THESIS FOR THE DEGREE OF LICENTIATE OF ENGINEERING

Data-Driven Models and Correlation Strategies for
Thermal Cracking of Polymeric Feedstocks in Dual
Fluidized Beds

RENESTEBAN FORERO FRANCO

Department of Space Earth and Environment
CHALMERS UNIVERSITY OF TECHNOLOGY

Goteborg, Sweden 2024



Data-Driven Models and Correlation Strategies for Thermal Cracking of
Polymeric Feedstocks in Dual Fluidized Beds

RENESTEBAN FORERO FRANCO

© RENESTEBAN FORERO FRANCO, 2024

Department of Space Earth and Environment
Chalmers University of Technology

SE-412 96 Gothenburg

Sweden

Telephone +46 (0) 31-772 1432

Printed by Chalmers Reproservice

Gothenburg, Sweden 2024



Data-Driven Models and Correlation Strategies for Thermal Cracking of
Polymeric Feedstocks in Dual Fluidized Beds

RENESTEBAN FORERO FRANCO
Division of Energy Technology
Department of Space Earth and Environment
Chalmers University of Technology

Abstract

The escalating global production and consumption of plastics pose a significant environmental threat,
demanding innovative waste management solutions. Among the different kinds of recycling
technologies, steam cracking is a promising alternative to mechanical recycling that allows the
processing of highly heterogeneous plastic waste streams to recover the carbon into monomeric
species that can be used to produce polymeric materials of virgin quality.

The product species obtained from the steam cracking comprise different kinds of molecules which
include syngas, aliphatics, aromatics and soot. The distribution of species is intrinsically linked to both
the reactor's operational conditions and the chemical characteristics of the feedstock. From a data
analysis perspective, this distribution holds valuable information that can be leveraged for instrument
validation, prediction of unmeasured species, and estimation of relevant process variables. However,
this aspect often receives insufficient attention in the technology’s related studies. This thesis aims to
contribute to the theoretical and practical understanding of steam pyrolysis, offering validated data-
driven models that can serve as tools for optimizing pyrolysis processes and for gaining insights into
the relationship between feedstock characteristics and pyrolysis outcomes. The research encompasses
the development and validation of two data-driven models, aimed at enhancing data quality and
improving the understanding of product species distribution from steam cracking processes.

Experiments were performed with different types of plastic feedstocks in a dual fluidized bed (DFB)
plant with a semi-industrial scale bubbling fluidized bed cracking reactor that was coupled with a
circulating fluidized bed combustor running on biomass. The analytical setup included a Solid Phase
Adsorption (SPA) method for aromatic fraction collection and a High-Temperature Reactor (HTR) for
complete reforming of the hydrocarbons to syngas, which allowed estimation of the char yield. The
characterization of the produced chemical species was performed with gas chromatography using
thermal conductivity (TCD), flame ionization (FID) and vacuum ultraviolet (VUV).

The first part of the work encompasses the introduction of a Parametric System Model (PSM), designed
for data quality assessment. This model leverages the constraints imposed by the conservation laws
and the chemical nature of steam pyrolysis to ensure physically and statistically meaningful results for
the product species distribution obtained from the cracking process. Special focus is placed on the
conceptualization, mathematical foundation, and experimental validation of the model. In the second
part of the work, the influence of feedstock polymeric composition on the product distribution is
examined through the species distribution data obtained from the cracking in the DFB system of
heterogeneous mixtures that originated from the rejected materials of different industrial recycling
processes. The study presents a novel carbon classification framework that aids in identifying
correlations between the feedstock chemical structures and the cracking products.

This study encapsulates efforts towards creating generalizable data analysis frameworks that can be
used as tools for predictive analysis between the composition of polymeric mixture feedstocks and the
resulting product species from steam cracking in dual fluidized beds.
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1. Introduction

Plastics have undoubtedly revolutionized modern living. Lightweight, versatile, and relatively cheap,
they have become an integral part of our daily lives. Nonetheless, the exponential growth in the
production and consumption of plastics has led to a global crisis that threatens the environment,
human health, and ecosystems. Plastics production has skyrocketed over the past few decades.
According to the Organization for Economic Cooperation and Development (OECD), global production
levels of plastics and fibers reached a staggering 460 million metric tons (Mt) in Year 2019, with this
number projected to double by Year 2050 if the current trend continues [1]. However, the plastics
economy is far from circular. Around 353 Mt of plastic waste were produced worldwide in Year 2019,
with 63% corresponding to short-lived products with a lifespan of less than 5 years, such as packaging
(40%), consumer products (12%), and textiles (11%) [1,2]. In terms of waste management, only 15% of
the plastic waste is collected for recycling, of which 40% is disposed as residue, thereby reducing the
effective recycling rate to 9%. Of the remaining 91% of plastic waste, 50% is disposed of in sanitary
landfills, 19% is incinerated, and a staggering 22% is mismanaged waste that is burned in open pits or
thrown away in unregulated dumpsites or aquatic ecosystems [3].

Different plastic recycling techniques have been developed over the past decades, with mechanical
recycling being the most-common approach. This process involves the re-melting and shaping of
plastics for reuse. However, mechanical recycling is considered highly selective due to the strict
requirements attached to homogeneous and uncontaminated plastic feedstocks. Thus, several sorting
steps are usually needed when dealing with heterogeneous feedstocks, which reduce the energy
efficiency of the overall recycling process. The effectiveness is also hindered by the progressive loss of
material quality for each recycling process cycle. As a result, a large portion of the collected plastic
waste may need to be recycled through a more-general recycling route, such as combustion in
combination with carbon capture and utilization (CCU) technologies [4,5] for chemical synthesis,
although this way comes with a significant energy cost.

Alternatively, the chemical recycling approach to plastic waste management offers the potential to
convert a wide range of mixed waste materials into high-quality feedstocks for the chemical industry.
Unlike mechanical recycling, which focuses on the physical properties of the plastics, chemical
recycling deals with their chemical compositions. The primary goal of chemical recycling is the
transformation of plastics back into their fundamental chemical building blocks —monomers. These
monomers serve as the raw materials for the production of virgin plastics and various other high-
quality chemical products. Solvolysis and pyrolysis are the two most-prominent methods for chemical
recycling. Solvolysis involves the chemical degradation of polymers using solvents, while pyrolysis
relies on the use of high temperatures in an oxygen-free environment to break down the polymer
chains through free radical reactions. In the global context, chemical recycling can be seen as
complementary to mechanical recycling, with the potential to process mixed or contaminated plastics
at the industrial scale [6,7].

Among the technologies that are based on pyrolysis, high-temperature steam pyrolysis is of special
interest due to its ability to handle heterogeneous feedstocks while minimizing the thermodynamic
penalty associated with the combustion-based recycling route [6]. Falling within the general recycling
category, this process, which is also known as steam cracking, involves subjecting carbon-based
feedstocks to extreme temperatures, typically around 800°C, in the presence of steam, which acts as
a quasi-inert dilution agent. The conversion process leads to the generation of a gas mixture,
technically known as producer gas, which contains a variety of chemical species, including H,, CO, CO,
and various hydrocarbons in the forms of paraffins, olefins, and aromatics. In general, the species



distribution of the producer gas is intimately linked to the cracking reactor conditions and the chemical
characteristics of the feedstock. This process constitutes the core of the research presented in this
thesis.

The endothermic nature of pyrolysis reactions implies the addition of heat to the reaction
environment, and the product distribution benefits from a steep heating gradient and controlled
maximum temperature. Therefore, the choices related to reactor type and design play pivotal roles in
polymer conversion and the distribution of product species. Dual Fluidized Beds (DFBs) fulfill the
abovementioned requirements due to their allothermal heat supply, efficient heat transfer
capabilities, and mixing characteristics. The general versatility of DFBs in terms of feedstock size and
state, ash content and temperature adaptability make them well-suited to enhancing the robustness
of the recycling process for different feedstocks and is the technology used in this work. In a DFB, the
reactor consists of a combustor and a pyrolysis unit, with a heated sand bed serving as a heat carrier
between these two components and operating in a circulating or bubbling fluidized regime. This
configuration offers flexibility in terms of fine-tuning the reaction conditions towards the preferred
product distributions. The integration of such a system with a petrochemical facility has been explored
with biomass on the combustor side, with goal of recycling 100% of the carbon present in the plastic
waste streams [6]. This system provides a promising alternative to fossil-free production of monomers
for the chemical industry.

To characterize the species obtained from the process, usually a sample from the producer gas is taken
acquired through a series of setups and the chemical species contained therein are quantified. Due to
the large variety of chemical species contained in the gas, gas chromatography (GC) is conventionally
used with different types of columns and detectors depending on the types of hydrocarbon molecules
to be evaluated. The species concentrations are then reported in the literature in tables or presented
in plain graphs of concentration vs. species, to indicate the respective yields under the particular
process conditions.

While such presentation methods are straightforward, they have limitations. First, the results are
limited to the species detected with the available characterization equipment setup. This may lead to
an incomplete picture of the produced hydrocarbon groups, which is required for a comprehensive
carbon balance. Second, the more conditions and feedstocks that are tested, the more challenging the
data mining process becomes in order to understand the respective product distribution variations in
cross-case studies. Third, the source of the variability is obscured, making it difficult to establish
correlations between the graphed response and modified operational variables or to identify possible
error sources in the dataset. Therefore, this thesis presents a model for data processing aiming to
overcome these limitations. The model incorporates generic chemical characteristics and statistical
considerations of the reaction system within a framework enclosed by hard constraints, such as
elemental balances, topology of functions, and convergence criteria. In the global view, the model’s
construction enables the extraction of physically consistent information from the results obtained from
steam cracking processes, thereby enhancing the predictive capabilities for non-measured carbon
groups and improving the efficacy of data presentation for improved operational space explorations
and data quality assessments.

In relation to the product distribution obtained from the steam cracking, the molecular composition
of the feedstock plays a crucial role in determining the yields of specific species from the conversion
process. The chemical conversion proceeds by primary free radical reactions that are initiated by the
homolytic cleavage of the bonds in the polymer chain. These reactions break down the polymer chain,
leading to the release of shorter chain structures into the local reaction environment. Subsequently,



secondary reactions take place, with these nascent volatiles in the local gas phase driving the
formation of new chemical structures, such as aromatic rings and soot.

Overall, the temperature and the reaction medium limit the extent of the primary and secondary
reactions. Nonetheless, the nature of the chemical bonds determines the types of radicals that are
generated during the breakdown; consequently, it has a direct impact on the species obtained from
the conversion process.

The likelihood that a free radical cleavage will occur is determined by the bond dissociation energy
[8,9]. In general, primary reactions tend to break the chain at locations with low bond dissociation
energy caused by anomalies in the electron density. Thus, the more homogeneous the bond
dissociation energy is along the chain, the more random is the occurrence of the cleavage process.
However, the presence of functional groups, such as aromatics, unsaturated bonds or heteroatoms,
distorts the electron density distribution along the chain, creating sites that are susceptible to
cleavage. Therefore, it is important to consider the feedstock’s chemical structure when evaluating a
particular product species distribution.

