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ABSTRACT

Virtual safety assessment is now the primary method for evaluating
the safety performance of active safety technologies such as Advanced
Driver Assistance Systems (ADAS) and Automated Driving Systems
(ADS), not the least because there are few alternatives. Generating
representative crash scenarios is crucial for the assessment to produce
valid results. However, the existing crash scenario generation methods
face challenges such as limited and biased in-depth crash data and
difficulties in validation. To meet these challenges, this thesis pro-
posed a set of novel methods for generating representative synthetic
crashes.

This thesis demonstrate the methods for a common crash type, the
rear-end crash, in which the front of one vehicle collides with the
rear of another. The process of generating synthetic rear-end crash
scenarios consists of three main steps: 1) parameterizing the rear-
end crashes by modeling the two involved vehicles using naturalistic
driving and pre-crash kinematics data, 2) building multivariate dis-
tribution models for the parameterized crash data, and 3) generating
representative synthetic crash scenarios.

Paper A utilized a piecewise linear model to parameterize the lead-
vehicle speed profiles in rear-end crashes from two United States
datasets. These parameterized speed profiles were then combined
and weighted to create a comprehensive dataset representative of
lead-vehicle kinematics in rear-end crashes across the full severity
range, from physical contact to high severity. Synthetic speed pro-
files, generated using multivariate distribution models built on the
dataset, were then compared with the raw profiles. The results show
that the proposed lead-vehicle kinematics model accurately matches
lead-vehicle kinematics in rear-end crashes across the full severity
range, outperforming the conventional constant lead-vehicle accelera-
tion/deceleration model in terms of both severity range and precision.

In Paper B, a following-vehicle behavior model was created by com-
bining two existing driver behavior models. A representative dataset
of the initial states (i.e., speeds of both vehicles and the following dis-
tance) of rear-end crash scenarios and the minimum accelerations
of both vehicles was developed by weighting and combining crash
data from various sources. The dataset was modeled to create a syn-
thetic dataset with more samples. Crash scenarios were simulated
based on this synthetic dataset, the following-vehicle behavior model,
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and the synthetic speed profiles from Paper A, creating a synthetic
rear-end crash dataset. The dataset can be used for the safety assess-
ments of ADAS and ADS and as a benchmark when evaluating the
representativeness of scenarios generated through other methods.

Future work will aim to test ADAS and ADS with synthetic crash
scenarios and validate existing crash scenario generation methods,
especially those that are traffic-simulation-based.

Keywords: virtual safety assessment, crash scenario generation, pre-
crash, data combination, data synthesis
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APPENDED PUBLICATIONS

This thesis consists of an extended summary and the following appen-
ded papers:

Paper A J. Wu, C. Flannagan, U. Sander and J. Bärgman (2024a).
Modeling lead-vehicle kinematics for rear-end crash
scenario generation. IEEE Transactions on Intelligent
Transportation Systems. DOI: 10.1109/TITS.2024.
3369097.

Paper B J. Wu, C. Flannagan, U. Sander and J. Bärgman (2024b).
Model-based generation of representative rear-end crash
scenarios across the full severity range using pre-crash
data. IEEE Transactions on Intelligent Transportation Sys-
tems (under review).

Author’s contribution

Paper A: wrote the first draft of the paper, designed the methods, and
did most of the analysis.

Paper B: wrote the first draft of the paper, designed the methods, per-
formed the simulations, and did most of the analysis.
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CHAPTER 1

Introduction

1.1 Enhancing traffic safety through active safety
technologies

Due to the rapid development of active safety technologies such as
Advanced Driver Assistance Systems (ADAS) and Automated Driving
Systems (ADS), we are experiencing a transformation as vehicles from
traditional manually operated machines to increasingly automated
ones.

Systems ranging from adaptive cruise control (ACC) [1], lane keep-
ing assist (LKA) [2], and automated emergency braking (AEB) [3] are
all considered ADAS. These technologies help drivers control their
vehicles by providing real-time alerts and interventions to prevent
or mitigate potential collisions [4]. On the other hand, ADS take a
significant leap forward by substantially reducing (and at the highest
support level, eliminating) the need for human intervention, relying
on advanced sensors and artificial intelligence (including machine
learning ) to navigate and operate vehicles autonomously [5–7].

By augmenting human driving abilities and introducing automa-
tion, these systems can address common causes of crashes, such as
distracted driving [8], fatigue [9], and impaired driving [10]. Thus these
technologies have the potential to substantially reduce the number
of traffic accidents, injuries, and fatalities. In fact, the research has
shown that ADAS systems such as LKA [11, 12] and AEB [13, 14] systems
have already had a substantial positive impact on traffic safety.
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INTRODUCTION

1.2 Virtual safety assessments

It is essential to quantitatively assess the safety performance of ADAS
and ADS, as the driving task is partially or completely transferred
from the driver to the vehicle [15]. An assessment enables developers
to thoroughly test the algorithms before deployment, ensuring their
reliability and safety across various driving scenarios. Additionally, it
can help policymakers and legislators prioritize the systems with the
most substantial safety benefits and guide the widespread adoption
of appropriate regulations and standards.

Virtual safety assessment is now the primary method for evaluating
the safety performance of active safety technologies such as ADAS and
ADS, not the least because there are few alternatives [16–20]. Typically,
in a virtual assessment, a comparison of ’baseline’ and ’treatment’
scenarios is conducted. The baseline scenarios, without the techno-
logy being assessed, serve as a starting point for the simulations. (The
same set of scenarios with the technology make up the treatment con-
dition.) The baseline scenarios must match the assessment objective
and include all relevant elements that may impact the performance
of the technology under assessment [21].

Wimmer et al. [21] defined three main approaches to creating
baseline scenarios (depending on the type of input data source, how
the input data source is used, and how the data are processed):

• Approach A: Digitized real-world scenarios without modifica-
tion.

• Approach B: Modified or varied real-world scenarios.

• Approach C: Synthetic scenarios.

– Approach C1: A small number of scenarios covering a lim-
ited test space.

– Approach C2: Many scenarios covering a large test space.

Approach A digitizes real-world scenarios without altering them, util-
izing databases of recorded driving data or reconstructed crashes as
sources. In Approach B, real-world scenarios are the basis as well,
but the original data are modified (by altering existing properties or
even adding new ones) to build the required baseline scenarios [21].
In Approach C, statistical information from real-world data is used
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VIRTUAL SAFETY ASSESSMENTS

to create synthetic cases instead of individual real-world scenarios.
This approach has two variations, C1 and C2, which are distinguished
mainly by the number of generated scenarios. Of the four approaches,
C2 stands out: it can generate a large number of scenarios and cover a
wide range of conditions, which is essential for making a statistically
significant comparison between the baseline and treatment [21]. As a
result, C2 is often preferred in virtual assessments [22, 23].

The traffic-simulation-based [24–26] and in-depth-crash-data-
based (referred to as IDC-based) [27–32]methods are the two primary
virtual assessment methods which assess the technology with a large
number of scenarios; they both follow the C2 approach to create
baseline scenarios. (Note that Approach B can also be IDC-based
and generate many scenarios by manipulating individual original
scenarios. But it is not included in this thesis.)

The traffic-simulation-based method simulates scenarios under
assessment to create crash events in a (virtual) modeled driving envir-
onment [24, 26, 33, 34]. Typically, traffic simulation models for scen-
arios under assessment are built using naturalistic driving data (NDD)
that contain a limited number of crashes, often of minor severity. To
evaluate safety, simulations are often carried out over an extended
period, measured in millions of simulation hours. Simulations are
conducted with and without the specific ADAS or ADS, and the num-
ber of crashes experienced in each scenario is subsequently compared
[34]. Sometimes, the outcome variables, such as Delta-v (i.e., the total
change in vehicle velocity over the duration of the crash event) or
injury risk, are also compared between the two conditions.

In contrast to the traffic-simulation-based method, the IDC-based
method uses detailed crash information, which includes reconstruc-
ted or recorded data such as vehicle kinematics. Statistical distribu-
tions of the relevant crash attributes are created and then sampled to
generate virtual crashes. Following this, a simulation is conducted for
each generated crash that involves the ADAS or ADS under assessment
to assess whether the crash can be avoided [27–32].

The two methods are compared with respect to the following four
qualities (summarized in Table 1.1).

Data accessibility and sufficiency: Because the traffic-simulation-
based method mainly builds simulation models using NDD, there is a
wealth of information realatively easy to access.

