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A B S T R A C T

This study develops and applies an open data-based reference electricity grid analysis (REGAL) model designed
to create a synthetic representation of a low-voltage (LV) grid for a country-size geographic area. The model
enables large-scale grid simulation in which new loads, such as electric vehicle charging, can be added to es-
timate their impacts on the current LV grid. The modeling is carried out in three steps: (1) generation of a
synthetic LV grid; (2) addition of residential loads, including electric vehicle charging; and (3) evaluating if the
grid capacity is exceeded. The grid is generated by selecting transformers and cables so that the system can fulfill
the current demand while meeting national regulations and standards for distribution grids, all at the lowest total
cost. This paper presents the results of calibration and validation against real-world data for the predicted
electricity demands and synthetic grid generated by the model. Different calibration values were explored, and
the accuracy of the estimations of grid capacities was calibrated using proprietary real-world data from grid
operators. For a region with multiple grid cells, an average deviation from real-world data of ±10% was ach-
ieved. For an average area of 1 km2, the error was 44.5%, which means that the model is not suitable for analysis
on this geographic level. However, the level of accuracy is deemed sufficient for initial estimations of hosting
capacity for larger geographic areas, such as a region or a country, thereby enabling estimations of hosting
capacity in new areas that lack publicly accessible grid capacities.

1. Introduction

Traditionally, distribution grids were built to distribute electricity to
consumers with a more or less inflexible load. As more sectors are
electrified, including the transport sector, and electricity production
becomes increasingly decentralized and more volatile (from increasing
shares of wind and solar power), greater stress is exerted on the local
electricity grid and on its operational ability to connect production and
demand in both space and time. A large share of the new loads imposed
on the low-voltage (LV) electricity grid is linked to the electrification of
passenger cars, in the form of charging of electric vehicles (EVs). There
have been several studies on passenger EVs and their impacts on elec-
tricity systems (see reviews by Nazari-Heris et al. [1], Kumar et al. [2],
and Nour et al. [3]). For example, Hedegaard et al. [4] have analyzed
how large-scale implementation of EVs would influence the North Eu-
ropean electricity systems. They have shown that enabling intelligent EV
charging and discharging can support variable renewable electricity

production, although they conclude that the effects of EVs on electricity
systems will vary between different countries. The impacts of EV
charging on electricity generation and storage have been investigated
using energy systems modeling by Taljegard et al. [5], reaching the
conclusion that controlled charging of EVs can reduce investments in
peak power capacity, reduce the need for storage technologies, and
stimulate increased shares of solar and wind power generation. How-
ever, few studies have included the capacities of distribution grids and
how those grids are affected by new loads from EV charging and local
electricity generation, such as through photovoltaics (PV). The flexi-
bility in EV charging included in this type of study could influence the
needed grid capacity, but not evaluate it.

Reviews of the methods and tools for estimating the numbers of EVs
and amounts of solar PV that can be hosted by the capacities of current
LV grids – hereinafter referred to as hosting capacity – have been pre-
sented by Umoh et al. [6] and Carmelito and Filho [7]. An additional
review of the calculations for hosting capacity has been presented by
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Abideen et al. [8]. All of these publications describe methodologies for
the evaluation of hosting capacity and their strengths and weaknesses.
The reviews have characterized previous studies based on the types of
methodology for predicting how new loads influence electricity grids.
Three types of methodologies for adding new loads have been identified:
deterministic simulations; stochastic methodologies; and time-series
methods [7]. Deterministic simulations use fixed values for the loads,
typically the maximum loads, to generate a single value for the hosting
capacity. Thus, deterministic simulations lack the possibility to consider
uncertainty but have the benefits of simplicity, low data requirements,
and a low demand for computational power, as compared to other
methods [6,9]. Uncertainty has been addressed with stochastic methods,
usually through Monte Carlo simulations, which consider the likelihood
of uncertain variables and run amultitude of scenarios to determine how
the uncertain variables affect the outcome. Drawbacks of this method
are that the knowledge as to how the loads coincide in time is lost, and
multiple uncertainties can lead to an unfeasible number of scenarios [9].
Carmelito and Filho [7] proposed and used a methodology that com-
bines deterministic and stochastic methods to study EV charging, how-
ever, that does not allow for temporal resolution of the results.
Time-series analysis uses actual measurements or generated data with
a certain temporal resolution to identify when problems are likely to
occur in the grid. However, this requires large amounts of input data and
typically assumes that past data can also be representative of scenarios
with the introduction of future loads, electricity generation, and storage
technologies [6]. Luthander [10] has shown that when studying the
hosting capacity of solar PV with a time-series analysis, the timestep
chosen in the analysis can influence the accuracy of the results. Mulenga
et al. [9] have pointed out that when evaluating the hosting capacity of
solar PV, time-series analyses and stochastic analyses are more-relevant
than deterministic studies due to the intermittency of PV generation.
Since EV loads are also intermittent, albeit with partially predictable
diurnal patterns, one could argue that this should also be true for EVs.

In the reviews of Umoh et al. [6] and Mulenga et al. [9], the evalu-
ation criteria for the determination of hosting capacity have been
addressed. Both studies have concluded that most studies of hosting
capacities have used the same three performance indices: voltage
magnitude; line or cable loading; and transformer loading. Some studies
have also included other evaluation criteria, such as power loss and
voltage unbalance [11,12,13,14].

Veldman et al. [15] have studied the impacts on distribution grids
from the smart charging of EVs in an electricity grid of known topology
in The Netherlands. The area that they cover in the study delivers
electricity to 920,000 residential customers. The studied grid includes
the medium voltage (MV) level (transformers and cables), as well as the
transformers that convert between the MV and LV levels [15]. Charging
profiles were achieved by running the driving data for conventional
vehicles in an optimization model in which the introduced EV load can
impact electricity prices. In doing so, they have assumed that vehicles
can charge when not driving [15]. However, since only the transformer
of the LV grid is considered, a simulation of the LV grid is not possible
and other limiting factors in the LV grid can, therefore, not be
investigated.

