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ABSTRACT

The field of artificial intelligence & machine learning (AI/ML) has experienced unprecedented growth over the
last decade driven by computationally demanding applications. The computing power has been so far provided by
general-purpose digital hardware such as central processing units (CPUs) and graphics processing units (GPUs).
As the potential for continuous technological advancements in digital electronics is brought into question, research
is focusing on alternative paradigms such as application-specific analog hardware. Both electronics and photonic
analog hardware are being actively investigated with promising results showing advantages in terms of processing
speed and/or energy efficiency. However, a systematic comparison of these different hardware platforms in terms
of high-level computing performance is missing. In this work, we compare these hardware platforms focusing on
use cases with different requirements in terms of, e.g., compute capacity, efficiency, and density. The comparison
highlights current advantages and key challenges to be addressed in each field.
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1. INTRODUCTION

With the introduction of new demanding applications such as natural language processing, image and video recog-
nition, and generative artificial intelligence (AI), the field of artificial intelligence & machine learning (AI/ML)
has experienced unprecedented growth over the last decade. This growth happens in two different directions.
Firstly, the business prospects for AI/ML companies result in their increasing valuation. Secondly, the complex-
ity of the models also grows as models are capable of more elaborate tasks. For instance, in the pre-deep-learning
era, model complexity grew aligned with Moore’s law, i.e., double every 2 years. With the introduction of deep
learning, this growth rate increased to double every 3-4 months.1 More recently, the so-called large models have
experienced a similar growth rate to deep learning, but with a complexity that is 2 to 3 orders of magnitude
higher.2,3

The compute capacity requirements have so far been sustained by general-purpose digital hardware such
as central processing units (CPUs) and graphics processing units (GPUs). As the potential for continuous
technological advancements in digital electronics is brought into question,4 research is focusing on alternative
paradigms such as application-specific analog hardware. Both electronics and photonic hardware platforms are
being very actively investigated with promising results showing advantages in terms of processing speed and/or
energy efficiency. On the electronic side, impressive demonstrations have been reported using crossbar arrays with
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memristors, or electronic spiking architectures (TrueNorth, Neurogrid, NorthPole, etc.). On the photonic side,
coherent interferometric neural networks, crossbar arrays for in-memory computing, photonic spiking networks,
and free-space optical systems have been proposed. However, a systematic comparison of all these different
hardware platforms - digital electronics, analog electronics, and analog photonics, in their different flavors - in
terms of high-level computing performances, in light of common use cases, is missing. In this work, we compare
these hardware platforms focusing on use cases with different requirements in terms of, e.g., compute capacity
(and its variation over time), efficiency, and density. The comparison highlights current advantages and key
challenges to be addressed in each field.

2. USE CASES AND RELEVANT PERFORMANCE METRICS

AI/ML are currently used in a wide range of use cases, with the increasing potential in several other areas.
large language models (LLMs), audio and video processing, surveillance, among others, are currently adopted
in real-world environments. It is important, however, to understand that not all these use cases share the same
properties, and therefore may require accelerators with different characteristics.

Table 1 enumerates four key properties of use cases that leverage AI/ML models and may impact accelerator
requirements. The first property is related to the model complexity. This impacts how much of the accelerator
is occupied by the model, e.g., in terms of working memory or compute capacity, and indicates if the model can
use a shared accelerator, or requires a dedicated one. For this property, the scale is fairly straightforward, with
models ranging from low to high complexity.

Table 1. Properties of use cases with respect to the AI/ML model used.

Model complexity Load profile Re-training Deployment

Low Constant Infrequent Centralized

Medium Predictable Occasional Distributed

High Hard to predict Frequent Federated

The second property is related to the load profile of the use case. This impacts how much usage the accelerator
will receive over time, and what would be its underutilization should it serve a single application. This can be
measured, for example, by the number of inferences per unit of time, and is a function of the end user of the
model. For instance, in industrial automation where the industry works 24/7, the load can be nearly constant, or
at least very predictable. Some other applications may have fairly variable loads but with a predictable profile,
such as business applications that have a high load during business hours. However, use cases that perform
inference depending on end users (e.g., smart city applications) may be at the other end of the spectrum, with
very hard-to-predict load.