On the other hand, the IDC-based method faces a challenge regard-
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INTRODUCTION

Traffic-simulation-
based

IDC-based

Data accessibility
and sufficiency

High Low

Efficiency Low High
Spatiotemporal
continuity

Yes No

Bias Non-severe crashes Severe crashes

Table 1.1: Comparison between the two methods.

ing data accessibility and sufficiency, as the safety assessments for
ADAS and ADS using the IDC-based method generally require more
real-world crash instances than are currently available [35]. The lim-
ited accessibility of comprehensive real-world crashes means that
the full range of crashes within a specific scenario is not always fully
represented—primarily due to privacy concerns and the high costs of
data collection, storage, and dissemination. In such cases, synthetic
crashes are required to ’bridge the gaps’ between real crashes [36, 37].
In the C2 approach, synthetic crashes can be seen as interpolations
or extrapolations of the original crashes.

Efficiency: The traffic-simulation-based method is highly ineffi-
cient since demonstrating the safety performance of autonomous
vehicles requires hundreds of millions of miles due to the high dimen-
sionality of the environment and the rarity of safety-critical events.
To tackle this issue, Feng et al. [26] proposed a solution known as
the naturalistic and adversarial driving environment (NADE), which
introduces sparse but adversarial modifications to reduce the number
of virtual test miles needed while maintaining unbiased assessments.
However, even with the NADE technique, many test miles are still
necessary.

In contrast, the IDC-based method is more efficient since it directly
generates crash scenarios.

Spatiotemporal continuity: In the traffic-simulation-based
method, the traffic simulator can simulate not only individual
scenarios but also entire road networks comprising numerous road
users, allowing the continuous spatiotemporal assessment of active
safety technologies [15].

However, the IDC-based method, like all scenario-based methods, is
spatiotemporally discontinuous. Because the scenarios are extracted

4



VIRTUAL SAFETY ASSESSMENTS

from actual traffic, this method has the disadvantage of not capturing
all the context [15].

Bias: The traffic-simulation-based method is generally biased to-
wards non-severe crashes. Thus, using NDD as the initial condition
for generating crash scenarios may lead to stark differences in crash
characteristics compared to real-world crashes, both at the individual
level and in their overall distribution. Olleja et al. [38] compared crash
generation using normal driving data and near-crash incidents with
crashes from in-depth crash databases. The results showed substantial
disparities: normal driving data failed to reflect the crash outcomes
and criticality observed in crashes. In addition, crashes generated by
the traffic-simulation-based method rely heavily on multiple models
of road-user behaviors, which must be accurate in order to produce
realistic crashes (representing the real world). Formal validation of
the details of the generated crashes is usually overlooked [15]: instead,
visualization techniques, such as histograms [26, 36, 39] and scatter
plot [40], are used to compare the generated and real-world crashes.
Also, the validations is almost always not considering the outcome
severity (e.g., Delta-v or injury risk).

The IDC-based method, on the other hand, may over-represent
severe crashes. In traditional in-depth crash databases, selection cri-
teria inherently introduce a bias towards severe crashes. For instance,
the Crash Investigation Sampling System (CISS), a crash database in
the United States, focuses on incidents with at least one light vehicle
towed from the scene [41]. Relying solely on these databases to cre-
ate synthetic crashes [36, 40, 42] can skew crash generation models,
biasing the overall analysis towards severe crashes.

Additionally, whether pre-crash data accurately reflect real-world
scenarios depends on how they were produced. Generating crashes
using reconstructed crash data can be problematic. While crash out-
comes like Delta-v might be reasonably accurate, reconstructed pre-
crash kinematics are heavily influenced by the reconstruction software
and assumptions about the behaviors of the involved road users made
during reconstruction, especially when detailed pre-crash recordings
are unavailable. Thus, the generated crashes might depend more
on assumptions and software than on the pre-crash kinematics in
real-world crashes [42].

Lastly, generating crashes at the tails of distributions can be chal-
lenging. For instance, Wang et al. [40] used independent component
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INTRODUCTION

Figure 1.1: Illustration of the method in this work. Colors indicate which
parts are covered by which paper.

analysis (ICA) followed by kernel density estimation (KDE) to generate
synthetic crashes. However, the KDE distribution modeling method
can introduce biases, particularly near boundaries and in distribu-
tions with long tails [43].

1.3 Aims and scope

This thesis aims to address the mentioned challenges for the two
methods by creating synthetic crashes that are representative of real-
world crashes across the full severity range, from physical contact
to high severity. This work can thus improve the accuracy of virtual
assessments of active safety technologies.

To achieve this, this thesis proposes a novel and comprehensive
method combining naturalistic driving and pre-crash kinematics data.
The NDD are used to obtain the distribution of crash severity levels
(indicated by Delta-v). This distribution is then used to mitigate bias
when combining naturalistic driving and pre-crash kinematics data.
In addition, both reconstructed and recorded pre-crash kinematics
data are used to reduce the influence of the reconstruction software
and the assumptions made during reconstruction. the assumptions
made during reconstruction. The method consists of six parts (see
Figure 1.1):

1. Road-user behavior models: Create road-user behavior models
for road users involved in a particular crash scenario.

2. Parameterization: Parameterize the crash scenario into a multi-
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dimensional vector.

3. Data combination: Combine and weight naturalistic driving
and pre-crash kinematics data to create datasets of the para-
meterized crashes representative of reality (referred to as the
’reference datasets’).

4. Distribution modeling: Build multivariate distribution models
for the reference datasets.

5. Scenario generation and sample weighting: Generate synthetic
crash scenarios using the built distribution models and the road-
user behavior models, then weight the generated crashes to
match the reference datasets.

6. Validation: Validate the synthetic crash scenarios by comparing
them with the reference datasets.

This thesis demonstrates the utility of the proposed method for
generating synthetic scenarios of a common crash type: the rear-
end crash, in which the front of one vehicle collides with the rear of
another. The rationale for choosing this scenario is twofold. Firstly,
rear-end crashes account for 27.8 percent of all reported car accidents
in the United States in 2020 [44]. This high frequency means it is
imperative to understand how ADAS and ADS handle this scenario.
Secondly, a rear-end crash is relatively simple since it mainly involves
the longitudinal maneuvers of two vehicles (lead and following).

Specifically, this thesis addresses the issue of synthetic rear-end
crash scenario generation through two scientific publications:

• In Paper A, we developed a lead-vehicle kinematics model, built
a reference dataset of parameterized lead-vehicle speed profiles,
and created a synthetic lead-vehicle speed profile dataset.

• In Paper B, we developed a following-vehicle behavior model,
parameterized rear-end crashes, built reference datasets of the
parameterized rear-end crashes, and eventually generated a syn-
thetic rear-end crash dataset matching the reference datasets.

In summary, this thesis addresses the following research questions:

• How can rear-end crashes be parameterized?

• How can parameterized rear-end crash data be used to build
reference datasets?
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• How can representative synthetic rear-end crashes be gener-
ated?
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CHAPTER 2

Methodology

This chapter introduces the data, road-user behavior models, and key
methods used to generate representative rear-end crash scenarios in
this thesis.

2.1 Data

The data used are from three sources: the Crash Investigation
Sampling System (CISS) [41], the Second Strategic Highway Research
Program (SHRP2) Naturalistic Driving Study (NDS) [45], and the
German In-Depth Accident Study (GIDAS) Pre-Crash Matrix (PCM)
[46].

CISS is a dataset representing a comprehensive study of car crashes
across the United States. It focuses on incidents in which at least one
light vehicle was towed from the scene [41]. The dataset is derived from
thorough crash investigations that provide a detailed understanding
of damaged vehicles, crash sites, and the complex dynamics of each
incident. Its aim is to uncover the numerous elements that contribute
to car crashes across the United States; several studies have used CISS
data for various applications [11, 47, 48].

One essential aspect of CISS’s methodology is extracting and integ-
rating data from Event Data Recorders (EDRs) [49], electronic devices
embedded in vehicles that record data about a vehicle’s movement
and the actions of its driver. Integration of EDR data collected before
a crash provides a nuanced and data-rich perspective on the events
leading up to it. Including EDR data increases the level of detail in
CISS and provides information on pre-crash vehicle dynamics.

