
Lemma Discovery and Strategies for Automated Induction

Downloaded from: https://research.chalmers.se, 2024-08-17 02:41 UTC

Citation for the original published paper (version of record):
Einarsdóttir, S., Hajdú, M., Johansson, M. et al (2024). Lemma Discovery and Strategies
for Automated Induction. Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), 14739 LNAI: 214-232.
http://dx.doi.org/10.1007/978-3-031-63498-7_13

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

Lemma Discovery and Strategies
for Automated Induction

Sólrún Halla Einarsdóttir1(B) , Márton Hajdu2 , Moa Johansson1 ,
Nicholas Smallbone1 , and Martin Suda3

1 Chalmers University of Technology, Gothenburg, Sweden
{slrn,jomoa,nicsma}@chalmers.se

2 TU Wien, Vienna, Austria
marton.hajdu@tuwien.ac.at

3 Czech Technical University in Prague, Prague, Czech Republic
martin.suda@cvut.cz

Abstract. We investigate how the automated inductive proof capabili-
ties of the first-order prover Vampire can be improved by adding lemmas
conjectured by the QuickSpec theory exploration system and by training
strategy schedules specialized for inductive proofs. We find that adding
lemmas improves performance (measured in number of proofs found for
benchmark problems) by 40% compared to Vampire’s plain structural
induction as baseline. Strategy training alone increases the number of
proofs found by 130%, and the two methods in combination provide an
increase of 183%. By combining strategy training and lemma discovery
we can prove more inductive benchmarks than previous state-of-the-art
inductive proof systems (HipSpec and CVC4).

Keywords: Induction · Theory Exploration · Lemma Discovery ·
Strategies · Vampire

1 Introduction

We have experimented with augmenting Vampire’s capabilities for induction
by injecting extra lemmas suggested by the theory exploration system Quick-
Spec [25] and by training strategy schedules specialized for inductive proofs. Our
aim is to improve on the state of the art in automating proofs by induction.

Proofs by induction provide a challenge for automated theorem provers. Not
only are there typically many choices of which induction scheme to use, but
a proof may also require the conjecture to be generalized to strengthen the
inductive hypothesis, or require additional auxiliary lemmas, themselves needing
another induction to prove. For example, suppose we have a recursively defined
function rev for reversing lists, defined using the append function ++:

rev [] = []
rev (x : xs) = (rev xs) ++ (x : [])

c© The Author(s) 2024
C. Benzmüller et al. (Eds.): IJCAR 2024, LNAI 14739, pp. 214–232, 2024.
https://doi.org/10.1007/978-3-031-63498-7_13

Lemma Discovery and Strategies for Automated Induction 215

where ++ is defined as follows:

[] ++ xs = xs

(x : xs) ++ ys = x : (xs++ ys)

and want to prove that rev(rev(xs)) = x for any list xs. When we ask Vampire
to find a proof of this using structural induction it is unable to find a proof,
even when given a long time. The induction hypothesis rev(rev(xs)) = xs is
not strong enough to prove that rev(rev(x : xs)) = x : xs: we are missing some
lemmas.

QuickSpec [25] is a system that produces equational conjectures from func-
tion definitions. Suppose we use QuickSpec to conjecture some lemmas about the
rev and ++ functions. In under 1.5 s (running on a regular laptop1) QuickSpec
outputs the following 9 equations as unproved conjectures:

1. rev [] = []
2. x++ [] = x
3. [] ++ x = x
4. rev (rev x) = x
5. rev (x : []) = x : []
6. (x++ y) ++ z = x++ (y ++ z)
7. x : (y ++ z) = (x : y) ++ z
8. rev x++ rev y = rev (y ++ x)
9. (xs++ (y : (z : [])) = rev (z : (x : (rev xs)))

Now suppose we add these equations to the input we give to Vampire, mark-
ing them as conjectured lemmas. Vampire may use such lemma in a proof, but
only if it also proves it (e.g. by induction). Vampire instantly (in 6ms, running
on the same laptop) finds a proof of the original property, using (2), (6), and
(8) above as lemmas, as well as proofs for the lemmas that were used. A closer
investigation shows that only (6) and (8) are necessary to find a proof, where
(8) is used in the proof of the original goal and (6) is used to prove (8).

Coming up with lemmas is a non-trivial task, and has sparked research into
various lemma discovery techniques (see [17] for an overview). Lemma discov-
ery can broadly be divided into two categories: Top-down techniques include
attempting to generalize the current subgoal, or analyzing failed proof attempts
to suggest a missing lemma. Bottom-up techniques focus on discovering poten-
tially interesting lemmas about the definitions and concepts available, without
considering any particular ongoing proof attempts. Bottom-up techniques can
find a wider class of lemmas, but have the disadvantage that the system spends
time working with conjectures that are not relevant to the goal. For example,
the earlier system HipSpec [5] would first run QuickSpec (just as in the example
above) but then attempt to prove all discovered conjectures before working on
the main goal.

1 The same laptop the experiments in Sect. 4 were run on, see more precise description
there.

216 S. H. Einarsdóttir et al.

In this work, we use theory exploration, a bottom-up technique, in a more
goal-directed manner. We use QuickSpec to suggest useful lemmas, but we will
not prove all the suggestions, only those that are useful in the proof of the main
goal. To do this we leverage Vampire’s AVATAR architecture [20,29], which
allows us to attempt (speculatively, in parallel) the proof of the main goal using
any subset of the candidate lemmas. Lemmas used must also be independently
proved, but if that turns out to be hard (or even impossible) other options of
finishing a proof may also be possible. Non-useful conjectures can be ignored and
need not be proved, saving time. Since automatic theorem provers (ATPs) like
Vampire and cvc5 now natively support applying automated induction [11,22] it
is no longer necessary to use a specialized prover to apply induction before send-
ing the resulting proof obligations to an ATP, as HipSpec did, and we examine
the differences between the two approaches.

