space Earth and Environment 
Chalmers University of Technology 

Abstract 

The escala.ng global produc.on and consump.on of plas.cs pose a significant environmental threat, 

demanding innova.ve waste management solu.ons. Among the different kinds of recycling 

technologies, steam cracking is a promising alterna.ve to mechanical recycling that allows the 

processing of highly heterogeneous plas.c waste streams to recover the carbon into monomeric 

species that can be used to produce polymeric materials of virgin quality.  

The product species obtained from the steam cracking comprise different kinds of molecules which 

include syngas, alipha.cs, aroma.cs and soot. The distribu.on of species is intrinsically linked to both 

the reactor's opera.onal condi.ons and the chemical characteris.cs of the feedstock. From a data 

analysis perspec.ve, this distribu.on holds valuable informa.on that can be leveraged for instrument 

valida.on, predic.on of unmeasured species, and es.ma.on of relevant process variables. However, 

this aspect o6en receives insufficient a8en.on in the technology’s related studies. This thesis aims to 

contribute to the theore.cal and prac.cal understanding of steam pyrolysis, offering validated data-

driven models that can serve as tools for op.mizing pyrolysis processes and for gaining insights into 

the rela.onship between feedstock characteris.cs and pyrolysis outcomes. The research encompasses 

the development and valida.on of two data-driven models, aimed at enhancing data quality and 

improving the understanding of product species distribu.on from steam cracking processes. 

Experiments were performed with different types of plas.c feedstocks in a dual fluidized bed (DFB) 

plant with a semi-industrial scale bubbling fluidized bed cracking reactor that was coupled with a 

circula.ng fluidized bed combustor running on biomass. The analy.cal setup included a Solid Phase 

Adsorp.on (SPA) method for aroma.c frac.on collec.on and a High-Temperature Reactor (HTR) for 

complete reforming of the hydrocarbons to syngas, which allowed es.ma.on of the char yield. The 

characteriza.on of the produced chemical species was performed with gas chromatography using 

thermal conduc.vity (TCD), flame ioniza.on (FID) and vacuum ultraviolet (VUV).  

The first part of the work encompasses the introduc.on of a Parametric System Model (PSM), designed 

for data quality assessment. This model leverages the constraints imposed by the conserva.on laws 

and the chemical nature of steam pyrolysis to ensure physically and sta.s.cally meaningful results for 

the product species distribu.on obtained from the cracking process. Special focus is placed on the 

conceptualiza.on, mathema.cal founda.on, and experimental valida.on of the model. In the second 

part of the work, the influence of feedstock polymeric composi.on on the product distribu.on is 

examined through the species distribu.on data obtained from the cracking in the DFB system of 

heterogeneous mixtures that originated from the rejected materials of different industrial recycling 

processes. The study presents a novel carbon classifica.on framework that aids in iden.fying 

correla.ons between the feedstock chemical structures and the cracking products.  

This study encapsulates efforts towards crea.ng generalizable data analysis frameworks that can be 

used as tools for predic.ve analysis between the composi.on of polymeric mixture feedstocks and the 

resul.ng product species from steam cracking in dual fluidized beds. 

Keywords: Steam Cracking, Plas.c Waste Recycling, Fluidized Bed, Modelling, Numerical Es.ma.on.
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1. Introduc�on 

Plas.cs have undoubtedly revolu.onized modern living. Lightweight, versa.le, and rela.vely cheap, 

they have become an integral part of our daily lives. Nonetheless, the exponen.al growth in the 

produc.on and consump.on of plas.cs has led to a global crisis that threatens the environment, 

human health, and ecosystems. Plas.cs produc.on has skyrocketed over the past few decades. 

According to the Organiza.on for Economic Coopera.on and Development (OECD), global produc.on 

levels of plas.cs and fibers reached a staggering 460 million metric tons (Mt) in Year 2019, with this 

number projected to double by Year 2050 if the current trend con.nues [1]. However, the plas.cs 

economy is far from circular. Around 353 Mt of plas.c waste were produced worldwide in Year 2019, 

with 63% corresponding to short-lived products with a lifespan of less than 5 years, such as packaging 

(40%), consumer products (12%), and tex.les (11%) [1,2]. In terms of waste management, only 15% of 

the plas.c waste is collected for recycling, of which 40% is disposed as residue, thereby reducing the 

effec.ve recycling rate to 9%. Of the remaining 91% of plas.c waste, 50% is disposed of in sanitary 

landfills, 19% is incinerated, and a staggering 22% is mismanaged waste that is burned in open pits or 

thrown away in unregulated dumpsites or aqua.c ecosystems [3].   

Different plas.c recycling techniques have been developed over the past decades, with mechanical 

recycling being the most-common approach. This process involves the re-mel.ng and shaping of 

plas.cs for reuse. However, mechanical recycling is considered highly selec.ve due to the strict 

requirements a8ached to homogeneous and uncontaminated plas.c feedstocks. Thus, several sor.ng 

steps are usually needed when dealing with heterogeneous feedstocks, which reduce the energy 

efficiency of the overall recycling process. The effec.veness is also hindered by the progressive loss of 

material quality for each recycling process cycle. As a result, a large por.on of the collected plas.c 

waste may need to be recycled through a more-general recycling route, such as combus.on in 

combina.on with carbon capture and u.liza.on (CCU) technologies [4,5] for chemical synthesis, 

although this way comes with a significant energy cost. 

Alterna.vely, the chemical recycling approach to plas.c waste management offers the poten.al to 

convert a wide range of mixed waste materials into high-quality feedstocks for the chemical industry. 

Unlike mechanical recycling, which focuses on the physical proper.es of the plas.cs, chemical 

recycling deals with their chemical composi.ons. The primary goal of chemical recycling is the 

transforma.on of plas.cs back into their fundamental chemical building blocks —monomers. These 

monomers serve as the raw materials for the produc.on of virgin plas.cs and various other high-

quality chemical products. Solvolysis and pyrolysis are the two most-prominent methods for chemical 

recycling. Solvolysis involves the chemical degrada.on of polymers using solvents, while pyrolysis 

relies on the use of high temperatures in an oxygen-free environment to break down the polymer 

chains through free radical reac.ons. In the global context, chemical recycling can be seen as 

complementary to mechanical recycling, with the poten.al to process mixed or contaminated plas.cs 

at the industrial scale [6,7].  

Among the technologies that are based on pyrolysis, high-temperature steam pyrolysis is of special 

interest due to its ability to handle heterogeneous feedstocks while minimizing the thermodynamic 

penalty associated with the combus.on-based recycling route [6]. Falling within the general recycling 

category, this process, which is also known as steam cracking, involves subjec.ng carbon-based 

feedstocks to extreme temperatures, typically around 800°C, in the presence of steam, which acts as 

a quasi-inert dilu.on agent. The conversion process leads to the genera.on of a gas mixture, 

technically known as producer gas, which contains a variety of chemical species, including H2, CO, CO2, 

and various hydrocarbons in the forms of paraffins, olefins, and aroma.cs. In general, the species 
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distribu.on of the producer gas is in.mately linked to the cracking reactor condi.ons and the chemical 

characteris.cs of the feedstock. This process cons.tutes the core of the research presented in this 

thesis. 

The endothermic nature of pyrolysis reac.ons implies the addi.on of heat to the reac.on 

environment, and the product distribu.on benefits from a steep hea.ng gradient and controlled 

maximum temperature. Therefore, the choices related to reactor type and design play pivotal roles in 

polymer conversion and the distribu.on of product species. Dual Fluidized Beds (DFBs) fulfill the 

abovemen.oned requirements due to their allothermal heat supply, efficient heat transfer 

capabili.es, and mixing characteris.cs. The general versa.lity of DFBs in terms of feedstock size and 

state, ash content and temperature adaptability make them well-suited to enhancing the robustness 

of the recycling process for different feedstocks and is the technology used in this work. In a DFB, the 

reactor consists of a combustor and a pyrolysis unit, with a heated sand bed serving as a heat carrier 

between these two components and opera.ng in a circula.ng or bubbling fluidized regime. This 

configura.on offers flexibility in terms of fine-tuning the reac.on condi.ons towards the preferred 

product distribu.ons. The integra.on of such a system with a petrochemical facility has been explored 

with biomass on the combustor side, with goal of recycling 100% of the carbon present in the plas.c 

waste streams [6]. This system provides a promising alterna.ve to fossil-free produc.on of monomers 

for the chemical industry.  

To characterize the species obtained from the process, usually a sample from the producer gas is taken 

acquired through a series of setups and the chemical species contained therein are quan.fied. Due to 

the large variety of chemical species contained in the gas, gas chromatography (GC) is conven.onally 

used with different types of columns and detectors depending on the types of hydrocarbon molecules 

to be evaluated. The species concentra.ons are then reported in the literature in tables or presented 

in plain graphs of concentra.on vs. species, to indicate the respec.ve yields under the par.cular 

process condi.ons.  

While such presenta.on methods are straighVorward, they have limita.ons. First, the results are 

limited to the species detected with the available characteriza.on equipment setup. This may lead to 

an incomplete picture of the produced hydrocarbon groups, which is required for a comprehensive 

carbon balance. Second, the more condi.ons and feedstocks that are tested, the more challenging the 

data mining process becomes in order to understand the respec.ve product distribu.on varia.ons in 

cross-case studies. Third, the source of the variability is obscured, making it difficult to establish 

correla.ons between the graphed response and modified opera.onal variables or to iden.fy possible 

error sources in the dataset. Therefore, this thesis presents a model for data processing aiming to 

overcome these limita.ons. The model incorporates generic chemical characteris.cs and sta.s.cal 

considera.ons of the reac.on system within a framework enclosed by hard constraints, such as 

elemental balances, topology of func.ons, and convergence criteria. In the global view, the model’s 

construc.on enables the extrac.on of physically consistent informa.on from the results obtained from 

steam cracking processes, thereby enhancing the predic.ve capabili.es for non-measured carbon 

groups and improving the efficacy of data presenta.on for improved opera.onal space explora.ons 

and data quality assessments. 

In rela.on to the product distribu.on obtained from the steam cracking, the molecular composi.on 

of the feedstock plays a crucial role in determining the yields of specific species from the conversion 

process. The chemical conversion proceeds by primary free radical reac.ons that are ini.ated by the 

homoly.c cleavage of the bonds in the polymer chain. These reac.ons break down the polymer chain, 

leading to the release of shorter chain structures into the local reac.on environment. Subsequently, 
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secondary reac.ons take place, with these nascent vola.les in the local gas phase driving the 

forma.on of new chemical structures, such as aroma.c rings and soot.  

Overall, the temperature and the reac.on medium limit the extent of the primary and secondary 

reac.ons. Nonetheless, the nature of the chemical bonds determines the types of radicals that are 

generated during the breakdown; consequently, it has a direct impact on the species obtained from 

the conversion process.   

The likelihood that a free radical cleavage will occur is determined by the bond dissocia.on energy 

[8,9]. In general, primary reac.ons tend to break the chain at loca.ons with low bond dissocia.on 

energy caused by anomalies in the electron density. Thus, the more homogeneous the bond 

dissocia.on energy is along the chain, the more random is the occurrence of the cleavage process. 

However, the presence of func.onal groups, such as aroma.cs, unsaturated bonds or heteroatoms, 

distorts the electron density distribu.on along the chain, crea.ng sites that are suscep.ble to 

cleavage. Therefore, it is important to consider the feedstock’s chemical structure when evalua.ng a 

par.cular product species distribu.on.  

From a modeling perspec.ve, predic.ng the ways in which various radical reac.ons and species will 

interact due to the inevitable interplay of primary and secondary reac.ons in a mixture of plas.cs 

presents a major challenge. Addressing this issue requires a comprehensive understanding of how the 

incoming composi.on influences the product distribu.on. The challenge becomes even more complex 

when dealing with heterogeneous feedstocks, which closely resemble real plas.c waste streams. 