Luthander et al. [16] performed a study in which PVs and EV
charging were added to a power system that included both the MV and
LV grids in Sweden, covering an area with 5174 customers. They used
actual grid capacities that were retrieved from the grid operator in the
area. They studied voltage, current, and power fluctuations for two time
periods of 2 weeks each, one in summertime and one in wintertime. For
each time period, they added future PV generation and EV loads to the
studied grid; the results were obtained separately for the winter and
summer weeks as averages over a single day with a 1-hour time reso-
lution [16]. How often the operational limits of the grid were exceeded
could not be studied, as only a 2-week period was studied for each case.
Furthermore, no information was provided as to how applicable the
results might be to electricity grids other than the one studied.

The three previously described methods for the evaluation of hosting
capacity assume that the capacity of the investigated grid is known. If
the real grid capacities are unknown, an estimation of current grid ca-
pacities is needed. Today, it is often difficult to have access to grid ca-
pacities over a larger geographic area, since the operation of electricity
grids, especially distribution grids, is typically split between many
different actors, and national security restrictions limit access to the
data. One option is to gain access to grid capacities for a smaller area, so
as to perform a case study and subsequently extrapolate the results to a
larger area [16]. Due to the lack of real grid capacities, some studies
have used typical grids and extrapolates the results to larger areas [15].
An alternative method is to develop a synthetic grid based on data
regarding the number of customers in an area and the grid design
principles, and thereby analyze the hosting capacities for EVs and solar
PVs [17,18,19].

Amme et al. [17] have combined local grid planning principles and
GIS data, considering line congestion and voltage limitations, to
generate a plausible, distributed representation of all the MV grids for
Germany. Using this methodology, a deviation of approximately 10%
from real network data was achieved [17]. However, those authors did
not consider the LV grid and its operational capacities.

Zhu et al. [12] have assessed the EV hosting capacities of two
Australian MV and LV grids using stochastic time-series analysis. Zhu
et al. [12] built the analysis on a model that was first presented by
Nacmanson et al. [19]. They used the known capacities of the MV grid
network and approximated the LV grid capacities based on data, which
included the number of customers per transformer and the local design
principles used for grid development in the area, such that they derived
a synthetic LV grid representation [19]. The loads were simulated using
a stochastic time-series analysis run with a 1-minute resolution over a
24-hour day [12]. The household load profiles with 1-minute resolution
were created by interpolating data with a 30-minute time resolution
[12]. They found that the hosting capacity needs to be estimated for
different types of networks, and concluded that different components
can be limiting factors [12]. No estimation was performed on a larger
regional level (e.g., encompassing several MV grids), and no data on
how accurate the estimations of LV grid capacities were presented in
that study.

The abovementioned studies have provided valuable insights into
how interactions between residential and EV loads can be modeled to
evaluate using several methods the hosting capacities for EVs in the
current LV grid. However, the methods used in those previous studies
have the limitation that they are not able to consider the LV grids of
larger geographic regions. Therefore, this work aims to create and
validate a methodology for generating a synthetic LV grid for a large
geographic area, such as a country, and then use this method to add
future EV charging to residential loads. The model uses open data as
inputs such as population density, dwelling distribution, and rules for
grid design to generate an LV grid for Sweden. These types of data are
usually more accessible than grid capacities. The developed method also
suggests how to simulate the imposition of new loads on the generated
grids in a way that takes into account the uncertainty as to where the
loads might appear, as well as how to discern whether the operational
limits of the LV grid have been exceeded. The study also presents the
results of calibration and validation tests against real-world data for the
predicted electricity demands and the synthetic grid generated by the
model, and suggests calibration values that can be used for Sweden.

2. Method

In this study, a reference electricity grid analysis (REGAL) model is
developed to generate a synthetic representation of the LV grid in
Sweden based on population data and power system calculations. The
REGAL model can be used to estimate hosting capacities in areas with
unknown grid capacities. The present study builds on the LV grid model
presented by Hartvigsson et al. [18], albeit with modifications designed
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to serve new purposes and increase the level of accuracy when analyzing
new research questions, including those related to hosting capacities for
EVs. Examples of substantial changes include allowing for a high tem-
poral resolution and analysis of EV charging using different charging
strategies. Furthermore, the new version of the model uses several new
datasets as inputs and has been validated and calibrated against large
datasets of real-world grid data. This section is divided into two parts: (i)
a description of the REGAL model and the different modeling steps
(Section 2.1); and (ii) a description of the geographic input dataset that
is used to run the REGAL model (Section 2.2). The description of the
modeling in Section 2.1 also includes an outline of the method and
datasets used for validation of the generated synthetic grid (Section
2.1.4).

2.1. The REGAL model

The REGAL model procedure is depicted in Fig. 1 and consists of the
following modeling blocks: (1) generation of a synthetic least-cost LV
grid with high geographic resolution that complies with national regu-
lations; (2) grid simulation when adding EV charging to the residential
load; and (3) evaluation of power system violations. Sections 2.1.1 to
2.1.3 describe these three modeling blocks in detail. The main input data
to the different modeling blocks are indicated in white boxes in Fig. 1.
Technical and economic input data are presented continuously through
the model description and in Appendix A1, while the geographic input
data are presented in detail in Section 2.2. The LV grid model in this
study is developed for Sweden, whereby the country is divided into
squares of 1×1 km2, herein termed grid cells, resulting in 104,853
populated grid cells for Sweden. The LV grid is generated and simulated
for each grid cell individually in the model. The REGAL model is written
in Julia. The model code is available online under a permissive open-
source license [20].

2.1.1. Synthetic low-voltage grid generation
The REGAL model generates a synthetic LV grid by selecting the

number of transformers, cables, and feeders of different capacities for
each grid cell. Only residential customers are considered in the model,
both when the grid is dimensioned and during grid simulation. It is
assumed that all households are connected to an LV grid. Fig. 2 shows an
overview of the process used to generate the synthetic LV grid within a
grid cell.

The REGAL model selects the number of transformers of different
sizes in each grid cell using the total peak power of the grid cell. The
peak power demand in a grid cell is estimated using Velander’s formula
in Eq. (1). Velander’s formula represents an empirical relationship be-
tween peak power and annual energy use for Swedish demand patterns.
It is used in the model because it was commonly used to dimension
components when the major part of the Swedish LV grid was built.
Velander’s formula is still used by grid companies to dimension com-
ponents during grid expansion in Sweden, although it is being replaced
by other methods that rely on measured data. The peak power demand is
used to estimate the demand for transformer capacity in the grid cell
[see Eq. (2)]. A transformer margin, α, is applied to take into account
that transformer capacities are typically over-dimensioned during grid
expansion, to allow for future load increases. Transformers are available

in discrete sizes and are subject to economics of scale, with decreasing
cost per kVA for increasing transformer size. Eq. (3) is used to estimate
how many transformers of a certain capacity will be needed to fulfill the
transformer demand in the grid cell. One grid cell can have several
transformers, although as symmetry within the grid cell is assumed, all
transformers must be of the same size. Table 1 lists all the notations used
in Eqs. (1)–(3). Data on the properties and costs of the components
(transformers, feeders, and cables) are given in Appendix A1.