The third property relates to how frequently the model is re-trained. This is not relevant in cases where the
model is dynamically loaded in the accelerator memory, but highly relevant in cases where hardware needs to
be reconfigured. Applications such as character recognition have fairly infrequent updates. On the other hand,
user-based prediction models, such as traffic prediction, may require frequent re-training to cope with changing
user patterns. This aspect directly relates to the training complexity of the accelerator itself, from a hardware
perspective.

Finally, the deployment model also impacts accelerator requirements and can be correlated with other use case
properties. For instance, a centralized model tends to have a more predictable, if not constant, load profile because
all users will request inferences from the same accelerator or group of accelerators. A distributed deployment,
on the other hand, may be influenced by hard-to-predict load profiles. Moreover, federated models, i.e., models
that are trained in a distributed fashion, may have more frequent re-training procedures than traditional models.

As one can realize, there exists a broad range of properties that each use case may require. However, there is
a set of performance metrics that are relevant for the evaluation of AI/ML accelerators used by a wide range of
use cases. The most common one is the compute capacity or computing power. Usually, the compute capacity of



general-purpose processing hardware is measured in operations per second (OPS). However, for general-purpose
graphics processing units (GP-GPUs) the performance is commonly measured in floating-point operations per
second (FLOPS) since AI/ML models usually contain floating-point values. The precision of the floating-point
operations (e.g., 16, 32, or 64 bits) is relevant in some cases but has been decreasing in importance as the
quantization of models becomes popular. This trend is also increasing the relevance of accelerators based on
analog or mixed (hybrid analog and digital) hardware which can generally provide lower bit precision, e.g. for
photonic hardware it is generally restricted to up to 7-8 bits5 considering the current level of technological
maturity.

Recently, the cost of electricity has also increased substantially. Combined with the increasing power con-
sumption of AI/ML accelerators, the power efficiency with which the hardware can process and more importantly
transfer the information becomes highly relevant. In this case, the power efficiency of AI/ML accelerators is mea-
sured in FLOPS per Watt.

With the widespread usage of AI/ML models, these applications are expected to take advantage of edge
computing and be deployed close to the end user. This means that the deployment of accelerators will take place
not only at large-scale datacenters but also at small edge datacenters. Therefore, the compute density becomes
relevant to allow the deployment of high-capacity edge datacenters. In this case, we measure the density in terms
of FLOPS per footprint area (e.g., mm2).

Finally, some secondary metrics are also relevant for certain use cases. For instance, some applications may
not use all the compute capacity of the accelerators for the entire time. In such a case, not only the peak power
efficiency is important, but also the power efficiency when the accelerator is only partially loaded. Another
relevant aspect in this case is the ability for the same accelerator to be used by multiple models. Moreover,
some use cases may have a fluctuation in load (e.g., being used only during day or night time). Such cases call
for accelerators that can easily be loaded with different models to serve other applications that require compute
capacity at the moment.

3. PERFORMANCE AND TRADEOFFS

In this section, we investigate how relevant performance metrics have been evolving over the past 15 years. We
use GP-GPUs as the baseline devices due to their popularity during this period, based on an available dataset
updated up to 2023.6 In addition, we assess how recent works on electronic and photonic analog devices stack
against the traditional GP-GPUs. We restrict the analysis to reported results on specific devices. For theoretical
scaling analysis considering ideal implementations, we refer the reader to existing literature, e.g.7 for photonic
accelerators. In the end, we comment on some tradeoffs that are currently faced should you adopt these new
technologies as application-specific support to GP-GPUs.