Using data analysis techniques with real data from the steam cracking of highly heterogeneous 

mixtures can provide valuable insights into addressing the challenge men.oned above. By examining 

the input polymer blend and the primary products generated under specific thermodynamic 

condi.ons, it is possible to establish correla.ons that shed light on how the different carbon bonds in 

the polymer blend undergo reac.ons and transforma.ons during the conversion process. This 

knowledge is essen.al for assessing the poten.als for monomer and chemical recovery from various 

plas.cs and mixtures. Moreover, it paves the way for the development of a predic.ve model for the 

conversion behaviors of heterogeneous carbon-based materials, thereby enabling the evalua.on of 

recycling routes and poten.al value chains. To illustrate this approach, this thesis summarizes the work 

performed with a pool of data from steam cracking experiments conducted on a semi-industrial scale 

2–4-MW cracker within a DFB plant using heterogeneous, polymer-rich waste mixtures. The objec.ve 

was to iden.fy qualita.ve correla.ons between the polymeric composi.on of the feedstock and the 

resul.ng product distribu.on a6er cracking. A novel approach based on a carbon-based molecular 

classifica.on of products and feedstock was introduced to create a generaliza.on framework for 

studying these correla.ons. 

In general, this thesis presents research endeavors that contribute to the development of 

mathema.cal tools aimed at enhancing the handling and analysis of the species distribu.on data 

obtained from the thermal cracking conversion of carbon-based feedstocks. By considering key 

chemical characteris.cs of the reac.on system, the tools provide means for data quality assessments 

and quick es.ma.on of valuable chemicals recovery poten.al from the steam cracking of plas.c 

mixtures. The research provides insights into the rela.onship between product distribu.on and 

feedstock from a data analysis perspec.ve, with the goal of crea.ng correla.on models that can be 

used in the opera.on and control of steam cracking DFB plants. 

 

 



4 
 

1.1. Aim and Scope 

The general aim of this work is to develop a validated data analysis model that allows to improve the 

knowledge on the outcomes of the steam pyrolysis process and set a framework of data generaliza.on 

that helps to unravel correla.ons between product species distribu.on and feedstock composi.on of 

polymeric mixtures. 

To achieve this overarching goal, two specific research ques.ons are addressed: 

I. How can the product species distribu.on and the chemical and mathema.cal constraints of a 

steam cracking system be linked together to improve the data quality and get physically and 

sta.s.cally meaningful observa.ons from the reac.on system with a model that can be 

experimentally validated?  

II. How to unravel correla.ons between the polymeric composi.on of a plas.c mixture feedstock 

and its product species distribu.on from a steam cracking process by the crea.on of a 

common data framework established upon a carbon bond-based classifica.on? 

1.2. Publica�on’s Contribu�on 

This thesis comprises the main developments and findings from a set of three scien.fic papers. The 

research explora.on has been conducted at both the theore.cal and experimental levels. This 

document presents the equa.ons and mathema.cal founda.ons of the developed models, as well as 

their valida.on using real industrial-scale data. In Paper I, the concept, mathema.cal background and 

experimental valida.on of a custom-made model, called the Parametric System Model (PSM), used for 

the data quality assessment is presented. Paper II focuses on understanding how the product 

distribu.on is influenced by the feedstock polymeric composi.on when cracking highly heterogeneous 

mixtures in a DFB. It presents a novel carbon classifica.on framework that was developed to explore 

correla.ons between the products and the feedstock chemical structures. Paper III showcases 

experimental methods and characteriza.on setups developed to get a quick and comprehensive 

carbon balance from the cracking gas product, with par.cular focus on GC with Vacuum Ultraviolet 

Spectroscopy (GC-VUV) as the characteriza.on method. 
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2. Parametric system model development for data quality analysis 

2.1. Model Formula�on and Descrip�on 

In any pyrolysis-based conversion process, the characteriza.on outcomes are subject to three main 

sources of varia.on: changes to the feedstock; altera.ons to the opera.onal thermodynamics; and 

measurement-related errors introduced by the experimental setup. Therefore, a model that is capable 

of correla.ng such sources with the acquired data must be inherently linked to the chemical nature of 

the process itself. 

In line with this premise, the approach involves the processing of data obtained from steam cracking 

conversion using a mathema.cal transforma.on referred to as the Parametric System Model (PSM). 

The defining characteris.c of this model is its integra.on within a framework governed by specific 

chemical and sta.s.cal characteris.cs of the chemical conversion process. The transforma.on 

encompasses a set of mathema.cal func.ons with dis.nc.ve topologies that introduce addi.onal 

constraints to the framework (see Figure 1). This results in the crea.on of a highly constrained 

mathema.cal system that is .ghtly fi8ed to the physical nature of the conversion process. In the global 

view, such a physics-informed characteris.c of the model provides physically consistent outcomes with 

several possibili.es, such as those for: iden.fying inconsistencies in the measured data; es.ma.ng 

unmeasured quan..es or species that may be inaccessible due to equipment limita.ons; and ranking 

certain measurements according to their relevance for the model’s transforma.on, so as to minimize 

the sampling characteriza.on effort.  

In Paper I, the focus is on the applica.on of the model for predic.on of unmeasured species and data 

quality assessment of the data coming from steam cracking of a polyolefinic feedstock (polyethylene). 

The concept of crea.ng a physics-informed framework that is based on mathema.cal func.ons 

constraining the data can also be applied to other types of feedstocks and mixtures. 

  
Figure 1. Conceptual schema for the "plain data" transformation into the proposed parametric model. 

In the model formula.on, the species contained in the product mixture are categorized into dis.nct 

groups: paraffins, olefins, aroma.cs, syngas and char, and treated as molecular systems. The model's 

core constraints are defined based on the system’s conserva.on laws. In Paper I, only mass 

conserva.on is taken into account, expressed in terms of elemental balances. For a feedstock that is 

composed of carbon (C), hydrogen (H), and oxygen (O), the balances are mathema.cally defined using 

molar frac.ons, as presented in Equa.ons (1)–(4). 
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Here, ��-  and 	�,
-  correspond, respec.vely, to the number of moles and the molar frac.on of the 

element . ∈ {1, 2, 3} and the system 5 ∈ {67, 87, .98:}, with 67, 87 and .98: indica.ng the 

paraffin, olefin and aroma.c groups, respec.vely. The subindex   represents the number of carbons 

in the paraffin or olefin chain, referred to here as the carbon group (shortened to: the  -group), and ;8; indicates the total amount. In Equa.on (2), �
��
 refers to the molar hydrogen to carbon (H/C) ra.o 

for the paraffin system as a func.on of k. In addi.on, �
,�����  corresponds to the molar H/C that is 

effec.ve for the olefins at a par.cular  , defined as the weighted molar frac.on sum of the H/C ra.os 

for all possible olefin species present in a par.cular  -group. The term & corresponds to the olefin 

species group, of a par.cular  , defined as having 2( − &) hydrogens. In other words, g indicates the 

number of hydrogen pairs that are missing from the mono-ene case (& = 0). In Equa.on (3), ����,���  

corresponds to the moles of oxygen in the produced hydrocarbon species that have oxygen atoms in 

their structures (for instance, some oxygenated aroma.c species). The term ������?@  accounts for 

external sources of char entering the system, for instance, char transported from the combustor side 

during the DFB cycle. 

As demonstrated in Equa.ons (1) and (2), paraffin and olefin species are classified according to their 

carbon groups. This classifica.on requires a carbon number distribu.on representa.on, which is 

commonly used in the petrochemical industry to compare yields of specific species sizes and to assess 

the quality of products to be used as liquid fuels [10,11]. In the specific context of the study, such 

representa.on allows the modeling of group yields as mathema.cal sequences, which can be summed 

across an infinite range of k-groups. As explained in Paper I, rela.ve to the hundreds of thousands of 

monomer units present in a real polymeric feedstock, limi.ng to the infinite in the series is essen.ally 

a mathema.cal formality to avoid restric.ons imposed on the lengths of the species that can be 

formed in the cracking process. However, these series must be convergent, which imposes 

mathema.cal constraints on the sequence behavior or the func.ons associated with them. 

Given the characteris.cs of the sequences, the molar frac.ons 	�,
A , as defined in Equa.ons (1) and 

(2), can be regarded as discrete probability func.ons for the evaluated molecular system, each of 

which is characterized by a finite set of parameters. This corresponds with the model’s key 

mathema.cal transforma.on. Consequently, the paraffin and olefin sequences can be mathema.cally 

expressed as: 

	�,
�� = 7�,
��BC�� , C'�� , … , C���E;   	�,
�� = 7�,
��BC�� , C'�� , … , C���E   (5) 

	�,
�� = 	�,
�� �
�� = �
��7�,
��BC�� , C'�� , … , C���E;    	�,
�� = 	�,
�� �
,����� = 7�,
��BF�� , F'�� , … , F���E   (6) 
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��,����� = ∑ ��,
��,�-HIJKL
�∑ 7�,
��HIJKL
�
;    ��,����� = ∑ ��,
��,�-HIJML
�'∑ 7�,
��HIJML
�'

   (7) 

Here, N�-��  and N�-��  correspond to the maximum measured  -group for the paraffin and olefin species, 

respec.vely. The term 7�,
A  is a discrete func.on with a semi-infinite support  ∈ {1,2,3 … }, which is 

defined with a finite set of shape parameters {C, … , C� }-  or {F, … , F�}; . ∈ {1, 2} and 5 ∈{67, 87}.  

The main advantage of this approach is that it provides a closed-form solu.on to the equa.on system 

formed by Equa.ons (1) and (2), while at the same .me it can deliver the necessary topology and 

convergence criteria needed to sa.sfy the model’s mathema.cal constraints. 

2.2. Model Implementa�on and Addi�onal Constraints 

Following the parametric transforma.on of the paraffin and olefin sequences, the objec.ve is to define 

a func.on 7
  that can fit to the measured data using the minimum number of shape parameters, while 

ac.ng as a solu.on to the system of equa.ons. In this way, any es.ma.ons given by the func.on’s 

mapping will comply with the mass conserva.on law.  

In general, the func.on’s formula.on must sa.sfy the following condi.ons: 1) it must exhibit a 

decaying behavior with the possibility to become a monomodal and posi.vely skewed func.on; 2) it 

must be sufficiently flexible to handle rela.vely large changes in species concentra.on, while 

remaining convergent and aligned with the measured data; 3) it needs to be defined with the fewest 

possible parameters; and 4) the func.on’s form and predicted area must adhere to the conserva.on 

laws.  

The first condi.on is based on the characteris.c decaying behavior arising from the bond cleavage 

suffered by the homogeneous polyolefin chains as soon as they enter the hot reactor medium. The 

pyroly.c reac.on progresses as the resul.ng molecules try to adopt more-stable structures and 

lengths. As a rule of thumb, the shorter the chain, the more stable it becomes. 

In principle, the ho8er the reac.on medium, the more random and thorough the breakdown process 

becomes, since more energy is available to produce the scissions. At this point, the decomposi.on 

process can be seen as a stochas.c system that is governed by events that can be described by a 

probability distribu.on func.on. 

In its simplest form, the set of events in the chemical system can then be conceptualized as a system 

that comprises two types of elements: broken and unbroken bonds. If Q, is the number of ini.al bonds, 

the probability R of finding a bond in the chemical system is defined by R = QS/Q,, with QS being the 

number of remaining bonds at .me ;. Then, the probability to find a broken bond is 6 = 1 − R (as this 

can also be taken as the probability of breaking a bond at .me ;, it is a parameter that is directly related 

to the temperature). The probability of finding � consecu.ve unbroken bonds in � number of blinded 

pickups in the system is defined by R�. A chain molecule of k carbons consists of a set of  − 1 

unbroken bonds and 2 broken bonds at its extremes. Therefore, the probability of finding such a set of 

elements in the system will be 6'R
+. From the carbon ś perspec.ve, the probability of finding a 

par.cular carbon in such a set will be T
 =  6'R
+ =  6'(1 − 6)
+. This is commonly known as 

the Flory-Schultz distribu.on; it describes the probability of obtaining a chain of length k a6er the 

occurrence of random and iden.cally independent scission events with probability p. It should be 

noted  that this is a special case of the Nega.ve Binomial Distribu.on for  − 1 successes and exactly 

2 failures (see Figure 2). 
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Figure 2. Flory-Schultz distribution. 

This simple conceptualiza.on illustrates the increasing abundance of shorter chains as the probability 

of a breaking event increases. Although the real-life case may be more complex, this simplified view 

offers a clear picture of the stochas.c process that leads to the results obtained. 