PT,max = k1,APT • NAPT • EAPT + k2,APT
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
NAPT • EAPT

√
+ k1,SFD • NSFD

• ESFD,p+ k2,SFD
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
NSFD • ESFD,p

√
(1)

T = αp • PT,max (2)

T ≤ Ti • NT,i i ∈ I (3)

The average annual electricity demands used in Eq. (1) differ be-
tween single-family dwellings (SFD) and apartments (APT), as well as
between urban and rural areas. In the model, it is assumed that the LV
grids in rural electricity areas are dimensioned to supply more customers
with electric heating for single-family dwellings, while in urban areas
more of the customers in Sweden are connected to a district heating
network. The annual electricity demands used in the model, which are
taken from Zimmerman [21], are assumed to be 18,558 kWh for
single-family dwellings in rural areas, 8416 kWh for single-family
dwellings in cities, and 2404 kWh for apartments based on an average
apartment with two adult inhabitants. The electricity demand for
apartments is scaled by a factor of 1.25 to include electricity use in the
common areas of the buildings, such as for elevators [22].

The geometry of the synthetic grid is constructed in the same way as
presented by Hyvärinen [23], as illustrated in Fig. 3. A uniform distri-
bution of transformers and customers within the grid cell is assumed, as
the positions of the transformers and customers are unknown (Fig. 3).
This means that the sizing of power lines is selected such that all cus-
tomers are reached, and the capacity of each cable is selected to ensure
that it meets the national standards regarding tripping time, i.e., the
time before a protection device trips during a power fault. Furthermore,
the power lines must have sufficient capacity to meet the peak power
demand and to ensure voltage quality. A final check is done to ensure
that the earthing impedance does not exceed the maximum values [24].
The estimations of the power demand in cables assume fuse sizes of 10 A
in apartments 20 A in single-family dwellings. When there is more than
one household, a coincidence factor for the cables is calculated. This is
achieved by comparing the maximum power for all households, calcu-
lated using Eq. (1) for the whole load, to the sum of the maximum
powers when using Eq. (1) for each household separately. The cable
capacities for different segments are calculated iteratively until all of the
abovementioned design criteria are met, following the process presented
by Hartvigsson et al. [18].

In Fig. 3, the orange colored dots represent the customers who are
supplied by the transformer, which in turn is indicated by a star. Each
transformer can have up to four LV feeders, the cable for one of which is
illustrated by the blue line in Fig. 3. Each cable that is connected to the
feeder, called a branch (illustrated with yellow lines), is assumed to
serve the same number of customers. MV feeders are not depicted in the

Fig. 1. Overview of the main modeling blocks and input data for the REGAL model.
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figure. Multiple setups could reach all customers and supply the required
transformer capacity, for example, either more transformers of a lower
capacity with shorter LV lines and more MV feeders, or fewer trans-
formers of a higher capacity with longer LV lines and fewer MV feeders.
Fig. 3 includes two examples of layouts that can reach all of the cus-
tomers: one with four transformers of lower capacity (left panel); and
one with a single transformer of higher capacity (right panel). Cable
dimensioning is performed for each possible layout based on the number
of customers per transformer. Since multiple configurations can exist,
the cost of each configuration that fulfills Eqs. (1)–(3) is calculated using
the formula presented in Eq. (4). As seen in Eq. (4), the number of
transformers, their capacities, and costs, as well as the cost for LV and
MV lines and feeders used to connect the customers within the grid cell,
are considered. Then, the system with the lowest cost is selected. The
parameters and variables for Eq. (4) are provided in Table 4.

min
[
Ctot = NT,i • CT,i+ lLV,i • CLV + lMV,i • CMV

]
i ∈ I (4)

2.1.2. Addition of loads and grid simulation
The second building block in the REGAL model involves the addition

of residential and EV loads to the synthetic grid generated in the first
block. According to the local regulations for the Swedish grid, the limit
for deviations from the nominal voltage is evaluated over a 10-minute
period, so the model used a 10-minute time resolution. Load profiles
were randomly allocated to different households and repeatedly simu-
lated using a Monte Carlo approach to consider the uncertainty as to
where in the grid different loads could occur, while still being able to
study when in time issues are likely to occur.

In the model, 35 different measured household load profiles with 10-
minute time resolution were used: 20 for single-family dwellings and 15
for apartments. The load profiles included households with different
heating technologies and were all gathered from a region that is cen-
trally located in Sweden [21]. These profiles were shifted in time, up to
2 hours and additionally up to 1 full week, backwards or forwards in
relation to the original profiles, so as to create at least 1120 different
household load profiles of each type. The EV charging profiles are based
on GPS driving data from 426 EVs [25]. Each EV is by default assumed to
charge upon arrival at the home location. This is the most conservative
assumption, since charging largely coincides with the afternoon peak
load, while smart charging strategies can avoid this by shifting more of
the charging to night-time. For more information about the charging
profiles, see the paper of Taljegård et al. [26]. For the results shown in
this paper, 100 % of the current vehicle fleet was assumed to be elec-
trified. However, the model was developed to allow for the study of
other fleet shares and other smart charging strategies. The maximum
charging power for EVs was assumed to be 6.9 kW.

Fig. 2. Overview of the process used to generate the synthetic grid.

Table 1
Parameters and variables for Eqs. (1)–(3).

Notation Description

ESFD/APT Annual energy consumption for a household of the specified type
I Set of all possible transformer capacities
k1, k2 Velander’s coefficients
NSFD/APT Number of households of the specified type
NT,i Number of transformers
p Population density
PT,max Peak power demand imposed on the transformer
T The total demand for transformer capacity
Ti The capacity of transformer i
αp Transformer margin for the population density p

Table 2
Parameters and variables for Eq. (4).