From a modeling perspective, predicting the ways in which various radical reactions and species will
interact due to the inevitable interplay of primary and secondary reactions in a mixture of plastics
presents a major challenge. Addressing this issue requires a comprehensive understanding of how the
incoming composition influences the product distribution. The challenge becomes even more complex
when dealing with heterogeneous feedstocks, which closely resemble real plastic waste streams.

Using data analysis techniques with real data from the steam cracking of highly heterogeneous
mixtures can provide valuable insights into addressing the challenge mentioned above. By examining
the input polymer blend and the primary products generated under specific thermodynamic
conditions, it is possible to establish correlations that shed light on how the different carbon bonds in
the polymer blend undergo reactions and transformations during the conversion process. This
knowledge is essential for assessing the potentials for monomer and chemical recovery from various
plastics and mixtures. Moreover, it paves the way for the development of a predictive model for the
conversion behaviors of heterogeneous carbon-based materials, thereby enabling the evaluation of
recycling routes and potential value chains. To illustrate this approach, this thesis summarizes the work
performed with a pool of data from steam cracking experiments conducted on a semi-industrial scale
2—-4-MW cracker within a DFB plant using heterogeneous, polymer-rich waste mixtures. The objective
was to identify qualitative correlations between the polymeric composition of the feedstock and the
resulting product distribution after cracking. A novel approach based on a carbon-based molecular
classification of products and feedstock was introduced to create a generalization framework for
studying these correlations.

In general, this thesis presents research endeavors that contribute to the development of
mathematical tools aimed at enhancing the handling and analysis of the species distribution data
obtained from the thermal cracking conversion of carbon-based feedstocks. By considering key
chemical characteristics of the reaction system, the tools provide means for data quality assessments
and quick estimation of valuable chemicals recovery potential from the steam cracking of plastic
mixtures. The research provides insights into the relationship between product distribution and
feedstock from a data analysis perspective, with the goal of creating correlation models that can be
used in the operation and control of steam cracking DFB plants.



1.1. Aim and Scope

The general aim of this work is to develop a validated data analysis model that allows to improve the
knowledge on the outcomes of the steam pyrolysis process and set a framework of data generalization
that helps to unravel correlations between product species distribution and feedstock composition of
polymeric mixtures.

To achieve this overarching goal, two specific research questions are addressed:

l. How can the product species distribution and the chemical and mathematical constraints of a
steam cracking system be linked together to improve the data quality and get physically and
statistically meaningful observations from the reaction system with a model that can be
experimentally validated?

Il How to unravel correlations between the polymeric composition of a plastic mixture feedstock
and its product species distribution from a steam cracking process by the creation of a
common data framework established upon a carbon bond-based classification?

1.2. Publication’s Contribution

This thesis comprises the main developments and findings from a set of three scientific papers. The
research exploration has been conducted at both the theoretical and experimental levels. This
document presents the equations and mathematical foundations of the developed models, as well as
their validation using real industrial-scale data. In Paper I, the concept, mathematical background and
experimental validation of a custom-made model, called the Parametric System Model (PSM), used for
the data quality assessment is presented. Paper Il focuses on understanding how the product
distribution is influenced by the feedstock polymeric composition when cracking highly heterogeneous
mixtures in a DFB. It presents a novel carbon classification framework that was developed to explore
correlations between the products and the feedstock chemical structures. Paper Il showcases
experimental methods and characterization setups developed to get a quick and comprehensive
carbon balance from the cracking gas product, with particular focus on GC with Vacuum Ultraviolet
Spectroscopy (GC-VUV) as the characterization method.



2. Parametric system model development for data quality analysis
2.1. Model Formulation and Description

In any pyrolysis-based conversion process, the characterization outcomes are subject to three main
sources of variation: changes to the feedstock; alterations to the operational thermodynamics; and
measurement-related errors introduced by the experimental setup. Therefore, a model that is capable
of correlating such sources with the acquired data must be inherently linked to the chemical nature of
the process itself.

In line with this premise, the approach involves the processing of data obtained from steam cracking
conversion using a mathematical transformation referred to as the Parametric System Model (PSM).
The defining characteristic of this model is its integration within a framework governed by specific
chemical and statistical characteristics of the chemical conversion process. The transformation
encompasses a set of mathematical functions with distinctive topologies that introduce additional
constraints to the framework (see Figure 1). This results in the creation of a highly constrained
mathematical system that is tightly fitted to the physical nature of the conversion process. In the global
view, such a physics-informed characteristic of the model provides physically consistent outcomes with
several possibilities, such as those for: identifying inconsistencies in the measured data; estimating
unmeasured quantities or species that may be inaccessible due to equipment limitations; and ranking
certain measurements according to their relevance for the model’s transformation, so as to minimize
the sampling characterization effort.

In Paper |, the focus is on the application of the model for prediction of unmeasured species and data
quality assessment of the data coming from steam cracking of a polyolefinic feedstock (polyethylene).
The concept of creating a physics-informed framework that is based on mathematical functions
constraining the data can also be applied to other types of feedstocks and mixtures.

MassfEnergy
Conservation
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Parametric
Model

__________________ I Mathematical Statistical

& Topological Faly
i Characteristics
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Plain data SnsErRints

-""'—_\_\__‘ —
Figure 1. Conceptual schema for the "plain data" transformation into the proposed parametric model.

In the model formulation, the species contained in the product mixture are categorized into distinct
groups: paraffins, olefins, aromatics, syngas and char, and treated as molecular systems. The model's
core constraints are defined based on the system’s conservation laws. In Paper I, only mass
conservation is taken into account, expressed in terms of elemental balances. For a feedstock that is
composed of carbon (C), hydrogen (H), and oxygen (0), the balances are mathematically defined using
molar fractions, as presented in Equations (1)—(4).
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Here, n$ and Xg,k correspond, respectively, to the number of moles and the molar fraction of the
elementa € {C,H, 0} and the system s € {pf,of,arom}, with pf, of and arom indicating the
paraffin, olefin and aromatic groups, respectively. The subindex k represents the number of carbons
in the paraffin or olefin chain, referred to here as the carbon group (shortened to: the k-group), and
tot indicates the total amount. In Equation (2), y,ff refers to the molar hydrogen to carbon (H/C) ratio
for the paraffin system as a function of k. In addition, y,iiff corresponds to the molar H/C that is
effective for the olefins at a particular k, defined as the weighted molar fraction sum of the H/C ratios
for all possible olefin species present in a particular k-group. The term g corresponds to the olefin
species group, of a particular k, defined as having 2(k — g) hydrogens. In other words, g indicates the
number of hydrogen pairs that are missing from the mono-ene case (g = 0). In Equation (3), nHC out
corresponds to the moles of oxygen in the produced hydrocarbon species that have oxygen atoms in

their structures (for instance, some oxygenated aromatic species). The term nghar"” accounts for
external sources of char entering the system, for instance, char transported from the combustor side
during the DFB cycle.

As demonstrated in Equations (1) and (2), paraffin and olefin species are classified according to their
carbon groups. This classification requires a carbon number distribution representation, which is
commonly used in the petrochemical industry to compare yields of specific species sizes and to assess
the quality of products to be used as liquid fuels [10,11]. In the specific context of the study, such
representation allows the modeling of group yields as mathematical sequences, which can be summed
across an infinite range of k-groups. As explained in Paper |, relative to the hundreds of thousands of
monomer units present in a real polymeric feedstock, limiting to the infinite in the series is essentially
a mathematical formality to avoid restrictions imposed on the lengths of the species that can be
formed in the cracking process. However, these series must be convergent, which imposes
mathematical constraints on the sequence behavior or the functions associated with them.

Given the characteristics of the sequences, the molar fractions X3 ,, as defined in Equations (1) and
(2), can be regarded as discrete probability functions for the evaluated molecular system, each of
which is characterized by a finite set of parameters. This corresponds with the model’s key
mathematical transformation. Consequently, the paraffin and olefin sequences can be mathematically
expressed as:

pf _ ¢pof pf pfy. of _ gof pf
Xk ka(a1 Y Aoy, Ay )' Xk ka( ay 'az ,...,an) (5)
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Here, K% and K,?lfs correspond to the maximum measured k-group for the paraffin and olefin species,
respectively. The term fafk is a discrete function with a semi-infinite support k € {1,2,3 ... }, which is
defined with a finite set of shape parameters {ay,...,a, }* or {B1,....,Bm}; a € {C,H} and s €

{pf,of}.

The main advantage of this approach is that it provides a closed-form solution to the equation system
formed by Equations (1) and (2), while at the same time it can deliver the necessary topology and
convergence criteria needed to satisfy the model’s mathematical constraints.

2.2. Model Implementation and Additional Constraints

Following the parametric transformation of the paraffin and olefin sequences, the objective is to define
afunction f} that can fit to the measured data using the minimum number of shape parameters, while
acting as a solution to the system of equations. In this way, any estimations given by the function’s
mapping will comply with the mass conservation law.

In general, the function’s formulation must satisfy the following conditions: 1) it must exhibit a
decaying behavior with the possibility to become a monomodal and positively skewed function; 2) it
must be sufficiently flexible to handle relatively large changes in species concentration, while
remaining convergent and aligned with the measured data; 3) it needs to be defined with the fewest
possible parameters; and 4) the function’s form and predicted area must adhere to the conservation
laws.

The first condition is based on the characteristic decaying behavior arising from the bond cleavage
suffered by the homogeneous polyolefin chains as soon as they enter the hot reactor medium. The
pyrolytic reaction progresses as the resulting molecules try to adopt more-stable structures and
lengths. As a rule of thumb, the shorter the chain, the more stable it becomes.

In principle, the hotter the reaction medium, the more random and thorough the breakdown process
becomes, since more energy is available to produce the scissions. At this point, the decomposition
process can be seen as a stochastic system that is governed by events that can be described by a
probability distribution function.

In its simplest form, the set of events in the chemical system can then be conceptualized as a system
that comprises two types of elements: broken and unbroken bonds. If N is the number of initial bonds,
the probability g of finding a bond in the chemical system is defined by g = N, /N,, with N}, being the
number of remaining bonds at time t. Then, the probability to find a broken bond is p = 1 — g (as this
can also be taken as the probability of breaking a bond at time t, itis a parameter that is directly related
to the temperature). The probability of finding n consecutive unbroken bonds in n number of blinded
pickups in the system is defined by g™. A chain molecule of k carbons consists of a set of k — 1
unbroken bonds and 2 broken bonds at its extremes. Therefore, the probability of finding such a set of
elements in the system will be p2q*~. From the carbon® perspective, the probability of finding a
particular carbon in such a set will be P, = kp?q*~* = kp?(1 — p)*~1. This is commonly known as
the Flory-Schultz distribution; it describes the probability of obtaining a chain of length k after the
occurrence of random and identically independent scission events with probability p. It should be
noted that this is a special case of the Negative Binomial Distribution for k — 1 successes and exactly
2 failures (see Figure 2).
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This simple conceptualization illustrates the increasing abundance of shorter chains as the probability
of a breaking event increases. Although the real-life case may be more complex, this simplified view
offers a clear picture of the stochastic process that leads to the results obtained.