The second and third criteria aim for a robust model that is capable of fiZng diverse process condi.ons 

while compressing the data without overfiZng for an effec.ve representa.on. This facilitates 

correla.ve and predic.ve analyses. The fourth criterion incorporates the restric.on that the 

conserva.on laws impose on the conversion process (in the studied case, only mass conserva.on is 

considered).  

As an example of an applica.on, let’s consider a high-temperature decomposi.on scenario that follows 

a Flory-Schultz distribu.on with high probability, as depicted for p=0.7 in Figure 2. Furthermore, 

assume that the experimental setup provides informa.on only for the quan..es of the first three 

alipha.c carbon group species. In the absence of prior informa.on regarding the system's 

decomposi.on, the decreases in the quan..es of the measured species serve as the ini.al indicator 

of the system's behavior. 

Considering the mass conserva.on law, approximately 90% of the normalized mass in the distribu.on 

will be accounted for on the measured side. This significantly limits the range of possibili.es for the  U 4 es.ma.ons. Given the probabilis.c nature of the system for the domain of random breaking-

down events, the topology must align with the behavior of the measured data and the restric.ons 

imposed by the conserva.on laws, while ensuring convergence of the series in the limit to the infinity. 

At this point, the system becomes highly constrained. In that sense, the idea of assigning a solu.on 

func.on with an excessively large, insufficient, or non-convergent area to the unknown side should be 

discarded (see Figure 3). Alterna.vely, if the measured area is excessively long or short, thereby 

hindering the possibility for a convergent fit consistent with the observed trend, this suggests a need 

to review the outcomes of the experimental setup and check for poten.al data quality issues. 
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Figure 3. Examples of correct and incorrect cases of func-on fi4ng. 

The realm of discrete distribu.on func.ons can provide the candidates that best fulfill all of the 

aforemen.oned condi.ons. Well-known discrete func.ons (such as Nega.ve Binomial and Poisson) 

and discre.zed versions of con.nuous distribu.on func.ons were considered. Table 1 presents the 

various probability distribu.on func.ons evaluated in this study. It is noteworthy that given that the 

con.nuous func.ons family is larger than the discrete func.ons family, most of the bi-parametric 

func.ons u.lized in the research arose from discre.zing well-known con.nuous probability 

distribu.ons [12]. 

Table 1. List of mono-parametric and bi-parametric distribution functions used in Paper I. The asterisk-marked 

rows correspond to heavy-tailed distributions. (Weibull is heavy-tailed for 0≤b≤1). 

Distribution’s Name Mathematical Expression 

Geometric 7
(C) = C(1 − C)
+;    0 W C W 1 

Flory-Schultz 7
(C) = C' (1 − C)
+;    0 W C W 1 

Poisson  7
(C) = C
+X+Y ( − 1)!⁄ ;    C \ 0 

Negative Binomial 7
(C, F) = Γ( + F − 1)C�(1 − C)
+ BΓ( )Γ(F)E^ ;   F \ 0, C ∈ _0,1` 
Conway-Maxwell 7
(C, F) =  C(
+) Ba(C, F) ∗ (( − 1)!)cE^ ;    C, F \ 0     
Burr * 7
(C, F) =  (1 + ( − 1)Y)+c − (1 +  Y)+c;    C, F \ 0   
Fréchet * 7
(C, F) =  X+(
 Y⁄ )de − X+((
+) Y⁄ )de ;    C, F \ 0     
Dagum * 7
(C, F) =  (1 +  +Y)+c − (1 + ( − 1)+Y)+c;    C, F \ 0   
Gompertz 7
(C, F) =  X+YB�e(fdg)+E − X+YB�ef+E;    C, F \ 0     
Weibull * 7
(C, F) =  X+((
+) Y⁄ )e − X+(
 Y⁄ )e ;    C, F \ 0     
Gamma 7
(C, F) =  �(C, F( − 1)) Γ(C)⁄ − �(C, F ) Γ(C)⁄ ;    C, F \ 0     
Lomax * 7
(C, F) =  (1 + ( − 1) C⁄ )+c − (1 +  C⁄ )+c;    C, F \ 0   
Gamma Inverted * 7
(C, F) =  �(C, F/( − 1)) Γ(C)⁄ − �(C, F/ ) Γ(C)⁄ ;    C, F \ 0     

 

In general, the flexibility level of a func.on increases with the number of parameters that it 

incorporates. In par.cular, the family of bi-parametric func.ons has proven highly adaptable for 

describing diverse physical phenomena encountered across various fields. Among these func.ons, 
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heavy-tailed distribu.ons (indicated with asterisks in Table 1) exhibit remarkable robustness in terms 

of capturing significant varia.ons within a dataset, par.cularly when dealing with a substan.al number 

of outliers. This flexibility arises from their characteris.c tails, which decay at a slower rate than 

func.ons with exponen.al decay, and this makes them well-suited for modeling extreme events, such 

as the ones found in natural phenomena, e.g., survival .mes, river discharges, etc. [13].  

In essence, the fundamental approach involves u.lizing the measured data as reference points, the 

experimental uncertain.es as constraints, and Equa.ons (1) and (2) to obtain a new set of equa.ons 

with the aim of determining the specific shape parameters {C�} for a given func.on. If a finite and real 

set of parameters {.�} can be iden.fied, the corresponding func.on becomes a solu.on to the PSM’s 

equa.on system. For a certain number of parameters n and m, the minimum number of observables 

is n+1 and m+1, respec.vely. Thus, the experimental setup must adapt to such data requirements.  

The unique nature of most distribu.on func.ons requires the applica.on of non-linear solvers or 

Monte Carlo methods to find the parameter set that fulfills all the condi.ons imposed by the equa.on 

system. Once the shape parameters are determined, the func.on can be visualized by overlaying it 

onto a column bar graph represen.ng species in :8h/ &7 versus the respec.ve  -groups. 

For the hydrogen func.on case, an addi.onal constraint can be formulated which describes the 

behavior of the H/C ra.o of the olefins system, i.e., the term �
,�����  presented in Equa.on (4). For each  , this quan.ty varies between 2 and the lowest possible H/C ra.o determined by the chain length 

and carbon valency at & = 2⌊ 2⁄ ⌋ − 2. Therefore, the olefin ś hydrogen func.on is confined within a 

specific region. The upper limit is set by the mono-ene case func.on given by Equa.on (8), while the 

lower limit corresponds to the fully unsaturated scenario expressed in Equa.on (9), when every 

possible hydrogen has been extracted from the  -group chain. An intermediate case is defined as the 

fully conjugated state, defined by Equa.on (10), when the chain only contains intercalated double 

bonds. The olefin ś hydrogen func.on must fall within this defined range to fulfill the chemical 

characteris.cs of the molecular system. 

7���$� = 2��,
��
 (8) 

7���i = 1 ((2 + 2) − 4⌊ /2⌋)��,
��
 (9) 

7���j = 1 ((2 + 2) − 2⌊ /2⌋)��,
��    (10) 

2.3. Valida�on Method 

The oxygen balance was used as an addi.onal equa.on to calculate a relevant process quan.ty in a 

DFB system, known as the Bed's Oxygen Transport (BOT), and to feature the data quality assessment 

poten.al of the model to the experimental results. 

In DFB reactors, the BOT phenomenon occurs when the bed material contains oxygen-carrying species. 

The circula.ng bed serves as a carrier medium, transferring heat from the combustor to the cracker 

chamber and transpor.ng char and ac.ve species between the cracker and combustor. Even seemingly 

inert bed materials, such as silica sand, may contain traces of transi.on metal oxides, such as kX'3l, 

which act as oxygen donors. These elements influence the cracking process and can alter the gas 

product composi.on to some extent. Furthermore, ashes carried by the bed from the combustor side 

can serve as significant sources of oxygen. Elements such as calcium par.cipate in redox cycles [14] 
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form compounds such as CaSO4 under oxidizing condi.ons within the combustor and this is 

transformed into CaS in the reduc.ve environment of the cracker. 

The hydrogen and oxygen balances are essen.al to calculate the BOT based on product composi.on. 

By rearranging the oxygen balance in Equa.on (3) and applying the water H/O molar ra.o of 2, the 

BOT can be derived as in Equa.on (11): 

���� + ����� + ����,��� − m�����,�� − �����,���n = ������ + ����,�� − ���� ,���   

⇒ Δ���qrs = ���� ,�� − ����,��� = ���� + ����� + ����,��� − 12 Δ����� − ������ − �����
 (11) 

Now, from the hydrogen balance, the level of water conversion (Δ����� = �����,�� − �����,���
) can be 

es.mated as:  

Δ����� = t��,����� � 	�,
�� �
���

� + ��,����� � 	�,
�� �
,������


� + ��,��������� + ����,���u − B������ + ����,��E (12) 

The term Δ���qrs  in Equa.on (11) refers to the varia.on of oxygen entering or leaving the reac.on 

environment due to external sources other than the fuel or fluidiza.on steam. Posi.ve values indicate 

that the reac.on consumed external oxygen, while nega.ve values imply oxygen removal by an 

external agent. In the absence of a deliberate oxygen input flow, two external oxygen sources can be 

iden.fied: unintended air leakage into the cracker (�����
), and the circula.ng bed material. Typically, 
leakage is minimal thanks to periodic maintenance of the reactor. However, for non-nitrogenous fuels, 

air leakage can be quickly calculated through the nitrogen balance with the detected level of Q' and 

the air O/N ra.o. Then, Equa.on (11) defines the oxygen transported into the system by the bed, i.e., 

the BOT. 

Under typical DFB condi.ons, Equa.on (11) essen.ally links the oxygen transported by the bed during 

fuel conversion with the hydrogen balance. This means that the parametric func.ons for hydrogen 

assigned to the paraffin and olefin systems, as shown in Equa.on (6), contain key informa.on regarding 

the species distribu.on to be used in the es.ma.on of the BOT in the reac.on system. 

To validate the PSM es.ma.ons, an experimental approach u.lizing a High-Temperature Reactor (HTR) 

[15] in a parallel sampling stream was implemented (see Figure 8). In this method, gas products react 

further with steam at very high temperatures in the HTR (~1,700°C), genera.ng only syngas. The BOT 

can also be calculated using the outcomes of the HTR in Equa.on (11), albeit in a simplified form due 

to the complete reforming of the carbon species in the product gas to produce 2', as presented in 

Equa.on (13). 

⇒ Δ���qrs w�xy = ���� + ����� − 12 �����,��� − m������ + ����,��n! − ������ − �����
  (13) 

Since both calcula.ons stem from the same sampled gas batch, the result from Equa.on (13) should 

align with that calculated using Equa.on (11), serving as valida.on of the PSM es.ma.ons. 
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3. Unraveling Correla�ons between the Steam Pyrolysis Product Distribu�on 

and Polymer Composi�on  

The molecular composi.on of a polymeric feedstock plays a crucial role in the defini.on of the final 

cracking product distribu.on. As seen before, in thermal cracking, the primary objec.ve is to break 

macromolecules into smaller structures, while retaining key elements of their composi.on. This 

involves subjec.ng polymers to high hea.ng rates and temperatures, thereby promo.ng primary 

reac.ons that are characterized by bond breakage and free radical mechanisms. Subsequent 

secondary reac.ons occur in the emergent local gas phase, leading to the transforma.on of vola.les 

into intricate structures such as polyaroma.cs and, ul.mately, soot [16,17]. In par.cular, in a steam-

rich environment, these vola.le compounds are further transformed via reforming reac.ons into 

syngas (H2 + CO). Figure 4 shows a schema.c representa.on of this decomposi.on process. 

The specific structure of a polymer is central to determining its suscep.bility to free radical bond-

breaking reac.ons. The forma.on of radicals through homoly.c degrada.on in a high-temperature 

process is strictly linked with the bond dissocia.on energy, a scalar that is affected by the polymer 

chemical structure [16,18]. The presence of reac.ve sites, which increase the likelihood of radical 

cleavage, is o6en due to atomic charge heterogenei.es within the molecular chain structure [8,9]. 

Such heterogenei.es are typically induced by the presence of func.onal groups, such as alkyl, carbonyl 

and nitrile groups, as well as halogens and aroma.c rings. These groups can act as radical ini.ators or 

par.cipate in the secondary reac.ons that generate a diverse array of product species. Understanding 

these factors in the decomposi.on of polymer structures is pivotal to iden.fying correla.ons between 

the products and feedstock in the cracking process. 