Notation Description

Ctot The total cost of the synthetic grid
CLV Cost of low-voltage line per km
CMV Cost of medium-voltage line per km
CT,i Cost of transformer i
I Set of all possible transformer capacities
lLV The total length of low-voltage lines
lMV Marginal length of medium-voltage lines
NT,i Number of transformers

Fig. 3. Illustration of the placement scheme for the transformers (the black
cross), cables (blue and yellow lines), and customers (orange dots) in a grid cell.
This example includes 64 customers. Panels a and b illustrate two different
configurations. Panel a assumes a lower capacity for each transformer
compared to panel b and, thereby, more transformers. MV feeders are not
included in the illustration.

T. Lundblad et al.
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As there is no information about which customers the profiles
represent best, the household and EV profiles could be allocated to any
of the customers in the LV grid. Household and charging load profiles
were randomly selected among those available, and then pre-aggregated
into aggregated load profiles representing different numbers of single-
family dwellings, apartments, and EVs. This pre-aggregation step was
performed to decrease the computational time for the model. One model
run of the REGAL model iterated over all 104,853 grid cells in Sweden
and performed a number of simulations for each cell by selecting
different random combinations of household and charging load profiles.
The number of simulations used for the results presented in this work
was 1500. When analyzing the impacts of specific variables, the same
randomization of load profiles was used in the runs, which were
compared to isolate the impact from the studied variable.

Due to the assumed symmetry of the loads and equipment within
each cell, any violations that arise will occur in the longest cable coming
from the transformer, so the calculations need only be performed for the
longest cable in a grid cell. This assumption is based on the notion that a
longer feeder will have a larger voltage drop, as it likely will have the
highest number of customers. To enable the assessments of new loads
and technologies in the LV grid, a simplified voltage-drop calculation, as
given by Eq. (5), is used. It starts from a nominal voltage and then cal-
culates the voltage drop over the transformer and cable segments up
until point j along the LV feeder for a time-step t. The power demand for
each segment is the sum of the power demands further down the LV
feeder. A power factor of 0.9 is used for all household loads except EV
charging, which is assumed to behave as a purely resistive load (with the
notations given in Table 3).

Uj,t=UN −
RT,t•

(
PSFD,T,t+PAPT,T,t+PEV,T,t

)
− XT•pfX•

(
PSFD,T,t+PAPT,T,t

)

UN

−
∑J

j=1

(
Rline,j•

(
PSFD,j,t+PAPT,j,t+PEV,j,t

)
+Xline,j•pfX•

(
PSFD,j,t+PAPT,j,t

))

UN
t

∈τ
(5)

2.1.3. Evaluation of power system violations
The power system violations that are considered can be split into

voltage variations outside the allowed limits and violations of thermal
constraints, hereinafter referred to as voltage and thermal violations,
respectively. Voltage violations occur when the voltage drops below or
exceeds a fixed level, in this study set as a 5 % deviation from the
nominal value to allow for some variation in the MV level and com-
mercial loads before reaching the limit of 10 % commonly used in
Sweden. The criteria for when a voltage violation occurs are given in Eq.
(6) and Eq. (7), and the thermal violation criterion is expressed in Eq.
(8).

UJ ≥ UN • 1.05 (6)

UJ ≤ UN • 0.95 (7)

PJ ≥ TC (8)

Here, TC is the thermal capacity and PJ is the load from both
households and EVs at point J. For each time-step and run, each of the
criteria listed above for a power system violation is checked for all
relevant points in the LV grid. If any of the criteria are met, they are
recorded and the likelihood of a violation occurring for each time-step
can be determined by calculating how many of the randomized
vehicle and household combinations for that grid cell violate the
criteria.

The share of the vehicle and household load profile combinations
that results in power system violations is calculated for each time-step in
each grid cell using Eq. (9). This share is then summarized over the time-
series to derive the average number of time-steps with a violation of
each type in a year for each grid cell. Over multiple iterations, the
average number of violations will converge to the expected value (of the
stochastic variable).

Vx,tot =
∑τ

t=1

∑S
s=1Vx,t,s
S

(9)

where Vx,tot is the average number of violations in a year of type x, Vx,
t,s is a binary variable describing whether or not a violation occurs in
time-step t and for run s, and S is the total number of runs considered.
The calculations are performed for each type of violation individually, as
well as for all violations taken together.

2.1.4. Calibration and validation of the generated synthetic grid
The generated LV grid was first calibrated and then validated against

real-world data supplied by several Swedish grid operators. The cali-
bration focused on reducing the errors in the estimations of transformer
capacities and the validation showed how the errors related to the initial
electricity demand estimations and transformer capacities vary between
different grid cells and groupings of grid cells. Detailed data on a grid
cell level were provided by several grid operators, representing both
large and small operators. The data cover 9477 out of 104,853 grid cells
in Sweden, including grid cell data from 7 out of 21 regions and 81 out of
290 municipalities (for maps of the municipalities and regions in Swe-
den, see Statistics Sweden [27]). The data per grid cell consist of: (i) the
annual electricity demands for residential and commercial customers;
(ii) the number of transformers with different capacities; and (iii) the
cable lengths. Since most of the grid cells contain both commercial and
residential customers and the REGAL model only considers residential
demands, allocations between residential and commercial customers
were made according to the peak power demand. The annual electricity
demands measured by the grid operators were used to calculate the peak
power demands using Velander’s formula [Eq. (1)] for household and
residential customers, respectively. It was assumed that the residential
customer’s share of the total peak power demand, μ, in each grid cell was
the same as their share of the total transformer capacity.

Some of the 9477 grid cells were excluded from the dataset based on
the following criteria: (i) grid cells without registered inhabitants; and
(ii) grid cells where the commercial customers accounted for more than
30 % of the peak power demand. These exclusions were made because
the model only considers residential demands, and the empirical cor-
relation between the transformer capacity data and the population data
was significantly lower that level of commercial share of load. In total,
7382 out of the 9477 grid cells were used in the dataset for calibration
and validation of the model.

Fig. 4 shows the real-world transformer capacity per grid cell and the
population density for the corresponding grid cell. It is clear that there is
a general increase in transformer capacity with population, although a
large scatter can be observed (the scale is logarithmic). This means that

Table 3
Parameters for Eq. (5).