The second and third criteria aim for a robust model that is capable of fitting diverse process conditions
while compressing the data without overfitting for an effective representation. This facilitates
correlative and predictive analyses. The fourth criterion incorporates the restriction that the
conservation laws impose on the conversion process (in the studied case, only mass conservation is
considered).

As an example of an application, let’s consider a high-temperature decomposition scenario that follows
a Flory-Schultz distribution with high probability, as depicted for p=0.7 in Figure 2. Furthermore,
assume that the experimental setup provides information only for the quantities of the first three
aliphatic carbon group species. In the absence of prior information regarding the system's
decomposition, the decreases in the quantities of the measured species serve as the initial indicator
of the system's behavior.

Considering the mass conservation law, approximately 90% of the normalized mass in the distribution
will be accounted for on the measured side. This significantly limits the range of possibilities for the
k = 4 estimations. Given the probabilistic nature of the system for the domain of random breaking-
down events, the topology must align with the behavior of the measured data and the restrictions
imposed by the conservation laws, while ensuring convergence of the series in the limit to the infinity.
At this point, the system becomes highly constrained. In that sense, the idea of assigning a solution
function with an excessively large, insufficient, or non-convergent area to the unknown side should be
discarded (see Figure 3). Alternatively, if the measured area is excessively long or short, thereby
hindering the possibility for a convergent fit consistent with the observed trend, this suggests a need
to review the outcomes of the experimental setup and check for potential data quality issues.
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The realm of discrete distribution functions can provide the candidates that best fulfill all of the
aforementioned conditions. Well-known discrete functions (such as Negative Binomial and Poisson)
and discretized versions of continuous distribution functions were considered. Table 1 presents the
various probability distribution functions evaluated in this study. It is noteworthy that given that the
continuous functions family is larger than the discrete functions family, most of the bi-parametric
functions utilized in the research arose from discretizing well-known continuous probability

distributions [12].

Table 1. List of mono-parametric and bi-parametric distribution functions used in Paper I. The asterisk-marked
rows correspond to heavy-tailed distributions. (Weibull is heavy-tailed for 0<b<1).

Distribution’s Name

Mathematical Expression

Geometric fil@=a(l-a)*' 0<a<1
Flory-Schultz ful@) =a?k(1—a); 0<a<1
Poisson ful@)=a*¥te ®/(k—1)!; a>0

Negative Binomial

file,p) =T(k +p —Da"(1 - a)**/(T()T(B)); B>0,a€[0,1]

Conway-Maxwell

fila,p) = a®V/(Z(@p) * (k=DYF); ap>0

Burr * @)= A+k-1DFP - 1+k9F a,f>0
Fréchet * fela, ) = e~ ®k/®DF _o=(G-D/)F, g B0
Dagum * fi@BP)= A+k D F - A+k-1)"F apf>0
Gompertz fela, B) = e~a(@f0-1) _g=a(ef-1), g g5 0
Weibull * fe(a, B) = e~(k=D/@F _ o=/, o g0
Gamma fila,B) = y(a, Bk —1))/T(a) — y(a,Bk)/T(a); a,B>0
Lomax * filaB)= A+(k-1)/a)P-A+k/a) P a,f>0

Gamma Inverted *

fula B) = y(a,B/(k=1))/T(@) —y(a,B/K)/T(a); aB>0

In general, the flexibility level of a function increases with the number of parameters that it
incorporates. In particular, the family of bi-parametric functions has proven highly adaptable for
describing diverse physical phenomena encountered across various fields. Among these functions,
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heavy-tailed distributions (indicated with asterisks in Table 1) exhibit remarkable robustness in terms
of capturing significant variations within a dataset, particularly when dealing with a substantial number
of outliers. This flexibility arises from their characteristic tails, which decay at a slower rate than
functions with exponential decay, and this makes them well-suited for modeling extreme events, such
as the ones found in natural phenomena, e.g., survival times, river discharges, etc. [13].

In essence, the fundamental approach involves utilizing the measured data as reference points, the
experimental uncertainties as constraints, and Equations (1) and (2) to obtain a new set of equations
with the aim of determining the specific shape parameters {a;} for a given function. If a finite and real
set of parameters {a;} can be identified, the corresponding function becomes a solution to the PSM'’s
equation system. For a certain number of parameters n and m, the minimum number of observables
is n+1 and m+1, respectively. Thus, the experimental setup must adapt to such data requirements.

The unique nature of most distribution functions requires the application of non-linear solvers or
Monte Carlo methods to find the parameter set that fulfills all the conditions imposed by the equation
system. Once the shape parameters are determined, the function can be visualized by overlaying it
onto a column bar graph representing species in mol/kgf versus the respective k-groups.

For the hydrogen function case, an additional constraint can be formulated which describes the
behavior of the H/C ratio of the olefins system, i.e., the term y,?’éff presented in Equation (4). For each

k, this quantity varies between 2 and the lowest possible H/C ratio determined by the chain length
and carbon valency at g = 2|k /2] — 2. Therefore, the olefin® hydrogen function is confined within a
specific region. The upper limit is set by the mono-ene case function given by Equation (8), while the
lower limit corresponds to the fully unsaturated scenario expressed in Equation (9), when every
possible hydrogen has been extracted from the k-group chain. An intermediate case is defined as the
fully conjugated state, defined by Equation (10), when the chain only contains intercalated double
bonds. The olefin® hydrogen function must fall within this defined range to fulfill the chemical
characteristics of the molecular system.

fi" = 2n, (®)

1
W =1 (2K +2) - 4lk/2))ng), (9)

; 1
fili =2 (@k +2) = 2lk/2D)ng), (10)

2.3. Validation Method

The oxygen balance was used as an additional equation to calculate a relevant process quantity in a
DFB system, known as the Bed's Oxygen Transport (BOT), and to feature the data quality assessment
potential of the model to the experimental results.

In DFB reactors, the BOT phenomenon occurs when the bed material contains oxygen-carrying species.
The circulating bed serves as a carrier medium, transferring heat from the combustor to the cracker
chamber and transporting char and active species between the cracker and combustor. Even seemingly
inert bed materials, such as silica sand, may contain traces of transition metal oxides, such as Fe, 05,
which act as oxygen donors. These elements influence the cracking process and can alter the gas
product composition to some extent. Furthermore, ashes carried by the bed from the combustor side
can serve as significant sources of oxygen. Elements such as calcium participate in redox cycles [14]
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form compounds such as CaSO, under oxidizing conditions within the combustor and this is
transformed into CaS in the reductive environment of the cracker.

The hydrogen and oxygen balances are essential to calculate the BOT based on product composition.
By rearranging the oxygen balance in Equation (3) and applying the water H/O molar ratio of 2, the
BOT can be derived as in Equation (11):

co CO, HC,out __ Hp0,in _ __HyO0,0ut _ _ fuel 0z,in _ _ 0Oz,0ut
ng” +n, 2 +mng (no n, ) =n, +n, n,
; 1
Oext _ ., 02in _ _Ozout _ _co COo, HCout _ ~ o H,0 _ _fuel _ _leak
= An,*t =n, n®" =ng? +n, ? +ng 5 Any,*" —mp ne (11)
. H,0 H,0,in H,0,0ut
Now, from the hydrogen balance, the level of water conversion (An,*” = n,*""" — n,? ) can be
estimated as:
[ee) [ee)
Hz0 _ pf pf . of of of _ of arom Ha,out fuel Hpjin
Any,* = (nc,tot Z XekVe T Tcror Z XekVeers T Mtotar T 1y ) = (" + ") (12)
k=1 k=1

The term Ang“”“ in Equation (11) refers to the variation of oxygen entering or leaving the reaction
environment due to external sources other than the fuel or fluidization steam. Positive values indicate
that the reaction consumed external oxygen, while negative values imply oxygen removal by an
external agent. In the absence of a deliberate oxygen input flow, two external oxygen sources can be
identified: unintended air leakage into the cracker (n§¥%*), and the circulating bed material. Typically,
leakage is minimal thanks to periodic maintenance of the reactor. However, for non-nitrogenous fuels,
air leakage can be quickly calculated through the nitrogen balance with the detected level of N, and
the air O/N ratio. Then, Equation (11) defines the oxygen transported into the system by the bed, i.e.,

the BOT.

Under typical DFB conditions, Equation (11) essentially links the oxygen transported by the bed during
fuel conversion with the hydrogen balance. This means that the parametric functions for hydrogen
assigned to the paraffin and olefin systems, as shown in Equation (6), contain key information regarding
the species distribution to be used in the estimation of the BOT in the reaction system.

To validate the PSM estimations, an experimental approach utilizing a High-Temperature Reactor (HTR)
[15] in a parallel sampling stream was implemented (see Figure 8). In this method, gas products react
further with steam at very high temperatures in the HTR (~1,700°C), generating only syngas. The BOT
can also be calculated using the outcomes of the HTR in Equation (11), albeit in a simplified form due
to the complete reforming of the carbon species in the product gas to produce H,, as presented in
Equation (13).

= Ang“”“|

1 ;
co CO, Hy,out fuel Hy,in fuel leak
TR =Ny + ng = — —2 ( H - (n” + ny — Ny — Ny (13)

Since both calculations stem from the same sampled gas batch, the result from Equation (13) should
align with that calculated using Equation (11), serving as validation of the PSM estimations.
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3. Unraveling Correlations between the Steam Pyrolysis Product Distribution
and Polymer Composition

The molecular composition of a polymeric feedstock plays a crucial role in the definition of the final
cracking product distribution. As seen before, in thermal cracking, the primary objective is to break
macromolecules into smaller structures, while retaining key elements of their composition. This
involves subjecting polymers to high heating rates and temperatures, thereby promoting primary
reactions that are characterized by bond breakage and free radical mechanisms. Subsequent
secondary reactions occur in the emergent local gas phase, leading to the transformation of volatiles
into intricate structures such as polyaromatics and, ultimately, soot [16,17]. In particular, in a steam-
rich environment, these volatile compounds are further transformed via reforming reactions into
syngas (Hz + CO). Figure 4 shows a schematic representation of this decomposition process.

The specific structure of a polymer is central to determining its susceptibility to free radical bond-
breaking reactions. The formation of radicals through homolytic degradation in a high-temperature
process is strictly linked with the bond dissociation energy, a scalar that is affected by the polymer
chemical structure [16,18]. The presence of reactive sites, which increase the likelihood of radical
cleavage, is often due to atomic charge heterogeneities within the molecular chain structure [8,9].
Such heterogeneities are typically induced by the presence of functional groups, such as alkyl, carbonyl
and nitrile groups, as well as halogens and aromatic rings. These groups can act as radical initiators or
participate in the secondary reactions that generate a diverse array of product species. Understanding
these factors in the decomposition of polymer structures is pivotal to identifying correlations between
the products and feedstock in the cracking process.