 
Figure 4. Polymer chain decomposition through primary and secondary reactions during the cracking process. 

Polymer Categories 

The polymers found in plas.c waste can be categorized into three groups: alipha.c polymers, 

aroma.c-containing polymers, and heteroatom-containing polymers, with each group exhibi.ng 

dis.nct behaviors during pyrolysis. Alipha.c polymers, such as polyethylene (PE) and polypropylene 

(PP), undergo random scission at low temperatures (>400°C), producing diverse molecule lengths. At 
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higher temperatures (e.g., 700°–800°C), end-chain scission occurs, yielding shorter molecules such as 

methane, as well as aroma.cs and polyaroma.cs due to the secondary reac.ons [19,20]. In the 

category of aroma.c-containing polymers, compounds such as polystyrene (PS) and polyethylene 

terephthalate (PET) yield aroma.c rings directly from their exis.ng structures. For instance, PS can 

recover up to 75% of its styrene at a rela.vely low temperature (450°C) and can a8ain 78.7% recovery 

at 600°C [21]. 

Heteroatom-containing polymers, including oxygen, chlorine, fluorine, and nitrogen, exhibit diverse 

thermal decomposi.on paths that lead to recombina.on reac.ons or the forma.on of stable 

molecules such as CO/CO2, HCl, and NH3. Nitrogen-containing polymers such as PU and PA undergo 

rearrangements at temperatures in the range of 250°–450°C, producing linear fragments with 

func.onal groups such as -amino (-CH2-NH2) and -nitrile (-CN) groups, concomitant with the 

elimina.on of CO2 and H2O [22,23]. Chloride-containing polymers such as PVC undergo significant 

aroma.za.on post-dehydrochlorina.on due to the weakening of the bond energy by the chlorine's 

electronega.vity. This forms reac.ve sites that can react with other radicals or create double bonds 

that lead to the forma.on of aroma.c or polyaroma.c structures [24–26]. 

In waste streams, the most-common polymers, e.g., polyolefins, decompose almost fully into gas at 

temperatures in the range of 500°–600°C [20]. Temperatures outside this range cause further 

degrada.on of the gas phase, breaking long chains into simpler monomeric structures [C2–C4 and 

benzene, toluene, xylene, and styrene (BTXS)], which are valuable for chemical recycling. Polyolefins 

experience this phenomenon at temperatures in the range of 600°–900°C, although higher 

temperatures risk reducing the monomer yield, and may cause unwanted secondary cycliza.on 

reac.ons that result in polyaroma.c structures [20,27,28]. The study described in Paper II was 

conducted at 800°C to balance monomer recovery with the control of harmful emissions related to 

heteroatoms (in the form of dioxins) [29,30]. The focus of the study was on the hydrocarbon frac.on 

and carbon conversion slate of the cracking products. 

3.1. Polymeric composi�on es�ma�on method for unknown plas�c mixtures 

In typical plas.c waste streams, the polymeric composi.on is o6en unknown. These streams contain 

a diverse  mix of plas.cs, including polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), and 

polyethylene terephthalate (PET), among others. Manual sor.ng can give es.ma.ons of the polymeric 

slate, albeit with an unavoidably large uncertainty and substan.al effort, making it imprac.cal for 

con.nuous waste streams flows. These materials, even when sorted, remain heterogeneous due to 

func.onaliza.on, dyeing, and other modifica.ons that are tailored for specific func.ons. Metals and 

inorganic compounds are also present in waste streams due to the preceding sor.ng and handling 

processes.  

Strategies for online es.ma.on of the polymeric composi.on include direct characteriza.on methods, 

including x-ray diffrac.on and spectroscopic analyses with NIR or FT-IR [31,32]. Yet, these methods 

may prove inadequate for highly heterogeneous mixtures and bulk streams, due to the presence of 

composites, fillers, different colored materials, and high ash contents. Preprocessing is o6en necessary, 

making the en.re characteriza.on procedure both .me-consuming and resource-intensive. To 

overcome these limita.ons, numerical models emerge as valuable tools. These methods leverage 

mathema.cal algorithms and computa.onal models to es.mate the composi.ons of complex 

mixtures based on mass and energy conserva.on laws. The models offer a quicker and more-cost-

effec.ve way to obtain physically congruent approxima.ons of the polymer composi.on, without 

requiring specialized and expensive equipment.  



15 
 

In Paper II, a numerical model was implemented building up a system of equa.ons based on the 

elemental balances obtained from the ul.mate analysis of the feedstock. Mass and energy 

conserva.on, in the form of the Low Hea.ng Value (LHV), was also added to the system to increase 

the physical congruence of the model to the polymeric composi.on. In general, from the conserva.on 

laws, for a par.cular feedstock blend 7, the total mass and LHV will be the sum of the contribu.ons of 

all the polymeric compounds z present in the blend. Equa.ons (14)–(16) condense this principle for 

expression in the Einstein nota.on form (E.N): 

� {|�.|��| = .��   ⇒  .|�,�{|,� = .�,�   (}. Q) (14) 

�|{|,� = :����   (}. Q) (15) 

�2�|{|,� = �2��   (}. Q) (16) 

where .|� is the mass frac.on matrix (� × z) of the element � ∈ {1, 2, 3, Q, 1h, … } in polymer z ∈{T}, TT, T�1, … } (units:  &� / &|), {|  is the mass frac.on vector (z × 1) of polymer z within the 

feedstock blend (units:  &|/ &�), and .�,� is the mass frac.on vector (� × 1) of element � in the 

feedstock ( &�/ &�). The term �| represents a (1 × z) covariant vector of ones, and :����  is the sum 

of the mass frac.ons of the element set evaluated. All quan..es are evaluated for a par.cular 

feedstock 7.  

The final system of equa.ons corresponds to a typical linear system of the form �{ = �, as expressed 

in Equa.on (17). In the real system, the target output vector � will have an associated experimental 

uncertainty �� derived from the ul.mate analysis of the feedstock. Then, the equa.ons are 

transformed into inequali.es that span over that uncertainty, crea.ng a constrained frame for the 

solu.on space. Equa.ons (18) and (19) show the addi.onal constraints imposed on the system. 

�|�  {| = ��;     � = � .|��2�|��|
� , � = � .�,��2��:���� � (17) 

0 ≤ {| ≤ 1, ∀z (18) |�{ − �| ≤ Δ� (19) 

The system of Equa.on (17) is not always consistent (number of independent columns of A is equal to 

the set z size) or precisely determined (5��X{z} ≠ 5��X{�} where {�} is the eq. set). For example, 

similar chemical formulas or more polymers in the blend than detected elements in the ul.mate 

analysis can lead to problems for the matrix system to find a unique solu.on. To address this issue, 

mathema.cal op.miza.on of a defined loss func.on cons.tutes a robust method to find the best 

es.mates for solving the equa.on system. 

In Paper II, convex op.miza.on methods are explored. These methods aim to find op.mal solu.ons 

to matrix problems when the loss func.on and the constraints are defined by convex func.ons, as is 

the case with the problem at hand. Typically, the loss func.on is defined in its general form as Equa.on 

(20). For the case in study, two different loss func.ons were tested and derived from the general form, 

and they are defined as the sum squared error (sme) and the frac.onal error (fe) of the matrix system. 

These are presented in Equa.ons (21) and (22), and the constraints are those defined in Equa.ons (14) 

and (15). 
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 �(�) = �x T� + �x � + � (20) 

sme: � = �{ − �;   T = �, � = �, � = 0  ⇒ �({) = (�{ − �)�(�{ − �)� = ‖�{ − �‖' 
(21) 

fe: � = |�{ − �|;   T = �, �� = 1��  ∀� , � = ����   ⇒ �({) = �x|�{ − �| = w���|�{| − �w (22) 

where ‖ . ‖' is the Euclidean norm for a vector (or L2-norm). 

Among the set of algorithms used to implement the convex op.miza.on, first-order solvers, known as 

the SpliZng Conic Solver (SCS) and Operator SpliZng Quadra.c Program (OSQP), were used due to 

their robustness and poten.al scalability to solve large systems [33,34]. These solvers were tested and 

implemented as a Python library under the Apache License using a domain-specific language (DSL) 

called CVXPY [35]. 

To avoid pre-defined or biased results, op.miza.on over the equa.on system’s hyperparameter set is 

needed. In this case, the set is comprised of the different polymer compounds, the chemical elements 

considered in the balance, the loss func.ons, and the solvers used. A grid searching method over all 

possible combina.ons of the hyperparameters (see Table 2) was implemented to iden.fy the best-

approximated set, using the total sum of the residuals of the elemental balances and the LHV as the 

op.miza.on metric.   

Table 2. Hyperparameter set used to perform the tuning process. 

Condi�on Possible Values 

Polymers 
PE, PP, PVC, Cell, PS, PAN, PET, PA, PU, ABS, 
Nrubber, TRubber, PMMA, PC 

Elements C, H, Cl, O, N, S 

Loss Func.ons Sum_Squares, Frac.onal_Err 

Solvers SCS, OSQP 

The analyzed plas.c blends in Paper II were assumed to be free of organic or inorganic addi.ves, and 

any impuri.es were treated as inert ash. Only the pure polymer compounds most-commonly found in 

waste mixtures were considered for the calcula.on. The relevant chemical parameters for the 

polymers are presented in Figure 5. 
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Figure 5. Polymers commonly found in waste streams. MF, molecular formula; MW, molecular weight; LHV, low-

heating value. 

Natural rubber (NRubber in Table 2) was considered as pure polyisoprene, and .re rubber (TRubber), 

was taken as 71% natural rubber and 29% carbon black as filler [36,37]. Polymethyl methacrylate 

(PMMA, C5H8O2; MW, 100.1 g/mol; LHV, 24 MJ/kg) and wool, with parameters based on typical wool 

fiber [38], were also included in the analysis. 

3.2. Carbon bond-based classifica�on system model 

As the diversity of polymers in a heterogeneous mixture converge into the cracker, the structural 

characteris.cs of each polymer type will come forth, shaping the resultant product distribu.on 

obtained from the cracking process. In order to explore the rela.onship between the polymer 

composi.on of the feedstock and the cracking product distribu.on at the data analysis level, a 

systema.c classifica.on framework for carbon molecules was developed. Cracking products were 

sorted into three fundamental categories: Cox species, alipha.cs, and aroma.cs. Similarly, the 

polymers contained in the waste material were categorized based on a three-group system that 

reflected their carbon structures: 1) carbons in C-X bonds, where X represents heteroatoms such as O, 

Cl, N, etc.; 2) carbons in alipha.c bonds (C-AL), encompassing paraffinic and olefinic structures; and 3) 

carbons in aroma.c bonds (C-AR), accoun.ng specifically for aroma.c rings. This classifica.on strategy 

enables comparisons and cross-correla.on analysis at the bond group level between the products and 

the feedstock. Based on this classifica.on, the elemental mass frac.ons of the list of polymers 

presented in Figure 5, as well as the carbon molar frac.ons for each of the defined groups, are 

presented in Figure 6. 
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Figure 6. Chemical characteristics of the polymers commonly found in plastic waste streams. Panel a, Elemental 

compositions and H/C ratios. Panel b, Carbon mole fractions of the polymers according to the three defined bond 

groups (X refers to a heteroatom of O, N and Cl). AL, aliphatic; AR, aromatic. 

The data depicted in Figure 6 highlight the chemical diversity of the evaluated polymers. Within a 

typical waste stream, a diverse arrangement of chemical structures appears, dis.nguished by different 

H/C ra.os and different shares of the carbon-bond groups. Alipha.c polymers, such as PE and PP, 

exhibit higher H/C ra.os, while PS and PET display low H/C ra.os, characteris.c of ring-based 

structures. In contrast, cellulose (cell) and PVC stand out due to their high heteroatom mass contents.  

In a global perspec.ve, The work performed in Paper II demonstrates the u.lity of the developed 

structure-informed framework as a common data analysis basis for elucida.ng qualita.ve 

rela.onships between heterogeneous feedstock composi.ons and their associated product 

distribu.ons. Furthermore, the idea of evalua.ng the polymeric conversion through the 

transforma.on of representa.ve carbon-bond groups can be expanded into a more-complex set, 

Which can increase the analysis resolu.on for cases in which the elemental and structural composi.on 

are similar. For instance, the addi.on of a methyl-bond group can allow to decoupling of certain 

polymers, such as PE and PP which share the same elemental composi.on.       