However, EDR data are only available for a subset of crashes, and
there are even fewer crashes in which EDR data are available for both
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vehicles. For instance, of the 1,125 rear-end crashes in the CISS data-
set, only 10.0% (113) contain EDR data for both vehicles. This issue
restricts the ability of CISS EDR data to describe the kinematics of
both vehicles. Another issue is that most EDRs collect pre-crash data
at a relatively low frequency, ranging from 1 to 10 Hz. Most cases have
a frequency lower than 5 Hz; only 0.4% (five) have a frequency of 5 Hz
or higher. The limited temporal resolution makes it difficult to capture
rapid changes in vehicle dynamics and driver behavior leading up to a
crash. As a result, the ability to create detailed reconstructions of the
pre-crash kinematics is compromised, potentially limiting the depth
of analysis and the insights that can be derived from the data.

The second source, the SHRP2 NDS in the United States, has also
delivered significant insights into pre-crash dynamics. As part of the
broader SHRP2 program, the SHRP2 NDS involved equipping more
than 3,300 passenger vehicles with a sophisticated Data Acquisition
System (DAS) to capture a wide range of pre-crash information, includ-
ing four different video perspectives: the driver’s facial expressions
and hand movements, the forward roadway view, and the rear road-
way view [45].

From 2010 to 2013, the SHRP2 NDS collected data from participants’
instrumented vehicles in six locations across the US. The dataset is
extensive, providing a broad representation of naturalistic driving
scenarios which covers incidents of varying severity—ranging from
near-crashes to low-severity crashes and even (a few) high-severity
crashes. The study used event identification algorithms to systemat-
ically identify incidents within the dataset and a meticulous manual
annotation process to classify these instances into different severity
levels [45].

The German In-Depth Accident Study (GIDAS), one of the most
detailed and widely recognized in-depth crash datasets globally, gath-
ers on-scene accident cases with personal injury in Hannover and
Dresden. It provides a comprehensive view of accident sequences
and causation through meticulous on-scene investigation and full
accident reconstruction [50]. The GIDAS PCM dataset, initiated in
2011, is a subset of the GIDAS dataset, containing all relevant data
in a database format to simulate the pre-crash phase until the first
collision of the accident for a maximum of two participants [46]. The
dataset includes the definition of the participants and their character-
istics, the dynamic behavior of the participants as a time-dependent
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DATA

Figure 2.1: Comparison between CISS (EDR), SHRP2, and GIDAS PCM.

course for five seconds before the crash, as well as the geometry of
the traffic infrastructure [46]. The GIDAS PCM dataset is widely used
to analyze the causes and consequences of road traffic accidents [51,
52], assess the effectiveness of active safety technologies [53–55], and
develop strategies for preventing accidents [56].

It is important to note that the data in the GIDAS PCM dataset are
reconstructed based on evidence from the accident site and eyewit-
ness accounts. As mentioned in Chapter 1.1, the reconstructed data
may not be as dependable as recorded data. Therefore, instead of
the entire speed profiles from the GIDAS PCM dataset, the minimum
accelerations of both vehicles were used.

Figure 2.1 compares the three data sources: CISS (EDR), SHRP2,
and GIDAS PCM.

• Severity range: In this thesis, the severity level does not corres-
pond with the Abbreviated Injury Scale [57]. A crash is indexed
as ’Severe’ if it fulfills the SHRP2 severity level I definition (i.e., a
crash that involves an airbag deployment, injury to the driver,
pedal cyclist, or pedestrian, vehicle rollover, high Delta V, or re-
quires vehicle towing) and ’Non-severe’ otherwise. In addition,
the severity level of any near-crash is designated as ’None’. CISS
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specifically targets crashes with at least one light vehicle towed
away from the scene, whereas GIDAS PCM focuses on crashes
resulting in personal injury. Therefore, CISS and GIDAS PCM
datasets contain only severe crashes. Unlike CISS and GIDAS
PCM, SHRP2 does not filter or censor crash data, including all
crashes in the instrumented fleet of vehicles, from the lowest
possible to the most severe. Consequently, the SHRP2 dataset
covers near-crashes to severe crashes but has few severe crashes.

• Available signals: CISS EDR data contains only the speed signal
of the subject vehicle (i.e., the vehicle that recorded the data),
SHRP2 data contains the speed and four different video per-
spectives of the subject vehicle, while the GIDAS PCM dataset
contains not only the kinematics of all vehicles involved in the
crash but also road structure information.

• Data reliability: CISS EDR and SHRP2 data are considered reli-
able as they were directly recorded. Meanwhile, the reliability
of the GIDAS PCM’s pre-crash kinematics data is less certain,
as they were reconstructed based on scene investigation and
certain assumptions.

• Data frequency: CISS EDR data ranges from 1 to 10 Hz, and most
cases have a frequency of less than 5 Hz. In contrast, SHRP2
and GIDAS PCM data have a frequency of 10 and 100 Hz, re-
spectively. However, because the GIDAS PCM is reconstructed,
the frequency is "artificial": any sampling frequency could have
been chosen.

Rear-end pre-crash data (five seconds before the crashes) from the
three data sources were extracted, including the time-series data of
the (longitudinal) distance between the lead and following vehicles
and/or the speeds for the two vehicles (as available). The advantages
and disadvantages of these data sources are described in the data
combination step (see Chapter 2.4).

2.2 Road-user behavior models

Road-user behavior models play a critical role in virtual safety assess-
ments. These models aim to replicate the behavior or kinematics of
various road users, including drivers, pedestrians, and cyclists, in vir-
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Figure 2.2: Three selected segments.

tual environments [58]. This thesis focuses on vehicle behavior models
for longitudinal control of cars because a rear-end crash mainly in-
volves the longitudinal maneuvers of the following and lead vehicles.

In virtual safety assessments, the vehicle behavior models can be
used to simulate behaviors of both the ego and surrounding vehicles
[58]. Existing models (including car-following [59–63], lane-changing
[64–66], and cognitive models [23, 67, 68]) are typically expected to
simulate realistic driving scenarios and interactions with various road
users. Furthermore, the models sometimes may also need to consider
different driver characteristics and cognitive capabilities to simulate
different driving styles and possible human errors while driving [58].

Two vehicle behavior models were developed: a lead-vehicle kin-
ematics model (presented in Paper A) and a following-vehicle beha-
vior model (presented in Paper B).

The lead-vehicle kinematics model

In the rear-end crash scenario, the lead vehicle is mostly independent
of the following vehicle. Thus, the lead-vehicle speed profile was
modeled in Paper A without considering the vehicle’s interaction with
the following vehicle [35].

A piecewise linear model was used to simplify the lead-vehicle
kinematics (i.e., speed profile) as several consecutive straight lines.
Figure 2.2 shows an example with three segments (backward from
time zero, defined as the impact moment). Unlike the conventional
constant acceleration/deceleration model [69–71], in which the lead
vehicle keeps a constant speed for a while and then transits to a con-
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stant acceleration/deceleration until the crash occurs or it comes to a
complete stop, this model accurately matches the lead-vehicle speed
profiles in rear-end crashes [35].

The following-vehicle behavior model

The following-vehicle behavior model was created by merging two
existing driver behavior models:

1) the Modified Intelligent Driver Model [63]: This time-continuous
car-following model is often used in traffic flow modeling. It computes
a vehicle’s acceleration based on its current velocity, maximum ac-
celeration, desired velocity in free traffic, and the following distance
from the lead vehicle.

2) the Driver Pre-Crash Brake Response Model [72]: This driver
model quantitatively predicts when and how the driver will initiate
and modulate a pre-crash brake response, considering the driver’s
off-road glance behavior. It uses the accumulation of the prediction
error of looming (i.e., the relative expansion rate of the lead vehicle’s
image on the retina of the following vehicle’s driver [73]) as the basis
for the driver’s braking response.

In addition to merging these two models, we adapted the resulting
model to account for a particular type of rear-end crash in the GI-
DAS PCM dataset, which occurs in 9.2% of all crashes. In these, both
vehicles were initially stationary; after a while, the following vehicle
accelerated until it hit the lead vehicle. The driver of the following
vehicle seemed to ignore the lead vehicle completely, possibly due to
distraction. The new model includes the possibility of generating this
’abnormal’ driver acceleration behavior.

2.3 Parameterization

Parameterization is a fundamental aspect of modeling and analysis
across various disciplines [74]. It involves defining parameters within
a system, model, or function to describe its behavior, characteristics,
or properties. Parameterization enables models to be flexible, inter-
pretable, and adaptable to different scenarios [75]. It allows model
calibration, sensitivity analysis, and simulation, facilitating accurate
predictions about and insights into complex phenomena. Overall,
parameterization is essential for developing effective models that cap-
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ture the complexity and variability of real-world systems [76].
Parameters for the two new models were established (six for the

lead vehicle model and four for the following vehicle model). The
only remaining elements in a rear-end crash scenario are two ini-
tial states: the following vehicle’s speed and the initial following dis-
tance. Consequently, a rear-end crash was parameterized as a twelve-
dimensional vector. (See Section III-B in Paper B for further informa-
tion.)