Notation Description

NEV Number of EVs per household
Nj Number of customers supplied at point j
NT Number of customers supplied by the transformer
PSFD/APT,t Average load profile of households
PEV EV charging rate
pfX Relation between active and reactive power
Rline,j Resistance of feeder at point j
RT Resistance of the transformer
t Time-step
Uj,t The voltage at point j
UN Nominal voltage
Xline,j The reactance of the feeder at point j
XT Reactance of the transformer
λsEV,t Charging coincidence of EVs at percentile rank s
τ Set of modeled time-steps
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although the population density can be used as a predictor of trans-
former capacity in a grid cell, it will never predict perfectly the trans-
former capacity in all grid cells. This is due to several reasons, one being
that transformers come in discrete sizes and another being that the lo-
cations at which inhabitants reside according to the population statistics
may not be the same locations as where they consume electricity. It is
also possible that the population in an area has changed significantly
since the grid was dimensioned. As the current population statistics form
the basis for the model, a deviation from real-world data is expected and
will occur.

The transformer margin (αp), used for dimensioning the transformers
in Eq. (2), was varied to study its impact on model accuracy. In previous
versions of the model [18], a fixed αp-value was used based on a dataset
derived from fewer cells and only a single grid operator. In this study,
the αp-values were varied to identify those values that deviated the least
when comparing modeled and real-world transformer sizes. The model
was calibrated to reduce the difference between the model values and
the values from the real-world data.

The error and the deviation describe how different the transformer
capacity in the model for a grid cell is in comparison to the real-world
data. The deviation in transformer capacity between the REGAL model
and the real-world values was calculated according to Eq. (10). A pos-
itive value means an over-dimensioning of the transformer in the model
and a negative value represents an under-dimensioning. The error be-
tween the modeled transformer capacity and the real-world data in a
grid cell was calculated using Eq. (11). In Eqs. (10) and (11), μ is the
residential share of the maximum power, i.e., the residential power
demand divided by the total power demand in the grid cell. All errors
will be seen as positive values, regardless of whether the errors are due
to over- or under-dimensioning of the transformer. When examining
how the model performs for a larger area, both the error and deviation
are averaged over the grid cells in the area. Thus, the deviation describes

the bias for the group when averaging it over a studied area, while the
error describes the average error in a grid cell. The notations used are
defined in Table 4. When the validation of the initial electricity demand
estimation was carried out, deviations from the real-world values for the
annual electricity demand were calculated in the same way as for the
transformer capacity.

d =
Tmod − Treal ∗ μ

Treal ∗ μ (10)

e =
|Tmod − Treal ∗ μ|

Treal ∗ μ (11)

Validation of the model accuracy for different geographic scopes was
made by comparing the average errors and the average deviation on
both the grid cell level and for larger geographic areas. Table 5 shows
the grouping of grid cells into three categories based on population
density (city, urban, and rural) and the population density limits used
for the groupings. Grouping was also performed for two other
geographic resolutions: municipality, and region. The key features of
regions are described in Table 6. The numbers of grid cells in Tables 5
and 6 represent the remaining grid cells after applying the two exclusion
criteria previously described.

2.2. Geographic input data

The REGAL model requires input data on the grid cell level for
several demographic parameters, including: (i) population density; (ii)
the number of apartments; (iii) the number of single-family dwellings;
and (iv) the number of vehicles. Of these, only the population density is
available for the grid cell resolution. In Sweden, statistics regarding the
numbers of apartments, single-family dwellings, and vehicles are
available for demographic statistical areas (DeSA, or DeSO in Swedish).
The DeSAs divide Sweden into 5984 areas based on population density,
where each DeSA contains between 700 and 2700 inhabitants [28].
Table 7 shows the original geographic resolution of the geographic data
used in the model.

The geographic areas of the DeSA, for which most of the input data
are available, differ significantly in size between rural and urban areas,
given that DeSAs by design have roughly similar populations. Each grid
cell was allocated to a DeSA by identifying the specific DeSA within
which the center-point of each grid cell was located. To downscale the
DeSA statistics to grid cells, nonlinear functions describing how the
numbers of vehicles, single-family dwellings, and apartments vary with
population density were estimated from the data on the DeSA level.
These population density relationships were then applied to cells within
each DeSA but weighted so that the total numbers of apartments, single-
family dwellings, and vehicles within each DeSA matched the original
statistics when summing up the grid cells. Although this might not be a
perfect representation of reality, it is assumed to be more-accurate than
a constant or a linear, population-based distribution, which would not
capture the differences between urban and rural areas as accurately.

3. Results

Section 3.1 presents a comparison of the model results and the real-
world data, and Section 3.2 provides the results from runs that used the

Fig. 4. Transformer capacity allocated to residential users in the real-world
data in kVA (y-axis) and population density expressed as the number of in-
habitants per square km for each grid cell in the calibration dataset (x-axis).
Scales are logarithmic with a base of 10.

Table 4
Parameters for Eqs. (10) and (11).

Notation Description

d Deviation from real-world data
e Error compared to real-world data
Tmod Total transformer capacity in grid cell from the model
Treal Real-world data for transformer capacity
μ The residential share of the maximum power

Table 5
Groupings based on population density. The population is reported as number of
inhabitants per km2.

Group name Population density, p Number of grid cells

Rural p < 200 7062
Urban 200 ≤ p < 1000 261
City p ≥ 1000 59
∑

7382
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REGAL model to add EV charging to residential loads.

3.1. Comparison of the model with real-world data

Fig. 5 shows a comparison of the annual residential electricity de-
mand calculated in the REGAL model using the annual electricity de-
mand measurements from grid operators. As shown in Fig. 5, there are
grid cells in which the annual electricity demand in the REGAL model is
overestimated and ones in which it is underestimated. Overall, the es-
timations in the model follow the measured electricity demand, whereas
for low demands the relative scatter of the data-points is large. As the
demand estimation from the REGAL model for a given population den-
sity will have a similar value for cells with the same population density,
only varying depending on the distinction made between apartments
and single-family dwellings, most of the variation in deviation arises
from differences in the measured demand. Therefore, there will always
be scatter in the modeled results as more factors than population density
and housing type influence the electricity demand. Fig. 6 shows the
average deviation, d, between the measured electricity demand and the

estimations of annual electricity demand in the REGAL model [calcu-
lated as in Eq. (10)]. The density of data-points in Fig. 6 indicates the
occurrence of different values of d for the given population density. A
small bias towards overestimation is evident in the electricity demand
estimations made by the model. Typically, larger deviations are seen for
grid cells with low population densities, and the large span in load es-
timations seen for areas with low population densities reveals how the
same population can have very different electricity consumption levels
in different areas. This indicates that there are individual differences
between customers’ electricity demands that cannot be captured by a
general assumption. A smaller deviation with a higher population den-
sity is expected because with a higher number of households it is more
likely that an average value will be representative, given that individual
electricity use variations will cancel each other out.