Beyond the scope of Paper II, the results obtained from applying the framework to find correla.ons 

cons.tute a proof of concept that paves the way for quan.ta.ve analysis of the linkages between 

polymeric feedstocks and cracking products. This possibility may lead to the implementa.on of an 

addi.onal constraint layer onto the system of equa.ons presented in Equa.on (17). Similar to the 

possibility of obtaining an elemental analysis of C, H, O, N, S, Cl from the product gas using a combustor 

and a high-temperature reactor (see [15,39]), this constraint can also be derived from the process 

outputs. This feature makes it suitable for a con.nuous online es.ma.on system. Details of the 

mathema.cal formula.on of such a constraint can be found in Sec.on 6, along with the bridge that 

can be established between the approaches presented in Papers I and II for the online es.ma.on of 

polymeric composi.ons in heterogeneous mixtures.  
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4. Experimental Setup  

All of the experiments were conducted at the Chalmers Power Central facility, where a DFB 

Gasifier/Cracker is coupled with a Circula.ng Fluidized Bed combustor that runs with biomass wood 

chips. Silica sand was used as the bed material and the reactor was fluidized with steam. The feedstock 

flows for the cracker processes are in the range of 40–160 kg/h of plas.c materials, while the CFB is 

operated with flows in the range of 1,500–3,000kg/h of wood chips.  A small flow of high-purity helium 

(35 Ln/min) is added along with the steam (~150 kg/h), to serve as a tracer gas for the species 

quan.fica.on. The DFB configura.on allows the con.nuous removal of the produced char, along with 

the bed material, transpor.ng it back to the combustor side. Following conversion of the feedstock, a 

sample stream is con.nuously extracted at the reactor’s exit  (~10 Ln/min) and the remaining product 

gas (~3,500 Ln/min) is conducted back to the combustor (see Figure 7). 

  
Figure 7. Schematic of the Chalmers power plant and gasifier (modified from [40]). 

The sampled stream passes through a high-temperature (~350°C) par.cle filter and then splits into 

two parallel streams (see Figure 8). The first stream passes through an isopropanol quenching loop, to 

remove condensable species such as water, long hydrocarbon chains, and aroma.cs. Further cooling 

is performed in a chiller, to ensure that no species condense downstream. A6er condi.oning, the gases 

are pumped into a Micro-Gas Chromatograph Varian CP4900 (GC1) equipped with a Thermal 

Conduc.vity Detector (TCD). The micro-GC has two channels and uses Molsieve 5Å (MS5Å) and 

PoraPLOT Q columns with argon and helium as carrier gases, respec.vely. Permanent gases and C1–

C3 hydrocarbon species can be characterized online by sampling from the con.nuous gas stream at 3-

minute intervals. A weekly calibra.on of the chromatograph is performed using five different 

concentra.ons of the expected species in the dried gas (H2, He, N2, O2, CO, CO2, CH4, C2H2, C2H4, C2H6, 

C3H6 and C3H8). 
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Figure 8. Sampling setup to characterize the permanent gases, hydrocarbons (aliphatics and aromatics) and total 

carbon in the reactor gas flow. 

For Papers I and III, an addi.onal sampling setup was used to characterize the C4+ species in a GC-

VUV. From a septum port located before the isopropanol loop, a gas sample is drawn through a 

saturated amine that acts as a filter for water and is collected into a gas bag at room temperature for 

characteriza.on in the GC-VUV. For Paper I, the chromatograph is equipped with an Rxi-1-HT column 

(Fused silica: length, 60 m; ID, 0.250 mm; film thickness, 0.25 µm). To improve the characteriza.on 

.me and the resolu.on of peaks, in Paper III, the column used was the J&W CP-Sil 5 CB, CP7670 (Fused 

silica: length, 25 m; ID, 0.250 mm; film thickness, 1.2 µm). The carrier gas was hydrogen, and nitrogen 

was used in the detector to make the gas cell inert.  

Regarding this last setup, the study presented in Paper III focuses on establishing a formal 

methodology for sampling and characteriza.on based on GC-VUV. This methodology provides a 

comprehensive carbon balance for the cracking products slate within a reasonable .meframe, with 

the goal of future implementa.on for online characteriza.on. The work showcases different 

methodologies, comparing the proposed sampling method with more-tradi.onal methods in terms of 

analy.c .meframe and level of species resolu.on. The evaluated methodology based on GC-VUV 

achieved op.mal quan.fica.on for C4–C18 species in considerably less .me than the more-

conven.onal techniques, such as those based on solid phase adsorp.on described later.  

From the same sampling port, a Solid Phase Adsorp.on (SPA) method is applied to obtain the aroma.c 

frac.on. In this method, the gas is subjected to suc.on with a 100 ml syringe at a constant rate, forcing 

it to pass through an adsorbent column (Supelclean ENVI-Carb/NH2 SPE columns), which consists of 

an amine adsorbent layer (500 mg) followed by an ac.vated carbon layer (500 mg). The adsorbed 

aroma.cs in the SPA column are subsequently eluted into a vial that contains a mixture of 

dichloromethane, isopropanol, and acetonitrile (8:1:1) using hexylbenzene and 4-ethoxyphenol as 

internal standards at concentra.ons suitable for the species quan.fica.on (~12,000 mg/L and ~250 

mg/L, respec.vely). The vial is analyzed in a Bruker GC430 GC coupled with a Flame Ioniza.on Detector 

(FID) and equipped with a mid-polar BR-17 MS (BR85877) column using H2 as the carrier gas. Twenty-

eight different aroma.c species are quan.fied with boiling points ranging from monoaroma.cs, such 
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as BTXS, to polyaroma.cs, such as naphthalene, anthracene, and triphenylene. More details regarding 

this method and the measured species can be found elsewhere [41].  

The second hot stream flows through a HTR that is electrically heated to ~1,700°C for the complete 

reforming of all hydrocarbon species by the steam contained in the raw gas. A6er leaving the reactor, 

the gases are filtered to remove soot and cooled down to remove excess water before being pumped 

into another micro-GC Varian CP4900 (GC2). The gases are expected to be almost 100% pure syngas 

(2'  , CO and 13') containing the corresponding amount of helium, which allows one to es.mate the 

total carbon in the producer gas and to derive an indirect es.ma.on of the char yield. The efficacy of 

the reforming process is determined according to the amount of methane detected (close to zero). 

The HTR operates con.nuously and in parallel with the remainder of the described sampling process. 

A6er comple.ng the measurement set, the HTR reactor is flushed with air to burn out any par.cles of 

soot that may have formed during the reforming process, and the corresponding carbon amount is 

measured in terms of the 13' produced. 

4.1. Materials and Process Condi�ons 

Pure PE (C: 85%; H: 15%) in the form of pellets was used as the feedstock for the studies conducted in 

Paper I and Paper III. For the case of Paper II, four representa.ve material blends were used as 

feedstocks for the cracking process: Reject from Cardboard Recycling (CRB); Cable Plas.cs (CP); Tex.les 

(TXT); and Automo.ve Shredder Residue (ASR). PE was also tested in Paper II, albeit as a reference 

material for comparison purposes. All four heterogeneous materials have in common that they are 

residues from post-consumer recycled products. The expected composi.ons of the materials and their 

ul.mate analyses are shown in Table 3 and Table 4, respec.vely. For ASR, two different batches with 

different elemental composi.ons, resul.ng from different rejec.on processes, were analyzed. The 

“Polymer Types” column in Table 3 represents the different plas.cs that are expected to be present in 

the material given the source of the rejected stream, although their shares are unknown. The polymers 

classified as “Others” are taken as op.onal in the numerical es.ma.on.    

Table 3. Heterogeneous materials used in Paper II with their respective polymer compositions and general 

characteristics. 

Material Polymer Types Chemical Characteris�cs Descrip�on 

Cardboard 

Recycling 

(CBR) 

PE/PP, PET, Cellulose, PVC (Others: PU, PA, 

PS) 

 - High alipha.c carbon content 

 - High oxygen content 

 - Medium ash content 

Post-consumer shredded stream of 

mul.layer cardboard/plas.c for food 

packaging a6er certain frac.on of the 

paper-based layer has been removed. 

Form: Pellets. 

Cable 

Plas.cs 

(CP) 

PE, PP, PVC. (Others: PET, Natural Rubber) 

 - High alipha.c carbon content 

 - High chlorine content 

 - Rich in ash 

Non-separated waste from cable 

stripping. Only metals were sorted out 

previously. Form: Chopped pieces. 

Tex.les 

(TXT) 

PET, PA, Polyacrylonitrile, Cellulose (Others: 

Wool, PVC, PU) 

 - Complex polymer blends 

 - Low alipha.c carbon content 

 - High heteroatom content 

Tex.le waste a6er sor.ng the useful 

pieces of cloth. Form: Pellets. 

Automo.ve 

Shredder 

Residue 

(ASR) 

PP, PS, PU, Cellulose, PVC (Others: Tire 

Rubber, Acrylonitrile butadiene styrene 

(ABS), PC, PE, PAN, PMMA) 

 - Low polyolefin content 

 - High aroma.cs content 

 - Rich in heteroatoms 

 - Rich in ash 

Shredder Residue (SR) from the 

automo.ve and electrical waste (WEEE) 

sor.ng process. Form: Pellets. 

PA, polyamide; PAN, polyacrylonitrile; PC, polycarbonate; PE, polyethylene; PP, polypropylene; PS, polystyrene; 

PU, polyurethane; PVC, polyvinyl chloride; PET, polyethylene terephthalate. 
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Table 4. Elemental compositions ( %�j��) and respective percent errors (%Err) for the materials used.  

 CRB CP TXT ASR 1 ASR 2 

Element %wdry %Err %wdry %Err %wdry %Err %wdry %Err %wdry %Err 

C 60.60 5.0 57.00 2.0 60.53 5.0 33.00 5.0 47.00 5.0 

H 9.00 13.0 8.50 6.0 5.17 5.0 4.20 13.0 5.40 13.0 

O* 21.00 15.5 0.66 12.5 29.97 5.0 13.66 10.7 13.17 10.7 

N 0.35 29.0 0.02 6.0 2.90 6.0 1.30 29.0 1.60 29.0 

S 0.07 10.0 0.02 6.0 0.09 9.1 0.33 10.0 0.19 10.0 

Cl 0.20 25.0 5.80 6.0 0.12 7.6 0.51 25.0 0.64 25.0 

Ash 8.75 11.0 28.00 3.0 1.22 15.9 47.00 11.0 32.00 11.0 

LHV (MJ/kg) 30.14 5.0 27.20 7.2 28.13 7.4 13.90 15.0 20.10 15.0 

*Calculated by difference-; LHV, low-heating value.  

The main opera.onal condi.ons used for Papers I, II and III in the DFB cracking reactor are indicated 

in Table 4. The rate of bed material circula.on was approximately 15 tonnes/h. The cracker was 

fluidized with steam in a bubbling regime, the fuel residence .me was es.mated to be around 4–5 

min, and the gas residence .me was 5–10 s. The column .tled “Feeding posi.on” refers to Figure 7, 

whereby the cracker can be fed through two different ports. Posi.on 6 is situated at the top of loop 

seal 1, which consists of an extruder in which the feedstock, in pellet or granulate form, is compressed 

and heated to obtain a molten flow that pours down onto the cracker bed. In posi.on 8, the feedstock, 

also in pellet or granulate form, falls by gravity into the bed via a set of rotary valves working in an 

airlock system [42]. 

Table 5. Operational conditions used in the BFB cracking reactor for Papers I, II and III. 