The performance of ATPs like Vampire is heavily influenced by the use of
proving strategies and their combinations into schedules [15,27,28,30]. In addi-
tion to investigating the influence of adding lemmas from theory exploration, we
also experiment with various learned strategies tailored for inductive proofs. A
specialized strategy may allow Vampire to invent some easy lemmas itself, by
applying generalization of a suitable subterm in a goal, lessening the need for
theory exploration. However, finding strong targeted strategies is a time con-
suming endeavour which requires a set of problems with similar characteristics
to those which we are interested in proving. For regular users, who typically just
want to apply Vampire out of the box, this might not be an option.

2 Background

We propose the following design for an inductive theorem proving system:

1. We first use QuickSpec for theory exploration on the theory in question,
generating equational conjectures about the theory.

2. The theory file including the original goal plus the conjectures from QuickSpec
is sent to Vampire to attempt to find a proof.

Using our tools these two steps can be performed fully automatically, taking
a problem file in the TIP [7] format as input and returning the proof found by
Vampire as output.

2.1 QuickSpec

As seen in Sect. 1, QuickSpec is a system that produces equational conjectures
about a theory. The conjectures are not guaranteed to be true, but have been
tested to hold on 1000 randomly-generated test cases.2 QuickSpec was originally
designed to make conjectures about Haskell programs, but has been adapted to
problems in inductive theorem proving.
2 In automated reasoning terms, this means that 1000 ground instances of the conjec-

ture have been shown to hold.

Lemma Discovery and Strategies for Automated Induction 217

Conjecturing equations is difficult because of combinatorial explosion: even if
we consider only quite simple equations and theories, there are many millions of
possible conjectures. For example, if we identify a set of n = 10,000 interesting
terms, then there are n2 = 100,000,000 candidate equations which could be built
from those terms. Generating and testing all of them is out of the question.

QuickSpec uses a more sophisticated approach which scales with the num-
ber of terms (e.g. 10,000) rather than the number of possible equations (e.g.
100,000,000). We enumerate terms in order of size (these terms may end up
being the left or right hand side of an equational conjecture). We consider each
term one by one, building up two sets as we go:

– The set of discovered conjectures between the terms considered so far.
– The set of representative terms. This consists of the set of terms considered

so far, except that when several terms are equal, only one of them will be
chosen as a representative. Therefore no two representative terms are equal.

Each time we consider a new term t, we answer the following question: Is it equal
to any representative term? We do this in two steps:

1. Pruning. We check if the discovered conjectures imply that t is equal to a
representative term r. If so, we simply ignore t and move on to the next term.

2. Testing. We test t against all representative terms. If it seems to be equal to
some representative term r, we produce the conjecture t = r. Note that, since
no two representative terms are equal, we only ever produce one conjecture
per term.

If neither case holds, we add t as a representative term. The idea here is that,
in case (1), the equation t = r is redundant – we knew it already – whereas in
case (2), it is new information and hence a potentially useful conjecture.

For example, suppose we take the list append function ++ and consider
the following terms, where x, y and z range over lists: [], x, y, z, x ++ [], y ++
[], x++ (y ++ z), x++ (x++ y), (x++ y) ++ z, (x++ x) ++ y.3 Initially, the
set of discovered equations and the set of representative terms are empty. The
algorithm proceeds as follows:

– []. We add [] as a representative term.
– x, y, z. None of these terms are equal to each other or [], so we add them as

representative terms.
– x ++ []. The testing step reveals that this term is equal to x. We produce

the conjecture (1): x++ [] = x (and do not add x++ [] as a representative
term).

– y ++ []. The pruning step shows that this term is equal to y, by conjecture
(1). We discard the term.

– x++ (y ++ z), x++ (x++ y). We add these terms as representatives.
3 In reality we enumerate terms in a systematic way, and a further refinement to the

algorithm, schemas, eliminates many terms that differ from an existing term only in
choice of variables.

218 S. H. Einarsdóttir et al.

– (x++ y) ++ z. Testing shows that this term is equal to x++ (y ++ z). We
produce the conjecture (2): (x++ y) ++ z = x++ (y ++ z).

– (x++ x) ++ y. Pruning shows that this term is equal to x++ (x++ y), by
conjecture (2). We discard the term.

At the end we have produced the conjectures (1) x++ [] = x and (2) (x++
y)++ z = x++(y++ z). Note that these conjectures are complete with respect
to the enumerated terms, in the sense that any true equation between two such
terms follows from the conjectures. In general, the QuickSpec algorithm produces
a complete set of equations in this sense (though not necessarily sound, i.e. we
may have false equations if we are unlucky in the testing).

It is perhaps not obvious why this algorithm should be fast. We point out
the following reasons:

– The runtime of the algorithm scales with the number of terms considered, not
the number of possible equations. This is because, with careful data struc-
tures and algorithms, in both the pruning and testing steps we can efficiently
compare a new term against all representative terms at once, in close to con-
stant time. For pruning, we use unfailing completion [1] as implemented in
Twee [24] to build a rewrite system from the discovered conjectures. We then
keep the set of representative terms normalized with respect to this rewrite
system. To prune a new term, we just normalize it and see if this normal form
appears in the set of representative terms. For testing, we build a decision tree
which allows us to, with a few (typically < 10 test cases), either show that a
new term t is not equal to any representative term, or find precisely one term
r that it might be equal to, whereupon we can test the single equation t = r
more thoroughly.