Plastic

Feedstock
Cracking Severity

S —

Polymer Primary Secondary
Chains Reactions Reactions

Figure 4. Polymer chain decomposition through primary and secondary reactions during the cracking process.

Polymer Categories

The polymers found in plastic waste can be categorized into three groups: aliphatic polymers,
aromatic-containing polymers, and heteroatom-containing polymers, with each group exhibiting
distinct behaviors during pyrolysis. Aliphatic polymers, such as polyethylene (PE) and polypropylene
(PP), undergo random scission at low temperatures (>400°C), producing diverse molecule lengths. At
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higher temperatures (e.g., 700°-800°C), end-chain scission occurs, yielding shorter molecules such as
methane, as well as aromatics and polyaromatics due to the secondary reactions [19,20]. In the
category of aromatic-containing polymers, compounds such as polystyrene (PS) and polyethylene
terephthalate (PET) yield aromatic rings directly from their existing structures. For instance, PS can
recover up to 75% of its styrene at a relatively low temperature (450°C) and can attain 78.7% recovery
at 600°C [21].

Heteroatom-containing polymers, including oxygen, chlorine, fluorine, and nitrogen, exhibit diverse
thermal decomposition paths that lead to recombination reactions or the formation of stable
molecules such as CO/CO,, HCI, and NHs. Nitrogen-containing polymers such as PU and PA undergo
rearrangements at temperatures in the range of 250°-450°C, producing linear fragments with
functional groups such as -amino (-CH»>-NH;) and -nitrile (-CN) groups, concomitant with the
elimination of CO; and H,0 [22,23]. Chloride-containing polymers such as PVC undergo significant
aromatization post-dehydrochlorination due to the weakening of the bond energy by the chlorine's
electronegativity. This forms reactive sites that can react with other radicals or create double bonds
that lead to the formation of aromatic or polyaromatic structures [24-26].

In waste streams, the most-common polymers, e.g., polyolefins, decompose almost fully into gas at
temperatures in the range of 500°-600°C [20]. Temperatures outside this range cause further
degradation of the gas phase, breaking long chains into simpler monomeric structures [C2—-C4 and
benzene, toluene, xylene, and styrene (BTXS)], which are valuable for chemical recycling. Polyolefins
experience this phenomenon at temperatures in the range of 600°—900°C, although higher
temperatures risk reducing the monomer yield, and may cause unwanted secondary cyclization
reactions that result in polyaromatic structures [20,27,28]. The study described in Paper Il was
conducted at 800°C to balance monomer recovery with the control of harmful emissions related to
heteroatoms (in the form of dioxins) [29,30]. The focus of the study was on the hydrocarbon fraction
and carbon conversion slate of the cracking products.

3.1. Polymeric composition estimation method for unknown plastic mixtures

In typical plastic waste streams, the polymeric composition is often unknown. These streams contain
a diverse mix of plastics, including polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), and
polyethylene terephthalate (PET), among others. Manual sorting can give estimations of the polymeric
slate, albeit with an unavoidably large uncertainty and substantial effort, making it impractical for
continuous waste streams flows. These materials, even when sorted, remain heterogeneous due to
functionalization, dyeing, and other modifications that are tailored for specific functions. Metals and
inorganic compounds are also present in waste streams due to the preceding sorting and handling
processes.

Strategies for online estimation of the polymeric composition include direct characterization methods,
including x-ray diffraction and spectroscopic analyses with NIR or FT-IR [31,32]. Yet, these methods
may prove inadequate for highly heterogeneous mixtures and bulk streams, due to the presence of
composites, fillers, different colored materials, and high ash contents. Preprocessing is often necessary,
making the entire characterization procedure both time-consuming and resource-intensive. To
overcome these limitations, numerical models emerge as valuable tools. These methods leverage
mathematical algorithms and computational models to estimate the compositions of complex
mixtures based on mass and energy conservation laws. The models offer a quicker and more-cost-
effective way to obtain physically congruent approximations of the polymer composition, without
requiring specialized and expensive equipment.
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In Paper Il, a numerical model was implemented building up a system of equations based on the
elemental balances obtained from the ultimate analysis of the feedstock. Mass and energy
conservation, in the form of the Low Heating Value (LHV), was also added to the system to increase
the physical congruence of the model to the polymeric composition. In general, from the conservation
laws, for a particular feedstock blend f, the total mass and LHV will be the sum of the contributions of
all the polymeric compounds j present in the blend. Equations (14)—(16) condense this principle for
expression in the Einstein notation form (E.N):

ijfajfi = a[ > a;'ij'f =a" (E.N) (14)
Jj

1;x0f =m!, (E.N) (15)

LHVjx)f = LHV' (E.N) (16)

where a]‘: is the mass fraction matrix (i X j) of the element i € {C,H,0,N,Cl, ...} in polymer j €
{PE,PP,PVC, ...} (units: kg;/kg;), x’ is the mass fraction vector (j x 1) of polymer j within the
feedstock blend (units: kg;/kgy), and a®f is the mass fraction vector (i X 1) of element i in the

feedstock (kg;/kgr). The term 1; represents a (1 X j) covariant vector of ones, and mtfot is the sum
of the mass fractions of the element set evaluated. All quantities are evaluated for a particular
feedstock f.

The final system of equations corresponds to a typical linear system of the form Ax = b, as expressed
in Equation (17). In the real system, the target output vector b will have an associated experimental
uncertainty 4b derived from the ultimate analysis of the feedstock. Then, the equations are
transformed into inequalities that span over that uncertainty, creating a constrained frame for the
solution space. Equations (18) and (19) show the additional constraints imposed on the system.

i

aj af

A xl =p" A= LHij b= LHfo (17)
1; Miot

0<x/<1, v (18)

|Ax — b| < Ab (19)

The system of Equation (17) is not always consistent (number of independent columns of A is equal to
the set j size) or precisely determined (size{j} # size{n} where {n} is the eq. set). For example,
similar chemical formulas or more polymers in the blend than detected elements in the ultimate
analysis can lead to problems for the matrix system to find a unique solution. To address this issue,
mathematical optimization of a defined loss function constitutes a robust method to find the best
estimates for solving the equation system.

In Paper Il, convex optimization methods are explored. These methods aim to find optimal solutions
to matrix problems when the loss function and the constraints are defined by convex functions, as is
the case with the problem at hand. Typically, the loss function is defined in its general form as Equation
(20). For the case in study, two different loss functions were tested and derived from the general form,
and they are defined as the sum squared error (sme) and the fractional error (fe) of the matrix system.
These are presented in Equations (21) and (22), and the constraints are those defined in Equations (14)
and (15).
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L(y)=yTPy+cTy+d (20)

sme: y=Ax—b; P=Lc=0,d=0 = L) = (Ax — b), (Ax — b)" = ||Ax — bl (21)

1 .
fe: y =|Ax —b|; P=0,c"=ﬁVn,d=cnb" =>L(x)=cT|Ax—b|=|anj'-‘x1—d| (22)

where || .||, is the Euclidean norm for a vector (or L2-norm).

Among the set of algorithms used to implement the convex optimization, first-order solvers, known as
the Splitting Conic Solver (SCS) and Operator Splitting Quadratic Program (OSQP), were used due to
their robustness and potential scalability to solve large systems [33,34]. These solvers were tested and
implemented as a Python library under the Apache License using a domain-specific language (DSL)
called CVXPY [35].

To avoid pre-defined or biased results, optimization over the equation system’s hyperparameter set is
needed. In this case, the set is comprised of the different polymer compounds, the chemical elements
considered in the balance, the loss functions, and the solvers used. A grid searching method over all
possible combinations of the hyperparameters (see Table 2) was implemented to identify the best-
approximated set, using the total sum of the residuals of the elemental balances and the LHV as the
optimization metric.

Table 2. Hyperparameter set used to perform the funing process.

Condition Possible Values

Polymers PE, PP, PVC, Cell, PS, PAN, PET, PA, PU, ABS,
Nrubber, TRubber, PMMA, PC

Elements C,H,Cl,O,N,S

Loss Functions | Sum_Squares, Fractional_Err

Solvers SCS, 0SQP

The analyzed plastic blends in Paper Il were assumed to be free of organic or inorganic additives, and
any impurities were treated as inert ash. Only the pure polymer compounds most-commonly found in
waste mixtures were considered for the calculation. The relevant chemical parameters for the
polymers are presented in Figure 5.
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Figure 5. Polymers commonly found in waste streams. MF, molecular formula; MW, molecular weight; LHV, low-
heating value.

Natural rubber (NRubber in Table 2) was considered as pure polyisoprene, and tire rubber (TRubber),
was taken as 71% natural rubber and 29% carbon black as filler [36,37]. Polymethyl methacrylate
(PMMA, CsHgO2; MW, 100.1 g/mol; LHV, 24 MJ/kg) and wool, with parameters based on typical wool
fiber [38], were also included in the analysis.

3.2. Carbon bond-based classification system model

As the diversity of polymers in a heterogeneous mixture converge into the cracker, the structural
characteristics of each polymer type will come forth, shaping the resultant product distribution
obtained from the cracking process. In order to explore the relationship between the polymer
composition of the feedstock and the cracking product distribution at the data analysis level, a
systematic classification framework for carbon molecules was developed. Cracking products were
sorted into three fundamental categories: Cox species, aliphatics, and aromatics. Similarly, the
polymers contained in the waste material were categorized based on a three-group system that
reflected their carbon structures: 1) carbons in C-X bonds, where X represents heteroatoms such as O,
Cl, N, etc.; 2) carbons in aliphatic bonds (C-AL), encompassing paraffinic and olefinic structures; and 3)
carbons in aromatic bonds (C-AR), accounting specifically for aromatic rings. This classification strategy
enables comparisons and cross-correlation analysis at the bond group level between the products and
the feedstock. Based on this classification, the elemental mass fractions of the list of polymers
presented in Figure 5, as well as the carbon molar fractions for each of the defined groups, are
presented in Figure 6.
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Figure 6. Chemical characteristics of the polymers commonly found in plastic waste streams. Panel a, Elemental
compositions and H/C ratios. Panel b, Carbon mole fractions of the polymers according to the three defined bond
groups (X refers to a heteroatom of O, N and Cl). AL, aliphatic; AR, aromatic.

The data depicted in Figure 6 highlight the chemical diversity of the evaluated polymers. Within a
typical waste stream, a diverse arrangement of chemical structures appears, distinguished by different
H/C ratios and different shares of the carbon-bond groups. Aliphatic polymers, such as PE and PP,
exhibit higher H/C ratios, while PS and PET display low H/C ratios, characteristic of ring-based
structures. In contrast, cellulose (cell) and PVC stand out due to their high heteroatom mass contents.