During the calibration of the model, various α-values were investi-
gated, i.e., different factors for over-dimensioning transformers to
represent real-world grid dimensioning principles. As can be seen in

Table 6
Characteristics of the regions.

Area name Average population per km2 Number of grid cells

R1 406.2 190
R2 159.7 308
R3 39.7 374
R4 22.5 426
R5 31.9 1401
R6 51.46 1854
R7 30.7 2829

Table 7
The initial geographic resolutions of some input parameters.

Parameter Initial geographic
resolution

Reference

Inhabitants Grid cell [29]
Average number of inhabitants in single-
family dwellings and apartments

DeSA [28]

Number of people in single-family dwellings
and apartments

DeSA [28]

Number of cars in traffic DeSA [28]
Low-voltage grid regulations National [24]

Fig. 5. The annual electricity demands assumed in the REGAL model and the
measured residential annual electricity demands from grid operators per grid
cell with linear axes. One data-point corresponds to one grid cell.

Fig. 6. Percent deviation, d, between the annual residential electricity demand
assumed in the REGAL model and the measured residential annual electricity
demand from grid operators, for grid cells with different population densities
[Eq. (10)]. The x-axis is logarithmic with a base of 10. One data-point corre-
sponds to one grid cell.

Fig. 7. Percent deviation, d, from the real-world data with respect to trans-
former capacity, averaged for all the grid cells in rural, city, and urban areas,
calculated according to Eq. (10).

T. Lundblad et al.
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Fig. 4, the real-world data are highly variable, so a large error is ex-
pected using this methodology. Fig. 7 shows the deviation in transformer
capacities between the REGAL model and real-world values averaged
over all grid cells for different α-values [see Eq. (10) for calculation of d].
As the deviation differs depending on population density, the results are
shown separately for rural, urban, and city areas. As the α-value in-
creases, the transformer capacity increases in the model. A positive
value in Fig. 7 means that the transformer capacity in the model is larger
than that in the calibration dataset, i.e., there is an overestimation in
REGAL, and a negative value means that the transformer capacity is
underestimated. As can be seen in Fig. 7, the deviation for a given
α-value is the highest in city areas and the lowest in rural areas. This
means that transformers typically have a smaller margin in areas with
higher population densities.

Fig. 8 shows the error, e, averaged across the grid cells for the rural,
city, and urban areas, respectively [with e calculated according to Eq.
(11)]. From Fig. 8, it can be concluded that for all α-values, the average
error per grid cell is larger in grid cells with higher population densities
(urban and city), as compared with grid cells that have lower population
densities (rural). For rural areas, increasing the α-value has a weak
impact on the error per grid cell, meaning that there are few cases in
which the selected transformer size is affected by an increase in the
α-value. This indicates that there is typically an over-capacity in trans-
formers in those areas with a low population density, as transformers
come in discrete sizes. The average error for all grid cells follows the
trend of the rural grid cells, as there are many more rural grid cells in the
calibration dataset. For the city grid cells, a low α-value gives a small
error, indicating that there is a low level of over-capacity in transformers
in grid cells with a high population density. The trend observed for the
urban grid cells shares similarities with that for the city grid cells,
although the errors are smaller, and a higher α-value is needed to ach-
ieve an average deviation of 0 in Fig. 7. The average errors per grid cell
for urban areas are similar for α-values of between 1.1 and 1.4, as can be
seen in Fig. 8. As the goal of the calibration was to achieve an average
deviation of 0 (Fig. 7) while minimizing the average error per grid cell (i.
e., as small as possible, according to Fig. 8), the application of different
α-values to different population densities yielded the best fit to the real-
world data. An α-value of 1.15 for city cells and an α-value of 1.65 for
rural grid cells gave a small error and weak deviation. For populations of
between 50 and 500 people per km2, a linear decrease in the α-value
from the rural to the urban setting was found to yield both a small error
and low levels of deviation. This combination of different α-values

depending on the population density resulted in an average deviation
over all grid cells of − 0.83 % and an average error over all grid cells of
44.5 %.

The percent deviation per grid cell when using the α-values that
generate the smallest average error and deviation (α-values of 1.1 and
1.65, respectively) is shown as a histogram in Fig. 9. One value for each
of the 7382 grid cells in the validation dataset is included in Fig. 9. A
span of the deviation from real-world values of between − 100 % and
+350 % is evident in Fig. 9 when analyzing the grid cells individually.
However, since the real-world data do not strictly follow the current
population density (as shown in Fig. 4), some deviation is to be ex-
pected. This indicates that the REGALmodel is not suitable for analyzing
results at the single grid cell level, but instead works for a set of grid cells
taken together.

3.1.1. Regionally aggregated results
The average deviation and the average absolute error over all grid

cells when aggregating grid cells over seven regions in Sweden are
shown in Fig. 10. The regions are sorted in Fig. 10 such that the number
of grid cells included in the region increases with the region number.
This means that regions R1 and R2 (see Table 6), which have the largest
average deviations (above ±10 %) also have the lowest numbers of grid
cells. These regions also have the highest population densities. This is as
expected since grid cells that have a higher population density typically
show the largest errors, as shown in Fig. 8. Fig. 11 shows the deviation
values averaged over the grid cells in the different municipalities and
regions represented in the validation and calibration dataset. The de-
viation values when grid cells are grouped into municipalities are shown
in blue, and when they are grouped into regions are shown in orange. A
dashed line is shown for nine grid cells, as the smallest municipality in
Sweden is approximately 9 km2. This means that all groupings with
fewer than nine cells are not complete datasets for the municipalities.
Furthermore, grid cells are likely missing for municipalities with only a
few more than nine grid cells, as most municipalities are much larger.
Fig. 11 shows that the average deviation value decreases when the
number of included grid cells increases.