 

Fuel 
Temperature in 

Cracker (°C) 

Bed 

material 

Steam 

Flow 

(kg/h) 

Material 

Flow 

(kgdaf/h) 

Feeding 

Mode 

Feeding 

Position 

Steam/Fuel 

ratio 

Paper I PE 
781; 787; 788; 

793; 843 
Silica Sand 120 90 

Molten 
flow via 

extrusion 
6 1.3 

Paper II 

PE 800 Silica Sand 120 90 
Molten 
flow via 

extrusion 
6 1.3 

CRB 805 Silica Sand 45 40 
Molten 
flow via 

extrusion 
6 1.1 

TXT 800 Silica sand 150 150 
Top 

Feeding by 
gravity 

8 1 

CP 800 Silica sand 130 108 
Top 

Feeding by 
gravity 

8 1.2 

ASR 1 790 Olivine 160 159 
Top 

Feeding by 
gravity 

8 1 

ASR 2 790 Olivine 160 157 
Top 

Feeding by 
gravity 

8 1 

Paper III PE 759–819 Silica Sand 45 64–91 
Molten 
flow via 

extrusion 
6 1.4–2.0 
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5. Results and Analysis 

5.1. Parametric System Model Evalua�on 

From the experimental results obtained under the different opera.onal condi.ons, the func.ons in 

Table 1 were tested, star.ng with the mono-parametric ones so as to sa.sfy the condi.on to keep the 

number of parameters for the func.on to a minimum. It was found that the topology of the mono-

parametric func.ons was not sufficiently flexible to describe adequately the decaying behavior of the 

species. Therefore, at least one addi.onal shape parameter was needed. As formulated in Equa.ons 

(5)–(7), bi-parametric func.ons require at least three observables for each molecular system in order 

to derive a closed equa.on system that can determine the func.ons’ parameters. This need was met 

through the results acquired for C4+ using the GC-VUV setup. Thus, the species that were evaluated 

to iden.fy the shape parameters were C1, C2, and C3 for the paraffin func.on and C2, C3, and C4 for 

the olefin case. Figure 9 displays the func.ons that fit the experimental results. Out of the five 

experimental cases studied in Paper I, only three cases are shown, for the sake of clarity, based on 

their relevance to the process severity (defined as ethylene/propylene).   

 
Figure 9. Results for some of the parametric functions tested in relation to the species’ carbon distributions, 

expressed in :8h1/ &���� vs. k-group, obtained for different severity cases (Experiments 1, 3 and 5, from left to 

right). The results are considered for the paraffin and olefin cases. Bottom row: Zoomed-in plots. (Red column: 

incomplete group species measured). 

The bars in the upper row of Figure 9 show the experimental results for paraffin (orange bar) and the 

aggregated paraffins and olefins (purple bar), as well as the different func.ons that were tested to 

describe the systems. The designa.on ‘pfof’ refers to the summing of the paraffin and olefin func.ons 

for each k group. Notably, the heavy-tailed func.ons, which include Burr, Fréchet, Lomax, and Inverse 

Gamma, proved to be the most-flexible in terms of fiZng the data across all severity levels. These 

func.ons exhibit elongated tails over longer carbon groups, leading to a lower rate of decay and an 

enlargement effect on their total enclosed areas, as shown in Table 6. This characteris.c is especially 

crucial in low-severity cases, where the yields of long-chain species are s.ll relevant. The func.on’s tail 

and area correspond to the es.ma.on done over the C5+ groups and the total es.mated 

concentra.ons of such groups, respec.vely.  
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Table 6. Results for the total area, tail area (sum of C5+), and the parameters associated with the func-ons tested.  

 Exp. 1 Exp. 3 Exp. 5 

Func�on Area Area Tail αααα1111    αααα2222    Area Area Tail αααα1111    αααα2222    Area Area Tail αααα1111    αααα2222    

Neg-Binomial nan nan nan nan nan nan nan nan 35.079 11.480 0.943 0.128 

Con-Max nan nan nan nan nan nan nan nan nan nan nan nan 

Burr* 40.048 10.742 1.204 1.117 40.323 13.025 1.243 0.867 36.204 12.574 1.620 0.465 

Fréchet* 42.774 13.965 0.854 0.589 40.254 12.788 0.811 0.481 36.281 12.080 0.498 0.158 

Dagum* 40.077 10.789 0.442 1.399 nan nan nan nan nan nan nan nan 

Gompertz nan nan nan nan nan nan nan nan nan nan nan nan 

Weibull* nan nan nan nan nan nan nan nan 36.164 13.042 0.686 0.315 

Gamma nan nan nan nan nan nan nan nan 34.500 10.594 0.066 0.126 

Lomax* 40.134 10.865 2.538 1.380 40.335 12.994 1.949 0.691 35.713 11.120 1.444 0.076 

Gamma_Inv* 43.458 14.631 0.760 0.429 40.438 12.940 0.744 0.342 36.122 11.622 0.439 0.061 

*, Heavy-tailed func.ons; nan, No results. 

At higher severi.es, the long chains progressively break down into shorter hydrocarbon species, 

contribu.ng to the observed increase in data skewness. In such a scenario, topologies that feature 

rapid decay with rela.vely small es.mated areas for the unmeasured groups, such as the Nega.ve 

Binomial and Gamma func.ons (see Table 6), manage to accommodate the skewness of the data. Yet, 

the heavy-tailed func.ons men.oned earlier remained adaptable, effec.vely capturing the high-level 

skewness of the experimental data without significantly altering the total area. This result highlights 

the robustness of these types of func.ons for working in high- and low-severity scenarios. 

Concerning the hydrogen distribu.on analysis, Figure 10 portrays the same experimental cases as 

presented before. The bo8om-row plots provide detailed views of the experimental cases and the 

tested func.ons. The gray, blue, and purple-dashed curves represent the three theore.cal scenarios: 

mono-enes (high), fully unsaturated (low), and fully conjugated (middle) cases of the olefin's Gamma 

effec.ve func.on (�
,����� ), respec.vely, as introduced in Equa.ons (8)–(10). Notably, for the C7+ 

species, only the Burr, Fréchet, and Inverse Gamma func.ons remained within the permissible 

hydrogen range. These three func.ons consistently adhered to the hydrogen constraints for all the k-

groups and experimental cases, indica.ng their shape’s compa.bility with the chemical characteris.cs 

of the olefin system. This alignment enhances confidence in the predic.ons made using such func.ons. 

 
Figure 10. Results for the discriminated parametric functions applied to the hydrogen distribution of the species, 

expressed in :8h2/ &���� vs. k-group, for Experiments 1, 3 and 5. Upper row, Burr function results. Bottom row, 

zoom in and evaluation of the functions according with the gamma effective. (Red column: incomplete group 

species measured). 
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In Figure 9 and Figure 10, the C5 species bar is indicated in red, deno.ng incomplete species data due 

to equipment limita.ons. Only two out of approximately ten poten.al olefin species could be 

measured with the characteriza.on methodology used. This mismatch is evident in rela.on to the 

func.ons’ es.ma.on for the C5 group. Regarding the carbon case (Figure 9), regardless of the func.on 

considered, there is a no.ceable gap of around 100% of the C5 bar’s height. This effect is par.cularly 

pronounced in the low-severity cases. Therefore, the study in Paper I underscores the model's 

predic.ve capabili.es for the unmeasured carbon groups. These predic.ons remain physically 

consistent owing to the highly constrained framework established by the set of chemical and 

mathema.cal considera.ons applied to the system. Thus, in the absence of specific measurements for 

C5+ species, the PSM emerges as an important and useful tool for physically congruent es.ma.ons of 

these unmeasured species. 

5.2. Parametric System Model Valida�on and Data Quality Assessment 

As described in Sec.on 2.3, the model outcomes can be validated by calcula.ng the BOT. Such 

valida.on can be used in two ways. First, by ensuring that the BOT calculated from the PSM es.ma.ons 

using Equa.on 11 aligns with the expected values given by Equa.on 13 using the results derived from 

the HTR reactor. Second, by deliberately introducing errors into the experimental results through 

modifica.ons in the calibra.on curves. This dual valida.on strategy aims to assess both the accuracy 

of the model's es.ma.ons and its capabili.es for evalua.ng the quality of the data by detec.ng errors 

in the measurements.  

The strategy also serves to validate the func.ons further by tes.ng them against the highly skewed 

scenario created by the miscalibrated data. There, Burr was the sole func.on that was able to fit the 

data while s.ll sa.sfying all the system constraints. Consequently, due to its robust performance across 

all the tested cases in Paper I, Burr was the func.on that was recommended for PSM applica.ons 

under the evaluated process condi.ons.  

Table 7 presents the results of the BOT calcula.on from the HTR outcomes versus the PSM es.ma.ons 

for both the calibrated and the miscalibrated cases. 

Table 7. Bed’s oxygen transport (BOT) calculated from the HTR versus the value estimated from the model 

(PSM), for the calibrated case (left table) and the miscalibrated case (right table). 

Calibrated Case  Miscalibrated Case 

BOT HTR BOT PSM %diff  BOT HTR BOT PSM 

8.27 8.91 7.74  15.62 5.49 

10.8 9.52 11.85  16.48 6.56 

10.21 9.51 6.86  15.72 6.79 

8.92 8.87 0.56  14.23 5.68 

8.14 7.18 11.79  17.18 8.24 

From the calibrated case in Table 7, it is shown that the BOT es.mated by PSM presents an error of 

less than 12% with respect to the HTR values. This is a reasonable margin of error, given the 

unavoidable varia.ons that occur in a large-scale process such as that used in these experiments, as 

well as the intrinsic numerical uncertainty of the model when predic.ng the carbon and the hydrogen 

tails. 

In the miscalibrated case shown in Table 7, there is clear inconsistency in the results: the BOT 

calculated from the HTR results is 2–3-.mes higher than that es.mated by the PSM. In this scenario, 

due to the topological constraints of the func.on's tail, the es.ma.ons of the total unknown species 
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of C5+ were such that there was no possibility to achieve alignment with the HTR case. This discrepancy 

strongly indicates a systema.c error that affects the measurements, infla.ng the species yields and, 

consequently, producing a lower BOT value for the PSM es.ma.on. This infla.on of yields needs to be 

around 15% to ensure a match between the PSM and HTR calcula.ons. 

In situa.ons where the origin of a discrepancy is unknown, poten.al errors can stem from various 

sources, including calibra.on inaccuracies linked to the analy.cal instruments, environmental 

fluctua.ons, and inadequate observa.on methods. In this case, the detec.on of species by the GC 

exceeded 100%vol in the measurement, indica.ng the presence of such errors in the overes.ma.ons 

of some species. Upon calcula.ng the percentage difference for the miscalibrated species, the 

averaged discrepancy was approximately 10%, aligning with the magnitude of the PSM predic.on 

(around 15%). This result underscores the ability of the PSM to pinpoint deficiencies in the quality of 

the experimental data. In future, PSM implementa.on could be further refined to assign errors 

specifically for each measured k-group, thereby enhancing the precision of the model's outcomes. 

In general, the results demonstrate the poten.al of the PSM model to reduce the complexity of the 

measured systems, so as to transform an extensive list of experimentally determined species into just 

two parameters and shaping a specific distribu.on func.on. This reduc.on in degrees of freedom 

allows the PSM to capture and compress efficiently the informa.on, with the possibility to enclose it 

in physics-informed frameworks, thereby enabling the acquisi.on of valuable insights. The findings 

highlight the poten.al of the PSM model as a versa.le tool for improving measurement accuracy and 

for ensuring the sta.s.cal and chemical coherence of the results obtained from the steam cracking 

process. Furthermore, the es.ma.on of C5+ carbon species cons.tutes a prac.cal applica.on for the 

downstream opera.ons and controls of refineries. 

 

5.3. Correla�ons between Product Distribu�on and Feedstock: Polymeric Composi�on Es�ma�ons 

In the context of waste streams, as detailed in Sec.on 3, the polymeric composi.on of the feedstock 

plays a crucial role in determining the distribu.on of the cracking product species. However, the 

materials inves.gated in Paper II were the rejected frac.ons of mechanical recycling with unknown 

and varied composi.ons. To es.mate the polymeric composi.on, a numerical approach was 

introduced, as detailed in Sec.on 3.1. The results of the feedstock composi.on es.ma.ons, based on 

Equa.ons (17)–(22), are presented in Table 8. 

Table 8. Estimated percentages for the materials’ polymeric compositions. 