In a global perspective, The work performed in Paper Il demonstrates the utility of the developed
structure-informed framework as a common data analysis basis for elucidating qualitative
relationships between heterogeneous feedstock compositions and their associated product
distributions. Furthermore, the idea of evaluating the polymeric conversion through the
transformation of representative carbon-bond groups can be expanded into a more-complex set,
Which canincrease the analysis resolution for cases in which the elemental and structural composition
are similar. For instance, the addition of a methyl-bond group can allow to decoupling of certain
polymers, such as PE and PP which share the same elemental composition.

Beyond the scope of Paper I, the results obtained from applying the framework to find correlations
constitute a proof of concept that paves the way for quantitative analysis of the linkages between
polymeric feedstocks and cracking products. This possibility may lead to the implementation of an
additional constraint layer onto the system of equations presented in Equation (17). Similar to the
possibility of obtaining an elemental analysis of C, H, O, N, S, Cl from the product gas using a combustor
and a high-temperature reactor (see [15,39]), this constraint can also be derived from the process
outputs. This feature makes it suitable for a continuous online estimation system. Details of the
mathematical formulation of such a constraint can be found in Section 6, along with the bridge that
can be established between the approaches presented in Papers | and Il for the online estimation of
polymeric compositions in heterogeneous mixtures.
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4. Experimental Setup

All of the experiments were conducted at the Chalmers Power Central facility, where a DFB
Gasifier/Cracker is coupled with a Circulating Fluidized Bed combustor that runs with biomass wood
chips. Silica sand was used as the bed material and the reactor was fluidized with steam. The feedstock
flows for the cracker processes are in the range of 40—-160 kg/h of plastic materials, while the CFB is
operated with flows in the range of 1,500-3,000kg/h of wood chips. A small flow of high-purity helium
(35 Ln/min) is added along with the steam (~150 kg/h), to serve as a tracer gas for the species
quantification. The DFB configuration allows the continuous removal of the produced char, along with
the bed material, transporting it back to the combustor side. Following conversion of the feedstock, a
sample stream is continuously extracted at the reactor’s exit (~10 Ln/min) and the remaining product
gas (~3,500 Ln/min) is conducted back to the combustor (see Figure 7).
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Figure 7. Schematic of the Chalmers power plant and gasifier (modified from [40]).

The sampled stream passes through a high-temperature (~350°C) particle filter and then splits into
two parallel streams (see Figure 8). The first stream passes through an isopropanol quenching loop, to
remove condensable species such as water, long hydrocarbon chains, and aromatics. Further cooling
is performed in a chiller, to ensure that no species condense downstream. After conditioning, the gases
are pumped into a Micro-Gas Chromatograph Varian CP4900 (GC1) equipped with a Thermal
Conductivity Detector (TCD). The micro-GC has two channels and uses Molsieve 5A (MS5A) and
PoraPLOT Q columns with argon and helium as carrier gases, respectively. Permanent gases and C1-
C3 hydrocarbon species can be characterized online by sampling from the continuous gas stream at 3-
minute intervals. A weekly calibration of the chromatograph is performed using five different
concentrations of the expected species in the dried gas (H,, He, N, Oz, CO, CO,, CHa, CaH3, CoHg, CoHe,
C3H6 and C3Hg).
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Figure 8. Sampling setup to characterize the permanent gases, hydrocarbons (aliphatics and aromatics) and total
carbon in the reactor gas flow.

For Papers | and lll, an additional sampling setup was used to characterize the C4+ species in a GC-
VUV. From a septum port located before the isopropanol loop, a gas sample is drawn through a
saturated amine that acts as a filter for water and is collected into a gas bag at room temperature for
characterization in the GC-VUV. For Paper |, the chromatograph is equipped with an Rxi-1-HT column
(Fused silica: length, 60 m; ID, 0.250 mm; film thickness, 0.25 um). To improve the characterization
time and the resolution of peaks, in Paper lll, the column used was the J&W CP-Sil 5 CB, CP7670 (Fused
silica: length, 25 m; ID, 0.250 mm; film thickness, 1.2 um). The carrier gas was hydrogen, and nitrogen
was used in the detector to make the gas cell inert.

Regarding this last setup, the study presented in Paper Ill focuses on establishing a formal
methodology for sampling and characterization based on GC-VUV. This methodology provides a
comprehensive carbon balance for the cracking products slate within a reasonable timeframe, with
the goal of future implementation for online characterization. The work showcases different
methodologies, comparing the proposed sampling method with more-traditional methods in terms of
analytic timeframe and level of species resolution. The evaluated methodology based on GC-VUV
achieved optimal quantification for C4—C18 species in considerably less time than the more-
conventional techniques, such as those based on solid phase adsorption described later.

From the same sampling port, a Solid Phase Adsorption (SPA) method is applied to obtain the aromatic
fraction. In this method, the gas is subjected to suction with a 100 ml syringe at a constant rate, forcing
it to pass through an adsorbent column (Supelclean ENVI-Carb/NH, SPE columns), which consists of
an amine adsorbent layer (500 mg) followed by an activated carbon layer (500 mg). The adsorbed
aromatics in the SPA column are subsequently eluted into a vial that contains a mixture of
dichloromethane, isopropanol, and acetonitrile (8:1:1) using hexylbenzene and 4-ethoxyphenol as
internal standards at concentrations suitable for the species quantification (~12,000 mg/L and ~250
mg/L, respectively). The vial is analyzed in a Bruker GC430 GC coupled with a Flame lonization Detector
(FID) and equipped with a mid-polar BR-17 MS (BR85877) column using H, as the carrier gas. Twenty-
eight different aromatic species are quantified with boiling points ranging from monoaromatics, such
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as BTXS, to polyaromatics, such as naphthalene, anthracene, and triphenylene. More details regarding
this method and the measured species can be found elsewhere [41].

The second hot stream flows through a HTR that is electrically heated to ~1,700°C for the complete
reforming of all hydrocarbon species by the steam contained in the raw gas. After leaving the reactor,
the gases are filtered to remove soot and cooled down to remove excess water before being pumped
into another micro-GC Varian CP4900 (GC2). The gases are expected to be almost 100% pure syngas
(H, , CO and CO0,) containing the corresponding amount of helium, which allows one to estimate the
total carbon in the producer gas and to derive an indirect estimation of the char yield. The efficacy of
the reforming process is determined according to the amount of methane detected (close to zero).
The HTR operates continuously and in parallel with the remainder of the described sampling process.
After completing the measurement set, the HTR reactor is flushed with air to burn out any particles of
soot that may have formed during the reforming process, and the corresponding carbon amount is
measured in terms of the CO, produced.

4.1. Materials and Process Conditions

Pure PE (C: 85%; H: 15%) in the form of pellets was used as the feedstock for the studies conducted in
Paper | and Paper lll. For the case of Paper Il, four representative material blends were used as
feedstocks for the cracking process: Reject from Cardboard Recycling (CRB); Cable Plastics (CP); Textiles
(TXT); and Automotive Shredder Residue (ASR). PE was also tested in Paper I, albeit as a reference
material for comparison purposes. All four heterogeneous materials have in common that they are
residues from post-consumer recycled products. The expected compositions of the materials and their
ultimate analyses are shown in Table 3 and Table 4, respectively. For ASR, two different batches with
different elemental compositions, resulting from different rejection processes, were analyzed. The
“Polymer Types” column in Table 3 represents the different plastics that are expected to be presentin
the material given the source of the rejected stream, although their shares are unknown. The polymers
classified as “Others” are taken as optional in the numerical estimation.

Table 3. Heterogeneous materials used in Paper Il with their respective polymer compositions and general

characteristics.
Material | Polymer Types Chemical Characteristics | Description
Post-consumer shredded stream of
Cardboard - High aliphatic carbon content | multilayer cardboard/plastic for food
. PE/PP, PET, Cellulose, PVC (Others: PU, PA, . ; . )
Recycling ps) - High oxygen content packaging after certain fraction of the
(CBR) - Medium ash content paper-based layer has been removed.
Form: Pellets.
Cable - High aliphatic carbon content Non-separated waste from cable
Plastics PE, PP, PVC. (Others: PET, Natural Rubber) - High chlorine content stripping. Only metals were sorted out
(CP) - Rich in ash previously. Form: Chopped pieces.
. L - Complex polymer blends . .
Textiles PET, PA, Polyacrylonitrile, Cellulose (Others: i | Textile waste after sorting the useful
- Low aliphatic carbon content .
(TXT) Wool, PVC, PU) . pieces of cloth. Form: Pellets.
- High heteroatom content
Automotive . - Low polyolefin content .
PP, PS, PU, Cellulose, PVC (Others: Tire . . Shredder Residue (SR) from the
Shredder . i - High aromatics content i X
| Rubber, Acrylonitrile butadiene styrene B automotive and electrical waste (WEEE)
Residue - Rich in heteroatoms ki
(ABS), PC, PE, PAN, PMMA) o sorting process. Form: Pellets.
(ASR) - Richin ash

PA, polyamide; PAN, polyacrylonitrile; PC, polycarbonate; PE, polyethylene; PP, polypropylene; PS, polystyrene;
PU, polyurethane; PVC, polyvinyl chloride; PET, polyethylene terephthalate.
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Table 4. Elemental compositions ( %wg,,) and respective percent errors (%kErr) for the materials used.

CRB cp TXT ASR1 ASR 2
Element %way %Err  %way  %Err  %way  %Err %wWay  %Err %way  %Err
C 60.60 5.0 57.00 2.0 60.53 5.0 33.00 5.0 47.00 5.0
H 9.00 13.0 8.50 6.0 5.17 5.0 4.20 13.0 5.40 13.0
o* 21.00 15.5 0.66 12.5 29.97 5.0 13.66 10.7 13.17 10.7
0.35 29.0 0.02 6.0 2.90 6.0 1.30 29.0 1.60 29.0
S 0.07 10.0 0.02 6.0 0.09 9.1 0.33 10.0 0.19 10.0
cl 0.20 25.0 5.80 6.0 0.12 7.6 0.51 25.0 0.64 25.0
Ash 8.75 11.0 28.00 3.0 1.22 15.9 47.00 11.0 32.00 11.0
LHV (MJ/kg) 30.14 5.0 27.20 7.2 28.13 7.4 13.90 15.0 20.10 15.0

*Calculated by difference-; LHV, low-heating value.

The main operational conditions used for Papers I, Il and lll in the DFB cracking reactor are indicated
in Table 4. The rate of bed material circulation was approximately 15 tonnes/h. The cracker was
fluidized with steam in a bubbling regime, the fuel residence time was estimated to be around 4-5
min, and the gas residence time was 5-10 s. The column titled “Feeding position” refers to Figure 7,
whereby the cracker can be fed through two different ports. Position 6 is situated at the top of loop
seal 1, which consists of an extruder in which the feedstock, in pellet or granulate form, is compressed
and heated to obtain a molten flow that pours down onto the cracker bed. In position 8, the feedstock,
also in pellet or granulate form, falls by gravity into the bed via a set of rotary valves working in an
airlock system [42].