3.2. The modeling results when adding EV charging to residential loads

Fig. 12 shows the share of grid cells that have an average number of
voltage violations over different numbers of time-steps in the rural,
urban, and city areas, as well as for all cells [calculated according to Eq.
(9)], when adding EV charging of a fully electrified fleet of passenger
vehicles to the residential loads in the model, and assuming that these

Fig. 8. Error values, e, for the transformer capacity averaged across all grid
cells within rural, urban, and city cells, as a function of the α-value, calculated
according to Eq. (11).

Fig. 9. Percent deviations, d, of the transformer capacity for 7382 grid cells,
calculated according to Eq. (10).
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vehicles initiate charging when arriving at home (see Section 2.1.2). The
value for all cells is similar to that for the group of rural cells, as rural
cells make up by far the largest grouping. The number on the x-axis in
Fig. 12 corresponds to the number of 10-minute time-steps during a year
with a voltage drop below the threshold for voltage violations averaged
over all iterations, when including EV charging. Fig. 13 is similar to
Fig. 12, except that it is calculated for thermal violations in the trans-
former instead of voltage violations. From Fig. 12, it can be concluded
that voltage violations are more common in rural areas than in urban
and city areas, although some violations are also seen in the groups of
grid cells that have higher population densities than in the rural areas (i.
e., city and urban grid cells). Typically, the grid cells with voltage vio-
lations have very few average number of time-steps with violations in a
year. Fig. 13 shows that thermal violations in the transformer are
common in the groups with high population densities (i.e., city and

urban grid cells). The majority of the city and urban cells have an
average number of time-steps with violations that exceed 100 violations
(corresponding to a total of 16 hours and 40 minutes), and more than
one-third of the urban grid cells and a majority of the city grid cells have
an average number of time-steps with violations that exceed 100 vio-
lations (corresponding to a total of 6 days, 22 hours and 40 minutes).
However, Figs. 12 and 13 do not show by how much the voltage and
thermal limits are exceeded, when in time the violations are likely to
occur, and whether the time-steps during which violations occur are
sequential. Other EV charging strategies, and flexible ones, have not
been considered in this study. Inclusion of flexible EV charging could
potentially increase the hosting capacity as it could shift EV loads to
times when household loads are low.

Fig. 10. Error values, e (blue), and deviation values, d (red), of the transformer
capacity averaged over all grid cells in the geographic grouping R1 to R7 (see
Table 6). The value of d is calculated according to Eq. (10) and that of e is
calculated according to Eq. (11). Region names have been anonymized to
prevent the identification of sensitive data received from grid operators.

Fig. 11. Deviation values, d, of the transformer capacity calculated according
to Eq. (10), averaged over the grid cells in the municipalities and regions (y-
axis) and the number of grid cells in the municipality or region (x-axis). The x-
axis is logarithmic with a base of 10. A dashed line is shown for nine grid cells,
as the smallest municipality in Sweden has an area of approximately 9 km2.

Fig. 12. Share of grid cells with voltage violations above a certain value when
adding EV charging. The share is given for different average numbers of 10-
minute time-steps during a year with a voltage drop below the threshold for
voltage violations. The results are shown for rural, urban, and city areas, as well
as for all cells. The results shown are the averages across all iterations.

Fig. 13. Share of grid cells with thermal violations in the transformer above a
certain value when adding EV charging. The share is given for different average
numbers of 10-minute time-steps during a year with thermal violations. Data
shown are for rural, urban, and city areas, as well as for all cells. The results
shown are the averages across all iterations.
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4. Discussion

Using a synthetic grid representation allows for estimations of
hosting capacities in those cases where detailed information on the state
of the grid is not publicly available. However, when possible, more ac-
curate results will naturally be achieved with real grid capacities. This
means that a model such as REGAL can provide initial indications as to
where and when problems will occur in the grid when adding, for
example, EV charging as is done in this work, although the model will
seldom make predictions that are correct for a small geographic area
(such as 1 km2). As can be seen in the validation of the model, it can
make accurate predictions of transformer capacities when assessing the
average deviation from real-world data for a larger area, such as a re-
gion. For a given population density, some grid cells will have a larger
transformer capacity in the REGAL model than is evident from the data
provide by the grid operators, and some grid cells will have a smaller
capacity. When there is a smaller transformer capacity in the model than
in reality, the average number of time-steps with violations will be
overestimated, whereas in a grid cell with a larger transformer capacity,
the average number of time-steps with violations will be under-
estimated. As the dimensioning of transformers has been calibrated to
have close-to-zero deviation, while maintaining as small errors as
possible on the grid cell level, this issue will to some degree cancel itself
out, giving correct average estimates for larger groups of grid cells.

The methodologic choices for generating a synthetic grid will depend
largely on the purpose of the model, as well as on the types of data that
are available for the region studied. The methodologic choices will also
determine the accuracy of the model. As was observed during the vali-
dation of the REGAL model in the present study, accuracy can be
improved by differentiating the assumptions according to population
density. The calibration of the REGAL model against real-world data
showed a clear difference in the sizing of the transformer margin
depending on the population density. This underlines the importance of
differentiating the margin used when creating the synthetic grid, so as
not to overestimate or underestimate consistently the transformer ca-
pacity for certain grid cells. When differentiating the values used
depending on population density an increase in the overall accuracy of
the model is achieved.

Based on the level of accuracy obtained from the model validation,
we conclude that the model is useful for a multitude of purposes related
to making general estimations of the capacity of residential LV grids to
handle changes to loads and electricity production. This could include
further analysis of how different EV charging strategies affect the LV
grid, how much solar PV different areas are likely to be able to host, or
how the use of stationary batteries in households for ancillary services
influences the grid. In addition, the model can be used for estimations of
the cost efficiency of alleviating issues on the residential LV grid.

Grid cells that carry a high commercial load are most likely to be less
accurate because the REGAL model includes only residential loads that
are estimated from population statistics, thereby excluding any com-
mercial or industrial activities. In those areas, the numbers of violations
due to EV charging might not be accurate, although the modeling could
still indicate what types of violations might be introduced, as well as
where and when they are more likely to occur. To generate a more-
accurate model for these grid cells, commercial loads need to be
added to the model.