2.4 Data combination

This step aims to create a reference dataset, representative of real-
world crashes, for the parameterized rear-end crashes. Creating it
directly from a single crash data source would be ideal. However,
none of the available datasets alone could serve as a reference dataset
since they all have limitations, such as bias and censoring, incomplete
parameters, and low data quality. Consequently, it was not feasible to
create a reference dataset of all twelve parameters directly from the
available datasets. Therefore, several reference datasets of subsets of
parameters were created by combining data from multiple sources as
an intermediate step before building the final reference dataset of all
parameters. (See Section III-C in Paper B for further information.)

Data combination [77] is the process of merging or integrating mul-
tiple datasets into one. This process, commonly used in fields such as
statistics, data analysis, and machine learning, leverages information
from different sources to optimize the resulting dataset’s comprehens-
iveness and utility. It requires careful consideration of data quality,
compatibility, and consistency to ensure that the combined dataset
accurately reflects the underlying phenomena and supports valid ana-
lysis and interpretation.

Raw or combined raw datasets can often be biased in one or more
parameters (especially the crash severity level in our case) [35]. The
bias can be mitigated if the reference marginal or joint distribution of
all or a subset of those parameters is available. This can be achieved
by weighting the samples in the raw dataset so that the weighted data
matches the known reference distribution [78]. The weighted dataset
can be considered as the reference dataset of its contained parameters.

As noted, the SHRP2 dataset contains collected crash data from
physical contact to a few with high severity, whereas the other data
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Figure 2.3: A binning example for unidimensional data. Strata 6 is the
omitted stratum.

sources are biased towards severe crashes [41, 46]. Therefore, the dis-
tribution of the lead vehicle’s Delta-v for SHRP2 rear-end crashes was
used as the reference distribution for crash severity (i.e., the distribu-
tion representing severity levels of real-world rear-end crashes, from
physical contact to high severity). The pre-crash data from the CISS
and GIDAS PCM datasets were merged with the SHRP2 crash dataset
to obtain more detailed information on severe crashes.

Data combination, including a sample-weighting process, was con-
ducted to gather as much information as possible while leveraging the
strength (and minimizing the bias) of each dataset, in order to create
reference rear-end crash datasets across the full range of severity.

Post-stratification weighting

Since raw distributions from datasets can often be biased with respect
to one or more parameters, the sample weighting process aims to
assign weights to samples in raw distributions so that the weighted
data match the known reference distribution of a subset of parameters.

Post-stratification weighting [78] is one such process. It is a statist-
ical technique commonly used in survey research to reduce bias and
improve the accuracy of population estimates. It involves dividing the
target population into strata based on certain characteristics or vari-
ables, collecting data within each stratum, and then assigning weights
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(based on the target population distribution within each stratum) to
the observations.

Typically, binning is used to create strata when the variables are
continuous [79]. The weight assigned to observations in each stratum
is calculated by dividing the target population total by the number of
observations in the stratum. The raw samples (i.e., observations) are
grouped into discrete bins based on the known reference distribution
(i.e., target population). This method assumes that no strata are omit-
ted, meaning that observations must cover all bins spanned by the
target population. Otherwise, the process will attempt to divide by
zero. However, in our case, omitted strata did exist in the combined
data. (See Figure 2.3 for an example: Stratum 6 contains no obser-
vations.) Therefore, a novel method, the k-nearest neighbors (KNN)
sample weighting method, was proposed to handle this issue. This
method can be seen as a post-stratification weighting method with a
dynamic binning strategy. Each sample extracted from the known ref-
erence distribution carries a weight of one. For each extracted sample,
the k-nearest raw samples are grouped into one bin to share the weight
based on their distance from the extracted sample. It is also worth
mentioning that samples that have never been selected as the nearest
neighbors of any extracted sample will have a weight value of zero.

This thesis also investigated another option: treating the paramet-
ers not included in the known reference datasets as ’missing’ and
imputing them using a data imputer based on the observations (i.e.,
the combined data). A classic data imputation method, the KNN data
imputation method [80], was chosen to handle data with omitted
strata. An empirical simulation study was carried out to compare
the performances of the two options. The results demonstrate the
advantages of the KNN sample weighting method. (See the Appendix
for further information.)

2.5 Distribution modeling

Through the process of data combination, two reference datasets were
created, each encompassing multiple parameters. One contains the
lead-vehicle speed profiles, and the other comprises the initial states
and the minimum accelerations for both vehicles. However, the two
datasets do not contain enough samples to conduct virtual safety as-
sessments of ADAS and ADS. Therefore, synthetic crash scenarios,
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essentially interpolated or extrapolated from actual crashes, are re-
quired to bridge the gaps. To generate synthetic data, the reference
data must be modeled. The resulting model(s) can then be used to
generate any number of synthetic crashes.

Parametric [81, 82], non-parametric [83, 84], and copula-based
[85–88]methods are commonly used for modeling a multivariate dis-
tribution.

The parametric methods assume a specific parametric form for the
joint distribution, such as the multivariate normal distribution [81],
which can be advantageous when the underlying distribution is known
or can be reasonably assumed. They often have fewer parameters than
other methods, making them computationally efficient and less prone
to overfitting when dealing with sparse data. However, they rely on
strong assumptions about the underlying distribution, which might
not hold in real-world scenarios. If the assumptions are violated, the
parametric models can provide biased estimates. In addition, if the
available data are sparse, they might not provide enough information
to accurately estimate the chosen distribution’s parameters.

Non-parametric methods, such as kernel density estimation [89] or
nearest neighbor methods [90], make minimal assumptions about the
underlying distribution and instead estimate it directly from the data.
Nonparametric methods might require more data to achieve reliable
estimates than parametric methods. They may not always provide
accurate density estimates, especially for sparse or irregularly sampled
data [91]. In addition, non-parametric methods can produce biased
estimates, particularly near boundaries and in distributions with long
tails [43]. Finally, interpreting the results can be more challenging
(compared to parametric methods) since the distribution does not
have an explicit functional form.

Copula-based methods allow the flexible modeling of depend-
ence structure between random variables; they are often used when
the marginal distributions are known or estimated separately [88].
However, the copula-based methods usually require a relatively
large amount of data to accurately estimate the parameters of the
copula function, especially for high-dimensional datasets [86]. These
methods are also less easily interpreted than simpler parametric
models.

In our situation, the amount of data available is limited, and some
parameters are sparsely represented. Additionally, it is crucial to be
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able to interpret the distribution models and grasp the correlations
among parameters, as they hold physical significance. Therefore,
a parametric multivariate distribution modeling method was de-
veloped, which models the marginal distributions and the linear cor-
relations among parameters.

The method first assesses the linear correlation between each pair
of parameters using the Pearson correlation coefficient [92], which
measures the strength and direction of a linear relationship between
two variables. A high absolute coefficient shows a strong relationship.
The sign indicates whether the relationship is positive or negative.

A parameter is categorized as correlated if it exhibits a signific-
ant and non-weak correlation with any other parameter and un-
correlated otherwise. Here, a significant and non-weak correlation
is defined as one whose Pearson coefficient has a p-value less than
0.05 (significant) and an absolute value greater than or equal to 0.3
(non-weak) [35, 93, 94].

Finally, each uncorrelated parameter’s data are fitted into a set of
known distributions (such as normal and gamma distributions), and
the best-fit distribution with the lowest Akaike information criterion
value is selected. In contrast, the correlated parameters are modeled
as a multivariate normal distribution. Additionally, the parametric
method gives special consideration to the point-mass mixture distri-
bution parameters. A point-mass mixture distribution parameter is a
parameter that contains a point-mass (a particular value with more
observations than a continuous distribution can describe), thus re-
quiring a mixture distribution model to describe its distribution [35].
This method is explored further in the discussion chapter. (See Section
III-C in Paper A for additional information regarding the distribution
modeling method.)

Moreover, because of the large number of parameters and the com-
plexity of the multivariate distributions (such as various patterns in
the data), it is difficult to build a single multivariate distribution model
that covers all the data. On the other hand, creating sub-datasets al-
lows a simpler model to be applied to each. Therefore, each reference
dataset was categorized into several sub-datasets modeled separately
using the proposed parametric multivariate distribution method. (See
Section IV-C in Paper A and Section IV-B in Paper B for further inform-
ation regarding the categorization.) Then, for each reference dataset,
the overall distribution model (which can be seen as a mixture distri-
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bution model) was derived by combining the distribution models for
all sub-datasets according to their relative proportions in the reference
dataset.