3.1 Compute capacity

Fig. 1 shows the evolution of compute capacity. We can observe that GP-GPUs have had a mostly exponential
growth over the years. Recent announcements by the industry have predicted performance following the expo-
nential growth illustrated in Fig. 1. However, we can see that electronic and photonic analog devices started
with subpar performance, but were able to quickly match or even surpass the capacity of GP-GPUs. Whereas
analog demonstrations have yet to match the technological maturity of their digital counterparts, and the re-
ported values rely on proof-of-concept demonstrations, this indicates that these new hardware platforms have
a promising future for as high-performance accelerators for AI/ML models. In particular, looking at photonic
platforms, the inherently higher degrees of parallelism provided by working at optical frequencies (e.g., in terms
of frequency-bandwidth, polarization, spatial mode) has shown very promising preliminary results to scale up
computing capacity through parallelism with up to 3 dimensions.8 This aspect can not only provide scaling
factors to increase the compute capacity as shown in Fig. 1 but could potentially address the requirement of pro-
viding flexible loads, e.g. by controlling the number of wavelength-multiplexed channels used by the accelerator
similarly to what is being applied for optical communications, to provide connectivity on-demand.
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Figure 1. Compute capacity in terms of total floating-point operations per second (FLOPS) for digital (data for general-
purpose graphics processing units (GP-GPUs)6), analog electronic (data for TrueNorth and Tianjic,9 Mythic, PUMA,
ISAAC, 3D-aCortex and Analog-AI Using Dense 2-D Mesh3) and analog photonic (data for Zhou2023,8 Dong202310)
hardware.

3.2 Efficiency

Fig. 2 shows the evolution of compute efficiency over time. We can observe that the growth in efficiency is not
as successful as in the case of capacity, with a lower slope of increase over time. This makes it evident that
even if the digital electronic devices can scale up their capacity, it becomes increasingly difficult to improve their
efficiency.4 Meanwhile, electronic and photonic analog devices have shown substantial gains in efficiency over
GP-GPUs, with some instances being two to three orders of magnitude more efficient. Whereas the estimated
efficiencies of analog hardware have not been validated as thoroughly as their digital counterparts, with several
results mainly relying on proof-of-concept demonstrations focused on low-scale or partial implementations, or
even projected estimates,11 these results sill indicate that these new devices may become critical for applications
where energy efficiency is paramount, e.g., in edge computing applications.
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Figure 2. Compute efficiency in terms of floating-point operations per second (FLOPS) per Watt for digital (data for
general-purpose graphics processing units (GP-GPUs)6), analog electronic (data for Mythic, PUMA, ISAAC, 3D-aCortex
and Analog-AI Using Dense 2-D Mesh3), and analog photonic (data for Feldmann2021-current and Feldmann2021-
projected,11 Zhou2023,8 Dong202310) hardware.



3.3 Density

Compute density is another area where electronic and photonic analog devices excel, at least in proof-of-concept
demonstrations. Fig. 3 shows that GP-GPUs have not been able to scale exponentially their density, especially
due to challenges in heat dissipation from very small dies. In comparison, for electronic and photonic analog
devices higher compute densities have been reported. In particular, a potentially strong advantage of analog
photonic is the lower heat dissipation of optical interconnects which reduces the challenges for thermal manage-
ment affecting digital (and analog) electronics, as well as the added benefit of waveguide crossings in the designs,
a feature that can enable more compact designs.5
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Figure 3. Compute density in terms of floating-point operations per second (FLOPS) per mm2 for digital (data for
general-purpose graphics processing units (GP-GPUs)6), analog electronic (data for PUMA, ISAAC, and 3D-aCortex3),
and analog photonic (data for Feldmann2021-current SiN, Feldmann2021-current SOI and Feldmann2021-projected,11

Lee2022-exp,12 Zhou2023,8 Dong202310) hardware.