– In the common case, it takes a tiny amount of time (� 1 ms) to consider each
term. That is because: (1) in the pruning step, the term is just normalized, an
operation taking microseconds; (2) in the testing phase, typically the term is
not equal to any representative term, in which case (as mentioned above) the
term is evaluated on only a few test cases. The only expensive case is when
testing reveals that the new term is equal to a representative case – but this
is precisely the case where we have discovered a new conjecture!

Therefore, the runtime of QuickSpec largely grows proportionally with the
number of discovered conjectures, plus a small amount which is proportional to
the number of explored terms. In practice, QuickSpec is able to handle theories
with ≈ 20 functions and generate equations having ≈ 10 symbols on each side,
after which the number of discovered conjectures typically becomes too huge.

2.2 Induction in Vampire

Vampire supports induction over both term algebras and integers. The former,
used in this work, is based on a constructor-style and two infinite descent-style
schemas [21] in addition to ad hoc schemas generated from well-founded recursive

Lemma Discovery and Strategies for Automated Induction 219

functions in the search space [13]. When inducting on a term in a unit clause (a
literal), an instance of a schema with the negation of the unit clause is added
to the search space. A stronger (and also more explosive) feature is non-unit
induction, which inducts on arbitrarily many occurrences of a term, possibly
across many literals and clauses.

Some basic lemma generation techniques such as generalizations over com-
plex terms and occurrences [12] as well as active occurrence heuristics are
also supported. In the presence of function definitions or induction hypothe-
ses, (unordered) paramodulation may be used to reach lemmas otherwise not
reachable with ordered superposition [13]. For a more detailed description of
induction in Vampire we refer to [11].

Lemma Generation in Vampire. Vampire uses the traditional top-down
backward reasoning approach to generate lemmas. It tries to reduce goals into
subgoals and apply inferences on them, interleaved with induction inferences
applied to all intermediate consequences that result from this process. A new
lemma may be conjectured by generalizing over one of the terms in a subgoal.
This lemma generation approach in Vampire usually derives different lemmas
than QuickSpec’s bottom-up theory exploration approach.

Simplifications and Orderings in Superposition. As superposition is tai-
lored for first-order reasoning, it does not come as a surprise that some techniques
that increase the efficiency of first-order reasoning are incompatible with induc-
tive reasoning or higher-order reasoning in general. In particular, simplifications
and orderings can affect a built-in induction within superposition.

Simplifications are inferences where one of the premises becomes redundant
for further first-order reasoning and can be removed. For example, demodulation
rewrites a clause into a smaller clause with an unconditional (unit) equation, and
removes the original clause. In inductive reasoning things are not as simple, and
any clause (even if it follows from smaller clauses) can be useful to generate
interesting lemmas. For example, we might simplify a clause that would give
rise to a crucial generalized lemma into a clause that does not give the same
generalization anymore. Interestingly, given that simplification steps take up
most of the inferences in a saturation run, in our experience this affects inductive
reasoning less than expected.

3 Implementation

In order to perform our experiments we needed to integrate the lemmas conjec-
tured by QuickSpec into Vampire’s proof search, and choose a promising proof
search strategy.

220 S. H. Einarsdóttir et al.

3.1 Conjectured Lemmas, AVATAR, and Vampire’s Claims

Integrating conjectured lemmas into proof search poses a technical challenge
as they must be proven before they can be soundly used in a proof. At the
same time, trying to prove each suggested lemma before the main goal is even
attempted can create a great deal of unnecessary work. As has been noted
before [8,21], this challenge can be smoothly overcome in the presence of the
AVATAR architecture for clause splitting [20,29].

AVATAR keeps track of information about which clause has been derived
from which splitting assumption, and soundly propagates it through inferences.
Deriving the empty clause conditioned on some assumptions then does not nec-
essarily mean the search is successfully concluded, but merely signifies that the
conjunction of the attached assumptions can no longer be maintained. (AVATAR
then updates its propositional model to reflect this newly derived information
through a call to an underlying SAT or SMT solver.)

Let us assume we want to accommodate a speculative proof with lemmas
L1, . . . , Ln under AVATAR, where each lemma Li is a closed formula. As a first
approximation to explaining how this can be done, let us imagine introducing
and immediately splitting the tautologies Li ∨¬Li for i = 1, . . . , n.4 Each clause
in the search then carries (independently for each i) the information whether it
depends on: 1) the assumption corresponding to Li (proving with the help of
lemma Li), 2) ¬Li (trying to prove lemma Li), or 3) neither of these (currently
ignoring lemma Li). Depending on the order in which (conditional) empty clauses
get derived, the whole power set of possible scenarios is played out as if in
parallel, in which some lemmas may already have been shown to suffice for
proving the main conjecture, while themselves waiting to be proven (possibly
with the help of other lemmas). The underlying SAT/SMT solver orchestrates
the whole endeavour, decides which compatible subset of assumptions will be
worked on next, and declares the proof attempt successful as soon as the first
such scenario is complete. We remark that cyclic reasoning is automatically
avoided by treating the assumptions of Li and ¬Li as mutually exclusive.

It is surprisingly easy to get access to this feature of speculative lemma use
in Vampire under AVATAR. In fact, we can rely on a small adjustment of just
the parser added by Andrei Voronkov already in 2011. In the TPTP language
[26], this adjustment introduced a new custom formula role called the claim.
Precisely as in our use case, a claim is a formula that most likely follows from
the surrounding axioms and has a high chance of being useful for proving the
given conjecture, but must be itself also proven by the system in a valid proof.
For this work we extended Vampire’s SMT-LIB parser in an analogous way and
added a custom construct assert-claim with the same semantics.

4 In reality, both Li and ¬Li must also be skolemized and clausified, which in the
prover happens before splitting. We return to this aspect further below.