2.6 Crash scenario generation

Based on the mixture distribution models built for the two reference
datasets in the previous step and the following-vehicle behavior model,
a matching algorithm was used to:

1. Create various synthetic kinematic parameter configurations,
essentially pairing the synthetic lead-vehicle speed profile from
one mixture distribution model with the synthetic initial states
and the minimum accelerations for both vehicles from the other.

2. Conduct simulations under those synthetic kinematic para-
meter configurations and search for valid simulations (de-
scribed below) to create a set of synthetic rear-end crashes.

Not all of the synthetic crashes were valid. A valid simulation was
characterized by 1) the occurrence of a crash and 2) the crash occurring
approximately five seconds after the start of the simulation. (Recall
that all of the pre-crash data in the original datasets were captured
starting five seconds before the crash; see Section III-E in Paper B for
further information.)

The matching algorithm generated 5,000 synthetic crashes. To en-
sure that these synthetic crashes accurately represent real-world oc-
currences, the synthetic dataset should be weighted so that it matches
the reference datasets of all parameters.

The Iterative Proportional Fitting (IPF) [95–97] procedure can be
applied in this situation. IPF is a statistical method used in many dis-
ciplines to adjust multi-dimensional or contingency tables to satisfy
known marginal totals [95]. It is commonly employed when the joint
distribution of variables is unknown, yet the marginal distributions
are known or estimated [96]. It typically contains four steps:

1. Initialization: Start with an initial table of observed counts,
which may not necessarily match the desired marginal totals.

2. Iteration: Iteratively adjust the cell values to minimize the dis-
crepancy between the observed cell counts and the desired mar-
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Figure 2.4: Illustration of pairing sub-models between the two mixture
distribution models A and B. There are m and n sub-models in Models
A and B, respectively.

ginal totals while maintaining the relative proportions within
each dimension of the table.

3. Convergence: Stop iterating when a stopping criterion is met,
such as a specified number of iterations or the cell values con-
verge.

4. Output: Once the iterations have stopped, the adjusted table of
counts represents a solution where the observed marginal totals
match the desired totals as far as possible. This will typically not
be an exact match [98].)

In this thesis, an IPF-based sample weighting method was used
to weight the synthetic dataset to match the reference datasets. It is
important to note that when modeling each reference dataset, the
entire dataset was split into multiple sub-datasets so that simpler
models could be employed for each sub-dataset. The overall distribu-
tion model was then derived by combining the distribution models
for the sub-datasets according to their proportions in the correspond-
ing reference dataset. Therefore, the weighting method must align
each parameter’s weighted marginal distribution with its reference
marginal distribution for each sub-dataset.

Additionally, as illustrated in Figure 2.4, when pairing parameters
drawn from the two mixture distribution models to form the kinematic
parameter configurations in the synthetic crash dataset, a parameter
combination from one sub-model of the first mixture distribution
model (Model A) can be paired with parameter combinations from
multiple sub-models of the second mixture distribution model (Model
B). Ideally, the IPF procedure stops when the cell values converge; how-
ever, because the sub-datasets may not be isolated, reaching this point
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may be challenging. Therefore, the IPF procedure was designed to
stop when the predefined maximum number of iterations was reached.
A loss function, computed after every iteration, was used to select the
optimal weighting result with the minimum loss value.

The loss function was designed based on the Kolmogorov–Smirnov
(KS) statistics [99] (i.e., the largest absolute difference between two
compared cumulative distribution function curves) for all paramet-
ers in each sub-dataset. It indicates the overall difference between
the weighted synthetic crash dataset and the reference distributions.
Here, the KS statistic was used to measure the difference between the
weighted marginal and reference distributions for each parameter in
each sub-dataset. (See Section III-E in Paper B for further informa-
tion.)

2.7 Validation

We must ensure that the weighted synthetic rear-end crash dataset
is similar to the reference datasets to validate its representativeness.
Because the datasets are multidimensional, various aspects of their
characteristics must be compared. Below are some of the most com-
monly used methods for this purpose:

• Descriptive statistics: Compare summary statistics such as
means, medians, variances, and percentiles across the two data-
sets to assess their overall distributional similarity [100].

• Visualization techniques: Utilize histograms [26, 36, 39], scat-
ter plots [40], and dimension reduction (such as t-distributed
stochastic neighbor embedding (t-SNE) [100, 101] and uniform
manifold approximation and projection (UMAP) [102]), to visu-
alize the distributions and relationships within each dataset and
identify any discrepancies or similarities.

• Correlation analysis: Calculate correlation coefficients
between corresponding variables in the two datasets to measure
the strength and direction of their linear relationships [40].

• Statistical tests: Perform statistical tests to formally compare
the distributions of variables or features in the two datasets
[103].

Statistical testing is unique among these methods as it formally
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Figure 2.5: t-SNE projection of the raw and synthetic lead-vehicle speed
profiles. The blue dots (projection of raw speed profiles) are surrounded
by the red dots (projection of synthetic speed profiles).

compares two datasets. Two examples are the two-sample KS and
Anderson-Darling (AD) tests; they are non-parametric tests com-
monly used to formally assess whether there is a significant difference
between two distributions/datasets [103]. Both tests are based on
empirical cumulative distribution functions. They are sensitive to
differences in both the location and shape of the empirical cumulat-
ive distribution functions of the two samples [104–106]. In addition,
the AD test emphasizes differences in the distribution’s tails and is
generally statistically more powerful than the KS test [103]. However,
the former is also more sensitive to ties in the data (i.e., data with the
same value), especially in the tails.

Both the synthetic and reference datasets are weighted data, which
means that ties exist in each data point—largely increasing the pos-
sibility of the AD test rejecting the null hypothesis. Therefore, the
weighted two-sample KS test was chosen.

However, the KS test faces limitations in handling high-dimensional
data, such as computational complexity and increased sample size
requirement [107, 108]. As the datasets being compared are high-
dimensional, the KS testing was complemented with a dimensionality
reduction technique (t-SNE), which was applied to transform the high-
dimensional data into unidimensional data.

In this thesis, in addition to the commonly used methods, includ-
ing general descriptive statistics (comparing means and variances of
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parameters) and a visualization technique (an example is shown in Fig-
ure 2.5), the synthetic and reference datasets were further compared
through statistical tests from the following three perspectives:

1. Marginal distributions: For each parameter in each sub-
dataset, the weighted two-sample KS test using the ”Ecume”
package in R [109] was carried out to compare the weighted
marginal and corresponding reference distributions (at the 0.05
significance level).

2. Multivariate distributions: For each sub-dataset containing
multiple parameters, the t-SNE technique was applied to trans-
form the multidimensional data into unidimensional data.
Then, the weighted two-sample KS test on the transformed data
was conducted to test whether the synthetic and reference data
were significantly different (at the 0.05 significance level).

3. Crash severity level distribution: The weighted two-sample
KS test was conducted to test whether the severity level (indic-
ated by the lead vehicle’s Delta-v) distributions for the reference
and synthetic datasets are significantly different (at the 0.05
significance level).
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CHAPTER 3

Present Work

Paper A: Modeling Lead-Vehicle Kinematics For
Rear-End Crash Scenario Generation

Introduction

The use of virtual safety assessment as the primary method for eval-
uating Advanced Driver Assistance Systems (ADAS) and Automated
Driving Systems (ADS) has emphasized the importance of crash scen-
ario generation. One of the most common crash types is the rear-end
crash, which involves a lead vehicle and a following vehicle. Most
studies have focused on the following vehicle, assuming that the lead
vehicle maintains a constant acceleration/deceleration before the
crash. However, there is no evidence for this premise in the literat-
ure. This study aims to address this knowledge gap by thoroughly
analyzing and modeling the lead vehicle’s behavior as a first step in
generating rear-end crash scenarios.