3.4 Tradeoffs

As commented in Sec. 2, the load profile varies greatly depending on the use case. For instance, scalability is a
critical property for use cases with variable load profiles which can take advantage of the variable performance
of GP-GPUs. This is achieved through the deactivation, when not necessary, or blocks of compute units. The
result is a compute efficiency that scales almost linearly to the load. At the same time, the performance of the
inferences that are still being executed is not impacted, i.e., the inference time is not impacted by the deactivated
compute units.

Currently, electronic and photonic analog devices utilize a different approach more similar to the ones adopted
in CPUs. In this approach, each compute unit is able to execute a different instruction over an independent
piece of data. This process is also known as multiple instructions over multiple data (MIMD). The issue
with this approach is that the only way to reduce power consumption is by reducing the clock of the device,
which will negatively impact the inference time of the requests being executed. However, photonic devices
have the potential to implement something similar to single instruction over multiple data (SIMD) through
the use of multiplexing in the physical layer through, for instance, wavelength-division multiplexing (WDM),
frequency-division multiplexing (FDM), or space-division multiplexing (SDM). In this case, multiple channels
(i.e., multiple data) would traverse the same set of photonic devices concurrently, and instead of changing the
clock, some channels could be deactivated.

Secondly, GP-GPUs, due to their digital nature, can easily (i.e. using well-established programming routines)
and quickly (i.e., in a matter of few seconds) change context and start processing a different model. This is
particularly interesting in use cases where the AI/ML model is distributed, and may serve a limited number of
sparse requests. In this case, a single device can be used to serve multiple models, loading them in memory and
executing the inference almost instantaneously, depending on the need.



Meanwhile, current analog devices do not offer clear programming procedures. Several promising techniques
have been proposed, either relying on offline (in silico) or online (in situ) methods.13 However, the former
category could allow for implementing the AI/ML model onto several hardware devices but it relies heavily on
the availability of a physically accurate model of the hardware and generally suffers from a mismatch between
a digital model and the analog hardware,14 even when hardware-aware modeling is considered;15,16 while the
latter category offers potentially higher accuracy but it suffers from poorer scalability in terms of model size and
normally requires lengthy sequential calibration procedures, additional hardware monitoring, and re-optimization
for every training step.17 A substantial research effort is dedicated to this challenge which is currently limiting
the performance and usability of analog hardware platforms compared to their digital counterparts.

Finally, the precision and correctness of data representations play an important role in several AI/ML models
for industries that require precise and reliable data processing. Although requirements for precision have been
relaxed through e.g. quantization and addressed in models such as LLMs, as mentioned in Sec. 2, high-precision
operations are still relevant in many industries. GP-GPUs offer flexible bit precision for floating-point operations,
often ranging from 8 to 64 bits.18 Moreover, they offer at least error detection, with industry-grade GPUs offering
also error correction. In general digital hardware is more prone to allow for signal regeneration than its analog
counterparts.

Currently, it is challenging to accurately control the precision of the operations performed in analog photonic
hardware, and even analog electronic faces challenges unless mixed processing or redundant coding is consid-
ered.19 Moreover, there are no error detection and correction capabilities inherently built-in into these devices.
Therefore, attention needs to be paid to mitigate these issues for these devices to be applicable (if at all) in
high-precision use cases.

4. FINAL REMARKS

This work provided a comparison among digital electronics, analog electronics, and analog photonic AI/ML
accelerators. To do so, we enumerated key properties of AI/ML use cases commonly found in the industry.
Then, we compared the reported performance of these types of devices over the past 15 years in terms of compute
capacity, efficiency, and density. Finally, we analyzed the tradeoffs among these different solutions when it comes
to three critical aspects of AI/ML models and their use in the real world. The comparison shows that electronic
and photonic analog hardware is a promising solution to accelerate the execution of AI/ML models. However,
they still require substantial advancements in key areas such as scalability, programmability, and precision.
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