Lemma Discovery and Strategies for Automated Induction 221

Technically, when the parser reads a claim formula L, it picks a fresh propo-
sitional symbol pL and passes on the equivalence pL ↔ L as a standard axiom.5
The equivalence pL ↔ L is then clausified to

{¬pL ∨ C |C ∈ CNF(L)} and {pL ∨ D |D ∈ CNF(¬L)}.

AVATAR recognizes the pL and ¬pL as complementary ground components
and will then always assert either pL or ¬pL. Thus the first-order part of the
prover must work with either the clauses from CNF(L) or from CNF(¬L), while
AVATAR keeps track of the respective dependencies.

3.2 Proving Strategies and a New Induction Schedule

A theorem prover typically has many parameters (in Vampire called options)
that can be changed to adjust the proof search characteristics. In Vampire, there
are more than 100 options for configuring the preprocessing steps, the saturation
algorithm, generating and simplification rules, proof search heuristics and also
induction. By a strategy we mean a concrete assignment of values to such options.
It is long known [27,31] that the success rate of an ATP can be dramatically
improved by arranging a number of different proving strategies of complementary
characteristics into a strategy schedule, a sequence of strategies with assigned
time budgets, to be executed in sequence (or in parallel).

In this work, we constructed a strategy schedule specifically targeting induc-
tive theorem proving on the TIP benchmarks (see Sect. 4.1). We followed the
strategy discovery recipe pioneered by the Spider system [30]. This consists of

1. Randomly sampling strategies to try to solve a previously unsolved problem
(or possibly to improve the solution time on a problem already known to be
solvable).

2. Optimizing the found strategy on that problem using local search (in which,
for each option in turn, different values are tried out and a new value is
committed to, if the corresponding change leads to an improved time or the
time stays the same, but the value becomes default).

3. Evaluating the optimized strategy on all problems, to update the information
about which problems are solvable and in what best time.

In our case, we sampled strategies from a space defined by a total of 115 base
Vampire options and 19 dedicated induction options. Most of these options are
Boolean, many are finite enumerations of discrete values and a few are numeric.
It is clear that the totality of all strategies is astronomically large and random
sampling is a way to have access to all the strategies, at least in principle. We
searched for strategies in parallel on 60 cores of our server6 for several days. In

5 The only extra effort is to mark and a protect the new symbol pL against potential
elimination during preprocessing, as, after all, the new equivalence would otherwise
qualify as an unused predicate definition and could be discarded.

6 Equipped With Intel R©Xeon R©Gold 6140 CPU @ 2.3 GHz and 500 GB RAM.

222 S. H. Einarsdóttir et al.

the end, we collected 246 strategies covering 236 of the 486 TIP benchmarks
that we used for training.

Once a sufficiently large set of strategies has been discovered (or when the
rate of solving new problems becomes too low to make search for additional
strategies worth the effort), schedule construction can be formulated as an integer
programming task, in which running times are assigned to individual strategies
to cover the union of as many problems as possible while not exceeding a given
overall time bound [15,23]. We instead adopted a greedy algorithm [4] to a
weighted set cover formulation of the problem: starting from an empty schedule,
we iteratively add a new strategy s for additional t units of time if this step is
currently the best in terms of 1/t·“the number of problems that will additionally
get covered”. This greedy approach does not guarantee an optimal result, but
runs in polynomial time and is really easy to implement. (See also [3].)

Our final schedule makes use of 66 of the discovered strategies and should
be able to solve all of the covered 236 problems in under 12 s (per problem).
For our later experiment we prepared a second schedule, specialized to also take
into consideration the versions of the TIP benchmarks with the added lemmas
(cf. label T in Sect. 4 below). This schedule makes use of 86 strategies, aims
to cover a total of 522 problems (version with and without lemmas counted
separately) and runs to completion after approximately 24 s.

4 Evaluation

In our evaluation we compare several variants of Vampire. We start with two
baseline versions without strategy scheduling:

– (V): Vampire with the following flags for structural induction:

-ind struct -indoct on -nui on -to lpo -drc off

The option -ind struct enables using structural induction (constructor-
based induction axioms for term algebras), and with -indoct on these axioms
are based on generalizing over any term, not just Skolem constants. More-
over, the induction axioms are generated from any clause set using -nui on.
Finally, -to lpo and -drc off enable a simplification ordering which is well-
suited for handling recursive functions.

– (V + L): Vampire with the same flags active as in (V), plus conjectures from
QuickSpec added to the problem files as claims as described in Sect. 3.1.

The idea is that (V) serves as a baseline for what kinds of inductive proofs
Vampire is capable of. By comparing (V) with (V + L), we see whether the
lemmas discovered by QuickSpec help Vampire.

Next we add versions of Vampire with specialized strategy schedules:

– (S): Vampire with the specialized strategy schedule for inductive problems
described in Sect. 3.2.

Lemma Discovery and Strategies for Automated Induction 223

– (S + L): Vampire with both the strategy schedule as in (S) above and con-
jectures from QuickSpec added to the problem files as claims.

By comparing (S) with (V+L), we can see the relative importance of strategy
scheduling and lemmas. In (S+L) we can see whether the two strategies com-
plement each other. We expect that (S) may see less benefit from lemmas than
(V) because the learned strategies may be better at e.g. generalising subgoals.
Note that the strategy schedule is tuned without seeing the lemmas, so it is
even possible that (S+L) might perform worse than (S) due to the extra lemmas
disturbing the strategy scheduler.

Since the strategy schedule is tuned without seeing the lemmas, (S+L) illus-
trates what we can get by taking an existing prover with a built-in strategy
schedule, and adding new lemmas to it. Notice also that any problems that
require lemmas will not be proved during training, so will not influence the
schedule. We can use these problems as a kind of test set for S+L, as they are
effectively unseen during training.