Methods

A piecewise linear model was used to represent the lead-vehicle speed
profile in the pre-crash phase, providing a more accurate digital rep-
resentation of the lead-vehicle kinematics than the conventional con-
stant acceleration/deceleration model. Two datasets were combined
to produce a comprehensive rear-end critical incident (crash/near-
crash) dataset that captures the full severity range. Multivariate distri-
bution models were constructed to generate synthetic lead-vehicle
speed profiles, which were compared with the raw speed profiles.
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Results

The results show that the piecewise linear model has good fitting
performance. The raw and synthetic incidents display a notable align-
ment. Moreover, a range of different lead-vehicle speed patterns were
revealed, indicating that the proposed piecewise linear model is more
accurate than the conventional constant acceleration/deceleration
model. For example, the lead vehicle could exhibit harsh braking fol-
lowed by gentle braking or even acceleration; however, it does not
necessarily brake harshly. In fact, in many cases, the lead vehicle keeps
a constant speed or is at a standstill for a considerable time (up to five
seconds) prior to the crash.

Conclusions

The proposed lead-vehicle kinematics model accurately matches lead-
vehicle kinematics from in-depth pre-crash/near-crash data across
the full severity range, outperforming previously existing lead-vehicle
models in terms of both severity range and precision. Furthermore,
in addition to generating simulated rear-end crash scenarios, this
model has the potential to aid substantially in the reconstruction
of individual real-world crashes. That is, by offering more realistic
speed profiles for reconstructed crashes, the model provides a means
of generating a distribution of possible speed profiles during the re-
construction process instead of providing only a single speed profile.
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Paper B: Model-Based Generation of Represent-
ative Rear-End Crash Scenarios Across the Full
Severity Range Using Pre-Crash Data

Introduction

Generating representative rear-end crash scenarios is crucial for safety
assessments of ADAS and ADS. However, existing methods face chal-
lenges such as limited and biased in-depth crash data and difficulties
in validation. This study sought to overcome these challenges by com-
bining naturalistic driving data and pre-crash kinematics data from
rear-end crashes to create a representative distribution of rear-end
crash scenarios in the United States. The resulting distribution can
be used not only for safety assessments of ADAS and ADS, but also
as a benchmark when evaluating the representativeness of scenarios
generated through other methods.

Methods

The process of generating synthetic rear-end crash scenarios consists
of three steps: 1) parameterizing the rear-end crashes through model-
ing the two involved vehicles, 2) building distribution models for the
parameterized crash data, and 3) generating representative synthetic
crash scenarios.

In the first step, a following-vehicle behavior model was developed
by combining two existing driver models. Combining this model,
the lead-vehicle kinematics model (created in a previous study [35])
and the initial states of rear-end crash scenarios created a twelve-
dimensional vector representing a rear-end crash.

In the second step, parameterized crash data from multiple crash
datasets were combined and weighted to create a reference dataset of
the initial states (and minimum fitted accelerations of both vehicles)
(REF_b). A synthetic dataset containing these data (REF_sb) was then
created by sampling from the distribution model built for REF_b.

Lastly, simulations were conducted using the following-vehicle be-
havior model and the two synthetic datasets, REF_sb and REF_sl (a rep-
resentative synthetic rear-end crash lead-vehicle speed profile dataset
created in a previous study [35]). valid simulations were gathered and
weighted using an IPF-based weighting algorithm to create a repres-
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entative synthetic rear-end crash dataset.

Results

Sixty-one weighted two-sample KS tests were conducted to compare
the synthetic crash dataset with reference datasets. The only two that
showed a significant difference at the 0.05 significance level did so
because the following vehicle’s acceleration model could not imit-
ate aggressive acceleration under certain situations. Comparing the
weighted datasets for∆vl showed no significant differences.

Conclusions

None of the available crash datasets in this study contain all neces-
sary signals or are free of significant bias; these issues are commonly
encountered in data-driven studies. To resolve them, we proposed
a set of methods to combine and weight data from multiple crash
datasets. These methods create a reference dataset of the initial states
and minimum accelerations of the following and lead vehicles across
the full severity range. Moreover, the data were weighted to match
a reference dataset using the KNN sample weighting method to re-
duce bias. This method is particularly noteworthy because, unlike
conventional post-stratification methods, it can be used to weight
biased data to match a reference dataset even when omitted strata
exist. The data combination methods we propose can also be applied
to other situations with biased datasets and/or incomplete signals
which require a multivariate joint distribution.

The created representative rear-end crash dataset can be used for
the safety assessments of ADAS and ADS. Moreover, it can serve as
a benchmark when evaluating the representativeness of scenarios
generated through other methods.
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CHAPTER 4

Discussion and Conclusions

Generating representative crash scenarios is crucial for evaluating
active safety technologies using the virtual safety assessment method.
However, existing crash scenario generation methods face challenges
such as limited in-depth crash data, inefficiency, and biased outcomes
[26, 35, 36, 39, 41, 46].

To address these challenges, this thesis proposed a set of novel meth-
ods that combine naturalistic driving and pre-crash kinematics data,
build parametric multivariate distribution models for the combined
data, and generate synthetic crashes using the synthetic data gener-
ated from the built distribution models. This thesis answers the three
research questions posed at the start. For each research question, a
concise explanation is provided regarding why it was asked, along
with a brief summary of the steps taken to address it and a high-level
overview of the results.

How can rear-end crashes be parameterized?

In this thesis, behavior models of the two involved vehicles (following
and lead) were developed first. Then, combining the two models
and the initial states of rear-end crash scenarios created a twelve-
dimensional vector representing a rear-end crash.

The most important work in the parameterization was the two
vehicle behavior models. Accurate vehicle models are essential for cre-
ating realistic crash scenarios which ensure reliable and valid simula-
tion outcomes. In a rear-end crash scenario, the lead vehicle is mostly
independent of the following vehicle, while the following vehicle re-
sponds to the presence and actions of the lead vehicle. Consequently,
a lead-vehicle kinematics model and a following-vehicle behavior
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model were developed. Below is a further discussion of the two mod-
els.

Many studies used a driver response model [69–72, 110] to analyze
the following vehicle’s behavior during rear-end emergencies (crashes
and near-crashes). The following-vehicle behavior model in this thesis
was developed by combining two existing driver behavior models, the
modified Intelligent Driver Model [63] and the driver pre-crash brake
response model [72]. Moreover, as mentioned in Chapter 2.2, the
behavior model was adapted to include the possibility of generating
the ’abnormal’ driver acceleration behavior, which was observed in
9.2% of all crashes.

On the other hand, there has been a notable lack of research on
the lead vehicle’s behavior, despite its significant influence on the fol-
lowing vehicle. In the crash reconstruction and rear-end emergency
studies, it is conventionally assumed that the lead vehicle keeps a
constant speed for a while and then transits to a constant acceleration
or deceleration until the crash occurs or it comes to a complete stop
[69–71]. In addition, a rapid, large deceleration is typically assumed
when the lead vehicle decelerates. This conventional constant accel-
eration/deceleration model is usually a result of limited information
about the pre-crash phase; there is no evidence in the literature for
the validity of such a model.

Paper A addresses this knowledge gap by thoroughly investigating
the lead-vehicle kinematics in rear-end crashes. A piecewise linear
model was used to parameterize the lead-vehicle speed profiles five
seconds before impact for two US rear-end pre-crash/near-crash data-
sets. The parameterized data were combined and weighted to create a
reference dataset of lead-vehicle kinematics in rear-end crashes across
the full severity range, from physical contact to high severity.

Figure 4.1 shows three lead-vehicle speed patterns from the refer-
ence dataset. Within the increasing acceleration pattern, the lead
vehicle could brake harshly, followed by gentle braking or even ac-
celeration. More importantly, unlike what has been conventionally
assumed, the lead vehicle does not necessarily brake harshly, even
in severe crashes. In fact, as shown in Section III-C of Paper B, there
is only a weak (linear) correlation between the lead vehicle’s Delta-v
(which is an indicator of crash severity) and minimum acceleration
(i.e., maximum deceleration).

Compared with the conventional constant acceleration/deceleration
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Figure 4.1: Three lead-vehicle speed patterns.

model, the proposed lead-vehicle kinematics model more accurately
captures those patterns, better matching the lead-vehicle speed pro-
files in rear-end crashes across the full severity range. As a result, this
new model lays the foundation for generating more realistic rear-end
crash scenarios. Furthermore, it can facilitate the reconstruction of
actual crashes by providing a set of more realistic speed profiles for
the lead vehicle based on available information.

How can parameterized rear-end crash data be used to build
reference datasets?

The obtained parameterized rear-end crash data were from three in-
depth crash datasets. A comprehensive data combination method was
proposed in this thesis to combine these crash datasets with a sample
weighting process, creating reference datasets of the parameterized
rear-end crashes that are representative of real-world rear-end crash
scenarios. These reference datasets were used to create parameter
combinations for simulations in order to generate synthetic crash
scenarios.