Table 5. Operational conditions used in the BFB cracking reactor for Papers I, Il and lll.

Fuel

Temperature in
Cracker (°C)

Bed
material

Steam
Flow

(ka/h)

Material
Flow

(kguas/h)

Feeding
Mode

Feeding
Position

Steam/Fuel
ratio

Paper |

PE

781; 787; 788;
793; 843

Silica Sand

120

90

Molten
flow via
extrusion

13

PE

800

Silica Sand

120

90

Molten
flow via
extrusion

13

CRB

805

Silica Sand

45

40

Molten
flow via
extrusion

11

TXT

800

Silica sand

150

150

Top
Feeding by
gravity

Paperll

cp

800

Silica sand

130

108

Top
Feeding by
gravity

1.2

ASR1

790

Olivine

160

159

Top
Feeding by
gravity

ASR 2

790

Olivine

160

157

Top
Feeding by
gravity

Paper il

PE

759-819

Silica Sand

45

64-91

Molten
flow via
extrusion

1.4-2.0
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5. Results and Analysis
5.1. Parametric System Model Evaluation

From the experimental results obtained under the different operational conditions, the functions in
Table 1 were tested, starting with the mono-parametric ones so as to satisfy the condition to keep the
number of parameters for the function to a minimum. It was found that the topology of the mono-
parametric functions was not sufficiently flexible to describe adequately the decaying behavior of the
species. Therefore, at least one additional shape parameter was needed. As formulated in Equations
(5)—(7), bi-parametric functions require at least three observables for each molecular system in order
to derive a closed equation system that can determine the functions’ parameters. This need was met
through the results acquired for C4+ using the GC-VUV setup. Thus, the species that were evaluated
to identify the shape parameters were C1, C2, and C3 for the paraffin function and C2, C3, and C4 for
the olefin case. Figure 9 displays the functions that fit the experimental results. Out of the five
experimental cases studied in Paper |, only three cases are shown, for the sake of clarity, based on
their relevance to the process severity (defined as ethylene/propylene).

C_pfof. Burr — C_pfof: Burr — C_pfof: Neg-Binom
= C_pfof: Frechet - C_pfof: Frechet » C_pfof: Burr
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Figure 9. Results for some of the parametric functions tested in relation to the species’ carbon distributions,
expressed inmolC/kgg,e VS. k-group, obtained for different severity cases (Experiments 1, 3 and 5, from left to
right). The results are considered for the paraffin and olefin cases. Bottom row: Zoomed-in plots. (Red column:

incomplete group species measured).

The bars in the upper row of Figure 9 show the experimental results for paraffin (orange bar) and the
aggregated paraffins and olefins (purple bar), as well as the different functions that were tested to
describe the systems. The designation ‘pfof’ refers to the summing of the paraffin and olefin functions
for each k group. Notably, the heavy-tailed functions, which include Burr, Fréchet, Lomax, and Inverse
Gamma, proved to be the most-flexible in terms of fitting the data across all severity levels. These
functions exhibit elongated tails over longer carbon groups, leading to a lower rate of decay and an
enlargement effect on their total enclosed areas, as shown in Table 6. This characteristic is especially
crucial in low-severity cases, where the yields of long-chain species are still relevant. The function’s tail
and area correspond to the estimation done over the C5+ groups and the total estimated
concentrations of such groups, respectively.
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Table 6. Results for the total area, tail area (sum of C5+), and the parameters associated with the functions tested.

Exp. 1 Exp. 3 Exp. 5
Function Area Area Tail ol o2 Area Area Tail ol o2 Area Area Tail ol o2
Neg-Binomial nan nan nan nan nan nan nan nan 35.079 | 11.480 | 0.943 0.128
Con-Max nan nan nan nan nan nan nan nan nan nan nan nan
Burr* 40.048 | 10.742 1.204 1.117 | 40.323 | 13.025 1.243 0.867 36.204 | 12.574 1.620 0.465
Fréchet* 42.774 | 13.965 0.854 0.589 | 40.254 | 12.788 | 0.811 0.481 36.281 | 12.080 | 0.498 0.158
Dagum* 40.077 | 10.789 | 0.442 1.399 nan nan nan nan nan nan nan nan
Gompertz nan nan nan nan nan nan nan nan nan nan nan nan
Weibull* nan nan nan nan nan nan nan nan 36.164 | 13.042 | 0.686 | 0.315
Gamma nan nan nan nan nan nan nan nan 34.500 | 10.594 | 0.066 0.126
Lomax* 40.134 | 10.865 2.538 1.380 | 40.335 | 12.994 1.949 0.691 35.713 | 11.120 1.444 0.076
Gamma_Inv* 43.458 | 14.631 0.760 0.429 | 40.438 | 12.940 | 0.744 0.342 36.122 | 11.622 0.439 0.061

* Heavy-tailed functions; nan, No results.

At higher severities, the long chains progressively break down into shorter hydrocarbon species,
contributing to the observed increase in data skewness. In such a scenario, topologies that feature
rapid decay with relatively small estimated areas for the unmeasured groups, such as the Negative
Binomial and Gamma functions (see Table 6), manage to accommodate the skewness of the data. Yet,
the heavy-tailed functions mentioned earlier remained adaptable, effectively capturing the high-level
skewness of the experimental data without significantly altering the total area. This result highlights
the robustness of these types of functions for working in high- and low-severity scenarios.

Concerning the hydrogen distribution analysis, Figure 10 portrays the same experimental cases as
presented before. The bottom-row plots provide detailed views of the experimental cases and the
tested functions. The gray, blue, and purple-dashed curves represent the three theoretical scenarios:
mono-enes (high), fully unsaturated (low), and fully conjugated (middle) cases of the olefin's Gamma
effective function (y,f’éff), respectively, as introduced in Equations (8)—(10). Notably, for the C7+
species, only the Burr, Fréchet, and Inverse Gamma functions remained within the permissible
hydrogen range. These three functions consistently adhered to the hydrogen constraints for all the k-
groups and experimental cases, indicating their shape’s compatibility with the chemical characteristics
of the olefin system. This alignment enhances confidence in the predictions made using such functions.
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Figure 10. Results for the discriminated parametric functions applied to the hydrogen distribution of the species,
expressed inmolH [kgg,., vs. k-group, for Experiments 1, 3 and 5. Upper row, Burr function results. Bottom row,
zoom in and evaluation of the functions according with the gamma effective. (Red column: incomplete group

species measured).
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In Figure 9 and Figure 10, the C5 species bar is indicated in red, denoting incomplete species data due
to equipment limitations. Only two out of approximately ten potential olefin species could be
measured with the characterization methodology used. This mismatch is evident in relation to the
functions’ estimation for the C5 group. Regarding the carbon case (Figure 9), regardless of the function
considered, there is a noticeable gap of around 100% of the C5 bar’s height. This effect is particularly
pronounced in the low-severity cases. Therefore, the study in Paper | underscores the model's
predictive capabilities for the unmeasured carbon groups. These predictions remain physically
consistent owing to the highly constrained framework established by the set of chemical and
mathematical considerations applied to the system. Thus, in the absence of specific measurements for
C5+ species, the PSM emerges as an important and useful tool for physically congruent estimations of
these unmeasured species.

5.2. Parametric System Model Validation and Data Quality Assessment

As described in Section 2.3, the model outcomes can be validated by calculating the BOT. Such
validation can be used in two ways. First, by ensuring that the BOT calculated from the PSM estimations
using Equation 11 aligns with the expected values given by Equation 13 using the results derived from
the HTR reactor. Second, by deliberately introducing errors into the experimental results through
modifications in the calibration curves. This dual validation strategy aims to assess both the accuracy
of the model's estimations and its capabilities for evaluating the quality of the data by detecting errors
in the measurements.

The strategy also serves to validate the functions further by testing them against the highly skewed
scenario created by the miscalibrated data. There, Burr was the sole function that was able to fit the
data while still satisfying all the system constraints. Consequently, due to its robust performance across
all the tested cases in Paper I, Burr was the function that was recommended for PSM applications
under the evaluated process conditions.

Table 7 presents the results of the BOT calculation from the HTR outcomes versus the PSM estimations
for both the calibrated and the miscalibrated cases.

Table 7. Bed’s oxygen transport (BOT) calculated from the HTR versus the value estimated from the model
(PSM), for the calibrated case (left table) and the miscalibrated case (right table).

Calibrated Case Miscalibrated Case
BOTHTR BOT PSM %diff BOT HTR BOT PSM
8.27 8.91 7.74 15.62 5.49
10.8 9.52 11.85 16.48 6.56
10.21 9.51 6.86 15.72 6.79
8.92 8.87 0.56 14.23 5.68
8.14 7.18 11.79 17.18 8.24

From the calibrated case in Table 7, it is shown that the BOT estimated by PSM presents an error of
less than 12% with respect to the HTR values. This is a reasonable margin of error, given the
unavoidable variations that occur in a large-scale process such as that used in these experiments, as
well as the intrinsic numerical uncertainty of the model when predicting the carbon and the hydrogen
tails.

In the miscalibrated case shown in Table 7, there is clear inconsistency in the results: the BOT
calculated from the HTR results is 2—3-times higher than that estimated by the PSM. In this scenario,
due to the topological constraints of the function's tail, the estimations of the total unknown species
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of C5+ were such that there was no possibility to achieve alignment with the HTR case. This discrepancy
strongly indicates a systematic error that affects the measurements, inflating the species yields and,
consequently, producing a lower BOT value for the PSM estimation. This inflation of yields needs to be
around 15% to ensure a match between the PSM and HTR calculations.

In situations where the origin of a discrepancy is unknown, potential errors can stem from various
sources, including calibration inaccuracies linked to the analytical instruments, environmental
fluctuations, and inadequate observation methods. In this case, the detection of species by the GC
exceeded 100%vol in the measurement, indicating the presence of such errors in the overestimations
of some species. Upon calculating the percentage difference for the miscalibrated species, the
averaged discrepancy was approximately 10%, aligning with the magnitude of the PSM prediction
(around 15%). This result underscores the ability of the PSM to pinpoint deficiencies in the quality of
the experimental data. In future, PSM implementation could be further refined to assign errors
specifically for each measured k-group, thereby enhancing the precision of the model's outcomes.

In general, the results demonstrate the potential of the PSM model to reduce the complexity of the
measured systems, so as to transform an extensive list of experimentally determined species into just
two parameters and shaping a specific distribution function. This reduction in degrees of freedom
allows the PSM to capture and compress efficiently the information, with the possibility to enclose it
in physics-informed frameworks, thereby enabling the acquisition of valuable insights. The findings
highlight the potential of the PSM model as a versatile tool for improving measurement accuracy and
for ensuring the statistical and chemical coherence of the results obtained from the steam cracking
process. Furthermore, the estimation of C5+ carbon species constitutes a practical application for the
downstream operations and controls of refineries.