To investigate the limits of our approach we add a third family:

– (T): Vampire with a specialized strategy schedule for inductive problems,
trained on the TIP problems after conjectures from QuickSpec have been
injected into the problem files.

– (T + L): Vampire with the lemma-specialized schedule (T) as above and
conjectures from QuickSpec added to the problem files as claims.

Note that the strategy used by (T) and (T+L) may be prone to overfitting,
as all the test problems are seen during training and influence the schedule.7
The results for (T) and (T+L) are useful as a benchmark to compare the other
provers against, and an indication of what a perfectly-tuned strategy schedule
could do.

We evaluated our methods on the TIP benchmark set. For all methods the
time limit was set to 30 s. Since the strategy schedules are randomized and may
not find the same proofs every time they are run, we ran each one 5 times on
each problem. The experiments were run on a Dell Inc. Latitude 5320 with an
11th Gen Intel R©CoreTMi5-1145G7 @ 2.60GHz × 8 processor and 16GB RAM.
Scripts used to run experiments and process results are available at https://
github.com/solrun/vampspec.

4.1 TIP Benchmarks

TIP is a collection of benchmarks specifically for inductive theorem provers [6].
The problems are expressed in a syntax very similar to SMT-LIB [2], and come

7 Why not use a training/test split? Because there are not very many problems in
total, and more importantly, because many problems are related, which makes it
hard to design an uncontaminated test set, since we need to avoid having related
problems where one is in the training set and one is in the test set.

224 S. H. Einarsdóttir et al.

with tools to translate the problems into various formats (including standard
SMT-LIB) as well as built-in support for lemma generation using QuickSpec.

TIP consists of several subsets: the prod set contains 50 theorems and 24
lemmas about lists and natural numbers defined in [16], the IsaPlanner set
defined in [18] contains 86 properties originally designed to test provers that use
the rippling heuristic. The prod and IsaPlanner problems have previously been
used to evaluate a number inductive theorem provers [5,9,22] so experiments
with them enable comparison to previous work.

The TIP2015 set contains a further 326 problems and was added as many
existing provers, like HipSpec, could solve almost all problems in the previous
two sets. It includes a variety of problems such as various sorting algorithms
with correctness properties expressed in alternative ways, properties of regular
expressions, binary search trees, integers implemented on top of natural numbers,
natural numbers in binary representation, and properties of various functions on
lists and natural numbers. Some of the problems were not known to have been
automated at the time of their publication [6] and are offered as challenges.

4.2 Results

Table 1 shows the number of proofs found for the 486 TIP benchmarks, by the
different methods that we described previously. We count a proof as found if it
was found in any of the 5 proof attempts using that strategy. We found that
Vampire with structural induction enabled, (V), finds proofs to 102 of the prob-
lems, which increases to 143 with the addition of lemmas from QuickSpec. The
specialized strategy schedule, (S), finds 236 proofs, more than twice as many as
(V). The specialized strategy schedule finds some more proofs with the addi-
tion of lemmas but the increase is not so great, from 236 to 263. The strategy
schedule trained on problems already containing lemmas, (T), finds 237 proofs
(the same proofs as (S) and one additional proof), which increases to 288 with
the addition of lemmas. The bottom line of Table 1 shows the number of proofs
found by each method with or without lemmas added.

Table 1. The number of proofs found for the 486 TIP benchmarks when testing the
different proof methods in the presence and absence of generated lemmas.

Proofs found (V) (S) (T)

no lemmas 102 236 237
with lemmas (+ L) 143 263 288
Total proofs found 153 269 289

Although all methods find more proofs with lemmas than without, a num-
ber of proofs can only be found without the additional lemmas and are lost
after lemmas are added. Most often when using ATPs, different strategies or
parameterizations might both gain and lose some proofs rather than one simply

Lemma Discovery and Strategies for Automated Induction 225

being strictly better than the other. Table 2 shows this for our three strategies,
with and without added lemmas. As mentioned above there are a small num-
ber of proofs (10 for (V), 6 for (S) and 1 for (T)) which are found by the each
strategy without lemmas, but not after lemmas are added. Since the added lem-
mas increase the size of the proof search space, we are not surprised that they
may in some cases prevent the strategy from finding a proof in time. In the
case of the specialized strategy schedule (T) which has already seen the prob-
lems with added lemmas in its training, the added lemmas only hinder it from
finding a proof in one instance. In the case where (T+L) loses the proof (T)
found, TIP2015/regexp_RecAtom, the number of conjectured lemmas added to
the problem file is very large (459) which probably causes the search space to
explode. For this particular problem both strategies (V) and (S) also found a
proof, but no strategy found a proof for the problem with lemmas added.

Note that (T+L) finds 53 proofs not found by (S), showing the improve-
ment achievable by adding QuickSpec’s lemma conjecturing and using a strat-
egy schedule specialized to make use of those lemmas, compared to only using
strategy schedule training as with (S). Of these 53 problems, (S+L) finds proofs
for 33 of them, making use of the added lemmas without having seen them in its
training. As mentioned above, the strategy schedule of (S+L) is effectively not
trained on any problems that require lemmas, so we can view the 53 problems as
test problems, unseen in the training data, all solvable with a perfect strategy,
and say that (S+L) solves 62% of those problems. Thus we get an indication
that the strategy schedule is generalizing to unseen problems.

Table 2. Here each column shows the number of unique proofs found by the respective
method (column label) but not by one of the other methods (row label).