The general idea was to gather as much information as possible from
available data sources and minimize biases in the respective datasets
and their combinations. As mentioned in Chapter 2.4, the three data
sources used have their own limitations and strengths. Specifically,
the SHRP2 dataset contains collected crash data from physical con-
tact to a few with high severity, whereas the other data sources are
biased towards severe crashes [41, 46]. The distribution of the lead
vehicle’s Delta-v for SHRP2 rear-end crashes was used as the reference
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distribution for crash severity.
Merging the pre-crash data from the CISS and GIDAS PCM data-

sets with the SHRP2 crash dataset provided the final dataset with
more detailed information on severe crashes. The sample weighting
process, using the KNN sample weighting method (presented in the
Appendix), ensured that the weighted distribution of parameters in
the final reference dataset matched their reference distributions.

How can representative synthetic rear-end crashes be gener-
ated?

A parametric multivariate distribution modeling method was used to
build distribution models for the reference datasets, ensuring that the
complexity and interdependencies inherent in the data are captured
accurately.

These distribution models were used to create two synthetic data-
sets: one for the lead-vehicle kinematics and the other for the initial
states of rear-end crash scenarios and the minimum accelerations of
both vehicles. To obtain a set of synthetic rear-end crash scenarios,
simulations based on these datasets and the following vehicle beha-
vior model were conducted. These scenarios were further weighted
using an Iterative Proportional Fitting (IPF)-based sample weighting
method to match the known reference datasets, creating a represent-
ative synthetic rear-end crash dataset.

Finally, non-parametric statistic tests were employed to objectively
compare the two datasets in three ways: 1) parameters’ marginal
distributions, 2) multivariate distributions, and 3) crash severity levels.
The results indicate no significant difference between the reference
and synthetic datasets. This finding validates the effectiveness of the
proposed method for generating synthetic rear-end crash scenarios
that are statistically indistinguishable from real-world data; thus, they
provide a reliable basis for further research and analysis in traffic safety
and crash prevention.

4.1 Contributions

The main contributions of this thesis are:

• Data combination methods: None of the available crash data-
sets contain all necessary signals without substantial bias; this
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shortcoming is common in data-driven studies [111, 112]. The
data combination methods combine and weight data from mul-
tiple crash datasets to mitigate the biases and create a refer-
ence dataset of rear-end crash characteristics across the full
severity range. Among these methods, the KNN sample weight-
ing method is particularly noteworthy because it can be used
to weight biased data to match a reference dataset when con-
ventional post-stratification methods are not applicable due
to omitted strata. The data combination methods can also be
applied when a multivariate joint distribution is needed, but
only datasets with biases or incomplete signals are available
[35].

• A parametric multivariate distribution modeling method: As
mentioned in Chapter 2.5, the data available are limited, with
some parameters sparsely represented. Nonetheless, it is cru-
cial to be able to interpret the distribution models and grasp
the correlations among parameters, as they hold physical signi-
ficance. The proposed method can handle all the issues above.
Moreover, it can be readily modified and applied to the analysis
of other crash scenarios and even to other analyses which re-
quire a distribution model when only a relatively limited dataset
is available and an understanding of the underlying distribution
is available. For example, this method can be applied to the
analysis of other crash scenarios.

• Two vehicle behavior models: Vehicle behavior models are cru-
cial for generating crash scenarios, and their accuracy greatly
affects the realism of the generated crash scenarios at both indi-
vidual and distribution levels [58]. The lead-vehicle kinematics
and following-vehicle behavior models proposed in this thesis
(developed or adapted for the reference pre-crash datasets) ac-
curately cover the full severity range, in marked contrast to ex-
isting models Specifically, the lead-vehicle kinematics model
captures various lead-vehicle speed patterns and accurately
matches the lead-vehicle speed profiles. The following-vehicle
behavior model combines two existing behavior models and in-
corporates the potential for generating ’abnormal’ driver accel-
eration behavior, a phenomenon observed in 9.2% of all crashes.

• Formal validation methods: Existing studies [26, 36, 39, 40, 100]
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have primarily employed informal methods (such as descriptive
statistics and visualization techniques) to assess the similarity
between synthetic and raw crash data. While these methods
offer flexibility and accessibility, they suffer from drawbacks
such as subjectivity, limited quantification, and the potential for
misinterpretation [113, 114]. In contrast, the validation methods
proposed in this thesis provide formal, objective comparisons
between the synthetic and reference crash datasets. Further-
more, these methods contribute to ensuring the validity of re-
search findings or simulations based on synthetic data in crash
analysis (and related fields).

• A synthetic rear-end crash dataset: As mentioned in Chapter
1.2, most methods for generating synthetic crashes are inher-
ently biased. Specifically, the crashes generated based on nat-
uralistic driving data [24, 26, 33, 34] tend to over-represent low-
severity crashes, thus inadequately reflecting the crash out-
comes and criticality actually observed in crashes [38]. On the
other hand, generating synthetic crashes with traditional in-
depth crash databases often introduces a bias towards severe
crashes [36, 40, 42]. Clearly, evaluating active safety technologies
using a biased synthetic crash dataset yields biased outcomes.
To address this issue, the naturalistic driving and pre-crash kin-
ematics data were combined to create an unbiased (to the ex-
tent possible) synthetic crash dataset [115] representative of
real-world crashes across the full severity range. Figure 4.2 illus-
trates this point, comparing the CDF curves of the lead vehicle’s
Delta-v in rear-end crashes from various datasets. The CISS and
GIDAS datasets are biased towards severe crashes. Although
the SHRP2 dataset is similar to the reference dataset, it lacks
high-severity cases (the maximum∆vl in the SHRP2 dataset is
7.4 m/s). In contrast, the synthetic crash dataset mirrors the
reference dataset, encompassing crashes with∆vl reaching 13.8
m/s. Therefore, we argue that the synthetic dataset is repres-
entative and can be used for the safety assessments of active
safety technologies. Furthermore, the dataset can function as
a benchmark when evaluating the representativeness of scen-
arios generated through other methods (such as those based
on traffic simulation and machine learning), thereby aiding in
understanding the limitations associated with those generation
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Figure 4.2: CDF curves for the lead vehicle’s Delta-v (∆vl ) in rear-end
crashes among various datasets.

methods.

4.2 Limitations and future work

Numerous additional variables not considered here, including road
structure, traffic signals, and weather conditions, can influence the
occurrence of a crash. Future research should address these consider-
ations when more comprehensive data are available.

The modeled lead vehicle’s acceleration is not consistently smooth.
This is due to the fact that the speed of the lead vehicle was modeled
using a piecewise linear model, resulting in a sudden change in accel-
eration as it moves from one segment to another. Future work should
aim to smooth the acceleration profile, potentially by introducing jerk
during segment transitions.

The parametric multivariate distribution modeling method only
considers the linear correlation between two parameters, disregard-
ing any possible nonlinear relationships and weak or non-significant
correlations between them. The set of correlated parameters was
modeled with a multivariate normal distribution, which can effect-
ively model the linearly related parameters. These simplifications,
which keep the model tractable and avoid overinterpreting the rela-
tionships between parameters, may, however, reduce the accuracy of
the model. However, creating a complex multivariate model with a
small dataset without a substantial risk of overfitting is not feasible.
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Unfortunately, the sparsity of the available data makes investigating
the consequences of these simplifications impossible, but future work
should address this issue.

Paper A relies on pre-crash data from the US to establish the refer-
ence dataset of lead-vehicle kinematics. However, there was a short-
age of pre-crash data in the US that included both vehicles: only 37
samples were available. Therefore, the GIDAS PCM dataset was used
in Paper B, even though it was reconstructed pre-crash kinematics
data from Germany. The rear-end crashes in the US and Germany
were assumed to have similar mechanisms, although their distribu-
tions may differ.

The modified Intelligent Driver Model was used to simulate the
acceleration behavior of the following vehicle. However, it’s important
to note that this model cannot accurately mimic the highly aggress-
ive accelerations observed in some real-world crash situations, since
the model was designed and calibrated to replicate naturalistic car-
following behaviors rather than crashes. Future research should aim
to calibrate the acceleration model using near-crash or pre-crash data
to address this limitation.

The Kolmogorov–Smirnov test was used to compare the synthetic
and reference datasets. This type of test was originally designed to test
whether two datasets are significantly different. It is important to note
that a test outcome indicating ’no statistically significant difference’
cannot be confidently interpreted as evidence supporting equival-
ence or the absence of differences between the datasets [116]. Future
work should aim to explore other methods of equivalence testing.
One candidate is Bayesian statistics using ROPE (Region of Practical
Equivalence) [117, 118]; this approach to hypothesis testing and para-
meter estimation focuses on practical significance rather than purely
statistical significance.