 Solver L. Func�on PE PP Cell PS PET PVC PU PA ABS PAN NRubber TRubber Wool PC 

PE  Expected (kg/kgdaf) 100              

CRB 

SCS Fract_Err 43.40  35.64  7.85 0.36 3.90        

SCS Fract_Err 43.40 <0.01 35.64  7.85 0.36 3.90        

OSQP Sum_Sqr 42.97 <0.01 35.23 <0.01 8.24 0.36 4.34 <0.01       

Average (kg/kgf) 43.25 <0.01 35.50 <0.01 7.98 0.36 4.05 <0.01       

Es0mated (kg/kgdaf) 47.40 <0.01 38.91 <0.01 8.75 0.40 4.44 <0.01       

Expected (kg/kgdaf) PE+PP > 40 < 50  5-12 < 1 PU+PA+PS < 5       

CP 

SCS Fract_Err 36.71 <0.01 <0.01 1.92 1.84 10.22 0.22    21.06    

SCS Fract_Err 36.37  <0.01 1.71 1.84 10.22 0.22    21.61    

SCS Fract_Err 37.24 <0.01  2.25 1.84 10.22 0.22    20.20    

Average (kg/kgf) 36.78 <0.01 <0.01 1.96 1.84 10.22 0.22    20.95    
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Es0mated (kg/kgdaf) 51.08 <0.01 <0.01 2.72 2.56 14.20 0.31    29.10    

Expected (kg/kgdaf) Polef > 70    >10 PU+PA+PS < 2   Polef    

TXT 

SCS Fract_Err   7.08  69.42 0.22 <0.01 13.85  2.60   5.62  

SCS Fract_Err   7.11  69.44 0.22  13.83  2.64   5.54  

OSQP Fract_Err   7.06  69.59 0.22 <0.01 13.55  2.74   5.63  

Average (kg/kgf)   7.08  69.48 0.22 <0.01 13.74  2.66   5.60  

Es0mated 

(kg/(kg/kgdaf)) 
  7.17  70.34 0.22 <0.01 13.91  2.69   5.67  

Expected 

(kg/(kg/kgdaf)) 
  < 15  > 60 < 1 PU+PA+PAN 10-20     < 10  

ASR 1 

SCS Fract_Err  12.51 21.75 <0.01  0.90 13.67  <0.01 <0.01  3.84 <0.01  

SCS Fract_Err  12.51 21.75  <0.01 0.90 13.67  <0.01   3.84   

SCS Fract_Err  12.51 21.75  <0.01 0.90 13.67     3.84  <0.01 

Average (kg/kgf)  12.51 21.75 <0.01 <0.01 0.90 13.67  <0.01 <0.01  3.84 <0.01 <0.01 

Es0mated 

(kg/(kg/kgdaf)) 
 23.60 41.04 <0.01 <0.01 1.70 25.80  <0.01 <0.01  7.24 <0.01 <0.01 

Expected (kg/kgdaf) PP > 20, Polef > 30 > 10   < 2 PU+PA+PS >20 ABS+PC+PMMA <10  Polef   

ASR 2 

SCS Fract_Err  13.13 19.47 9.60  1.13 16.00 <0.01 <0.01 <0.01  8.67  <0.01 

SCS Fract_Err  13.07 19.48 9.66  1.13 15.98   <0.01  8.68  <0.01 

SCS Fract_Err  13.03 19.48 9.70  1.13 15.98     8.68   

Average (kg/kgf)  13.08 19.48 9.65  1.13 15.99 <0.01 <0.01 <0.01  8.68  <0.01 

Es0mated (kg/kgdaf)  19.23 28.64 14.20  1.66 23.51 <0.01 <0.01 <0.01  12.76  <0.01 

Expected (kg/kgdaf) PP > 20, Polef > 30 > 10   < 2 PU+PA+PS >20 Other alloys <5-10  Polef   

Polef, PE+PP+Rubber; daf: dry ash-free feedstock. ABS; acrylonitrile butadiene styrene; PA, polyamide; PAN, polyacrylonitrile; PC, 

polycarbonate; PE, polyethylene; PMMA, polymethyl methacrylate; PP, polypropylene; PS, polystyrene; PU, polyurethane; PVC, polyvinyl 

chloride; PET, polyethylene terephthalate.; SCS, Spli4ng Conic Solver; OSQP, Operator Spli4ng Quadra-c Program. 

Overall, the es.mates presented in Table 8 exhibit a reasonable degree of approxima.on. The residuals 

for the elemental balances, obtained from the op.miza.on, present an averaged total error of <2% 

across all the materials. For the LHV case, the averaged error is less than 10%, except for the tex.les 

case, where it reaches 17%. However, this devia.on is deemed to be reasonable due to the pure-

components approxima.on used, as well as the presence of addi.onal polymers and addi.ves that 

are commonly found in such waste streams. Moreover, the es.mates fall within the expected share 

ranges for each polymer component, which were determined through visual pre-iden.fica.on of the 

material, common material produc.on composi.on, and/or rough elemental es.ma.ons. 

Figure 11 displays a graphical summary of the es.mated mass frac.ons of the different polymers in 

the evaluated materials presented in Table 8. 

 
Figure 11. Summary of estimated polymeric mass fractions in kg/kgdaf for the evaluated materials. 
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5.4. Correla�ons between Product Distribu�on and Feedstock: Carbon Bond-Based Classifica�on 

Evalua�on 

The compiled results from the thermal cracking experiments performed under the condi.ons 

described in Table 5 for the evaluated materials in Paper II are shown in Figure 12. 

 
Figure 12. Results of the cracking DFB process for the evaluated materials in terms of mass ratio (kg/kgf). Total 

Monomer Recovery = C2+C3 (Monomers) + BTXS. 

Based on the carbon bond classifica.on rules described in Sec.on 3.2, the carbon atoms within the 

polymeric components of the feedstock were categorized based on their specific bond types. These 

categories were then aggregated in accordance with their corresponding es.mated polymeric 

propor.ons for each material (Table 8). Here, the C-X group was further subdivided into C-O (carbons 

bonded to oxygen atoms) and C-Xh (carbons a8ached to other heteroatoms). In those cases in which 

a carbon was bonded to mul.ple types of heteroatoms, preference was given to oxygen, due to its 

greater tendency to form carbon products, such as CO and CO2, during the process. The classifica.on 

approach is illustrated in Figure 13 (le6 panel) in terms of the carbon ra.os for each of the bond groups, 

calculated in rela.on to the respec.ve feedstock carbon contents. In parallel, Figure 13 (right panel) 

displays the carbon ra.os of the respec.ve thermal-cracking product yields, sorted according to the 

corresponding classifica.on criteria. 

  
Figure 13. Carbon ratios of each material’s composition before (panel a) and after (panel b) thermal cracking 

conversion. The carbons are classified into three groups: C-X, C-AL and C-AR groups for the original material 

composition; and COx, aliphatics and aromatics for the cracking products. 
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In Figure 13, the varia.ons obtained for the defined carbon groups under cracking condi.ons are 

evident. The polymer composi.on es.mates in Table 8, coupled with knowledge of the cracking 

products from the carbon bond-based classifica.on framework, provide important insights into key 

aspects of carbon conversion within the process. CRB, TXT, and ASR, which contain substan.al amount 

of C-O bonds due to their high share of either Cell or PET (Figure 13, le6 panel), yield notable COx 

levels, as compared with CP, which completely lacks C-O bonds in its structure. 

However, the levels of COx produced from CRB and TXT are lower than their respec.ve levels of C-O. 

This suggests that part of the carbon in the C-O bonds, origina.ng from ether or ester linkages in Cell 

or PET, respec.vely, are converted into species other than COx, such as alipha.cs, 

aroma.cs/polyaroma.cs or char. As an example, TXT is primarily made of PET, which lacks C-AL due to 

the ester linkages in its structure. Despite the low C-AL levels (~14%), conversion results in double 

produc.on of alipha.cs, primarily C4+, considering the original C-Al levels. This outcome reveals that 

the ester oxygen connec.ng the terephthalate with the ethylene in the PET structure is more likely to 

leave with the carbonyl (later to produce CO2) than to cause the C-C bond to break. This explains the 

decrease in COx rela.ve to C-O and the increase in alipha.cs in rela.on to C-AL. These results mean 

that the ethylene carbon in PET may be be8er-placed in the C-Al group than in C-O, cons.tu.ng an 

excep.on to the carbon assigna.on rule. On the other hand, ASR, which has a lower oxygen content 

than TXT, exhibits higher COx levels post-cracking, a result that is a8ributed to ash-induced oxygen 

transport in the DFB system, as detailed by Pissot et al. [43]. 

In terms of the alipha.cs group (C-AL), CRB and CP, which are rich in polyolefins (47% and 80%, 

respec.vely) with linear alipha.c bonds and, thus, showing the highest C-AL levels, gave the highest 

level of olefin-monomer recovery, even comparable to pure PE. Aligned with this, ASR, with a higher 

linear polyolefins content than TXT, showed a rela.vely higher level of olefin-monomer conversion 

compared with TXT.  

Regarding the aroma.c compounds, two main mechanisms of forma.on were observed across the 

materials: thermal decomposi.on of polymers that contain aroma.c structures, and aroma.za.on 

through the cycliza.on of cracking reac.on precursors, leading to the produc.on of monoaroma.cs 

and polyaroma.cs. TXT exhibited the highest level of conversion to BTXS (16%) due to its PET 

composi.on being rich in aroma.c structures. Nonetheless, the nearly iden.cal levels of C-AR with the 

produced aroma.cs for TXT suggest that either all the carbons in C-AR remained as carbons within a 

ring in the products or there was a near-zero total inter-group conversion to aroma.cs. On the other 

hand, the high-polyolefin materials, such as PE, CRB, and CP, despite lacking aroma.c groups on their 

original structure, showed a significantly large aroma.cs frac.on, indica.ng forma.on through 

cycliza.on reac.ons.  

Overall, the BTXS/polyaroma.cs ra.o was higher for the materials that contained aroma.cs in their 

structures, e.g., TXT, CRB and ASR, indica.ng that decomposi.on rather than cycliza.on mechanisms 

predominantly yield the valuable monomeric BTXS frac.on. On the other hand, a significant 

polyaroma.cs yield was observed for materials with high polyolefin contents, indica.ng the further 

development of uncontrolled cycliza.on reac.ons. Notably, CP displayed the largest polyaroma.cs 

frac.on among the materials, indica.ng the occurrence of significant secondary reac.ons during 

cracking. Chloride-containing polymers, such as PVC, facilitate aroma.za.on in the dechlorina.on 

process through increased double-bond and conjugated diene forma.on [26], which are precursors 

for cycliza.on reac.ons. In this regard, the ac.ve dienophile par.cipa.on of ethylene and propylene 

in Diels-Alder reac.ons is evidenced by the CP's reduced carbon share of olefin monomers.  
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Concerning char forma.on during thermal cracking, the polyolefin-rich materials such as CRB and CP 

yielded limited levels of char (6% and 13%, respec.vely), whereas TXT and ASR produced higher char 

yields. TXT char and ASR char arise from excessive aroma.za.on that is induced by the highly 

heterogenous composi.on along with addi.ves and from carbon-based fillers, as in the case of ASR. 

Char, which stays in the reactor and then leaves along with the sand, contributed to heat produc.on 

in the combustor or was filtered out from the raw gas (when produced in form of soot). It is per.nent 

to note that in the u.lized DFB system, the amount of char produced did not significantly influence the 

system's overall heat balance due to the con.nuous opera.on of the biomass-based, full-scale boiler. 

A cross-correla.ons analysis between the feedstock and the cracking products for the defined carbon 

bond group classifica.on is illustrated in Figure 14. In this figure, the x-axis corresponds to the 

feedstocks' carbon frac.ons of C-O, C-AL, and C-AR (plots a, b, and c, respec.vely), while the y-axis 

represents the level of carbon conversion into the evaluated carbon product species in each plot. 

 
Figure 14. Carbon conversion into product compound � ( &1 of species � in product per  &1 in feedstock) as a 

function of the fraction of the carbon bond group z in the feedstock ( &1 in bond type z per  &1 in feedstock). 

Carbon Bond group z = C-O, C-AL, C-AR; product compound � = COx, aliphatics, aromatics. 

 

In the plot a of Figure 14, a posi.ve and seemingly linear correla.on between COx (blue markers) and 

C-O carbons is evident, star.ng above the dashed diagonal line, reflec.ng the inherent oxygen 

interac.on in the system due to the steam environment. A similar posi.ve correla.on with C-AR 

carbons is observed in plot c. Conversely, plot b shows an overall nega.ve correla.on with the alipha.c 

bonded carbons (C-AL), corresponding to the decrease in the feedstock oxygen content. The COx starts 

from around 0.3 for C-AL levels <0.5 and therea6er declines, reaching the level of pure PE (~0.05). 