(V) (V + L) (S) (S + L) (T) (T + L)

- (V) 51 134 162 135 187
- (V + L) 10 109 124 109 145
- (S) 0 16 33 1 53
- (S + L) 1 4 6 6 25
- (T) 0 15 0 32 52
- (T + L) 1 0 1 0 1

In some cases, one of our methods performs strictly better than another,
namely (S) and (T) are strictly better than (V), (T) is strictly better than
(S), and (T+L) is strictly better than (S+L). Since (S) and (T) are special-
ized strategy schedules that can execute many different strategies for each proof
attempt, including the strategy used by (V), it is unsurprising that they sub-
sume (V). Since (S) and (T) are strategy schedules trained in the same manner,
with the only difference being that (T) is trained on a superset of the problems
(S) is trained on, and both evaluated on problems they have encountered in

226 S. H. Einarsdóttir et al.

their training, we expect them to achieve a similar performance. Note that (T)
only finds one proof not found by (S), so their performance is nearly equivalent.
Since (T+L) is evaluated on problems with added lemmas that it has already
seen during training while (S+L) is given previously unseen lemmas in its input
problems, it would be surprising if (S+L) found a proof that (T+L) could not.
In all cases these pairs of methods are evaluated on the same input problems
(both are evaluated on problems with additional lemmas or both on the problems
without lemmas).

Fig. 1. Time taken to find a proof with lemmas versus without them using the same
strategy (on a log scale).

In cases where the same strategy could find a proof both with and without
lemmas added to the problem file, we compare the time taken to find a proof as a
metric of how easy the proof is to find. Figure 1 shows the plots of the time taken
to find a proof with lemmas versus without them using the same strategy (on a

Lemma Discovery and Strategies for Automated Induction 227

log scale). The points around the edges indicate that the respective method did
not find a proof within the given time limit (30 s), so points along the right-hand
edge indicate that a proof was found with lemmas and not without them, while
points along the top edge indicate a proof was found without lemmas and lost
after they were added.

For problems where both (V) and (V+L) found a proof, the average time
for (V) was 0.67 s with a standard deviation of 3.56 s, while the average time for
(V+L) was 1.04 s with a standard deviation of 4.30 s. We can see how in most
cases where a proof was found both with and without lemmas added, the proof
search went faster without them, indicated by how most of the points are to
the left of the diagonal. For problems where both (S) and (S+L) found a proof,
the average time for (S) was 0.20 s with a standard deviation of 0.49 s while the
average time for (S+L) was 1.53 s with a standard deviation of 4.16 s. We see
many points clustered around the diagonal, indicating both proof searches took
a similar amount of time to find a proof, though many more points lie to the left
of the diagonal than to its right, indicating a faster proof search without lemmas.
For problems where both (T) and (T+L) found a proof, the average time for (T)
was 0.59 s with a standard deviation of 2.39 s while the average time for (T+L)
was 0.37 s with a standard deviation of 1.16 s, so as opposed to methods (V) and
(S), the proof time goes down with the addition of lemmas. Since the schedule
here was trained on problems containing lemmas, it prioritizes strategies that
make use of the available lemmas, thus finding the proofs more efficiently with
lemmas.

Table 3. The number of proofs found in different subsets of the TIP benchmarks,
along with results for CVC4 and HipSpec for the same subsets.

Set (size) (V) (V+L) (S) (S+L) (T) (T+L) CVC4 HipSpec

prod (50) 7 29 27 46 28 49 39 47
IsaPlanner (85) 41 43 73 75 73 81 80 80
TIP2015 (326) 39 53 113 119 113 134 – –

The problems from the IsaPlanner and prod subsets of TIP were also used for
evaluation of HipSpec in [5]8 and of inductive reasoning with CVC4 in [22]. The
number of proofs they found are included in Table 3 along with the results of our
experiments for those subsets.9 We see a clear difference in results on the prod -
8 In order to investigate whether the numbers for HipSpec would be better on a mod-

ern machine, we re-ran it on the prod benchmark. We found that it solved fewer
problems, 44 in all, as a result of slight changes in HipSpec since the publication of
[5]. No problems were solved by HipSpec today that were not solved back then.

9 We tried but failed to run HipSpec on the TIP2015 problems. HipSpec’s input
format is a limited dialect of Haskell and, while TIP problems can be converted to
Haskell, the dialect is not the same as HipSpec’s. As HipSpec is unmaintained, we
were unable to go further.

228 S. H. Einarsdóttir et al.

subset, which is designed such that more complicated lemmas are needed for
most proofs, and the IsaPlanner -subset, which contains easier problems which
can often be solved without external lemmas (or with just lemmas coming from
generalizations of a subgoal). On both subsets we only achieve results competitive
with either CVC4 or HipSpec when we combine a specialized strategy schedule
with lemmas (S+L) and (T+L). On the TIP2015 subset, none of the methods
we tested found proofs for even half of the problems, and we leave a closer
examination of what is required to achieve better results there as future work.

As described in Sect. 3.2, the strategy schedules may not find the same proofs
in every run. In our experiments we ran each schedule 5 times and found there
was a handful of problems where the same strategy schedule would sometimes
find a proof and not others, the exact numbers are shown in Table 4. In the
results shown in Tables 1–3 we count that a proof was found if it was found in
at least one of the five runs.

Table 4. Number of inconsistently found proofs by each strategy schedule with and
without added lemmas.

Method (S) (S + L) (T) (T + L)

Inconsistent Proofs 1 9 4 6

5 Discussion

Modern day ATPs like Vampire have many moving parts. Slight changes in
configuration often lead to some extra proofs being found while others are lost.
This is particularly true when considering also proofs by induction, as here the
potential for exploding the search space in unproductive directions is even larger.
It is often difficult to know in advance what parameters and strategies will affect
the capabilities of finding a proof within reasonable time.

Our first experiments tested the effect of adding lemma candidates for induc-
tive proofs to a standard out-of-the-box variant of Vampire, simulating what a
regular user might have at hand. Here, we see a clear improvement in the number
of proofs for the TIP prod -subset, where more complicated lemmas are needed
for most of the proofs, and a modest improvement on other subsets. Still, the
results are well below both CVC4 and HipSpec. We conclude that simply adding
lemmas from QuickSpec to Vampire (with a default induction strategy) is not
sufficient to reach a state-of-the-art performance.