5.3. Correlations between Product Distribution and Feedstock: Polymeric Composition Estimations

In the context of waste streams, as detailed in Section 3, the polymeric composition of the feedstock
plays a crucial role in determining the distribution of the cracking product species. However, the
materials investigated in Paper Il were the rejected fractions of mechanical recycling with unknown
and varied compositions. To estimate the polymeric composition, a numerical approach was
introduced, as detailed in Section 3.1. The results of the feedstock composition estimations, based on
Equations (17)—(22), are presented in Table 8.

Table 8. Estimated percentages for the materials’ polymeric compositions.

Solver L.Function PE PP Cell PS PET PVC PU PA ABS PAN NRubber TRubber Wool PC

PE Expected (kg/kgse) 100

SCS Fract_Err 43.40 35.64 7.85 0.36 3.90

SCS Fract_Err 43.40 <0.01 35.64 7.85 0.36 3.90

osap Sum_Sqr 4297 <0.01 35.23 <0.01 8.24 0.36 4.34 <0.01

CRB
Average (kg/kgf) ~ 43.25 <0.01 3550 <001 7.98 036 4.05  <0.01

Estimated (kg/kga) 47.40  <0.01 38.91 <0.01 875 040 4.44 <0.01

Expected (kg/kgdcs) PE+PP > 40 <50 5-12 <1 PU+PA+PS <5

SCS Fract_Err 36.71 <0.01 <0.01 1.92 1.84 1022 0.22 21.06

SCS Fract_Err 36.37 <0.01 1.71 1.84 1022 0.22 21.61
cP

SCS Fract_Err 37.24 <0.01 2.25 1.84 1022 0.22 20.20

Average (kg/kgf)  36.78 <0.01  <0.01  1.96 1.84 1022 0.22 20.95
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Estimated (kg/kgaor) 51.08  <0.01 <0.01 2.72 256 1420 0.31 29.10

Expected (kg/kgdcs) Polef > 70 >10 PU+PA+PS <2 Polef
SCS Fract_Err 7.08 69.42 0.22 <0.01 13.85 2.60 5.62
SCS Fract_Err 7.11 69.44 0.22 13.83 2.64 5.54
osap Fract_Err 7.06 69.59 0.22 <0.01 13.55 2.74 5.63
TXT
Average (kg/kgf) 7.08 69.48 0.22 <0.01 13.74 2.66 5.60
Estimated 7.17 70.34 0.22 <0.01 13.91 2.69 5.67
(kg/(ka/kgacr)) ) ) ) ) ) ) )
Expected
<15 >60 <1 PU+PA+PAN 10-20 <10
(kg/(kg/kguaer))
SCs Fract_Err 12.51 21.75 <0.01 0.90 13.67 <0.01 <0.01 3.84 <0.01
N Fract_Err 12.51 21.75 <0.01 0.90 13.67 <0.01 3.84
N Fract_Err 12.51 21.75 <0.01 0.90 13.67 3.84 <0.01
ASR1
Average (kg/kgf) 12,51 21.75 <0.01 <0.01 0.90 13.67 <0.01 <0.01 3.84 <0.01 <0.01
Estimated
23.60 41.04 <0.01 <0.01 170 25.80 <0.01 <0.01 7.24 <0.01 <0.01
(kg/(kg/kgaer))
Expected (kg/kgae) PP > 20, Polef>30 >10 <2 PU+PA+PS>20 ABS+PC+PMMA <10 Polef
SCs Fract_Err 13.13 19.47 9.60 1.13  16.00 <0.01 <0.01 <0.01 8.67 <0.01
SCs Fract_Err 13.07 19.48 9.66 1.13  15.98 <0.01 8.68 <0.01
N Fract_Err 13.03 19.48 9.70 1.13  15.98 8.68
ASR 2
Average (kg/kgf) 13.08 19.48 9.65 1.13  15.99 <0.01 <0.01 <0.01 8.68 <0.01
Estimated (kg/kgdcr) 19.23 28.64 14.20 1.66 23.51 <0.01 <0.01 <0.01 12.76 <0.01
Expected (kg/kgs) PP > 20, Polef>30 >10 <2 PU+PA+PS >20  Other alloys <5-10 Polef

Polef, PE+PP+Rubber; daf: dry ash-free feedstock. ABS; acrylonitrile butadiene styrene; PA, polyamide; PAN, polyacrylonitrile; PC,
polycarbonate; PE, polyethylene; PMMA, polymethyl methacrylate; PP, polypropylene; PS, polystyrene; PU, polyurethane; PVC, polyvinyl
chloride; PET, polyethylene terephthalate.; SCS, Splitting Conic Solver; OSQP, Operator Splitting Quadratic Program.

Overall, the estimates presented in Table 8 exhibit a reasonable degree of approximation. The residuals
for the elemental balances, obtained from the optimization, present an averaged total error of <2%
across all the materials. For the LHV case, the averaged error is less than 10%, except for the textiles
case, where it reaches 17%. However, this deviation is deemed to be reasonable due to the pure-
components approximation used, as well as the presence of additional polymers and additives that
are commonly found in such waste streams. Moreover, the estimates fall within the expected share
ranges for each polymer component, which were determined through visual pre-identification of the
material, common material production composition, and/or rough elemental estimations.

Figure 11 displays a graphical summary of the estimated mass fractions of the different polymers in
the evaluated materials presented in Table 8.
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Figure 11. Summary of estimated polymeric mass fractions in kg/kguarfor the evaluated materials.
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5.4. Correlations between Product Distribution and Feedstock: Carbon Bond-Based Classification
Evaluation

The compiled results from the thermal cracking experiments performed under the conditions
described in Table 5 for the evaluated materials in Paper Il are shown in Figure 12.
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Figure 12. Results of the cracking DFB process for the evaluated materials in terms of mass ratio (kg/kgf). Total
Monomer Recovery = C2+C3 (Monomers) + BTXS.

Based on the carbon bond classification rules described in Section 3.2, the carbon atoms within the
polymeric components of the feedstock were categorized based on their specific bond types. These
categories were then aggregated in accordance with their corresponding estimated polymeric
proportions for each material (Table 8). Here, the C-X group was further subdivided into C-O (carbons
bonded to oxygen atoms) and C-Xh (carbons attached to other heteroatoms). In those cases in which
a carbon was bonded to multiple types of heteroatoms, preference was given to oxygen, due to its
greater tendency to form carbon products, such as CO and CO,, during the process. The classification
approachisillustratedin Figure 13 (left panel) in terms of the carbon ratios for each of the bond groups,
calculated in relation to the respective feedstock carbon contents. In parallel, Figure 13 (right panel)
displays the carbon ratios of the respective thermal-cracking product yields, sorted according to the
corresponding classification criteria.
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In Figure 13, the variations obtained for the defined carbon groups under cracking conditions are
evident. The polymer composition estimates in Table 8, coupled with knowledge of the cracking
products from the carbon bond-based classification framework, provide important insights into key
aspects of carbon conversion within the process. CRB, TXT, and ASR, which contain substantial amount
of C-O bonds due to their high share of either Cell or PET (Figure 13, left panel), yield notable COx
levels, as compared with CP, which completely lacks C-O bonds in its structure.

However, the levels of COx produced from CRB and TXT are lower than their respective levels of C-O.
This suggests that part of the carbon in the C-O bonds, originating from ether or ester linkages in Cell
or PET, respectively, are converted into species other than COx, such as aliphatics,
aromatics/polyaromatics or char. As an example, TXT is primarily made of PET, which lacks C-AL due to
the ester linkages in its structure. Despite the low C-AL levels (~14%), conversion results in double
production of aliphatics, primarily C4+, considering the original C-Al levels. This outcome reveals that
the ester oxygen connecting the terephthalate with the ethylene in the PET structure is more likely to
leave with the carbonyl (later to produce CO,) than to cause the C-C bond to break. This explains the
decrease in COx relative to C-O and the increase in aliphatics in relation to C-AL. These results mean
that the ethylene carbon in PET may be better-placed in the C-Al group than in C-O, constituting an
exception to the carbon assignation rule. On the other hand, ASR, which has a lower oxygen content
than TXT, exhibits higher COx levels post-cracking, a result that is attributed to ash-induced oxygen
transport in the DFB system, as detailed by Pissot et al. [43].

In terms of the aliphatics group (C-AL), CRB and CP, which are rich in polyolefins (47% and 80%,
respectively) with linear aliphatic bonds and, thus, showing the highest C-AL levels, gave the highest
level of olefin-monomer recovery, even comparable to pure PE. Aligned with this, ASR, with a higher
linear polyolefins content than TXT, showed a relatively higher level of olefin-monomer conversion
compared with TXT.

Regarding the aromatic compounds, two main mechanisms of formation were observed across the
materials: thermal decomposition of polymers that contain aromatic structures, and aromatization
through the cyclization of cracking reaction precursors, leading to the production of monoaromatics
and polyaromatics. TXT exhibited the highest level of conversion to BTXS (16%) due to its PET
composition being rich in aromatic structures. Nonetheless, the nearly identical levels of C-AR with the
produced aromatics for TXT suggest that either all the carbons in C-AR remained as carbons within a
ring in the products or there was a near-zero total inter-group conversion to aromatics. On the other
hand, the high-polyolefin materials, such as PE, CRB, and CP, despite lacking aromatic groups on their
original structure, showed a significantly large aromatics fraction, indicating formation through
cyclization reactions.

Overall, the BTXS/polyaromatics ratio was higher for the materials that contained aromatics in their
structures, e.g., TXT, CRB and ASR, indicating that decomposition rather than cyclization mechanisms
predominantly yield the valuable monomeric BTXS fraction. On the other hand, a significant
polyaromatics yield was observed for materials with high polyolefin contents, indicating the further
development of uncontrolled cyclization reactions. Notably, CP displayed the largest polyaromatics
fraction among the materials, indicating the occurrence of significant secondary reactions during
cracking. Chloride-containing polymers, such as PVC, facilitate aromatization in the dechlorination
process through increased double-bond and conjugated diene formation [26], which are precursors
for cyclization reactions. In this regard, the active dienophile participation of ethylene and propylene
in Diels-Alder reactions is evidenced by the CP's reduced carbon share of olefin monomers.
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Concerning char formation during thermal cracking, the polyolefin-rich materials such as CRB and CP
yielded limited levels of char (6% and 13%, respectively), whereas TXT and ASR produced higher char
yields. TXT char and ASR char arise from excessive aromatization that is induced by the highly
heterogenous composition along with additives and from carbon-based fillers, as in the case of ASR.
Char, which stays in the reactor and then leaves along with the sand, contributed to heat production
in the combustor or was filtered out from the raw gas (when produced in form of soot). It is pertinent
to note that in the utilized DFB system, the amount of char produced did not significantly influence the
system's overall heat balance due to the continuous operation of the biomass-based, full-scale boiler.