Additionally, future work should aim to assess active safety techno-
logies with synthetic crash scenarios and validate existing crash scen-
ario generation methods, especially those that are traffic-simulation-
based. Beyond this licentiate thesis, the future PhD research will
mainly focus on this last topic.

The traffic-simulation-based scenario generation method has at-
tracted a great deal of attention from researchers; as mentioned in
Chapter 1.2, the method can simulate not only individual scenarios
but also entire road networks comprising numerous road users, gen-

36



LIMITATIONS AND FUTURE WORK

erating crashes resulting from the interactions between the compu-
tational models that make up all road users. Theoretically, the con-
tinuous spatiotemporal assessment of active safety technologies can
be assessed with these simulations [15]. However, validation of the
characteristics of the generated crashes is usually overlooked.

Validation is crucial to ensure that synthetic crash scenarios ac-
curately represent real-world conditions (vehicle dynamics, driver
behavior, road conditions, and environmental factors). Equally im-
portantly, the representativeness of these characteristics should be
verified at both the individual and distribution levels, and not the least
on the outcome severity (here the delta-v was used). Stakeholders can
use the validation results to make crucial decisions regarding active
safety technologies (during system development and policy-making
processes, for example). Furthermore, validation can identify biases
and/or inaccuracies in the simulation process; addressing them will
improve the reliability of the simulations.
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CHAPTER 5

Appendix

An empirical simulation study was conducted to compare the KNN im-
putation and KNN sample weighting methods for the specific problem
described below.

5.1 Problem

Given 1) the target marginal distribution of x and 2) the observed data-
set (x , y ), how can the target joint distribution of (x , y ) be obtained?

(a) (b)

Figure 5.1: The two target datasets.
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Type Description Sample size
S1 Unbiased (no omitted strata) 1,000
S2 Biased in x (with omitted strata) 1,000
S3 Biased in x and y (with omitted strata) 1,000

Table 5.1: The three types of observed datasets.

5.2 Dataset

5.2.1 The target datasets

• Joint distribution of (x , y ) ∼ N (µ,Σ), where the means µ =

[0,0]T , the covariance matrix Σ =

�

1 cx y

cx y 2

�

, and the covari-

ance cx y is 0 or 0.7.

• Marginal distributions: x ∼N (0, 1) and y ∼N (0, 2). (Note that
the marginal distribution of x is known.)

Figure 5.1 shows the two target datasets: 1) x and y are independent
(cx y = 0), and 2) x and y are correlated (cx y = 1).

5.2.2 The observed datasets

Table 5.1 shows the three types of observed datasets, which were de-
signed with different bias levels. Figure 5.2 shows the three observed
datasets created for each target dataset.

5.2.3 Simulations for the KNN imputation method

For each target dataset:

1. Build KNN imputers using the ”scikit-learn” package in Python
[119] for the three observed datasets, respectively.

2. For n = 100 : 100 : 1000, repeat the following steps for 100 simu-
lations:

a. Generate n samples from the marginal distribution of x .

b. Impute y values using the three data imputers, respect-
ively.
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(a) S1 (cx y = 0) (b) S2 (cx y = 0) (c) S3 (cx y = 0)

(d) S1 (cx y = 0.7) (e) S2 (cx y = 0.7) (f ) S3 (cx y = 0.7)

Figure 5.2: The observed datasets for the two target datasets (cx y = 0
and cx y = 0.7).

c. Using the two-sample KS test to determine whether the
distribution of imputed y and the true marginal distribu-
tion of y , i.e.,N (0, 2), are significantly different (at the 0.05
significance level).

3. Compute the proportion of simulations with non-significant
test, η.

5.2.4 Simulations for the KNN sample weighting
method

For each target dataset:

1. Generate 10,000 samples from the marginal distribution of x .

2. Use the generated samples to set the sample weights for the
three observed datasets using the KNN sample weighting
method (see Section 5.5 for further information regarding the
algorithm).

3. Use the weighted two-sample KS test to determine whether the
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(a) S1 (cx y = 0) (b) S2 (cx y = 0) (c) S3 (cx y = 0)

(d) S1 (cx y = 0.7) (e) S2 (cx y = 0.7) (f ) S3 (cx y = 0.7)

Figure 5.3: Performances of the KNN imputation method.

Target dataset

cx y = 0 cx y = 0.7

Observed dataset type S1 S2 S3 S1 S2 S3
p-value 0.99 0.82 0.00 0.92 0.51 0.00
sample size 1,000 886 970 1,000 922 936
effective sample size 852 310 401 842 436 493

Table 5.2: Performances of the KNN sample weighting method.

weighted distribution of y and the true marginal distribution of
y , i.e.,N (0, 2), are significantly different (at the 0.05 significance
level).

5.3 Results

Figure 5.3 shows the simulation results for the KNN imputation
method; Table 5.2 shows the KNN sample weighting method simu-
lation results. Neither of the two methods can handle the observed
dataset of the S3 type. The KNN imputation method’s performance
tends to decrease as the generated dataset’s sample size increases. In
contrast, the KNN sample weighting method produces results that are
not significantly different for observed datasets of the S1 and S2 types
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for both target datasets. In addition, 20 various S0 and S1 datasets
were added to test the robustness of KNN sample weighting. None of
the results show a significant difference.

5.4 Conclusions

• The covariance cx y does not strongly influence the simulations
in the study.

• Neither of the two methods can handle the observed dataset of
the S3 type (biased on both x and y ).

• The KNN imputation method may produce a significantly dif-
ferent y distribution.

– As the sample size increases, the possibility generally in-
creases.

– As the bias level of observed data increases, the possibility
increases.

• The KNN sample weighting method does not produce any signi-
ficantly different y distributions in any simulation for observed
datasets of the S1 and S2 types. However, it would ignore ob-
served data points that were never selected as the top k nearest
neighbors for any raw sample, and the weighted data has an
even smaller effective sample size.

5.5 The KNN sample weighting algorithm

Given:

• The observed dataset {Xi |i ∈ [1, n ]}, where Xi = [x
(i )
1 , x (i )2 , ..., x (i )K ]

T .

• The known target joint distribution Φ̃(x1, x2, ..., xm ) (m < K ).

Objective:

• Set sample weights for the observed data so that the weighted
data maps the target joint distribution.

Algorithm:
As shown in Algorithm 1, the KNN sample weighting method con-

tains four main steps.
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Algorithm 1 KNN sample weighting algorithm.

Set wi = 0 ∀ i ∈ [1, n ]
Generate N samples from Φ̃(x1, ..., xm ): {[x̃

( j )
1 , ..., x̃

( j )
m ]T | j ∈ [1, N ]}

For j = 1 to N :

d (i )j =
r

∑m
p=1(x̃

′( j )
p − x ′(i )p )2 ∀ i ∈ [1, n ]

ω(i )j = 1/d (i )j if all(d (i )j > 0) else I{d (i )j =0} ∀ i ∈ [1, n ]

H = arg max
i
({ω(i )j | i ∈ [1, n ]}, k )

whl
←whl

+
ω
(hl )
j
∑k

l=1ω
(hl )
j

∀ hl ∈H

wi ←
wi
∑n

i=1 wi

∑n
i=1 I{wi>0} ∀ i ∈ [1, n ]

1. Set the initial sample weight for each raw sample to zero: wi =
0 ∀ i ∈ [1, n ].

2. Sample N samples from the known reference distribution
Φ̃(x1, ..., xm ).

3. For any generated sample X̃ j :

a. Compute the Euclidean distance between X̃ j and Xi , d (i )j ,

for all i ∈ [1, n ]. (x̃
′( j )
p and x ′(i )p are the standardized value

of x̃
( j )
p and x (i )p , respectively.)

b. Compute the distributing weight of the raw sample Xi for

X̃ j , ω(i )j , for all i ∈ [1, n ]. (A smaller Euclidean distance
correlates to a higher distributing weight.)

c. Distribute a weight value of one among the top k raw
samples with the highest distributing weights ({Xhl

|hl ∈
H }).

4. Scale the weights so that
∑n

i=1 wi = n .

The value of k is determined by minimizing the loss,
∑m

l=1 s (k )l , where

s (k )l is the KS statistic for xl conditioned on k computed with the
weighted two-sample KS tests between the weighted xl data and the

reference data {x̃ ( j )l | j ∈ [1, N ]}.
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