Secondly, we also experimented with training specialized strategies, cus-
tomized to inductive proofs on TIP problems. This seems to be necessary for top
performance. We experiment with two trained strategies: the first on proofs of
TIP-problems without added lemmas (starting from the out-of-the-box Vampire
setup). The second, to get an upper bound of how well Vampire could perform,
we also trained on proofs with the added lemmas from QuickSpec. With a cus-
tomized strategy for induction, already without lemmas Vampire performs much

Lemma Discovery and Strategies for Automated Induction 229

better than before. We notice that the increase is larger for the customized strat-
egy than it was for adding lemmas to the standard Vampire version! We conclude
that specialized strategies have a larger effect on the number of proofs than just
adding auxiliary lemmas.

Finally, we added the QuickSpec lemmas. Both strategies now improved even
more, especially on the TIP prod -subset, where they both beat previous state
of the art, proving 46 and 49 problems respectively. As expected, the strategy
trained on proofs with lemmas (T) had a larger increase, being able to use the
lemmas available more efficiently. Interestingly, on the TIP IsaPlanner -subset,
only the (T) strategy beat the state of the art. We conclude that in the presence
of auxiliary lemmas and together with specialized strategies, Vampire can indeed
outperform previous state of the art systems CVC4 and HipSpec.

However, one might argue that the comparison is biased. To get state-of-
the-art performance from Vampire requires a strategy optimised by seeing and
trying the problems already! This might not be a viable option for all users. We
do not know how well these schedules would perform on other types of inductive
problems as they are likely overfitted to TIP to some degree. We could have
divided the TIP problems into training and testing sets to try to avoid over-
fitting, but the TIP set is not very large, only 486 problems (of which only 60%
could be solved using any method we tried), and many problems are similar to
each other, so it is not clear that this would solve the problem. In short, there is
too little data to train a general-purpose strategy, and we can not say how well
the learned strategy generalizes to problems outside of TIP.

Even so, domain-specific strategies are reasonable in many applications. For
example, in program verification, it is reasonable to run the prover over a set
of problems multiple times, and find a strategy that works for just those kind
of problems one is interested in verifying. Our results show that specially-tuned
strategies are highly effective, and compatible with lemma discovery.

The search space for proofs where induction is allowed is inherently enormous
and becomes particularly explosive when the ATP itself has to decide when to
apply induction. Trained strategies seem to be necessary for competitive perfor-
mance. HipSpec on the other hand was developed before CVC4 and Vampire
supported induction, and thus handled the induction step outside the ATP, and
only outsourced the resulting subgoals. One benefit of doing so is that the search
space is much less explosive, which contributes to HipSpec’s good performance.
We thus leave the question of how to best implement automated induction par-
tially unsolved: we either need highly specialized strategies trained on many
attempts of proofs, or keeping the application of induction under strict control.

5.1 Future Work

We have many ideas for improvements when it comes to generating lemmas for
inductive proofs. QuickSpec is limited to discovering equational conjectures that
may have a predicate as a condition (if the theory being explored contains a
function that returns a boolean value, the value of that function may be used as
a predicate). However, many inductive proofs require more complex conditional

230 S. H. Einarsdóttir et al.

lemmas. In [10] we presented RoughSpec, a system that generates conjectures
that match a user-defined input template. This could be used to conjecture
lemmas for inductive proofs, using lemma templates likely to be useful learned
from proof libraries. Another idea is developing better methods of only providing
lemmas likely to be useful, limiting the number of lemmas given to the prover so
that the search space does not explode. For example, there are some prominent
examples of using simple syntactic conditions [14] inside the theorem prover
or using machine learning [19] before the invocation of the theorem prover to
mitigate this issue.

Acknowledgments. This work was partially supported by the Wallenberg Artificial
Intelligence, Autonomous Systems and Software Program (WASP), funded by the Knut
and Alice Wallenberg Foundation. Martin Suda was supported by the Czech Science
Foundation project no. 24-12759S and the project RICAIP no. 857306 under the EU-
H2020 programme.

References

1. Bachmair, L., Dershowitz, N., Plaisted, D.A.: Completion without failure. In:
Rewriting Techniques, pp. 1–30. Elsevier (1989)

2. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB Standard: Version 2.6. Tech.
rep., Department of Computer Science, The University of Iowa (2017). www.SMT-
LIB.org

3. Bártek, F., Chvalovský, K., Suda, M.: Regularization in spider-style strategy dis-
covery and schedule construction. In: IJCAR (2024), accepted

4. Chvátal, V.: A greedy heuristic for the set-covering problem. Math. Oper. Res.
4(3), 233–235 (1979)

5. Claessen, K., Johansson, M., Rosén, D., Smallbone, N.: Automating inductive
proofs using theory exploration. In: Bonacina, M.P. (ed.) CADE 2013. LNCS
(LNAI), vol. 7898, pp. 392–406. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-38574-2_27

6. Claessen, K., Johansson, M., Rosén, D., Smallbone, N.: TIP: tons of inductive
problems. In: Kerber, M., Carette, J., Kaliszyk, C., Rabe, F., Sorge, V. (eds.) CICM
2015. LNCS (LNAI), vol. 9150, pp. 333–337. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-20615-8_23

7. Claessen, K., Johansson, M., Rosén, D., Smallbone, N.: The TIP format. http://
tip-org.github.io/format.html

8. Cruanes, S.: Superposition with structural induction. In: Dixon, C., Finger, M.
(eds.) FroCoS 2017. LNCS (LNAI), vol. 10483, pp. 172–188. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-66167-4_10