A cross-correlations analysis between the feedstock and the cracking products for the defined carbon
bond group classification is illustrated in Figure 14. In this figure, the x-axis corresponds to the
feedstocks' carbon fractions of C-O, C-AL, and C-AR (plots a, b, and c, respectively), while the y-axis
represents the level of carbon conversion into the evaluated carbon product species in each plot.
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Figure 14. Carbon conversion into product compound i (kgC of species i in product perkgC in feedstock) as a
function of the fraction of the carbon bond group j in the feedstock (kgC in bond type j per kgC in feedstock).
Carbon Bond group j = C-O, C-AL, C-AR; product compound i = COx, aliphatics, aromatics.

In the plot a of Figure 14, a positive and seemingly linear correlation between COx (blue markers) and
C-O carbons is evident, starting above the dashed diagonal line, reflecting the inherent oxygen
interaction in the system due to the steam environment. A similar positive correlation with C-AR
carbons is observed in plot c. Conversely, plot b shows an overall negative correlation with the aliphatic
bonded carbons (C-AL), corresponding to the decrease in the feedstock oxygen content. The COx starts
from around 0.3 for C-AL levels <0.5 and thereafter declines, reaching the level of pure PE (~0.05).

Plot b in Figure 14 illustrates a positive correlation between aliphatics (orange markers) and C-AL, as
expected. In plot a, there is a negative correlation with C-O, since such bonds instead tend to end up
as COx species. The correlation of aliphatics with C-AR is also negative (see plot c), indicating the low
likelihood of ring opening to form linear structures. On the other hand, in plots a and ¢, the aromatics
(gray markers) show slightly positive correlations with C-AR and C-O, respectively, albeit slightly
negative correlations with C-AL (plot b, suggesting the still-significant formation of ring structures by
cyclization even when the original material lacks such structures.

Apparent deviations from linearity are observed for TXT in all the plots. This is likely due to its low
polyolefin content, though mainly due to the conversion of other groups, especially certain C-O
carbons that are assigned according to the bond classification rules into aliphatic species during the
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cracking process, as explained previously. This effect causes the TXT to behave as an outlier case in all
the plots in Figure 14, and provides another indication that the C-O assignation rule must be revised
for cases such as this in order to deal with such behavior.

Individual species and groups, such as olefin C2 and C3 monomers and BTXS, can be analyzed in a
manner similar to that used in Figure 14. In Figure 15, these species are plotted against C-AL (plot a)
and C-AR (plot b), providing insights into potential correlations. Methane is also included in the plot
for illustrative purposes.
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Figure 15. Carbon conversion into product compound i (kgC of species i in product perkgC in feedstock) as a
function of the fraction of the carbon bond group j in the feedstock (kgC in bond type j per kgC in feedstock).
Carbon bond group j = C-AL, C-AR; product compound i = CHa, olefin monomers, BTXS.

Plots a and b in Figure 15 reveal distinct trends for olefin monomers (green markers) concerning C-AL
and C-AR, respectively. A clear positive correlation is seen with aliphatic carbon bonds (C-AL),
indicating the persistence of aliphatic bonds to stay as aliphatic chains, despite the seemingly random
radical-based breakage that they undergo during the process. The correlation shifts towards lower
values compared to the total aliphatics in Figure 14 (plot b), which aligns closer to the identity line.
This shift stems from C-AL being utilized to produce other aliphatic components (e.g., CHs and others).
Nonetheless, the trend remains similar to that of the aliphatics, suggesting a strong tendency for C-AL
to produce valuable C2 and C3 monomers under the evaluated process conditions. In contrast there is
a nonlinear negative correlation for the aromatic carbons (C-AR), indicating once again the minimal
likelihood of the ring structures to break down and contribute to the olefin monomeric yield. Methane
(red markers) exhibits a slightly positive correlation with C-AL, and a slightly negative correlation with
C-AR.

BTXS (blue markers) shows no definitive trends for any of the two bond groups, remaining relatively
stable at around 0.15. Interestingly, the positive correlation between aromatics and C-AR bonds
observed in Figure 14 (plot c) is lost for BTXS in Figure 15 (plot b). This lack of correlation for one-ring
aromatics suggests multiple routes for their production, with no clear predominant source. As
discussed earlier, some of the evaluated materials predominantly follow the cyclization route, such as
high-polyolefin materials, while others yield aromatics through direct detachment of existing aromatic
rings, as observed for TXT.

The carbon bond-based classification method offers an approach from a data perspective to generalize
the complexity of feedstock polymeric blends. It provides a simplified way to assess for cracking
processes the impacts of specific chemical structures in a feedstock on the carbon product distribution.
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Although further refinements to the classification rules are needed, especially concerning materials
such as TXT that have observed non-linear behaviors, these preliminary correlations create useful
mappings of defined carbon bond groups pre- and post-cracking. Overall, the developed framework
concept paves the way for more-advanced, predictive, two-way models that consider more materials,
such that the correlations not only be useful for estimating certain carbon groups (or potential
monomer recovery) based on feedstock and process conditions, but also for defining polymeric
compositions based on the key species and/or carbon groups observed in the product distribution.
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6. Future Research Perspectives

Considering the control and optimization of the cracking conversion process for a heterogeneous
polymeric feedstock, it is of the utmost importance to have online knowledge of the feedstock
composition entering in the reactor at all times, so as to optimize the process towards an economically
favorable species distribution. The numerical method of estimation presented in this work constitutes
a useful and rapid way to obtain such quantification.

In that regard, the system bond classification framework can help to refine the numerical estimation
of the polymer’s share. As described in Section 3.1, Equation (17) provides a system of equations that
allows to numerically estimate the polymeric shares based on the elemental and energy balances. Each
equation added to the system is an additional constraint layer that is designed to restrict the solution
space created by all the possible polymer sets.

The classification framework may constitute an additional set of equations that adds one more level
of restriction to the system. This new constraint layer is of high relevance because it can link the
measured cracking products to the respective polymeric estimations. To present the concept briefly,
the yields obtained for each product group can be seen as a linear combination of the conversion that
each carbon-bond group underwent into that particular product group during the cracking process. In
mathematical form, considering a polymer component j, for a defined set of carbon bond groups {b}
and product groups {g}, the carbon mass fraction yf’j of the product group g can be defined by
Equation (23):

¥ = Z & (23)
b

Here, yf;)jmust be read as the carbon mass fraction of the bond b that was converted into group g for

component j. For the case studied in this work, b€{C—0,C—Al,C—Ar} and gE€
{COx, aliph, arom}. Thus, Equation (23) can be rewritten as Equation (24):
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The term ycb’j corresponds to the carbon mass fraction of the bond b in component j and ﬁg;,j is
defined as the conversion coefficient that relates the fraction of bonds b in component j that were
converted to group g. So, each product group g corresponds to the sum of all the fractional
contributions of each of the defined bonds b to that particular product group. Then, Equation (25)
expresses the carbon mass fraction of the group g (yf’j), as a function of ycb’j. Based on this, ﬁf;f can
be defined as a conversion tensor that represents the cracking process, connecting the bonds found in
the feedstock with the final product groups.

Ideally, each measured product g coming from a feedstock f would correspond to the contributions
of all the groups g provided by the polymeric components contained in the feedstock. For a fuel with
a set of polymeric components j € {PE, PP, PVC, ...}, this can be expressed by multiplying yfj (j was

transposed) by the mass fraction vector x// of Equation (17). However, in reality, the presence of
certain polymers in the feedstock blend might cause cross-interactions between the products released

by other polymers. In its simplest form, this could be approximated by adding a correction term (e‘g €

9.J

(—=1,1)) to the conversion tensor 8.,

as is expressed in Equation (26). Thus, for a fuel with a set of
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polymeric components j € {PE, PP,PVC, ...}, the carbon mass fraction of the measured group g
when feedstock f is converted can be defined by Equation (27):

38 = (B + ey = BSyP (E.N) (26)

9o x0T =y (E.N) (27)

where 37091. corresponds to the corrected carbon mass fraction of group g in component j and ycg’f the

measured carbon mass fraction of group g of the feedstock f. Equation (27) will then constitute an
additional set of size{g} equations, which can be added to the system defined in Equation (17).

On the other hand, an important synergy can be generated with the PSM features, as it can always
help to provide an assessment on the cracking data, so as to improve its quality and/or predictive
accuracy for key species.

Figure 16 presents a schematic of the integration of the model and its application for backward
estimations of polymer compositions.
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7. Conclusions

This thesis presents the results of research efforts to develop data analysis models that can be used as
tools to enhance the understanding and processing of data generated from the thermal cracking
conversion of polymeric feedstocks. These tools incorporate specific chemical and mathematical
characteristics of the conversion system, enabling the extraction of meaningful and physically
consistent information from the process data.

The cracking product species distribution is a key focus in the two models presented in this work. The
models were developed by evaluating the data in two ways. First, the species outcomes were described
in a special data representation using a framework constituted by the chemical and mathematical
characteristics of the system. Based on this, predictions of unknown species quantities and data quality
assessments could be performed. Second, the product species and information on the feedstock
polymeric composition were considered in a novel carbon bond-based classification framework, as to
the basis for exploring and mapping correlations between the relevant data for the carbon groups pre-
and post-cracking of the plastics mixtures.

The first model consisted of a Parametric System Model (PSM), which was developed to represent the
product species data emerging from the cracking process. This model was defined within a framework
that contained generic knowledge of the evaluated chemical system in terms of conservation laws and
probabilistic properties. By including elemental carbon, hydrogen and oxygen balances and a topology
that is statistically meaningful, the model proved effective in compressing the species' carbon and
hydrogen data into a special bi-parametric function. The model enabled physically consistent
estimations of unmeasured carbon group species, addressing the constraints linked to the
characterization equipment and identified experimental data errors, thereby showcasing its potential
for data quality assessments.

The second model involved evaluation of the product composition coming from the cracking of highly
heterogeneous feedstocks, represented by four different post-consumer waste-derived materials.
Here, correlations between the cracking products and the feedstock composition were studied, based
on a carbon bond-based classification system that classified the carbons in aliphatic (C-AL), aromatic
(C-AR), and heteroatom-bonded (C-X; X=0, N, S, Cl) structures.

Among the main findings, visible correlations were found between the defined feedstock structures
and the products chemical groups. For instance, a positive linear correlation was observed between
the carbons in the feedstock bonded to oxygen (C-O) and the COx product species yield, contrasting
with a negative correlation to C-AL. A slightly positive correlation was seen between the aromatics and
C-AR in the feedstock, whereas there was a negative correlation with C-AL, indicating the stability of
the aromatic rings in terms of tending to remain in ring form rather than break down into chains. No
definitive trend emerged for BTXS concerning the defined carbon-bond groups.

Overall, the observed capabilities of PSM position the model as a tool to assess and enhance the
quality of the measurements obtained from the cracking process. In addition, the developed carbon
bond-based classification system provides a unique common framework that enables trend
identification and potential mapping between feedstock polymeric characteristics with the respective
conversion process outputs. Both models can eventually work together in a synergistic way to unlock
deeper insights into the polymer steam-cracking process, paving the way for more-advanced predictive
models and valuable applications in the control and optimization of this type of sustainable waste
transformation process.
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