The current model is based on the national grid regulations of Swe-
den. As grid regulations and standards vary between different countries,
the grid regulations applied in this model might not be transferrable to
other countries. Furthermore, since the α-values were calibrated against
data from only one country, it is likely that these values are not repre-
sentative of other countries. The method is generally applicable to other
geographic regions for which population data is openly available,
however, more accurate results will be found if national regulations are
taken into account and calibration parameters are updated to corre-
spond to the studied region.

The number of residential load profiles used in the model is low, and
they are all gathered from one region within Sweden. A clear
improvement would be to increase the number of residential load pro-
files from which the model can choose. In addition, the allocation of
household load profiles to different households could be improved by
employing a smarter allocation scheme. On way to do this is through
weighting the likelihood of a profile appearing in an area using statistics
on, for example, heating types or sizes of buildings. This would, how-
ever, require a larger dataset of household load profiles with high
temporal resolution, generated either from measurements or from
deploying an algorithm to increase the temporal resolution of load
profiles with a 1-hour time resolution, which are more readily available.

In the model, residential loads are allocated to the places where
people are officially registered to live. This means that the loads could be
overestimated or underestimated in some areas, especially areas with
large quantities of seasonal housing. For such areas, there might be times
of the year with intensive private charging of vehicles, which cannot be
captured in the model. When predicting future demands for households
and EV charging, changes in the inhabitants have not been considered.
This is a drawback, as it is likely that some areas will see an increase and
some areas will see a decrease in population during the coming years.

Random combinations of household profiles are considered together.
However, it is likely that there is a correlation between electricity de-
mands in households that are located next to each other, e.g., through
similar heating technologies or house sizes. An example of an important
factor is the availability of district heating, which has not been included
in the model. As heating has a strong effect on the residential electricity
demand and the studied region has numerous cities with district heating
grids, introducing a way to take this into account might improve the
accuracy of the model. Taking this into account could both increase and
decrease the number of violations achieved, depending on how the
distribution grid operators have applied their dimensioning criteria in
cities with district heating systems. This aspect is, however, not
considered in this article.

The current version of the model does not consider distributed
electricity supply on the LV grid, for example through PVs. Furthermore,
it does not include stationary batteries within households. Including
these technologies might alleviate the issues that appear as conse-
quences of large-scale EV charging, as they have the potential to supply
some of the electricity needed, thereby decreasing load peaks in the LV
grid. Additional work is needed to understand how changes to charging
patterns could decrease the number of issues seen in LV grids.

5. Conclusions

In this work, the REGAL model is presented and validated against a
large dataset of real-world transformer capacities and electricity de-
mands, such that open data describing the population and distribution of
dwellings in Sweden can be used to estimate the electricity grid capac-
ities for the LV grid. Different calibration values are explored and the
levels of accuracy of estimations of grid capacities are calibrated using
proprietary real-world data from DSOs. Thus, for a region that includes
many grid cells, an average deviation from the real-world data of±10 %
is achieved. For an average grid cell, an error of 44.5 % is seen, which
means that the model is not suitable for analyses of an area of 1 km2.
However, the level of accuracy is deemed sufficient for initial estima-
tions of hosting capacity for larger geographic areas, such as a region or
a country.
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Appendix A1. Additional technical input data

Input data for transformers are presented in Table A 2 [30] For the dimensioning of cable capacities, a maximum power demand per household is
estimated using the approximated fuse sizes of households, i.e., 10 A for an apartment and 20 A for a single-family dwelling.

Table A1
Input data for transformers based on Energimarknadsinspektionen [30]. The values in the shaded
boxes are given in the reference, the values in the boxes without shading are extrapolated from the
given data.

Transformer capacity [kVA] Cost [SEK] Earthing impedance [mΩ]

1600 234,551 4.85
1500 223,450 5.15
1250 195,272 6.5
1125 179,381 6.7
1000 163,835 7.5
900 151,090 8.3
800 134,751 10
700 124,778 10.5
600 111,211 12.1
500 101,565 13
400 83,255 17.6
315 70,501 20
200 53,509 32
150 46,769 43.9
100 38,446 65
70 34,731 89
50 32,140 130
30 28,647 195

As there can be different numbers of vehicles or households within a grid cell, the numbers of household or EV profiles used to create the
aggregated profiles increase approximately logarithmically to cover all possible options. The numbers of households and EVs pre-aggregated to the
aggregated load profiles are listed in Table A 2. Each aggregated load profile contains the sum of randomly selected household or EV charging profiles,
and a multitude of pre-aggregated load profiles was created. Single-family dwellings, apartments, and EVs were treated separately when aggregating
the profiles, to allow for different configurations within the different grid cells. The number of households of a specific type (single-family dwellings
and apartments) and the number of vehicles decide which sets of pre-aggregated profiles should be used for all the iterations. Thus, for one model run
and one iteration, one of the pre-aggregated profiles, containing the appropriate numbers of households or vehicles summed together, was randomly
selected for each point at which loads were added. For a grid cell in which there is a branch or transformer with a number of households and/or
vehicles for which there is no set of pre-aggregated profiles, a pre-aggregated profile from the collection nearest above in the number of summed
profiles is selected, and it is scaled down to the lower number of households or vehicles.

As an example, assume a case with a total of 64 customers distributed so that there are 4 customers per branch connected to each LV feeder, as in
Fig. 3a, and that the grid cell has only single-family dwellings and one EV per household. In this example, two aggregated profiles are selected
randomly for each branch, one representing the total load for four single-family dwellings and one representing four EVs. For the customers not on the
feeder, aggregated profiles for the remaining households and their vehicles (in this case, 48) are randomly selected. As there is no pre-aggregation of
the 48 profiles, random profiles for 50 houses and 50 vehicles are selected, and scaled down linearly to represent 48 profiles. Thus, the pre-aggregation
allows for the combination of randomly selected profiles for all 64 households and 64 randomly selected EVs by adding up only five pre-aggregated
profiles of each type, as in this example.
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Table A2
Numbers of households and vehicles for which the loads are pre-aggregated.

Numbers of households/vehicles

1 2 3 4 5 6 7 8 9 10
12 14 16 18 20 25 30 35 40 45
50 60 70 80 90 100 120 140 160 180
200 250 300 350 400 450 500 600 700 800
900 1000 1200 1400 1600 1800 2000 2500 3000 3500
4000 4500 5000
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