9. Dixon, L., Johansson, M.: Isaplanner 2: A proof planner for isabelle (2007)
10. Einarsdóttir, S.H., Smallbone, N., Johansson, M.: Template-based theory explo-

ration: Discovering properties of functional programs by testing. In: Proceedings
of the 32nd Symposium on Implementation and Application of Functional Lan-
guages, IFL 2020, pp. 67-78. Association for Computing Machinery, New York
(2021). https://doi.org/10.1145/3462172.3462192

11. Hajdu, M., Hozzová, P., Kovács, L., Reger, G., Voronkov, A.: Getting Saturated
with Induction, pp. 306–322. Springer Nature Switzerland, Cham (2022)

Lemma Discovery and Strategies for Automated Induction 231

12. Hajdú, M., Hozzová, P., Kovács, L., Schoisswohl, J., Voronkov, A.: Induction with
generalization in superposition reasoning. In: Benzmüller, C., Miller, B. (eds.)
Intelligent Computer Mathematics, pp. 123–137. Springer International Publish-
ing, Cham (2020). https://doi.org/10.1007/978-3-030-53518-6_8

13. Hajdú, M., Hozzová, P., Kovács, L., Voronkov, A.: Induction with recursive defini-
tions in superposition. In: Formal Methods in Computer Aided Design, FMCAD
2021, New Haven, CT, USA, 19-22 October 2021, pp. 1–10. IEEE (2021)

14. Hoder, K., Voronkov, A.: Sine qua non for large theory reasoning. In: Bjørner, N.,
Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS (LNAI), vol. 6803, pp. 299–
314. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22438-6_23

15. Holden, E.K., Korovin, K.: Heterogeneous heuristic optimisation and scheduling for
first-order theorem proving. In: Kamareddine, F., Sacerdoti Coen, C. (eds.) CICM
2021. LNCS (LNAI), vol. 12833, pp. 107–123. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-81097-9_8

16. Ireland, A., Bundy, A.: Productive use of failure in inductive proof. J. Autom.
Reason. 16, 79–111 (1996)

17. Johansson, M.: Lemma discovery for induction. In: Kaliszyk, C., Brady, E.,
Kohlhase, A., Sacerdoti Coen, C. (eds.) CICM 2019. LNCS (LNAI), vol. 11617, pp.
125–139. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23250-4_9

18. Johansson, M., Dixon, L., Bundy, A.: Case-analysis for rippling and inductive
proof. In: International Conference on Interactive Theorem Proving (2010)

19. Kühlwein, D., Blanchette, J.C., Kaliszyk, C., Urban, J.: MaSh: machine learning
for sledgehammer. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) Interac-
tive Theorem Proving, pp. 35–50. Springer, Berlin Heidelberg, Berlin, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39634-2_6

20. Reger, G., Suda, M., Voronkov, A.: Playing with AVATAR. In: Felty, A.P., Mid-
deldorp, A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 399–415. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-21401-6_28

21. Reger, G., Voronkov, A.: Induction in saturation-based proof search. In: CADE
(2019). https://api.semanticscholar.org/CorpusID:126940163

22. Reynolds, A., Kuncak, V.: Induction for SMT solvers. In: D’Souza, D., Lal, A.,
Larsen, K.G. (eds.) VMCAI 2015. LNCS, vol. 8931, pp. 80–98. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46081-8_5

23. Schurr, H.: Optimal strategy schedules for everyone. In: Konev, B., Schon, C.,
Steen, A. (eds.) Proceedings of the Workshop on Practical Aspects of Automated
Reasoning Co-located with the 11th International Joint Conference on Automated
Reasoning (FLoC/IJCAR 2022), Haifa, Israel, 11 - 12 August, 2022. CEUR Work-
shop Proceedings, vol. 3201. CEUR-WS.org (2022). https://ceur-ws.org/Vol-3201/
paper8.pdf

24. Smallbone, N.: Twee: An equational theorem prover. In: CADE, pp. 602–613 (2021)
25. Smallbone, N., Johansson, M., Claessen, K., Algehed, M.: Quick specifications for

the busy programmer. J. Funct. Program. 27 (2017)
26. Sutcliffe, G.: The Logic Languages of the TPTP World. Logic J. IGPL (2022).

https://doi.org/10.1093/jigpal/jzac068
27. Tammet, T.: Towards efficient subsumption. In: Kirchner, C., Kirchner, H. (eds.)

CADE 1998. LNCS, vol. 1421, pp. 427–441. Springer, Heidelberg (1998). https://
doi.org/10.1007/BFb0054276

28. Urban, J.: Blistr: The blind strategymaker. In: Gottlob, G., Sutcliffe, G., Voronkov,
A. (eds.) Global Conference on Artificial Intelligence, GCAI 2015, Tbilisi, Georgia,
16-19 October 2015. EPiC Series in Computing, vol. 36, pp. 312–319. EasyChair
(2015), https://easychair.org/publications/volume/GCAI_2015

232 S. H. Einarsdóttir et al.

29. Voronkov, A.: AVATAR: the architecture for first-order theorem provers. In: Biere,
A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 696–710. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-08867-9_46

30. Voronkov, A.: Spider: learning in the sea of options. In: Vampire23: The 7th Vam-
pire Workshop (2023), https://easychair.org/smart-program/Vampire23/2023-07-
05.html#talk:223833, to appear

31. Wolf, A., Letz, R.: Strategy parallelism in automated theorem proving. In: Cook,
D.J. (ed.) Proceedings of the Eleventh International Florida Artificial Intelligence
Research Society Conference, May 18-20, 1998, Sanibel Island, Florida, USA,
pp. 142–146. AAAI Press (1998). http://www.aaai.org/Library/FLAIRS/1998/
flairs98-027.php

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