Plot b in Figure 14 illustrates a posi.ve correla.on between alipha.cs (orange markers) and C-AL, as 

expected. In plot a, there is a nega.ve correla.on with C-O, since such bonds instead tend to end up 

as COx species. The correla.on of alipha.cs with C-AR is also nega.ve (see plot c), indica.ng the low 

likelihood of ring opening to form linear structures. On the other hand, in plots a and c, the aroma.cs 

(gray markers) show slightly posi.ve correla.ons with C-AR and C-O, respec.vely, albeit slightly 

nega.ve correla.ons with C-AL (plot b, sugges.ng the s.ll-significant forma.on of ring structures by 

cycliza.on even when the original material lacks such structures. 

Apparent devia.ons from linearity are observed for TXT in all the plots. This is likely due to its low 

polyolefin content, though mainly due to the conversion of other groups, especially certain C-O 

carbons that are assigned according to the bond classifica.on rules into alipha.c species during the 
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cracking process, as explained previously. This effect causes the TXT to behave as an outlier case in all 

the plots in Figure 14, and provides another indica.on that the C-O assigna.on rule must be revised 

for cases such as this in order to deal with such behavior.  

Individual species and groups, such as olefin C2 and C3 monomers and BTXS, can be analyzed in a 

manner similar to that used in Figure 14. In Figure 15, these species are plo8ed against C-AL (plot a) 

and C-AR (plot b), providing insights into poten.al correla.ons. Methane is also included in the plot 

for illustra.ve purposes. 

  
Figure 15. Carbon conversion into product compound � ( &1 of species � in product per  &1 in feedstock) as a 

function of the fraction of the carbon bond group z in the feedstock ( &1 in bond type z per  &1 in feedstock). 

Carbon bond group z = C-AL, C-AR; product compound � = CH4, olefin monomers, BTXS. 

Plots a and b in Figure 15 reveal dis.nct trends for olefin monomers (green markers) concerning C-AL 

and C-AR, respec.vely. A clear posi.ve correla.on is seen with alipha.c carbon bonds (C-AL), 

indica.ng the persistence of alipha.c bonds to stay as alipha.c chains, despite the seemingly random 

radical-based breakage that they undergo during the process. The correla.on shi6s towards lower 

values compared to the total alipha.cs in Figure 14 (plot b), which aligns closer to the iden.ty line. 

This shi6 stems from C-AL being u.lized to produce other alipha.c components (e.g., CH4 and others). 

Nonetheless, the trend remains similar to that of the alipha.cs, sugges.ng a strong tendency for C-AL 

to produce valuable C2 and C3 monomers under the evaluated process condi.ons. In contrast there is 

a nonlinear nega.ve correla.on for the aroma.c carbons (C-AR), indica.ng once again the minimal 

likelihood of the ring structures to break down and contribute to the olefin monomeric yield. Methane 

(red markers) exhibits a slightly posi.ve correla.on with C-AL, and a slightly nega.ve correla.on with 

C-AR. 

BTXS (blue markers) shows no defini.ve trends for any of the two bond groups, remaining rela.vely 

stable at around 0.15. Interes.ngly, the posi.ve correla.on between aroma.cs and C-AR bonds 

observed in Figure 14 (plot c) is lost for BTXS in Figure 15 (plot b). This lack of correla.on for one-ring 

aroma.cs suggests mul.ple routes for their produc.on, with no clear predominant source. As 

discussed earlier, some of the evaluated materials predominantly follow the cycliza.on route, such as 

high-polyolefin materials, while others yield aroma.cs through direct detachment of exis.ng aroma.c 

rings, as observed for TXT. 

The carbon bond-based classifica.on method offers an approach from a data perspec.ve to generalize 

the complexity of feedstock polymeric blends. It provides a simplified way to assess for cracking 

processes the impacts of specific chemical structures in a feedstock on the carbon product distribu.on. 
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Although further refinements to the classifica.on rules are needed, especially concerning materials 

such as TXT that have observed non-linear behaviors, these preliminary correla.ons create useful 

mappings of defined carbon bond groups pre- and post-cracking. Overall, the developed framework 

concept paves the way for more-advanced, predic.ve, two-way models that consider more materials, 

such that the correla.ons not only be useful for es.ma.ng certain carbon groups (or poten.al 

monomer recovery) based on feedstock and process condi.ons, but also for defining polymeric 

composi.ons based on the key species and/or carbon groups observed in the product distribu.on. 
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6. Future Research Perspec�ves 

Considering the control and op.miza.on of the cracking conversion process for a heterogeneous 

polymeric feedstock, it is of the utmost importance to have online knowledge of the feedstock 

composi.on entering in the reactor at all .mes, so as to op.mize the process towards an economically 

favorable species distribu.on. The numerical method of es.ma.on presented in this work cons.tutes 

a useful and rapid way to obtain such quan.fica.on.  

In that regard, the system bond classifica.on framework can help to refine the numerical es.ma.on 

of the polymer’s share. As described in Sec.on 3.1, Equa.on (17) provides a system of equa.ons that 

allows to numerically es.mate the polymeric shares based on the elemental and energy balances. Each 

equa.on added to the system is an addi.onal constraint layer that is designed to restrict the solu.on 

space created by all the possible polymer sets.  

The classifica.on framework may cons.tute an addi.onal set of equa.ons that adds one more level 

of restric.on to the system. This new constraint layer is of high relevance because it can link the 

measured cracking products to the respec.ve polymeric es.ma.ons. To present the concept briefly, 

the yields obtained for each product group can be seen as a linear combina.on of the conversion that 

each carbon-bond group underwent into that par.cular product group during the cracking process. In 

mathema.cal form, considering a polymer component z, for a defined set of carbon bond groups {�} 

and product groups {&}, the carbon mass frac.on ��$,| of the product group & can be defined by 

Equa.on (23):  

��$,| = � ��,S$,|
S  (23) 

Here, ��,S$,|must be read as the carbon mass frac.on of the bond � that was converted into group & for 

component z. For the case studied in this work, � ∈ {1 − 3, 1 − �h, 1 − �9} and & ∈{13{, .h�6ℎ, .98:}. Thus, Equa.on (23) can be rewri8en as Equa.on (24):     

��$,| = ��,�+�$,| + ��,�+��$,| + ��,�+��$,|
 (24) 

⇒ ��$,| = F�,�+�$,| ���+�,| + F�,�+��$,| ���+��,| + F�,�+��$,| ���+��,| = F�,S$,|��S,|  (}. Q) (25) 

The term ��S,| corresponds to the carbon mass frac.on of the bond � in component z and F�,S$,|
 is 

defined as the conversion coefficient that relates the frac.on of bonds b in component z that were 

converted to group &. So, each product group & corresponds to the sum of all the frac.onal 

contribu.ons of each of the defined bonds � to that par.cular product group. Then, Equa.on (25) 

expresses the carbon mass frac.on of the group & (��$,|), as a func.on of ��S,|. Based on this, F�,S$,|  can 

be defined as a conversion tensor that represents the cracking process, connec.ng the bonds found in 

the feedstock with the final product groups.  

Ideally, each measured product & coming from a feedstock 7 would correspond to the contribu.ons 

of all the groups & provided by the polymeric components contained in the feedstock. For a fuel with 

a set of polymeric components z ∈ {T}, TT, T�1, … }, this can be expressed by mul.plying ��,|$
 (z was 

transposed) by the mass frac.on vector {|,� of Equa.on (17). However, in reality, the presence of 

certain polymers in the feedstock blend might cause cross-interac.ons between the products released 

by other polymers. In its simplest form, this could be approximated by adding a correc.on term (�S$ ∈(−1,1)) to the conversion tensor F�,S$,|
, as is expressed in Equa.on (26). Thus, for a fuel with a set of 
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polymeric components z ∈ {T}, TT, T�1, … }, the carbon mass frac.on of the measured group & 

when feedstock 7 is converted can be defined by Equa.on (27): 

���,|$ = BF�,S$,| + �S$E��S,| = F��,S$,|��S,|     (}. Q)  (26) 

���,|$ {|,� = ��$,�  (}. Q) (27) 

where ���,|$
 corresponds to the corrected carbon mass frac.on of group & in component z and ��$,�

 the 

measured carbon mass frac.on of group & of the feedstock 7. Equa.on (27) will then cons.tute an 

addi.onal set of 5��X{&} equa.ons, which can be added to the system defined in Equa.on (17). 

On the other hand, an important synergy can be generated with the PSM features, as it can always 

help to provide an assessment on the cracking data, so as to improve its quality and/or predic.ve 

accuracy for key species.  

Figure 16 presents a schema.c of the integra.on of the model and its applica.on for backward 

es.ma.ons of polymer composi.ons.  

 

Figure 16. Integration of the PSM and carbon bond-based classification models. 
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7. Conclusions 

 

This thesis presents the results of research efforts to develop data analysis models that can be used as 

tools to enhance the understanding and processing of data generated from the thermal cracking 

conversion of polymeric feedstocks. These tools incorporate specific chemical and mathema.cal 

characteris.cs of the conversion system, enabling the extrac.on of meaningful and physically 

consistent informa.on from the process data. 

The cracking product species distribu.on is a key focus in the two models presented in this work. The 

models were developed by evalua.ng the data in two ways. First, the species outcomes were described 

in a special data representa.on using a framework cons.tuted by the chemical and mathema.cal 

characteris.cs of the system. Based on this, predic.ons of unknown species quan..es and data quality 

assessments could be performed. Second, the product species and informa.on on the feedstock 

polymeric composi.on were considered in a novel carbon bond-based classifica.on framework, as to 

the basis for exploring and mapping correla.ons between the relevant data for the carbon groups pre- 

and post-cracking of the plas.cs mixtures. 

The first model consisted of a Parametric System Model (PSM), which was developed to represent the 

product species data emerging from the cracking process. This model was defined within a framework 

that contained generic knowledge of the evaluated chemical system in terms of conserva.on laws and 

probabilis.c proper.es. By including elemental carbon, hydrogen and oxygen balances and a topology 

that is sta.s.cally meaningful, the model proved effec.ve in compressing the species' carbon and 

hydrogen data into a special bi-parametric func.on. The model enabled physically consistent 

es.ma.ons of unmeasured carbon group species, addressing the constraints linked to the 

characteriza.on equipment and iden.fied experimental data errors, thereby showcasing its poten.al 

for data quality assessments. 

The second model involved evalua.on of the product composi.on coming from the cracking of highly 

heterogeneous feedstocks, represented by four different post-consumer waste-derived materials. 

Here, correla.ons between the cracking products and the feedstock composi.on were studied, based 

on a carbon bond-based classifica.on system that classified the carbons in alipha.c (C-AL), aroma.c 

(C-AR), and heteroatom-bonded (C-X; X=O, N, S, Cl) structures.  

Among the main findings, visible correla.ons were found between the defined feedstock structures 

and the products chemical groups. For instance, a posi.ve linear correla.on was observed between 

the carbons in the feedstock bonded to oxygen (C-O) and the COx product species yield, contras.ng 

with a nega.ve correla.on to C-AL. A slightly posi.ve correla.on was seen between the aroma.cs and 

C-AR in the feedstock, whereas there was a nega.ve correla.on with C-AL, indica.ng the stability of 

the aroma.c rings in terms of tending to remain in ring form rather than break down into chains. No 

defini.ve trend emerged for BTXS concerning the defined carbon-bond groups. 

Overall, the observed capabili.es of PSM posi.on the model as a tool to assess and enhance the 

quality of the measurements obtained from the cracking process. In addi.on, the developed carbon 

bond-based classifica.on system provides a unique common framework that enables trend 

iden.fica.on and poten.al mapping between feedstock polymeric characteris.cs with the respec.ve 

conversion process outputs. Both models can eventually work together in a synergis.c way to unlock 

deeper insights into the polymer steam-cracking process, paving the way for more-advanced predic.ve 

models and valuable applica.ons in the control and op.miza.on of this type of sustainable waste 

transforma.on process.   
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